উপক্রমণিকা

আমাদের এ পৃথিবী সর্বত্র একই রকম নয়। এর কোথাও আছে বিস্তৃত সমভূমি, কোথাও আছে সুউচ্চ গিরিমালা, আবার কোথাও আছে উত্তপ্ত বালুরাশির বিশাল মরুভূমি। এখানে যেমন রয়েছে মিঠাপানির নদী-নালা, খাল-বিল, হাওর-বাঁওড়, হুদ; তেমনই রয়েছে লবণাক্ত পানির সীমাহীন সাগর মহাসাগর। এর কোথাও সুজলা, সুফলা, শস্য-শ্যামলা, আবার কোথাও নির্জলা, নিক্ষলা কংকরময় মরুমালা। এর কোথাও সূর্যতাপে মাটি পুড়ে খাক হয়ে যায়, আবার কোথাও বরফে ঢাকা থাকে মাস-বছর-শতাব্দী ধরে। এ হলো আমাদের পৃথিবীর পরিবেশের বিচিত্র রূপ।

পৃথিবীর এ বিচিত্র পরিবেশের প্রায় সর্বত্রই রয়েছে জীবের উপস্থিতি। জলে-স্থলে বহু জীবের উপস্থিতি আমরা সবসময়ই দেখে থাকি, তবে অনেক জীব প্রজাতি আছে যা সচরাচর খালি চোখে দেখতে পারি না।

অনুমান করা হয় যে, বর্তমানে পৃথিবীতে উদ্ভিদ প্রজাতির সংখ্যা পাঁচ লক্ষের মতো (কারো কারো মতে অনেক বেশি) এবং প্রাণী প্রজাতির সংখ্যা ১৩ লক্ষের ওপর। এ লক্ষ লক্ষ প্রজাতির জীব একটি থেকে অন্যটি ভিন্নতর। বৈশিষ্ট্য অনুযায়ী এদের প্রতিটি প্রজাতিকে শনাক্ত করা যায়। ভিন্ন ভিন্ন প্রজাতির এ বৈচিত্র্যকে বলা হয় শিপশিন্ধ ভাইভারসিটি (species diversity)। একই প্রজাতির মধ্যে আবার প্রকরণগত ভিন্নতা লক্ষ্য করা যায়। ধানের বিভিন্ন প্রকরণ-এর একটি উদাহরণ। 'জিন'গত পার্থক্যের কারণে এমনটি হয়। অন্তপ্রজাতির (intraspecific) এ জিনগত পার্থক্যকে বলা হয় জেনেটিক ভাইভারসিটি (genetic diversity)। বিভিন্ন পরিবেশতত্ত্বে (ecosystem) বিভিন্ন ধরনের জীব জন্মে। পৃথিবীতে বিভিন্ন রকমের ভৌগোলিক অবস্থা বা পরিবেশতত্ত্ব বিরাজমান যা ইকোসিস্টেম ডাইভারসিটি হিসেবে বিবেচিত। পৃথিবীর বিচিত্র পরিবেশের প্রায় সর্বত্রই রয়েছে জীবজগতের বিস্তৃতি। আবার জীবজগতের মধ্যে রয়েছে জীবের (i) জেনেটিক বৈচিত্র্য, (ii) শিশিজ বৈচিত্র্য ও (iii) ইকোসিস্টেম বৈচিত্র্য। এ তিন প্রকার বৈচিত্র্যকে তথা ডাইভারসিটিকে একসাথে বলা হয় জীববৈচিত্র্য বা বায়োডাইভারসিটি (biodiversity)।

কোনো অঞ্চলে জন্মানো সকল ধরনের জীবের মোট প্রজাতির সংখ্যা এবং প্রতিটি প্রজাতির সদস্যসংখ্যাকে এক সাথে বলা হয় ঐ অঞ্চলের প্রজাতিক বৈচিত্র্য বা Species diversity.

কোনো একটি প্রজাতির সদস্য জীবসমূহের মধ্যে জেনেটিক পরিবর্তিতা (variability)কে বলা হয় জেনেটিক ডাইভারসিটি (Genetic diversity)। মানুষের ব্যক্তি পরিবর্তিতা লক্ষ্যণীয় যদিও সকল মানুষ একই প্রজাতির অন্তর্ভুক্ত।

একটি ইকোসিস্টেমের ভৌত আকার (size), আকৃতি (shape) প্রজাতির সদস্যদের বন্টন (distribution) জীবের বাসন্থান (habitat) ও জীবসম্প্রদায় (community)-কে এক সাথে বলা হয় গাঠনিক বৈচিত্র্য বা structural diversity। জীববৈচিত্র্যের (biodiversity) জন্য গাঠনিক বৈচিত্র্য অতি গুরুত্বপূর্ণ, কারণ গাঠনিক বৈচিত্র্য বিচিত্র ধরনের অজৈব উপাদান সমৃদ্ধ বহু ক্ষুদ্র বাসন্থান (microhabitats) সৃষ্টি করে। যেমন, নদী বা সাগরের তলদেশে একটি নৌকা বা জাহাজ পড়ে থাকলে সেখানে একটি পৃথক ক্ষুদ্র বাসন্থান সৃষ্টি হয়।

জীববিজ্ঞানের শিক্ষার্থী হিসেবে প্রতিটি জীব বা জীবগোষ্ঠীর বৈশিষ্ট্য, আচরণ, ব্যবহার ইত্যাদি আমাদের জানা প্রয়োজন। এজন্য চাই একটি সহজ পদ্ধতি। অসংখ্য ও বিচিত্র জীব প্রজাতিকে কীভাবে সহজে জানা যায় তার জন্য চাই একটি সুচিন্তিত ও সুবিন্যন্ত পদ্ধতি। বিভিন্ন জীব প্রজাতিকে সহজে জানার বিন্যাসগত পদ্ধতিই **জীবের শ্রেণিবিন্যাস পদ্ধতি** নামে পরিচিত।

চিরাচরিত ধারণা অনুযায়ী জীব প্রধানত দু'প্রকার : **উদ্ভিদ** এবং **প্রাণী**। এদের মধ্যে মিল এবং অমিল দুই-ই আছে। যাই হোক, উদ্ভিদ এবং প্রাণী পৃথকযোগ্য। আমাদের পরবর্তী আলোচনা উদ্ভিদ নিয়ে।

উদ্ভিদ কারা? পঞ্চরাজ্য শ্রেণিবিন্যাস অনুযায়ী প্ল্যান্টি (plantae) রাজ্যের সদস্যরাই উদ্ভিদ। এদের বৈশিষ্ট্য নিমুরূপ:

(४) এরা প্রকৃতকোষী ও বহুকোষী।

নো) এদের কোষে কোষপ্রাচীর আছে যা সেলুলোজ নির্মিত এবং জড় প্রকৃতির।

(आ) এরা ফটোসিন্থেটিক, তাই স্বভোজী।

🚧) এদের ক্লোরোফিলে ক্লোরোফিল-a, ক্লোরোফিল-b এবং কিছু ক্যারোটিনয়েড থাকে।

🕢 এদের সঞ্চিত খাদ্য মূলত স্টার্চ।

(পা) এদের দেহে সত্যিকার টিস্যু বিদ্যমান।

(সা) এদের খাদ্যগ্রহণ শোষণ প্রকৃতির।

(yhi) প্যারেন্ট উদ্ভিদের টিস্যু দ্বারা সুরক্ষিত ভ্রূণ থেকে এদের বিকাশ।

💢 এদের জীবনচক্রে হ্যাপ্রয়েড এবং ডিপ্রয়েড জেনারেশনের অল্টারনেশন থাকে।

ছত্রাকে জড় কোম্প্রাচীর থাকে যা কাইটিন নির্মিত। তা ছাড়া ছত্রাক ক্লোরোফিলবিহীন ও <u>খাদ্যের জন্য পরনির্ভর।</u> ব্যাকটেরিয়াতে কোম্প্রাচীর থাকে যা পেসটিডোগ্লাইকান সমৃদ্ধ। তাছাড়া ব্যাকটেরিয়া এককোষী ও আদিকোষী। প্রাণিকোষে কোনো জড়প্রাচীর থাকে না। কেবলমাত্র কোমপ্রাচীর থাকা-না থাকা এবং প্রাচীরের গঠন উপাদান বৈশিষ্ট্যের ভিত্তিতে উদ্ভিদ, প্রাণী, ছত্রাক এবং ব্যাকটেরিয়া পৃথক করা যায়।

উদ্ভিদ শ্রেণিবিন্যাস কী? (What is plant classification?)

বিচিত্র ধরনের অসংখ্য উদ্ভিদরাজিকে চারিত্রিক বৈশিষ্ট্যের সাদৃশ্যের ভিত্তিতে একসাথে (এবং বৈসাদৃশ্যের ভিত্তিতে পৃথক দলে) ছাপনের নীতিমালায় পৃথিবীর সব উদ্ভিদকে কিংডম, বিভাগ, শ্রেণি, বর্গ, গোত্র, গণ, প্রজাতি প্রভৃতি দল-উপদলে বিন্যাস করার পদ্ধতিকে বলা হয় উদ্ভিদ শ্রেণিবিন্যাস।

উদ্ভিদ শ্রেণিবিন্যাসের প্রয়োজনীয়তা (Necessity of plant classification)

নিমুলিখিত কারণে বৈচিত্র্যময় উদ্ভিদরাজিকে শ্রেণিবিন্যন্ত করা আবশ্যক।

- ১। আমাদের প্রয়োজনেই বিশ্বের সব উদ্ভিদকে জানা আবশ্যক কিন্তু সারা বিশ্বের প্রায় পাঁচ লক্ষ প্রজাতির প্রতিটিকে পৃথক পৃথকভাবে জানা অসম্ভব, অথচ আমাদের তা জানতে হবে। উদ্ভিদের শ্রেণিবিন্যাস সহজ উপায়ে সব উদ্ভিদকে জানতে সাহায্য করে।
- ২। উদ্ভিদ শ্রেণিবিন্যাস উদ্ভিদের সঠিক শনাক্তকরণকে সহজতর করে দেয়।
- ৩। শ্রেণিবিন্যাস উদ্ভিদ সম্পর্কিত আমাদের জ্ঞানকে সংক্ষেপে প্রকাশ করতে সাহায্য করে।
- ৪। আধুনিক শ্রেণিবিন্যাস উদ্ভিদের আদি-উন্নত নির্ধারণে সাহায্য করে এবং বিবর্তন ধারার নির্দেশ দান করে।
- ৫। ভেষজ উদ্ভিদসহ অন্য সকল উপকারী ও গুরুত্বপূর্ণ উদ্ভিদ শনাক্ত করতে শ্রেণিবিন্যাসের জ্ঞান প্রয়োজন।

উদ্ভিদ শ্রেণিবিন্যাসের এককসমূহ (Units of plant classification) : বিভিন্ন একক ব্যবহার করে উদ্ভিদজগতের শ্রেণিবিন্যাস করা হয়। প্রজাতি, গণ, গোত্র ইত্যাদি হলো শ্রেণিবিন্যাসের কতিপয় একক। নিচে প্রধান প্রধান এককগুলোর নাম ও উদাহরণ (বড়ো থেকে ছোটো) দেওয়া হলোঁ—

এককের নাম	এককের শ্বীকৃত সমাপ্তি	উদাহরণ-১ : কাঁঠালের শ্রেণিবিন্যাস	উদাহরণ-২ : আমের শ্রেণিবিন্যাস	উদাহরণ-৩ : ধানের শ্রেণিবিন্যাস
১ ডিডিদ জগৎ (Plant kingdom)	-	Plantae	Plantae	Plantae
২ বিভাগ (Division)	-phyta	Magnoliophyta	Magnoliophyta	Magnoliophyta
ত্ৰি (Class)	-opsida	Magnoliopsida	Magnoliopsida	Liliopsida
8 বৰ্গ (Order)	-ales	Urticales	Sapindales	Cyperales
প্র। গৌত্র (Family)	-aceae	Moraceae	Anacardiaceae	Poaceae
প্ত। গণ (Genus)	Z40b	Artocarpus	Mangifera	Oryza
প। প্রজাতি (Species)		A. heterophyllus Lamk.	M. indica L.	O. sativa L.

*কেবল heterophyllus বা indica বা sativa লিখলে বা বললে প্রজাতি বোঝাবে না, গণনাম ছাড়া প্রজাতিক পদের কোনো মূল্য নেই।

শ্রেণিবিন্যাসের যেকোনো একককে বলা হয় **ট্যাক্সন** (Taxon), যেমন শ্রেণি একটি ট্যাক্সন, গণ একটি ট্যাক্সন। ট্যাক্সন-এর বহু বচন **ট্যাক্সা** (Taxa)।

নামকরণের নীতিমালা অনুযায়ী শ্রেণিবিন্যাসের প্রধান একক বা স্তর সাতটি। প্রয়োজন হলে একক বৃদ্ধি করা যেতে পারে। কোনো প্রধান এককের ওপরে কোনো নতুন এককের প্রয়োজন হলে ঐ প্রধান এককের পূর্বে **অধি** (super) যোগ করতে হবে, যেমন বর্গের ওপরে **অধিবর্গ**। আবার কোনো প্রধান এককের নিচে নতুন এককের প্রয়োজন হলে প্রধান এককের পূর্বে উপ (sub) যোগ করতে হবে। যেমন- উপশ্রেণি, উপগোল ইত্যাদি। শ্রেণিবিন্যাসের সর্বোচ্চ একক জ্বাৎ এবং সর্বনিম্ব মৌলিক একক প্রজাতি। বর্তমানে জগতের ওপর **অধিজ্ঞাৎ** বা তাধিরাজ্য (Domain) ব্যবহার করা হয়।

১। প্রজাতি (Species) : প্রজাতি হলো শ্রেণিবিন্যাসের মৌশিক একক (basic unit of classification) যা দিপদী নামের মাধ্যমে প্রকাশ করা হয়। সাধারণভাবে প্রজাতি বলতে বিভিন্ন বৈশিষ্ট্যে সর্বাধিক মিলসম্পন্ন একদল জীবকে (উদ্ভিদ, প্রাণী ইত্যাদি) বোঝায়। পরবর্তীতে প্রজাতির সংজ্ঞা একটু পরিবর্তন করা হয়েছে। প্রজাতি হলো একদল জীব যারা নিজেদের মধ্যে সম্ভাব্যরূপে (potentially) **ইন্টারব্রিড করে উর্বর সন্তান উৎপন্ন করতে পারে** (species are groups of organisms that can potentially interbreed to produce fertile offspring)। এটাকে বলা হয় বায়োলজিক্যাল ম্পিশিজ কনসেন্ট।

বায়োলজিক্যাল স্পিশিজ কনসেন্ট সর্বক্ষেত্রে প্রযোজ্য হয় না, কারণ অনেক জীব (ছত্রাক, অণুজীব ইত্যাদি) অযৌন উপায়ে বংশবৃদ্ধি করে (অর্থাৎ ইন্টারব্রিড করার সুযোগ নেই)। আবার অনেক সুপ্রতিষ্ঠিত উদ্ভিদ প্রজাতি আছে যারা হঠাৎ করে ইন্টারব্রিড করে থাকে।

সিংহ ও বাঘ বন্দি খাচায় ইন্টারব্রিড করতে পারে কিন্তু কখনও প্রাকৃতিক পরিবেশে স্বাভাবিক অবস্থায় ইন্টারব্রিড করে না। তাই সিংহ ও বাঘ পৃথক প্রজাতি। আবার ঘোড়া ও গাধা স্বাভাবিক অবস্থায়ও ইন্টারব্রিড করতে পারে কিন্তু তাদের উৎপাদিত সন্তান হয় অনুর্বর। কাজেই ঘোড়া ও গাধা পৃথক প্রজাতি। অর্থাৎ ইন্টারব্রিড স্বাভাবিক অবস্থায় হতে হবে এবং উর্বর সন্তান উৎপাদন করতে হবে।

উদ্ভিদ শ্রেণিবিন্যাসবিদগণ সাধারণত বায়োলজিক্যাল স্পিশিজ কনসেপ্ট ধরে কাজ করেন না। তারা সামান্য তারতম্যসহ (variation) **একই প্রকার গাঠনিক বৈশিষ্ট্য সম্বলিত একদল** জীবকে একটি প্রজাতি হিসেবে চিহ্নিত করে থাকেন।

প্রয়োজন হলে প্রজাতিকে উপপ্রজাতি (sub species), প্রকরণ (variety) ইত্যাদি নিমন্তরে ভাগ করা যায়। প্রজাতির নিমন্তরে কোনো ট্যাক্সনের (উপপ্রজাতি, প্রকরণ) নাম হবে ত্রিপদী বা বহুপদী, যেমন— Brassica oleracea L.var. botrytis L. (ফুলকপি)। Abrus precatorius L.var albospermum Hassan, Rahman & Afroz

২। গণ (Genus) : এক বা পরম্পর নিকট সম্পর্কযুক্ত একাধিক প্রজাতির সমন্বয়ে গঠিত হয় এক একটি গণ। Artocarpus heterophyllus (কাঁঠাল), A. chaplasha (চাপালিশ), A. lacucha (ডেওয়া) ইত্যাদি নিকট সম্পর্কযুক্ত প্রজাতিসমূহের সমন্বয়ে গঠিত হয়েছে Artocarpus গণ। একবার পুরো নাম লেখার পর পরবর্তীতে লিখলে গণনাম প্রথম অক্ষর দিয়ে প্রকাশ করা যায়; যেমন— Artocarpus heterophyllus = A. heterophyllus.

ত। গোঁত্র (Family) : এক বা পরস্পর নিকট সম্পর্কযুক্ত একাধিক গণ নিয়ে গঠিত হয় এক একটি গোত্র। Artocarpus, Ficus, Morus ইত্যাদি গণ নিয়ে গঠিত হয়েছে Moraceae গোত্র। গোত্র শ্রেণিবিন্যাসের তৃতীয় স্তর, গণের ওপরই এর অবস্থান।

একইভাবে এক বা একাধিক নিকট সম্পর্কযুক্ত গোত্র নিয়ে একটি (৪) বর্গ গঠিত হয়, একাধিক বর্গ নিয়ে একটি (৫) শ্রেণি গঠিত হয়, একাধিক শ্রেণি নিয়ে একটি (৬) বিভাগ এবং এক বা একাধিক বিভাগ নিয়ে গঠিত হয় (৭) উদ্ভিদ জগৎ।

নামকরণ (Nomenclature)

শ্রেণিবিন্যাসের প্রতিটি একক (স্তর বা ধাপ) বা ট্যাক্সনের জন্য একটি স্বতন্ত্র বৈজ্ঞানিক নামের প্রয়োজন। এদেরকে নাম প্রদানের জন্য সুনির্দিষ্ট আন্তর্জাতিক নীতিমালা প্রতিষ্ঠিত হয়েছে। নামকরণের আন্তর্জাতিক নীতিমালাকে বলা হয় 'International Code of Botanical Nomenclature', সংক্ষেপে ICBN : ICBN এর নীতি অনুসরণে কোনো ট্যাক্সনের একটি স্বতন্ত্র নাম প্রদান করাকে বলা হয় নামকরণ। অন্যভাবে বলা যায়, কোনো উদ্ভিদের (বা প্রাণীর) বৈজ্ঞানিক নাম দেওয়া সংক্রান্ত নীতিমালা তৈরি, ব্যাখ্যা ও প্রয়োগকে নামকরণ বলা হয়। ICBN এর বর্তমান নাম International Code of Nomenclature for algae, fungi and plants (Melbourne, 2011), সংক্ষেপে ICN. কারণ Algae ও Fungi-কে বর্তমান উদ্ভিদ মনে করা হয় না, এরা পৃথক গ্রুপ।

দ্িটি পদের (শব্দের) মাধ্যমে ICBN (ICN) এর নীতিমালা অনুসারে একটি নির্দিষ্ট প্রজাতির জন্যে একটি নির্দিষ্ট বৈজ্ঞানিক নাম প্রদান করাকে বলা হয় দ্বিপদ নামকরণ। ক্যারোলাস লিনিয়াস ১৭৫৩ সালে সর্বপ্রথম তাঁর Species Plantarum বৃইতে বর্ণিত সকল উদ্ভিদ প্রজাতির জন্যে দ্বিপদ নাম প্রদান করেন। কাজেই লিনিয়াসই দ্বিপদ নামের প্রবর্তক।

কাঁঠালের বৈজ্ঞানিক নাম Artocarpus heterophyllus. এখানে Artocarpus হলো গণ নাম, আর heterophyllus হলো প্রজাতিক পদ। কাজেই Artocarpus গণ নামের শেষে প্রজাতিক পদ heterophyllus যুক্ত হয়ে কাঁঠালের দ্বিপদ নাম জীব-১ম (হাসান) ইনার-৪

হলো Artocarpus heterophyllus. Artocarpus গণের শেমে প্রজাতিক পদ chaplasha যুক্ত হয়ে চাপালিশ গাছের দ্বিপদ নাম হলো Artocarpus chaplasha; Artocarpus গণের শেষে প্রজাতিক পদ lacucha যুক্ত হয়ে ডেওয়ার দ্বিপদ নাম হলো Artocarpus lacucha. Mangifera নামের শেষে প্রজাতিক পদ indica যুক্ত হয়ে আমের দ্বিপদ নাম হলো M. indica, Oryza গণ নামের পর প্রজাতিক পর sativa যুক্ত হয়ে ধানের বৈজ্ঞানিক নাম হলো O. sativa.

ICBN (ICN) অনুযায়ী নামকরণের কয়েকটি নীতিমালা নিম্নে দেওয়া হলো:

- ১। প্রজাতির ওপরের ছয়টি ন্তরের নাম হবে একপদী (uninomial)। যেমন- Moraceae, Artocarpus.
- ২। প্রজাতির নাম হবে **দ্বিপদী** (binomial)। প্রথম পদ হলো গণ নাম এবং দ্বিতীয় পদ হলো প্রজাতিক পদ।
- ৩। নামকে বৈধভাবে প্রকাশিত (validly published) হতে হবে। বর্তমান নিয়মে নতুন নাম প্রকাশের বর্ণনা ১ জানুয়ারি, ২০১২ থেকে ল্যাটিনের (যা বাধ্যতামূলক ছিল) পরিবর্তে ইংরেজি ব্যবহার করা যাবে।
- ৪। গোত্র বা গোত্রের নিচে যেকোনো ট্যাক্সনের জন্য একটি মাত্র শুদ্ধ নাম থাকবে।
- ৫। উদ্ভিদের বৈজ্ঞানিক নামের ভাষা হবে न্যাটিন।
- ৬। গণ নামের প্রথম অক্ষর বড়ো হাতের হবে, প্রজাতিক পদের সব অক্ষরই ছোটো হাতের হবে।
- ৭। বৈজ্ঞানিক নাম ছাপার অক্ষরে **ইটালিক** (ডান দিকে একটু বাঁকা) বা মোটা অক্ষরে হবে। হাতে লিখলে সাধারণত নামের নিচে একটি বা পৃথকভাবে দু'টি দাগ টেনে দিতে হয়।
- ৮। বৈজ্ঞানিক নামের শেষে নাম প্রদানকারীর নাম (সাধারণত সংক্ষিপ্ত) লিখতে হয়। যেমন- Mangifera indica L. এখানে L. লিনিয়াস-এর সংক্ষিপ্ত রূপ। Persicaria eciliata Hassan.

বৈজ্ঞানিক নামের প্রজাতিক পদ বিভিন্ন উৎস থেকে নেয়া যায়; যেমন—ব্যক্তির নাম, অঞ্চল বা ছানের নাম, উদ্ভিদের কোনো বৈশিষ্ট্য ইত্যাদি।

উদাহ	রণ:	ব্যক্তির নাম
1.	Abutilon theophrasti Medic	থিয়োফ্রাস্টাস
2.	Ampelygonum salarkhanii Hassan	অধ্যাপক সালার খান
3.	Bambusa salarkhanii K. Alam	অধ্যাপক সালার খান
4.	Gomphostemma salarkhaniana Khanam & Hassan	অধ্যাপক সালার খান
5.	Mantisia salarkhanii Rahman & Yusuf	অধ্যাপক সালার খান
6.	Boesenbergia islamii Yusuf & Rahman	অধ্যাপক এ. কে. এম. নূরুল ইসলাম
7.	Fissidens hadii Banu-Fattah	অধ্যাপক সৈয়দ হাদিউজ্জামান
8.	Colocasia hassanii H. Ara	অধ্যাপক মো: আবুল হাসান
	The second secon	জায়গার নাম
9.	Bambusa comillensis M. K. Alam	কুমিল্লা
10.	Riccia chittagonensis Zaman et Syed	চউগ্রাম
	Ficus benghalensis L.	বেঙ্গল
	Acalypha indica L.	ইভিয়া
		বৈশিষ্ট্য
13	Ficus hispida L. f	hispid = রোমশ
	Persicaria eciliata Hassan	সিলিয়াবিহীন
A 1.	1 Orbitodi for Contract Lands Lands	

জীবজগতের শ্রেণিবিন্যাসের প্রথম লেখ্য প্রমাণ

এখানে উপস্থাপিত হলো।

জীববিজ্ঞানের জনক হিসেবে পরিচিত গ্রিক বিজ্ঞানী ও দার্শনিক অ্যারিস্টটলের (খ্রিষ্টপূর্ব ৩৮৪–৩২২) কাছ থেকে জীবজগতের শ্রেণিবিন্যাসের প্রথম লেখ্য প্রমাণ (record) পাওয়া যায়। তিনি জীবসমূহকে উদ্ভিদ এবং প্রাণী হিসেবে বিভক্ত করেন। উদ্ভিদসমূহকে হার্ব, শ্রাব এবং **ট্রি**—এই তিন ভাগে ভাগ করেন। প্রাণীসমূহকে পাখি (যারা উড়তে পারে), মাছ (যারা পানিতে বাস করে) এবং **ছলজ প্রাণী** (যারা স্থলে বাস করে)—এই তিন ভাগে ভাগ করেন।

ক্রমিক নং 2, 3, 45, 6, 7, 8, 9, 10, 14 নামগুলো বাংলাদেশ থেকে নতুন প্রজাতি হিসেবে আবিষ্কৃত উদ্ভিদ প্রজাতিগুলোর কয়েকটি

উদ্ভিদ শ্রেণিবিন্যাসের প্রকারভেদ (Types of plant classification)

উদ্ভিদজগতকে বিভিন্ন সময়ে বিভিন্ন উদ্ভিদবিদ বিভিন্নভাবে শ্রেণিবিন্যন্ত করেছেন। এ সমস্ত শ্রেণিবিন্যাসকে প্রধানত তিন ভাগে ভাগ করা যায় : (১) কৃত্রিম (artificial), (২) প্রাকৃতিক (natural) এবং (৩) জাতিজনি (phylogenetic) শ্রেণিবিন্যাস।

- ১। কৃত্রিম শ্রেণিবিন্যাস পদ্ধতি (Artificial system of classification) : কোনো একটি বা বিশেষ কয়েকটি বৈশিষ্ট্যের ওপর (বিশেষ করে অঙ্গজ) ভিত্তি করে উদ্ভিদজগতের যে শ্রেণিবিন্যাস করা হয় তাকে কৃত্রিম শ্রেণিবিন্যাস পদ্ধতি বলে। থিয়োফ্রাস্টাস এবং লিনিয়াসের শ্রেণিবিন্যাস পদ্ধতি কৃত্রিম শ্রেণিবিন্যাস পদ্ধতির উদাহরণ।
- ২। প্রাকৃতিক শ্রেণিবিন্যাস পদ্ধতি (Natural system of classification) : বিভিন্ন উদ্ভিদ বা উদ্ভিদ গোষ্ঠীর মধ্যে সামগ্রিক অঙ্গসংস্থানিক সাদৃশ্যের ওপর নির্ভর করে যে শ্রেণিবিন্যাস করা হয় তাকে প্রাকৃতিক শ্রেণিবিন্যাস পদ্ধতি বলে। এ ক্ষেত্রে উদ্ভিদের প্রাকৃতিক বৈশিষ্ট্যগুলো হতে সাদৃশ্যযুক্ত সর্বাধিক সংখ্যক বৈশিষ্ট্য বেছে নেওয়া হয় এবং এর ওপর ভিত্তি করেই শ্রেণিবিন্যাস করা হয়। বেনথাম-হুকার-এর শ্রেণিবিন্যাস পদ্ধতি প্রাকৃতিক।
- ৩। জাতিজনি শ্রেণিবিন্যাস পদ্ধতি (Phylogenetic system of classification) : বিভিন্ন উদ্ভিদ বা উদ্ভিদগোষ্ঠীকে তাদের উৎপত্তিগত সম্পর্কের ওপর ভিত্তি করে বিবর্তন ধারা অনুযায়ী আদি হতে আধুনিক ক্রমধারায় সাজিয়ে যে শ্রেণিবিন্যাস করা হয় তাকে জাতিজনি শ্রেণিবিন্যাস পদ্ধতি বলে। এগলার-প্রান্টল, হাচিনসন, বেসি, ক্রনকুইস্ট, তাখতাইয়ান প্রমুখ বিজ্ঞানীর দেওয়া শ্রেণিবিন্যাস পদ্ধতি জাতিজনি শ্রেণিবিন্যাস পদ্ধতির উদাহরণ।

থিয়োফ্রাস্টাস-এর কৃত্রিম শ্রেণিবিন্যাস পদ্ধতি

থিয়োফাস্টাস (Theophrastus, 370–285 মতান্তরে 371–287 B.C): তিনি ছিলেন একজন বিখ্যাত থ্রিক উদ্ভিদবিজ্ঞানী (প্র্যাটো ও অ্যারিস্টোটল-এর ছাত্র এবং লাইসিয়াম গার্ডেনের প্রধান)। থিয়োফাস্টাস-এর দুর্টি বই অধিক পরিচিত। বই দুর্টি হলো— (১) Enquiry into Plants যা Historia Plantarum হিসেবে অধিক পরিচিত ও বেশ আলোচিত। (২) On the Causes of Plants. তাঁর বইগুলো থ্রিক ভাষায় রচিত। Historia Plantarum-এর থ্রিক নাম Περί Φγτων Ϊστορια (Periphyton Historia)। ১০টি বইয়ের সমন্বয়ে Historia Plantarum বইটি পরিচিত : ১। এনাটমি, ২। বৃক্ষ এবং বংশবিস্তার, ৩। বন্য বৃক্ষ, ৪। বিদেশি বৃক্ষ ও গুলা, ৫। কাষ্ঠ, ৬। উপগুলা, ৭। পটহার্বস, ৮। শস্য ও লিগুম, ৯। উদ্ভিদের ভেষজ ব্যবহার এবং ১০। (যা হারিয়ে গিয়েছে)।

গ্রিক থেকে ল্যাটিন অনুবাদ করেন Theodore Gaza (১৪৫৪, প্রকাশ ১৪৮৩)। এর ইংরেজি অনুবাদ করেন Arthur Hort (প্রকাশ ১৯১৬)। মূল বইটি এক লক্ষ শব্দের ৪০০ পৃষ্ঠা সম্বলিত; এতে ৪০০—৫০০ প্রজাতির উদ্ভিদের বর্ণনা রয়েছে।

থিয়োফ্রাস্টাস উদ্ভিদ কাণ্ডের প্রকৃতি, বিস্তৃতি ও কার্চ্চলতার ওপর ভিত্তি করে উদ্ভিদসমূহকে চারটি শ্রেণিতে (প্রকার) ভাগ করেছেন; যথা— (i) **টি** (tree) বা **বৃক্ষ**, (ii) **শ্রাব** (shrub) বা **গুলা**, (iii) **আভারশ্রাব** (undershrub or subshrub) বা **উপগুলা** এবং (iv) হার্ব (herb) বা বীরুৎ।

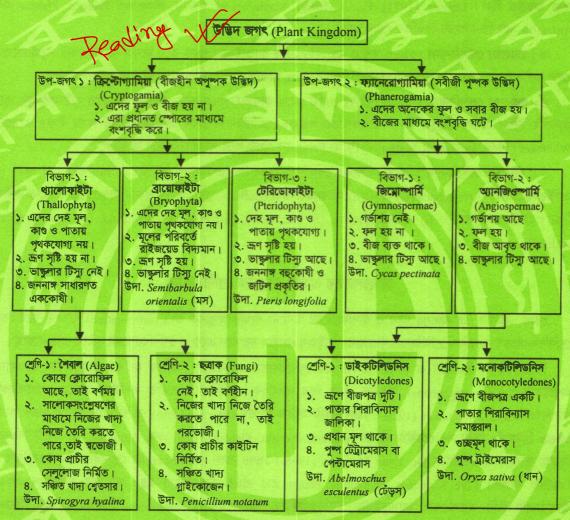
I. ট্রি (Tree) বা বৃক্ষ: সুস্পষ্ট একক কাণ্ডবিশিষ্ট উঁচু কাণ্ঠল উদ্ভিদকে ট্রি বা বৃক্ষ বলা হয়। এরা বহুবর্ষজীবী; যেমন— Mangifera indica (আম), Syzygium cumini (জাম), Artocarpus heterophyllus (কাঁঠাল) প্রভৃতি।

- II. শ্রাব (Shrub) বা শুলা : যেসব উদ্ভিদ কার্চল, বহুবর্ষজীবী, সাধারণত একক কাণ্ডহীন এবং গোড়া হতে অধিক শাখা-প্রশাখা বিস্তার করে ঝোপে পরিণত হয় সেসব উদ্ভিদই শ্রাব বা শুলা; যেমন—Hibiscus rosa-sinensis (জবা), Ixora coccinea (রঙ্গন), Gardenia jasminoides (গন্ধরাজ) প্রভৃতি। শুলা বহুবর্ষজীবী।
- III. আভারশ্রাব (Undershrub) বা উপগুলা: শ্রাব-এর চেয়ে ছোটো আকারের কার্চন উদ্ভিদকে আভারশ্রাব বলে; যেমন, Cassia sophera (কান্ধাসুন্দা), Glycosmis arborea (আঁশশেওড়া)।
- IV. হার্ব (Herb) বা বীরুৎ: নরম কাণ্ডবিশিষ্ট উদ্ভিদকে হার্ব বা বীরুৎ বলে। Oryza sativa (ধান), Triticum aestivum (গম), Brassica napus (সরিষা) প্রভৃতি হার্বের উদাহরণ। অধিকাংশ হার্বই একবার ফল দিয়ে মরে যায়। ঘাস, কচু, কচুরিপানা, নরম লতা গাছ এরাও হার্ব জাতীয় উদ্ভিদ। কার্চল কাণ্ডবিশিষ্ট হার্বকে উডি হার্ব (woody herb) বলা হয়। যেমন, তোষা পাট (Corchorus olitorius.)

আয়ুমালের ওপর নির্ভর করে তিনি হার্বকে আবার তিন ভাগে ভাগ করেছেন: যথা—

- (a) <mark>স্যানুয়্যাল (Annual) বা বর্ষজীবী :</mark> এসব হার্ব এক বংহর বা তার চেয়ে কম সময় জীবিত থাকে; যেমন— Brassica napus. (সরিষা), Cicer arietinum (ছোলা) ইত্যাদি।
- (b) বাইয়েনিয়্যাল (Biennial) বা দ্বির্বজীবী: এসব হার্ব সাধারণত দুই বছরকাল জীবিত থাকে এবং প্রথম বছরে দৈহিক বৃদ্ধিসম্পন্ন হয় ও দ্বিতীয় বছরে ফুল ও ফল হয়। Raphanus sativus (মূলা), Brassica oleracea var. botrytis (ফুলকপি): শীতপ্রধান অঞ্চলে এরা দ্বির্বজীবী। আমাদের দেশে এরা বর্বজীবী।
- (c) পেরেনিয়্যাল (Perennial) বা বহুবর্ষজীবী: এসব হার্ব দুই বছরের বেশি বেঁচে থাকে; যেমন, Zingiber officinale (আদা), Curcuma longa (হলুদ) প্রভৃতি গাছ। এদের ভূ-নিমুন্থ কাণ্ড হতে প্রতি বছর বায়বীয় কাণ্ড বের হয়। Cynodon dactylon (দূর্বা ঘাস) একটি বহুবর্ষজীবী হার্ব উদ্ভিদ।

লিনিয়াসের শ্রেণিবিন্যাস পদ্ধতি


ক্যারোলাস লিনিয়াস (Carolus Linnaeus, 1707–1778) : লিনিয়াস আধুনিক ট্যাক্সোনমিক বোটানি ও ট্যাক্সোনমিক জুবলজির জনক (father of taxonomy) হিসেবে পরিচিত। লিনিয়াস ছিলেন সুইডেন দেশীয় প্রকৃতি বিজ্ঞানী। লিনিয়াস তাঁর Species Plantarum পুস্তকে (দুই খণ্ডে প্রকাশিত, প্রকাশকাল মে, ১৭৫৩) প্রকাশিত সকল উদ্ভিদের জন্য দিপদ নাম ব্যবহার করেন। এজন্যই তাঁকে দিপদ নামকরণের প্রবক্তা বলা হয়। পরবর্তী উদ্ভিদবিজ্ঞানিগণ কর্তৃক Species Plantarumকেই উদ্ভিদের আধুনিক নামকরণের শুক্ত হিসেবে স্থির করেন। তিনি পুংকেশর ও দ্রীকেশরের বিভিন্ন বৈশিষ্ট্যের ওপর ভিত্তি করে উদ্ভিদ জগতকে ২৪টি শ্রেণি ও বহু বর্গে বিভক্ত করেন। ২৪টি শ্রেণির মধ্যে ১টি হলো অপুস্পক উদ্ভিদের এবং বাকি ২৩টি হলো সপুস্পক উদ্ভিদের। এটি একটি কৃত্রিম শ্রেণিবিন্যাস পদ্ধতি। পুংকেশর ও দ্রীকেশরের বৈশিষ্ট্যের ওপর ভিত্তি করে করা বলে তাঁর শ্রেণিবিন্যাস পদ্ধতিটি যৌন শ্রেণিবিন্যাস শদ্ধতি নামেও পরিচিত। উইলিয়াম রক্সবার্গকে ভারতীয় উপমহাদেশের লিনিয়াস বা ফাদার অব বোটানি ইন ইন্ডিয়া হিসেবে আখ্যায়িত করা হয়।

ঢাকা বিশ্ববিদ্যালয়ের উদ্ভিদবিজ্ঞান বিভাগের অধ্যাপক এবং বাংলাদেশ ন্যাশনাল হার্বেরিয়ামের প্রতিষ্ঠাতা অধ্যাপক ড. মো: সালার খানকে বাংলাদেশে শ্রেণিবিন্যাসবিদ্যার পিতৃপুরুষ হিসেবে আখ্যায়িত করা হয়।

বেনথাম ও হুকারের প্রাকৃতিক শ্রেণিবিন্যাস পদ্ধতি

জর্জ বেনথাম (George Bentham, 1800–1884) এবং সার জোসেফ ডালটন হুকার (Sir Joseph Dalton Hooker, 1817–1911) নামক দুই ইংরেজ উদ্ভিদবিজ্ঞানী তাঁদের 'জেনেরা প্ল্যান্টেরাম' (Genera Plantarum) নামক পুস্তকে উদ্ভিদ জগতের একটি প্রাকৃতিক শ্রেণিবিন্যাস প্রকাশ করেন। এ পুস্তকখানি ল্যাটিন ভাষায় রচিত এবং তিন খণ্ডে প্রকাশিত।

বেনথাম ও হুকারের শ্রেণিবিন্যাসের ছক

বেনথাম ও হুকারের শ্রেণিবিন্যাসে দ্বিবীজপত্রী উদ্ভিদ প্রজাতির সংখ্যা ৭৮,২১৫টি এবং একবীজপত্রী উদ্ভিদ প্রজাতির সংখ্যা ১৮,৫১৬টি উল্লেখ করা হয়েছে।

জীবরাজ্যের ক্রমসংখ্যা বৃদ্ধির ইতিহাস

১। দুইরাজ্য শ্রেণিবিন্যাস: থ্রিক দার্শনিক অ্যারিস্টটল (খ্রিষ্টপূর্ব ৩৮৪–৩২২) জীববিজ্ঞানের জনক হিসেবে পরিচিত। তিনি জীবসমূহকে দুইটি রাজ্যে ভাগ করেছিলেন; যথা— (i) উদ্ভিদরাজ্য এবং (ii) প্রাণিরাজ্য। থিয়োফ্রাস্টাস থেকে লিনিয়াস পর্যন্ত, এমনকি তারপরও জীবজগৎ এই দুই রাজ্যে বিভক্ত ছিল। নিরীক্ষার সুযোগ না থাকায় ব্যাকটেরিয়াকে এতে অন্তর্ভুক্ত করা হয়নি। Altman & Dittmar (1972) দুই রাজ্যই রাখেন তবে উদ্ভিদরাজ্যে (Plantae) ব্যাকটেরিয়াকে অন্তর্ভুক্ত করেন।

- ২। তিনরাজ্য শ্রেণিবিন্যাস : ১৮৬০ দশকে বিজ্ঞানিগণ শ্রোটিস্টা (Protista) নামক একটি তৃতীয় রাজ্য প্রস্তাব করেন। গ্রিক Protistos অর্থ সর্বপ্রথম থেকে Protista নামকরণ করা হয়েছে। তখন প্রোটিস্টা রাজ্যে ব্যাকটেরিয়া, প্রোটিস্ট এবং স্পঞ্জ অন্তর্ভুক্ত ছিল। Dadson (1971), Curtis (1968), Stanier et al. (1970) জীবজগৎকে Protista, Plantae এবং Animalia— এই তিন রাজ্যে বিভক্তির প্রস্তাব করেন।
- ও। চাররাজ্য শ্রেণিবিন্যাস : ১৯৫০ দশকে প্রোটিস্টা থেকে ব্যাকটেরিয়া পৃথক করে মনেরা নামক একটি চতুর্থ রাজ্যের প্রস্তাব করা হয়। Copeland (1956) ঃ Monera, Protoctista, Plantae এবং Animalia—এই চার রাজ্যের প্রস্তাবক।
- 8। পঞ্চরাজ্য শ্রেণিবিন্যাস : ১৯৬৯ খ্রিষ্টাব্দে প্ল্যান্টি থেকে <mark>ফানজাই</mark> পৃথক করে একটি পৃথক রাজ্য সৃষ্টি করা হয়; পূর্বে ফানজাই উদ্ভিদ রাজ্যে অন্তর্ভুক্ত ছিল। জীবজগতের পঞ্চরাজ্য শ্রেণিবিন্যাস এখন জীববিজ্ঞানীদের কাছে স্বীকৃত হয়েছে। Whittaker (1969, 1977) এবং Margulis (1974) Fungi-কৈ পৃথক করে পঞ্চরাজ্য প্রস্তাব করেন।
- ৫। ষষ্ঠরাজ্য শ্রেণিবিন্যাস : ১৯৭০ দশকের শেষদিকে মনেরা রাজ্যকে পৃথক দুই রাজ্যে ভাগ করা হয়; যথা— (i) আর্কিব্যাকটেরিয়া (Archaebacteria) এবং (ii) ইউব্যাকটেরিয়া (Eubacteria)। এ দুই প্রকার ব্যাকটেরিয়ার মধ্যে পার্থক্য বিস্তর। ছয়টি রাজ্য হলো— (i) Archaebacteria, (ii) Eubacteria, (iii) Protista, (iv) Fungi, (v) Plantae ও (vi) Animalia.

জীবজগতের একটি আধুনিক শ্রেণিবিন্যাস

কোষ, এমনকি এর অঙ্গাণুর গঠন ও জীববিজ্ঞানের অন্যান্য শাখার আধুনিক তথ্য (information) ব্যবহার করে তৈরি শ্রেণিবিন্যাসকেই আধুনিক শ্রেণিবিন্যাস বলা যায়। ভাইরাস কোধীয় নয় বলে একে এ শ্রেণিবিন্যাসের বাইরে রাখা হয়েছে।

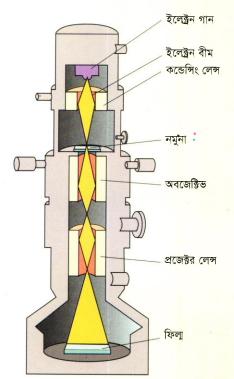
খিয়োফ্রাস্টাস, লিনিয়াস বা বেনখাম-হুকার এর শ্রেণিবিন্যাসে ব্যাকটেরিয়া অন্তর্ভুক্ত হয়নি। ব্যাকটেরিয়া ও অন্যান্য অণুজীবকে (micro organisms) অন্তর্ভুক্ত করে পরে একাধিক শ্রেণিবিন্যাস পদ্ধতি প্রবর্তিত হয়েছে। আমেরিকান জীববিজ্ঞানী R. H. Whittaker (1920–1980) একটি ফাইভ-কিংডম (five kingdom) শ্রেণিবিন্যাস পদ্ধতি প্রস্তাব করেন ১৯৬৯ খ্রিষ্টাব্দে। তিনি সব কোষীয় জীবকে Monera, Prot sta, Plantae, Fungi এবং Animalia— এ পাঁচটি কিংডমে বিভক্ত করেন। পরবর্তীকালে Dr. Lynn Margulis (1938-) ১৯৭৪ সালে Whittaker-এর শ্রেণিবিন্যাসকে পরিবর্তিত ও বিস্তারিত করেন। Five Kingdom, Symbiotic Planet তাঁর রচিত উল্লেখযোগ্য গ্রন্থ। ড. লিন মারগুলিস একজন জীববিজ্ঞানী যিনি আমেরিকার ম্যাসাচুসেটস ইউনিভার্সিটিতে জিওসায়েস (Geosciences) বিষয়ের প্রফেসর হিসেবে নিয়োজিত আছেন। তিনি আমেরিকার সর্বোচ্চ বিজ্ঞানীর জাতীয় পদক প্রাপ্ত। তিনি জীবজগতকে দুটি সুপার কিংডম এবং পাঁচটি কিংডম-এ বিভক্ত করেন। Margulis, Copeland (1956) এরা Protoctista (Protista-র পরিবর্তে) পুনঃপ্রবর্তন করেন। Protista-তে কেবল এককোষী জীব অন্তর্ভুক্ত ছিল। Protoctista-তে প্রকৃত এককোষী এবং বহুকোষী জীব [Protozoa, Green algae, Chrysophytes, Brown algae, Red algae, Slime molds (Flagellated fungi)] অন্তর্ভুক করা হয়। Whittaker এর মতে Green algae, Brown algae এবং Red algae— Plantae রাজ্যের অন্তর্গত। কাজেই Protista এবং Protoctista সমার্থক নয়।

পরবর্তী পৃষ্ঠায় Margulis-এর শ্রেণিবিন্যাস পদ্ধতির একটি সংক্ষিপ্ত ছক উপদ্থাপন করা হলো।

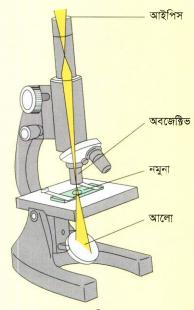
মারগুলিস (Margulis)-এর পঞ্চজগৎ (ফাইভ কিংডম) শ্রেণিবিন্যাসের ছক জীবজগৎ (Living world) সূপার কিংডম-২ : ইউক্যারিওটা সুপার কিংডম-১ : প্রোক্যারিওটা (Super Kingdom-2: Eukaryota) (Super Kingdom-1: Prokaryota) বৈশিষ্ট্য: i. সুনির্দিষ্ট ও সুগঠিত নিউক্লিয়াস বিদ্যমান। বৈশিষ্ট্য : i. কোনো সুনির্দিষ্ট ও সুগঠিত নিউক্লিয়াস থাকে না। ii. এরা প্রকৃতকোষী জীব ii. এরা এককোষী, আণুবীক্ষণিক ও আদিকোষী জীব। (এককোষী বা বহুকোষী)। iii. রাইবোসোম ছাড়া অন্য কোনো সাইটোপ্লাজমীয় অঙ্গাণু নেই। iii. বিভিন্ন ধরনের সাইটোপ্লাজমীয় অঙ্গাণু বিদ্যমান। কিংডম: মনেরা (Monera) একে ১৫টি ফাইলাম-এ ভাগ করা হয়েছে। বৈশিষ্ট্য: i. এরা এককোষী, ফিলামেন্টাস ও মাইসেলিয়্যাল। ii. কোষে নিউক্লিয়ার বস্তু (ক্রোমাটিন) থাকলেও নিউক্লিওলাস ও নিউক্লিয়ার পর্দা নেই। iii. এদের কোষে প্লাস্টিড, মাইটোকব্রিয়া ও এন্ডোপ্লাজমিক জালিকা অনুপস্থিত। iv. কোষ বিভাজন দ্বি-ভাজন প্রক্রিয়ায় হয়। v. কোষ প্রাচীর পলিস্যাকারাইড ও আমিষ দিয়ে তৈরি। উদাহরণ: Escherichia coli, Nostoc linckia. কিংডম : প্রোটকটিস্টা (Protoctista) ৩৩টি ফাইলামে বিভক্ত বৈশিষ্ট্য : i. এরা এককোষী একক, এককোষী কলোনিয়াল বা বহুকোষী। ii. নিউক্লিয়ার মেমব্রেন ও নিউক্লিওলাসযুক্ত নিউক্লিয়াস বিদ্যমান। iii. ফটোসিনথেটিক পিগমেন্ট (যদি থাকে) ক্লোরোপ্লাস্টে থাকে। iv. এদের জ্রণ সৃষ্টি হয় না। v. এদের অধিকাংশই জলজ। উদাহরণ: Amoeba proteus, Spirogyra maxima কিংডম: প্রান্টি (Plantae) কিংডম: আনিম্যালিয়া (Animalia) কিংডম : ফানজাই (Fungi) ৯টি ফাইলামে বিভক্ত। ৩২টি ফাইলামে বিভক্ত। ৫টি ফাইলামে বিভক্ত । বৈশিষ্ট্য : বৈশিষ্ট্য: বৈশিষ্ট্য: i. বহুকোষী ও স্বভোজী সবুজ উদ্ভিদ। i. এরা মৃতজীবী বা পরজীবী। i. এরা বহুকোষী জীব। ii কোষ প্রাচীর সেলুলোজ নির্মিত এবং ii ভিন্নভোজী স্বভাবের। ii. অধিকাংশই বহুকোষী ও কোষে প্রাস্টিড ও বড়ো গহরর আছে। iii. এদের কোষে কোষ প্রাচীর. স্থলজ। iii. উন্নত টিস্যুবিন্যাস বিদ্যমান। iii. সালোকসংশ্লেষণকারী রঞ্জক প্রাস্টিড ও বড়ো গহ্বর নেই। iv. জনন অঙ্গ ও জনন টিস্যু বিদ্যমান, iv. প্রধানত যৌন জনন প্রক্রিয়ায় পদার্থ নেই। যৌন জনন অ্যানাইসোগ্যামাস বা বংশবৃদ্ধি ঘটে। iv. কোষ প্রাচীর কাইটিন নির্মিত। উগ্যামাস। v. ভ্রূণ বিকাশকালে টিস্যুর অভিপ্রয়াণ হ্যাপ্রয়েড স্পোরের মাধ্যমে v. অসীম বৃদ্ধিসম্পন্ন ও অনির্ধারিত দৈহিক (migration) এবং পুনর্বিন্যাস ঘটে। বংশবৃদ্ধি করে। আকার-আকৃতিবিশিষ্ট। উদাহরণ: Homo sapiens (মানুষ), উদাহরণ: Penicillium notatum, Duttaphrynus melanostictus Agaricus campestris গ্রেড-২ : ট্রাকিওফাইটা (Tracheophyta) গ্রেড-১ : ব্রায়োফাইটা (Bryophyta) এতে ৮টি ফাইলাম আছে । * ১টি ফাইলাম (Bryophyta) ও ৩টি ক্লাস আছে বৈশিষ্ট্য: i. উদ্ভিদ গ্যামিটোফাইটিক। বৈশিষ্ট্য: i উদ্ভিদ স্পোরোফাইট্রিক। ii. এদের পরিবহণতম্ম আছে। ii. এদের পরিবহণতন্ত্র নেই। উদাহরণ: Riccia gangetica, Semibarbula orientalis উদাহরণ: Artocarpus heterophyllus, Pteris longifolia *ট্রাকিওফাইটার ৮টি ফাইলাম হলো: 1. Lycopodophyta, 2. Sphenophyta, 3. Filicinophyta, 4. Ginkgophyta, 5. Coniferophyta,

6. Gnetophyta, 7. Cycadophyta, 8. Angiospermophyta.

ষষ্ঠরাজ্য শ্রেণিবিন্যাস


(জীবজগৎ ৩টি অধিরাজ্য এবং ৬টি রাজ্যে বিভক্ত)

অধিরাজ্য →	১। আর্কিয়া	২। ব্যাকটেরিয়া		৩।ই	————— উক্যারিয়া	
(Domain)	(Archaea)	(Bacteria)		(E	ukarya)	
রাজ্য →	১। আর্কিব্যাকটেরিয়া	২। ইউব্যাকটেরিয়া	৩। ৫খাটিস্টা	৪। ফানজাই	৫। গ্লান্টি	৬। অ্যানিম্যালিয়া
(Kingdom)	(Archaebacteria)	(Eubacteria)	(Protista)	(Fungi)	(Plantae)	(Animalia)
কোষের প্রকার	আদিকেন্দ্ৰিক	আদিকেন্দ্ৰিক	সুকেন্দ্ৰিক	সুকেন্দ্ৰিক	সুকেন্দ্ৰিক	সুকেন্দ্ৰিক
কোষীয় গঠন	কোষপ্রাচীরে	কোষপ্রাচীর	কতক সদস্যের	কোষপ্রাচীর	বহুকোষী,	বহুকোষী,
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	পেপ্টিডোগ্লাইকান	পেন্টিডোগ্লাইকান	কোষ প্রাচীর	কাইটিন	ঝিল্লবদ্ধ	ঝিল্লিবদ্ধ অঙ্গাণু
12-16	নেই।	দিয়ে গঠিত।	আছে।	নির্মিত।	অঙ্গাণু আছে।	আছে।
	ঝিল্লিবদ্ধ অঙ্গাণু	ঝিল্লিবদ্ধ অঙ্গাণু	ঝিল্লিবদ্ধ অঙ্গাণু	ক্রোরোপ্রাস্ট	ক্লোরোপ্রাস্ট	ক্লোরোপ্রাস্ট
W/L	নেই।	নেই।	আছে।	নেই।	আছে।	নেই।
	কোনো টিস্যু ও	কোনো টিস্যু ও	কতব্যের	ঝিল্লিবদ্ধ	সত্যিকারের	সত্যিকারের
101"	অঙ্গ নেই।	অঙ্গ নেই।	ক্রোরোপ্রাস্ট	অঙ্গাণু আছে।	টিস্যু ও অঙ্গ	টিস্যু ও অঙ্গ
4/3	এককোষী, তবে	এককোষী, তবে	আছে।	টিস্যু বা অঙ্গ	আছে।	আছে।
	কলোনি তৈরি	কলোনি তৈরি	সত্যিকারের	নেই, তবে	কোষপ্রাচীর	488
	করতে পারে।	করতে পারে।	টিস্যু ও অঙ্গ	কতকের	সেলুলোজ	WI I
			নেই।	বিশেষ গঠন	নির্মিত।	
			অধিকাংশই	থাকতে পারে।	অধিকাংশই	
			জলজ বা সিক্ত		স্থলজ।	
1			পরিবেশের।			
পুষ্টি	শ্বভোজী সাধারণত,	পরভোজী, কতক	শ্বভোৰ্ণী,	পরভোজী,	শ্বভোজী,	পরভোজী
(Nutrition)	কেমি-অসমোটিক,	শ্বভোজী	পরভেজী বা	বাহ্যিকভাবে	ফটোসিপ্তেটিক	
	পরভোজী	ফটোসিন্থেটিক,	উভয় প্রকার।	খাদ্য হজম	(দৈবাৎ	
- 10	A B F A	কেমি-অসমোটিক,	Kara .	করে শোষণ	পরভোজী)	
A 4		কতক	Constant Live	প্রক্রিয়ায় গ্রহণ		
		ফার্মেন্টেশন		করে।		6 B/0
		কারক।		A 10		
জনন	অযৌন	অযৌন	অযৌন, কতক	অযৌন, কতক	অধিকাংশই	অধিকাংশই
(Reproduction)		1	কনজুগেশন	যৌন	যৌন,	যৌন, কতক
4/4	/_\		করে		অযৌনও আছে	অযৌন
উদাহরণ	থার্মোফিল্স,	E. coli	Amoeba,	মাশরুম	মস, ফার্ন,	স্পঞ্জ, কৃমি,
(Examples)	অ্যাসিডোফিল্স	THE	ল্লাইম মোল্ড,		পুষ্পক উদ্ভিদ	প্রজাপতি,
		The same of	সামুদ্রিক শৈবাল		কনিফার	পাখি, সরীসূপ,
Á	2	40		•	160	ন্তন্যপায়ী।
				A STATE OF THE PARTY OF		


^{*} Domain বা অধিরাজ্য শ্রেণিবিন্যাসতাত্ত্বিক সর্বোচ্চ স্তর। বায়োকেমিক্যাল বিশ্লেষণ এবং RNA বৈশিষ্ট্যের ওপর ভিত্তি করে জীব রাজ্যসমূহকে তিনটি অধিরাজ্যে বিভক্ত করা হয়েছে।

রবার্ট হুক -এর অণুবীক্ষণ যন্ত্র

ট্রান্সমিশন ইলেক্ট্রন অণুবীক্ষণ যন্ত্র

আলোক অণুবীক্ষণ যন্ত্ৰ

क्यानिः रेलक्वन अनुवीकन यस

চিত্র: অণুবীক্ষণ যন্ত্র: আদি থেকে উনুত

প্রথম অধ্যায়

কোষ ও এর গঠন

CELL AND ITS STRUCTURE

প্রধান শব্দসমূহ : কোষ, ক্রোমোসোম, DNA, RNA, জিন, ট্রাঙ্গক্রিপশন, ট্রাঙ্গলেশন, জেনেটিক কোড, জিন।

মাধ্যমিক পর্যায়ে উদ্ভিদ ও প্রাণিকোষ, কোষের গঠন এবং বিভিন্ন অঙ্গাণুর গঠন ও কাজ সম্বন্ধে তোমরা পড়েছো। এ অধ্যায়ে বিশেষ করে উদ্ভিদকোষের বিভিন্ন অঙ্গাণুসমূহের অবস্থান, গঠন ও কাজ সম্বন্ধে আরও বিস্তারিত জানতে পারবে।

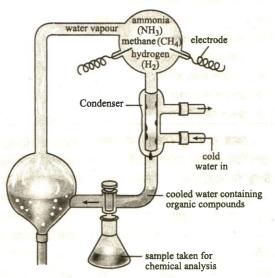
এ অধ্যায়ের পাঠগুলো পড়ে শিক্ষার্থীরা যা যা শিখবে—	D. Diggs	পাঠ পরিকল্পনা
কোষ প্রাচীর ও প্রাজমামেমব্রেন-এর অব্ছান, রাসায়নিক গঠন ও	পাঠ ১	কোষ
কাজ ৷	পাঠ ২	কোষের সৃষ্ম গঠন
সাইটোপ্লাজমের রাসায়নিক প্রকৃতি এবং বিপাকীয় ভূমিকা।	পাঠ ৩	কোমপ্রাচীর
	পাঠ ৪	কোষঝিল্লি
·	পাঠ ৫	সাইটোপ্লাজম
গঠন ও কাজ।	পাঠ ৬	রাইবোসোম
🗫 গঠন ও কাজের ভিত্তিতে মসৃণ ও অমসৃণ এভোপ্লাজমিক	পাঠ ৭	গলগি বডি ও লাইসোসোম
রেটিকুলাম এর মধ্যে পার্থক্য।	পাঠ ৮	এন্ডোপ্লাজমিক রেটিকুলাম
😵 মাইটোকন্দ্রিয়নের বহিঃগঠন ও অন্তঃগঠনের সাথে এর কাজের	পাঠ ৯	মাইটোকন্ড্রিয়া 💮 📥
আন্তঃসম্পর্ক।	পাঠ ১০	প্লাস্টিড
🌣 ক্রোরোপ্লাস্টের বহিঃগঠন ও অন্তঃগঠনের সাথে এর কাজের	পাঠ ১১	সেন্ট্রিওল
আন্তঃসম্পর্ক।	পাঠ ১২	নিউক্লিয়াস
 নিউক্লিয়াসের গঠন ও কাজ। 	পাঠ ১৩	ক্রোমোসোম
	পাঠ ১৪	ক্রোমোসোমের গঠন
 নিউক্লিওপ্লাজম ও সাইটোপ্লাজমের রাসায়নিক গঠনের মধ্যে তুলনা। কোষের বিভিন্ন অঙ্গাণুর চিহ্নিত চিত্র অঙ্কন। 	পাঠ ১৫	ক্রোমোসোমের প্রকারভেদ ও কোষ বিভাজনে এ ভূমিকা
🔖 জীবের বিভিন্ন কার্যক্রমে কোমের অবদান।	পাঠ ১৬	বংশগতীয় বস্তু
🗲 ক্রোমোসোমের গঠন ও এর রাসায়নিক উপাদান ।	পাঠ ১৭	ডিঅক্সিরাইবোনিউক্লিক অ্যাসিড (DNA)
🕻 কোষ বিভাজনে ক্রোমোসোমের ভূমিকা।	পাঠ ১৮	রাইবোনিউক্লিক অ্যাসিড (RNA)
 ডিএনএ ও আরএনএ -এর গঠন ও কাজ। 	পাঠ ১৯	DNA রেপ্রিকেশন/প্রতিলিপন
্ আরএনএ-এর প্রকারভেদ।	পাঠ ২০	DNA রেপ্লিকেশন কৌশল
	পাঠ ২১	জীবীয় তথ্য প্রবাহ
ি ডিএনএ রেপ্লিকেশনের প্রক্রিয়া।	পাঠ ২২	ট্রান্সক্রিপশন
🗲 ট্রান্সক্রিপশনের কৌশল।	পাঠ ২৩	ট্রান্সলেশন প্রভাগ টাল চালটি ট
🕨 ট্রান্সলেশনের ব্যাখ্যা ।	পাঠ ২৪	Server 2 El SERvered Tabus ed A
🌣 জিন ও জেনেটিক কোড।	পাঠ ২৫	জেনেটিক কোড

কোষ বা Cell (সেল) নামকরণ: Robert Hooke (1635–1703) ১৬৬৫ সালে রয়েল সোসাইটি অব লন্ডন এর যন্ত্রপাতির রক্ষক নিযুক্ত হয়েই ভাবলেন আগামী সাপ্তাহিক সভায় উপন্থিত বিজ্ঞ বিজ্ঞানীদের সামনে একটা ভালো কিছু উপন্থাপন করতে হবে। তিনি ভাবলেন অণুবীক্ষণযন্ত্রের মাধ্যমে একটা কিছু করা যায় কিনা। তিনি দেখলেন কাঠের ছিপি (cork) দেখতে নিরেট (solid) অথচ পানিতে ভাসে, এর কারণ কী? তিনি ছিপির একটি পাতলা সেকশন করে অণুবীক্ষণ যন্ত্রে পর্যবেক্ষণ করলেন। তিনি সেখানে মৌমাছির চাকের ন্যায় অসংখ্য ছোটো ছোটো কুঠুরী বা প্রকোষ্ঠ (little boxes) দেখতে পেলেন। তখন তাঁর মনে পড়লো আশ্রমে সন্ম্যাসীদের বা পাদ্রিদের থাকার জন্য এমন ছোটো ছোটো Cell (প্রকোষ্ঠ) তিনি দেখেছেন। এ থেকেই ছিপির little box গুলোকে তিনি নাম দেন Cell বা প্রকোষ্ঠ। ল্যাটিন Cellula থেকে Cell শব্দের উৎপত্তি যার অর্থ ক্ষুদ্র প্রকোষ্ঠ বা কুঠুরী। তিনি তাঁর পর্যবেক্ষণ Micrographia গ্রন্থে প্রকাশ করেন। অধিকাংশ

প্রিয় শিক্ষার্থীবৃন্দ, লক্ষ্য করো একটা ভালো কিছু করার ইচ্ছা ও চেষ্টা থেকেই কিছু সৃষ্টি করা সম্ভব।

কোষই আণুবীক্ষণিক, খালি চোখে দেখা যায় না। তবে এর কিছুটা ব্যতিক্রমও লক্ষ্য করা যায়। পাখির ডিম একটিমাত্র কোষ দিয়ে গঠিত। হাঁস-মুরগির ডিম খালি চোখেই দেখা যায়। উটপাখির ডিম সবচেয়ে বড়ো কোষ (17 cm × 12.5 cm)। তুলা বা পাটের আঁশ, তালগাছের আঁশ বেশ লম্বা, খালি চোখে দেখা যায়। মানুষের নিউরন কোষ প্রায় 1.37 মিটার লম্বা। Cell-এর বাংশা প্রতিশব্দ করা হয়েছে কোষ বা জীবকোষ। রবার্ট হুক প্রকৃতপক্ষে মৃত কোষ তথা কেবল প্রকোষ্ঠই দেখেছিলেন। সম্পূর্ণ কোষের বর্গনা তিনি না দিলেও এ আবিষ্কারের পর অন্যান্য বিজ্ঞানী কিছু উল্লেখযোগ্য তথ্য পরিবেশন করেন। এরপর অণুবীক্ষণযন্ত্রের কিছুটা উন্নতি সাধিত হলে ডাচ (Dutch) বিজ্ঞানী জ্যান্টনি ড্যান লিউয়েনছক (Antony Van Leeuwenhoek) প্রথম ১৬৭৪ সালে কোষপ্রাচীর ছাড়াও ভেডরে পূর্ণাঙ্গ কোষীয় দ্রব্যসহ জীবিত কোষ পর্যবেক্ষণ করেন। ১৭৮১ সালে কেলিস ফন্টানা (Felice Fontana) কোষের মধ্যে নিউক্লিয়াসের অন্তিত্ব আবিষ্কার করেন। ১৮৩৫ সালে ফরাসি কোষবিদ ফেলিক্স ছুজারডিন (Felix Dujardin) কোষের মধ্যে একধরনের জেলির ন্যায় থকথকে পদার্থকে সারকোড (Sarcode) নামে আখ্যায়িত করেন। ১৮৪০ সালে পার্কিনজে (Johannes Purkinje) ঐ তরল সজীব পদার্থের নাম দেন প্রোট্যোজম। ১৯৩১ সালে জার্মান বিজ্ঞানীদ্বয় ম্যাক্স নশ (Max Knol) ও আর্নেন্ট রাজা (Ernst Ruska) কর্তৃক ইলেকট্রন অণুবীক্ষণযন্ত্র আবিষ্কার এবং এর উন্নতি সাধনের পর কোষ ও কোষীয় অঙ্গাণুর অতিসৃক্ষ (ultra) গঠন জানা গেছে। বিভিন্ন সময়ে বিভিন্ন বিজ্ঞানী কোষের বিভিন্ন সংজ্ঞা প্রদান করেছেন।

- ♣ Jean Brachet (1961) এর মতে- 'কোষ হলো জীবের গঠনগত মৌলিক একক।'
- ◆ Loewy and Siekevitz (1963) এর মতে- 'কোষ হলো জৈবিক ক্রিয়াকলাপের একক যা একটি অর্ধভেদ্য ঝিল্লি দ্বারা পরিবেষ্টিত থাকে এবং যা অন্য কোনো সজীব মাধ্যম ছাড়াই আত্ম-প্রজননে সক্ষম।'
- ★ C. P. Hickman (1970) এর মতে- 'কোষ হলো জৈবিক গঠন ও কার্যের একক এবং এটিই ন্যূনতম জৈবিক একক যা নিজের নিয়য়ৢণ ও প্রজননে সক্ষম।'
- ♦ De Roberties (1979) এর মতে- 'কোষ হলো জীবের মৌলিক গঠনগত ও কার্যগত একক।'

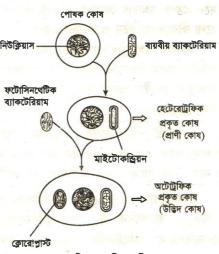

প্রথম কোষের সৃষ্টি

১৮৮০ দশক থেকেই প্রতিষ্ঠিত হয় যে, পূর্ব থেকে বিরাজমান কোষ থেকেই নতুন কোষের সৃষ্টি (Cells come from preexisting cells)। কিন্তু বহু পূর্বে পৃথিবীতে যখন কোনো কোষই ছিল না, তাহলে Pre-existing cell এলো কোথা হতে? প্রথম কোষ কীভাবে সৃষ্টি হয়েছিল?

Alexander Oparin এবং J.B.S. Haldane (1920) বলেন যে আদিকালের বায়ুমণ্ডলে মিথেন (CH_4), অ্যামোনিয়া (NH_3), হাইদ্রোজেন (H_2) এবং পানি (জলীয় বাষ্প, H_2O) ছিল কিন্তু মুক্ত O_2 ছিল না। এসব গ্যাসসমূহের পরম্পর ঘর্ষণের ফলে কোনো জৈব অণু সৃষ্টি হয়েছে।

Stanley Miller এবং Harold Urey (1953) গবেষণাগারে উপরিউক্ত গ্যাসসমূহ একত্রে করে ইলেক্সিক প্রবাহ প্রদান করেন যার ফলে **অ্যামিনো অ্যাসিড** সৃষ্টি হয়েছিল।

অনেকেই মনে করেন আদি জীবন সম্ভবত সরল RNA ছিল, যা থেকে পরে প্রোটিন তৈরি হয়েছিল। এ ধারণা RNA-World হাইপোথেসিস নামে পরিচিত।

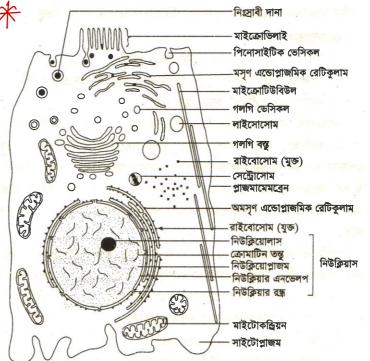


Miller এবং Urey এর যন্ত্র ও অ্যামিনো অ্যাসিড সৃষ্টি

বিষয়টি দাঁড়ায় নিমুরূপ:

- (i) প্রথম কোষ অবশ্যই জড় উপাদান থেকে সৃষ্টি হয়েছিল।
- (ii) লাইটেনিং-এর ফলে বায়ুমণ্ডলে বিরাজমান CH_4 , NH_3 , H_2O ও H_2 থেকে অ্যামিনো অ্যাসিড সৃষ্টি হয়েছিল।
- (iii) গভীর সমুদ্রে কার্বন যৌগ ও পলিমার সৃষ্টি হয়েছিল।
- (iv) পরবর্তীতে ফসফোলিপিড বাইলেয়ার তৈরি হয়েছিল।
- (v) RNA-এর মাধ্যমে বংশগতির ধারা প্রবাহ শুরু হয়েছিল।
- (vi) আদি কোষের DNA পরবর্তীতে কোষঝিল্লি দ্বারা পরিবেষ্টিত হয়ে প্রকৃত নিউক্লিয়াসে পরিণত হয়েছিল।

এছাড়া বর্তমানে বিরাজমান লক্ষ্ণ লক্ষ্ণ প্রজাতির কোটি কোটি জীব (সরল এককোষী থেকে জটিল বহুকোষী) একই জেনেটিক কোডন (৬৪ জেনেটিক কোডন) বহন করে। এ থেকেই প্রমাণিত হয় যে সকল জীবের আদি উৎস প্রথম সৃষ্ট সেই আদিকোষ। (i) আদি কোষ থেকে সৃষ্টি হয় প্রকৃত কোষ, সেই প্রকৃত কোষে একটি বায়বীয় ব্যাকটেরিয়া ঢুকে পড়ে যা পরে মাইটোকন্দ্রিয়নে পরিণত হয় এবং সৃষ্টি হয় প্রকৃত প্রাণী কোষ।



এন্ডোসিমবায়োটিক প্রক্রিয়া

(ii) সেই প্রাণী কোষে ঢুকে পড়ে ফটোসিনথেটিক ব্যাকটেরিয়াম যা পরে ক্লোরোপ্লাস্টে পরিণত হয় এবং সৃষ্টি হয় উদ্ভিদ কোষ। নিউক্লিয়াসবিশিষ্ট একটি পোষক কোষে বায়বীয় ও ফটোসিনথেটিক ব্যাকটেরিয়া প্রবেশ করে টিকে থাকার প্রক্রিয়াকে বলা হয় এন্ডোসিমবায়োসিস।

কোষের বৈশিষ্ট্য (Characteristics of Cell) -

- ্র জীবনের জন্য প্রয়োজনীয় সকর্ল গাঠনিক ও আণবিক উপাদান কোমে থাকে।
- থুরোজনীয় কাঁচামাল ভেতরে গ্রহণ করতে পারে।
- প্রা কাঁচামাল ব্যবহার করে প্রয়োজনীয় শক্তি সংগ্রহ করতে পারে এবং নিজের প্রয়োজনীয় অণুগুলোকে সংশ্রেষ করতে পারে।
- _ ৪ সুনিয়ন্ত্রিতভাবে বেড়ে ওঠতে পারে।
- ৫ চারপাশের যেকোনো উত্তেজনার প্রতি সাড়া দিতে পারে।
- ্রুণ একটি Homeostatic অবস্থা (পরিবেশের অবস্থার তারতম্যের মাঝেও অভ্যন্তরীণ স্থিতি অবস্থা) বজায় রাখতে পারে।
- ্রপাকাল পরিক্রমায় অভিযোজিত হতে পারে।
- কোষ বিপাক (metabolism) প্রদর্শন করে।
- 🔊 নির্দিষ্ট সময় পর কোষ মৃত্যুবরণ করে।
- ্১০/ কোষ জিনগত তথ্য ধারণ ও প্রজন্মান্তরে সঞ্চারণ করে।

চিত্র ১.১ : একটি আদর্শ প্রাণিকোষ (ইলেকট্রন অণুবীক্ষণে দৃষ্ট)

প্রতিটি জীবদেহ এক (এককোষী জীব) বা একাধিক (বহুকোষী জীব) কোষ দিয়ে গঠিত হয় অর্থাৎ কোষই জীবদেহের গঠন একক। আবার কোষের ভেতরই জীবের জীবনধারণের জন্য প্রয়োজনীয় জৈবিক কার্যকলাপ সম্পন্ন হয়। অর্থাৎ কোষ হলো জীবদেহের গঠন ও কাজের একক।

কোষীয় অঙ্গাণু (Cell organelles) : কোষাভ্যন্তরে অবস্থিত সকল অঙ্গই কোষীয় অঙ্গাণু। তবে বিশেষ করে কোষের সাইটোপ্লাজমে বিদ্যমান জীবন্ধ, কার্যসম্পাদনকারী ও কোষের জীবনধারণের জন্য অপরিহার্য ক্ষুদ্রাঙ্গসমূহকে সাইটোপ্লাজমীয় অঙ্গাণু বা কোষীয় অঙ্গাণু বলে: যেমন- মাইটোকন্দ্রিয়া, এভোপ্লাজমিক রেটিকুলাম, রাইবোসোম ইত্যাদি। অঙ্গাণু অর্থ ক্ষুদ্র অঙ্গ (organelles)।

পূর্ববর্তী পৃষ্ঠায় ইলেক্ট্রন অণুবীক্ষণে দৃষ্ট একটি প্রাণিকোষের লম্বচেছদের চিত্র দেওয়া হয়েছে। চিত্রটি ভালোভাবে লক্ষ্য করো এবং পূর্বে আহরিত জ্ঞানের আলোকে পুনরায় এর গঠন ও বিভিন্ন অঙ্গাণুর অবস্থান ও বাহ্যিক গঠন মিলিয়ে নাও। ৮নং পৃষ্ঠায় দেওয়া উদ্ভিদকোষের চিত্রটির সাথে মিলিয়ে এদের মধ্যকার পার্থক্য লিপিবদ্ধ করো।

কোষবিদ্যা (Cytology) : জীববিদ্যার যে শাখায় কোষ সম্পর্কে আলোচনা করা হয় অর্থাৎ কোষের প্রকার, অঙ্গাণুর ভৌত ও রাসায়নিক গঠন, কোষের বিভাজন, বিকাশ, জৈনিক কার্যাবলি, বৃদ্ধি ইত্যাদি সম্পর্কে আলোচনা করা হয় তাকে কোষবিদ্যা বা সাইটোলজি (Cytology) বলে। সাইটোলজি শব্দটি দুটি গ্রিক শব্দের Kytos (= cell, ফাঁপা) এবং logos (= discourse, আলোচনা) সমন্বয়ে গঠিত। Robert Hooke (1635–1703) কে কোষবিদ্যার জনক বলা হয়। তবে আধুনিক কোষবিদ্যার জনক হলো Carl P. Swanson (1911–1996)।

কোষতত্ত্ব (Cell Theory): কোষ সম্পর্কে বিভিন্ন তথ্য জানার পর ১৮৩৮—১৮৩৯ সালে জার্মান উদ্ভিদবিজ্ঞানী জ্যাকব ক্রেইডেন (Mathias Jacob Schleiden) ও প্রাণিবিজ্ঞানী থিওডোর সোয়ান (Theodor Schwann) এবং পরে ১৮৫৫ সালে জার্মান চিকিৎসক ও জীববিজ্ঞানী ভারচ (Rudolf Virchow) 'কোষতত্ত্ব' প্রদান করেন।

কোষতত্ত্বের মূল কথা

🗴 জীব (Living organisms) কোষ দ্বারা গঠিত।

্ব 🗴 কোষ জীব বা জীবনের (life) গাঠনিক ও কার্যকরী ক্ষুত্রতম মৌলিক একক।

পূৰ্পকল কোষ পূৰ্বন্থিত কোষ থেকে সৃষ্ট।

ইতোপূর্বে আমরা জেনেছি যে, জীবদেহ এক বা অসংখ্য কোষ দ্বারা গঠিত এবং দেহের সকল কোষের কার্যাবলির সমন্বিত রূপই হলো জীবের কাজ। এজন্য জীবকোষকে জীবদেহের গঠন ও কার্যাবলির একক বলা হয়। জীবকোষের মৌলিক উপাদান ও গঠন অভিন্ন হলেও উদ্ভিদ ও প্রাণিকোষের মধ্যে যেমনি গঠনগত পার্থক্য রয়েছে তেমনি একই দেহের বিভিন্ন অঙ্গের কোষের মধ্যেও আকার, আকৃতি, গঠন ও কাজের মধ্যে পার্থক্য রয়েছে। কোষ জীবদেহের গাঠনিক একক। এটি এমন একটি একক যা প্রোটোপ্রাজম নামক জীবস্ত বস্তু দিয়ে গঠিত। অনুকূল পরিবেশে স্বাধীনভাবে টিকে থাকে ও বংশবৃদ্ধি করে।

লোয়ি ও সিকেভিজ (১৯৬৯)-এর মতে কোষ একটি নৈষম্যভেদ্য ঝিল্লি দ্বারা সীমাবদ্ধ জীব কার্যকলাপের একক, যা অন্য কোনো সজীব মাধ্যম ছাড়াই আত্ম-প্রজননে সক্ষম। কোনো সজীব মাধ্যম ছাড়া আত্মপ্রজননে সক্ষম নয় বলে ভাইরাস কোষের অন্তর্ভুক্ত নয়। কোষের ভেতরে প্রতি মুহূর্তে হাজার হাজার বিক্রিয়া ঘটে যা উদ্ভিদ ও প্রাণীর দেহকে কর্মক্ষম রাখে। এ ধরনের বিক্রিয়াকে সম্মিলিতভাবে জীবের বিপাক (metabolism) বলে।

কোষের প্রকারভেদ (Kinds of Cell)

(১) শারীরবৃত্তীয় কাজের ভিত্তিতে কোষকে দু'ভাগে ভাগ করা যায়; যথা—

কে) দেহকোষ (Somatic Cell) : যে কোষ জননকোষ নয় তাই দেহকোষ। জীবদেহের অঙ্গ ও অঙ্গতন্ত্র গঠনকারী কোষকে দেহকোষ বলে। উচ্চশ্রেণির জীবের দেহকোষে সাধারণত ডিপ্লয়েড সংখ্যক ক্রোমোসোম থাকে। মূল, কাণ্ড ও পাতার কোষ, শ্লায়ু কোষ, রক্তকণিকা ইত্যাদি দেহকোষের উদাহরণ। মানুষের দেহকোষে ক্রোমোসোম সংখ্যা 2n = 8 ৬।

MAT: 22-23

- (খ) জননকোষ বা গ্যামিট (Reproductive Cell or Gamete) : যৌন প্রজননের জন্য ডিপ্লয়েড জীবের জননাঙ্গে মায়োসিস প্রক্রিয়ায় উৎপন্ন হ্যাপ্রয়েড সংখ্যক কোষকে **গ্যামিট** বা **জননকোষ** বলে। শুক্রাণু ও ডিম্বাণু জননকোষের উদাহরণ। জননকোষ বা গ্যামিট সর্বদাই হ্যাপ্লয়েড। মানুষের জননকোষে ক্রোমোসোম সংখ্যা n = ২৩।
 - (২) নিউক্লিয়াসের গঠনের ওপর ভিত্তি করে কোষকে দু'ভাগে ভাগ করা যায়; যথা—
- (ক) আদিকেন্দ্রিক বা প্রাককেন্দ্রিক কোষ বা আদিকোষ (Prokaryotic Cell) : যে কোষে কোনো আবরণীবেষ্টিত নিউক্লিয়াস, এমনকি আবরণীবেষ্টিত (membrane-bound) অন্যকোনো অঙ্গাণুও (organelles) থাকে না তা হলো আদিকোষ। আদিকোষে নন-হিস্টোন প্রোটিনযুক্ত একটি মাত্র বৃত্তাকার কুণ্ডলিত DNA থাকে যা সাইটোপ্লাজমে মুক্তভাবে অবস্থান করে। সাইটোপ্লাজমে মুক্তভাবে অবস্থানকারী বৃত্তাকার DNA অঞ্চলকে নিউক্লিঅয়েড (Nucleoid) বলে। আদিকোষের রাইবোসোম 70S ৷ আদিকোষ দ্বি-ভাজন বা অ্যামাইটোসিস প্রক্রিয়ায় বিভাজিত হয় ৷ **আদিকোষ দারা গঠিত** জীব হলো আদিকোষী জীব (Prokaryotes)। উদাহরণ— মাইকোপ্লাজমা, ব্যাকটেরিয়া (Escherichia coli) ও সায়ানোব্যাকটেরিয়া (BGA = Blue Green Algae)। মনেরা রাজ্যের সব জীবই আদিকোষী। [থিক Pro = before, এবং karyon = nut, nucleus অর্থাৎ নিউক্রিয়াস সংগঠনের আগের অবস্থা] আদিকোষে অবাত শ্বসন ঘটে। অধিকাংশ ক্ষেত্রে শোষণ পদ্ধতিতে পুষ্টি ঘটে। কতক ক্ষেত্রে সালোকসংশ্লেষণ ঘটে।

কাজ: উদ্ভিদকোষ ও প্রাণিকোষের পোস্টার তৈরি।

উপকরণ: পোস্টার পেপার, পেন্সিল, রং পেন্সিল, ইরেজার, উদ্ভিদ ও প্রাণিকোষের চিত্র।

কার্যপদ্ধতি : বড়ো পোস্টার পেপার নিতে হবে। পেপারে লম্বভাবে পাশাপাশি দুটি কোষের জন্য স্থান নির্ধারণ করতে হবে। প্রথমে পেন্সিল দিয়ে হালকাভাবে চিত্র দু'টি এঁকে নিতে হবে, প্রয়োজনে ইরেজার দিয়ে মুছে আবার আঁকতে হবে। আঁকা চূড়ান্ত হলে রং পেন্সিল ব্যবহার করতে হবে। প্রতিটি অংশ চিহ্নিত করে শ্রেণিকক্ষে উপস্থাপন করতে হবে। চূড়ান্তকরণের আগে অবশ্যই শিক্ষককে দেখিয়ে নিতে হবে।

(খ) প্রকৃতকেন্দ্রিক বা সুকেন্দ্রিক কোষ বা প্রকৃতকোষ (Eukaryotic Cell) : যে কোষে আবরণীবেষ্ট্রিত নিউক্লিয়াস 💥 থাকে তা হলো প্রকৃতকোষ। প্রকৃতকোষে নিউক্লিয়াস ছাড়াও আবরণীবেষ্টিত অন্যান্য অঙ্গাণু (যেমন- মাইটোকদ্রিয়া, 🧲 ক্লোরোপ্লাস্ট, গলগিবস্তু, লাইসোসোম প্রভৃতি) থাকে। দু**ই ন্তরবিশিষ্ট একটি আবরণী (নিউক্লিয়ার এনভেলপ) দ্বারা পরিবেষ্টিত্** অবছায় নিউক্লিওপ্লাজম, নিউক্লিওলাস এবং **একাধিক ক্রোমোসোম নিয়ে নিউক্লিয়াস গঠিত।** প্রকৃতকোষের ক্রোমোসোম লম্বা (বৃত্তাকার নয়), দুই প্রান্তবিশিষ্ট এবং DNA ও হিস্টোন-প্রোটিন সমন্বয়ে গঠিত। এদের রাইবোসোম 80S, DNA সূত্রাকার 🗾 এবং একাধিক ক্রোমোসোমে অবস্থিত; কোষ বিভাজন মাইটোসিস ও মায়োসিস প্রকৃতির। Eukaryotic শব্দটি গ্রিক শব্দ থেকে নেয়া হয়েছে, যার অর্থ গ্রিক eu = good; এবং karyon = nucleus অর্থাৎ সুগঠিত নিউক্লিয়াসযুক্ত কোষ। জড় কোষপ্রাচীরবিশিষ্ট প্রকৃতকোষই প্রকৃত উদ্ভিদকোষ <mark>শ</mark>েবাল, ছত্রাক, ব্রায়োফাইটস, টেরিডোফাইট্স, জিমনোস্পার্মস এবং অ্যানজিওস্পার্মস ইত্যাদি সব উদ্ভিদই প্রকৃতকোষ দিয়ে গঠিত এবং সকল প্রাণিকোষ প্রকৃতকোষ। প্র<mark>কৃতকোষ দারা গঠিত</mark> জীব হলো প্রকৃতকোষী জীব (Eukaryotes). প্রকৃতকোষে সবাত শ্বসন ঘটে। শোষণ, আত্তিকরণ ও সালোকসংশ্লেষণ পদ্ধতিতে পুষ্টি ঘটে।

সম্ভবত প্রথম প্রকৃতকোষী এবং বহুকোষী জীব হলো Bongiomorpha pubescens নামক লোহিত শৈবাল যার ফসিল ১২০০ মিলিয়ন বছরের পূর্বের শিলা থেকে আবিশ্বুত হয়েছে। বড়ো দ্বীগ্যামিট এবং ছোটো পুংগ্যামিট দারা এর যৌন জনন হতো।

>[MAT:23-24]

*বিশেষ কথা : মাইটোকন্দ্রিয়াতে থাকে বৃত্তাকার DNA এবং 70 S রাইবোসোম। আবার মাইটোকন্দ্রিয়া থাকে প্রকৃত কোষে, তাই অনেকে মনে করেন প্রকৃত কোষে 80 S রাইবোসোম এবং একই সাথে 70 S রাইবোসোম থাকে। এটি ঠিক নয়, কারণ মাইটোকন্দ্রিয়া একটি কোষ নয়, একটি অঙ্গাণু। এছাড়া এটি আদি কোষের পরিবর্তিত রূপ যা এন্ডোসিমবায়োসিস প্রক্রিয়াতে প্রকৃত কোষের অংশ হয়েছে। একইভাবে প্রকৃতকোষে বৃত্তাকার DNA আছে তাও বলা যাবে না।

বৈশিষ্ট্য	আদিকোষ	প্রকৃতকোষ
১। নিউক্লিয়াস	১। নিউক্লিয়াস অগঠিত, অর্থাৎ এতে কোনো আবরণী ঝিল্লি, নিউক্লিওপ্লাজম ও নিউক্লিওলাস থাকে না। DNA অঞ্চলকে নিউক্লিওয়েড বলে।	১। নিউক্লিয়াস সুগঠিত, অর্থাৎ একটি ডবল আবরণী ঝিল্লি দ্বারা পরিবেষ্টিত অবস্থায় ক্রোমোসোম, নিউক্লিওপ্লাজম ও নিউক্লিওলাস অবস্থান করে।
₹I DNA	২। DNA বৃত্তাকার, ১টি; এতে কোনো হিস্টোন প্রোটিন থাকে না, তাই একে সত্যিকার ক্রোমোসোম বলা যায় না।	*২। DNA সূত্রাকার, একাধিক, হিস্টোন প্রোটিনের সাথে মিলিতভাবে প্রকৃত ক্রোমোসোম হিসেবে অবস্থান করে।
৩। আবরণীবেষ্টিত অঙ্গাণু	৩। আবরণীবেষ্টিত কোনো অঙ্গাণু থাকে না। শুধু রাইবোসোম থাকে।	৩। আবরণীবেষ্টিত অঙ্গাণু যেমন- মাইটোকন্দ্রিয়া ও অন্যান্য অঙ্গাণু থাকে।
৪। রাইবোসোম	8 + রাইবোসোম 70 S (50 S + 30 S)	*8 া রাইবোসোম 80 S (60 S + 40 S)
৫। সাইটোক্ষেলিটন	৫। সাইটোক্ষেলিটন থাকে না।	৫। সাইটোক্ষেলিটন থাকে।
৬। RNA পলিমারেজ	৬। এক প্রকার।	৬। তিন প্রকার।
৭। অপেরন	৭। অপেরন থাকে।	৭। অপেরন থাকে না।
৮। জিনের গঠন	৮। ইন্ট্রনস নেই।	৮। ইন্ট্রনস আছে।
৯। কোষ বিভাজন	৯। অ্যামাইটোসিস প্রক্রিয়ায়।	৯। মাইটোসিস ও মায়োসিস প্রক্রিয়ায়।
১০। শ্বসন	১০। অবাত শ্বসন ঘটে।	১০। সবাত শ্বসন ঘটে।
১১। ট্রান্সলেশন	১২। ট্রান্সক্রিপশনের সাথে সাথেই শুক্ত হয়।	১১। ট্রাঙ্গক্রিপশনের পর বেশ বিলম্বে শুরু হয়।

কাজ: শিক্ষক, শিক্ষার্থীদেরকে কমপক্ষে দু'টি দলে ভাগ করে দিবেন। শিক্ষার্থীগণ আদিকোষ ও প্রকৃতকোষের পার্থক্য পাশাপাশি ছকে লিখবেন। দুই দলের তৈরিকৃত ছকের ওপর ভিত্তি করে শেষ দশ মিনিট শিক্ষক একটি চূড়ান্ত ছক তৈরি করে দিবেন। ছক তৈরিকালে কোষের নিউক্লিয়ার বৈশিষ্ট্য, রাইবোসোম, অন্যান্য অঙ্গাণু, DNA, কোষবিভাজন ইত্যাদি বিষয়ের প্রতি লক্ষ্য রাখতে হবে।

- (৩) প্রকৃতকোষী জীবদেহে সুগঠিত নিউক্লিয়াসের ভিত্তিতে উদ্ভিদ ও প্রাণিকোধের গঠন এক হলেও এদের মধ্যে সামান্য কিছু পার্থক্য রয়েছে। এজন্য উদ্ভিদকোষ ও প্রাণিকোষ দুটি আলাদা বৈশিষ্ট্যের কোষ।
- (ক) উদ্ভিদকোষ: কোষের বাইরে শক্ত, সেলুলোজ নির্মিত কোষ প্রাচীর থাকে। পরিণত কোষে কেন্দ্রে বড়ো কোষগহ্বর ও সাইটোপ্রাজমে ক্লোরোপ্লাস্ট থাকে। পরিণত কোষের গঠন সাধারণত গোলাকার, ডিম্বাকার হয়ে থাকে। <u>সঞ্চিত খাদ্য</u> শ্রেতসার (starch)। সাধারণত সেন্ট্রোসোম থাকে না।
- (খ) প্রাণিকোষ : এদের কোষে কোষ প্রাচীর থাকে না এবং কোষগহ্বর অনুপস্থিত, থাকলেও অতি ক্ষুদ্রাকৃতির, ক্রোরোপ্রাস্ট অনুপস্থিত। কোষে সেন্ট্রোসোম থাকে। সঞ্চিত খাদ্য চর্বি ও গ্লাইকোজেন।

স্টেম সেল (Stem Cells): আমরা সবাই জানি, একটি মাত্র জাইগোট কোষ অসংখ্যবার বিভাজিত হয়ে শেষ পর্যন্ত একটি বিশাল দেহের পূর্ণাঙ্গ মানুষ তৈরি হয়। ঐ কোষ থেকেই ভিন্ন ভিন্ন পথে হুর্থপিও, ফুসফুস, বৃক্ক, অন্ত্র, লিভার ইত্যাদি অঙ্গ তৈরি হয়। জাইগোট ও ভ্রূণের প্রাথমিক কোষগুলোকে ১৯ শতকে নাম দেওয়া হয় স্টেম সেল। এর অর্থ হলো পূর্ণাঙ্গ দেহের সকল টিস্যু ঐ ভ্রূণ কোষগুলো থেকেই সৃষ্টি হয়েছে (all the tissues of the adult stem from the early embryo cell).

স্টেম সেলের দৃটি গুণের বা বৈশিষ্ট্যের কারণে গবেষকগণ ঐ কোষ নিয়ে মাথা ঘামান।

- (i) বারবার, অসংখ্যবার বিভাজিত হতে পারার ক্ষমতা—এর ফলে দেহের কোনো হারানো বা ক্ষতিগ্রন্ত কোষ পুনঃপ্রবর্তিত হতে পারে।
- (ii) স্টেম কোষগুলো পুরোপুরি পার্থক্যমণ্ডিত (differentiated) নয়। এরা বিভিন্ন পথে পার্থক্যমণ্ডিত হয়ে বিভিন্ন প্রকার সেল, টিস্যু তৈরি করতে পারে।
- তাই জ্রণের স্টেম সেল নতুন টিস্যু তৈরির জন্য ব্যবহার করা যেতে পারে ।
- হার্ট , কিডনি প্রভৃতি অঙ্গ তৈরি করে দেহে প্রতিস্থাপন করা যেতে পারে।
- * ভবিষ্যতে মানুষের খাওয়ার জন্য মাংসপিও তৈরি করে দিতে পারে। এর জন্য গরু, ছার্গল তথা পশু পালনের দরকার হবে না। সম্প্রতি যুক্তরাষ্ট্র ল্যাবরেটরিতে উৎপন্ন মুরগির মাংস বাজারজাতকরণের অনুমতি দিয়েছে।

বোনম্যারু, ক্ষিন, লিভার প্রভৃতি অঙ্গে কিছু স্টেম সেল থাকে; যার ফলে এদের রিজেনারেশন ও রিপেয়ার-এর প্রচুর শক্তি ও সম্ভাবনা থাকে। তবে ব্রেইন, কিডনি, হার্ট—এসব অঙ্গের স্টেম সেল খুব কমই রিপেয়ার করতে পারে।

কোষ পরিমাপের বিভিন্ন একক

অধিকাংশ উদ্ভিদ কোষ খালি চোখে দেখা যায় না। এদের দেখার জন্য বিভিন্ন ধরনের অণুবীক্ষণযন্ত্র ব্যবহার করা হয়। সাধারণত কোষ এবং কোষের উপাংশগুলোর পরিমাপের জন্য যে এককটি ব্যবহার করা হয় তা হলো μm (মাইক্রোমিটার) বা μ (মাইক্রন) এবং nm (ন্যানোমিটার)। নিমে কোষ পরিমাপের জন্য ব্যবহৃত বিভিন্ন একক ও এদের ব্যবহার দেয়া হলো:

একক	সংকেত	মান	ব্যবহার
১। সেন্টিমিটার	1 cm	= 0.4 inch	খালি চোখে দেখা যায় (যেমন ডিম) এমন কোষ।
২। মিলিমিটার	1mm	= 0.1 cm	খালি চোখে দৃশ্যমান, তবে অণুবীক্ষণযন্ত্রে পরিষ্কারভাবে দেখা যায় এমন কোষ।
৩। মাইক্রোমিটার বা মাইক্রন	1μm/1μ	= 0.001 mm	আলোক অণুবীক্ষণযন্ত্রে দেখা যায় তেমন বেশির ভাগ কোষ ও উপাংশসমূহ।
৪। ন্যানোমিটার	1nm	$= 0.001 \mu m$	ইলেকট্রন অণুবীক্ষণযন্ত্রে দেখা যায় এমন কোষ উপাংশসমূহ।
৫। অ্যাংস্ট্রম	1Å	= 0.1 nm	ইলেকট্রন অণুবীক্ষণযক্তে এক্সরে প্রক্রিয়ায় দেখা যায় এমন কোষ উপাংশসমূহ।

কত ছোটো পৰ্যন্ত দেখা যায়

খালি চোখে সর্বনিমূ

100 µm থেকে আরো বড়ো।

আলোক অণুবীক্ষণে সর্বনিম্ন $0.2~\mu m$ থেকে সর্বোচ্চ $40~\mu m
ightarrow$ বর্ধিতকরণ সর্বোচ্চ ২,০০০ গুণ

ইলেকট্রন অণুবীক্ষণে সর্বনিম্ন 0.5 nm থেকে সর্বোচ্চ 20 nm → বর্ধিতকরণ ৫,০০,০০০ গুণ

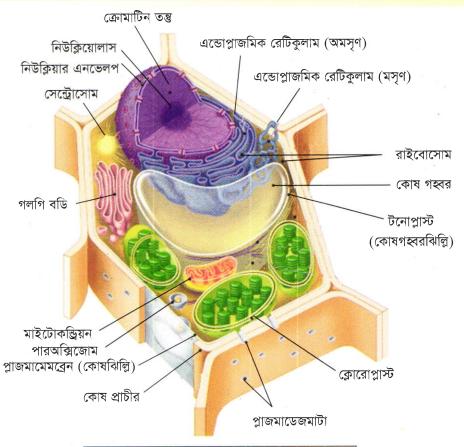
ইলেকট্রন অণুবীক্ষণে খাটো তরঙ্গদৈর্ঘ্যের ইলেকট্রন বীম ব্যবহৃত হয় (আলোর তরঙ্গদৈর্ঘ্যের চেয়ে অনেক খাটো) বলে অনেক ক্ষুদ্র বস্তুও দৃশ্যমান হয়।

কোষের আয়তন : কোষের কোনো সুনির্দিষ্ট আয়তন নেই। অধিকাংশ কোষই আণুবীক্ষণিক। সবচেয়ে ছোটো কোষ হলো- Mycoplasma gallisepticum (কোষের ব্যাস মাত্র 0.1 µm) যার অপর নাম PPLO (Pleuro Pneumonia Like Organism) এবং বড়ো কোষ হলো উটপাখির ডিম (17 cm × 12.5 cm)। এককোষী সর্বাপেক্ষা বড়ো উদ্ভিদকোষ হলো Acetabularia নামক শৈবাল যার দৈর্ঘ্য 5–10 cm। বহুকো<u>ষী উদ্ভিদের মধ্যে র্</u>য়ামি (Boehmeria nivea) নামক গাছের তন্তু কোষ, যার দৈর্ঘ্য প্রায় 55 cm। মা<u>নবদেহের সবচেয়ে লম্বা কোষ হলো- মটর নিউরন</u> যা প্রায় 1.37 মিটার লম্বা এবং স্পাইনাল কর্ডের গোড়া থেকে পায়ের বৃদ্ধাঙ্গুল পর্যন্ত বিষ্ণৃত। দেহের একটি সাধারণ কোষের আকার প্রায় 10 μm (মাইক্রোমিটার) এবং ওজন 1 ng (ন্যানোগ্রাম)। মা<mark>নবদেহের ক্ষুদ্রতম কোষ হলো অণুচক্রিকা</mark>।

এককোষী জ্বীব : বহুজীব আছে যারা মাত্র একটি কোষ দ্বারা গঠিত। এ একটিমাত্র কোষই জীবনের জন্য প্রয়োজনীয় সব কার্যক্রম পরিচালনা করে থাকে। যেমন- Chlorella.

বহুকোষী জীব: অনেকগুলো কোষ নিয়ে গঠিত জীব হলো বহুকোষী জীব, যেমন- মানুষ। বহুকোষী জীবের সুবিধাসমূহ: (i) জীব আকারে ও আয়তনে বৃদ্ধি পেতে পারে, (ii) কতক কোষ পৃথকভাবে গুচ্ছবদ্ধ হয়ে সুনির্দিষ্ট কাজ করতে পারে, (iii) বহুকোষের কারণে জীব জটিল গঠনে বৃদ্ধিপ্রাপ্ত হয়ে আকারে অনেক বড়ো হতে পারে।

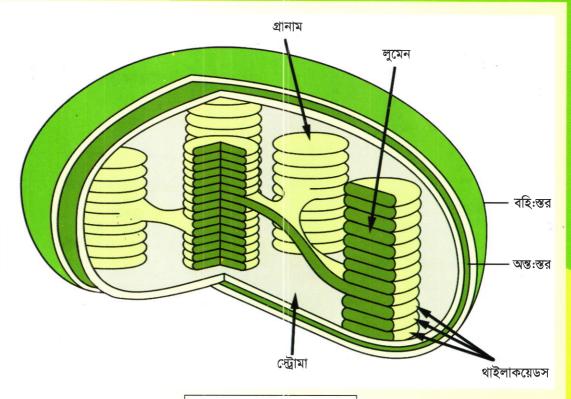
কোষ ছোটো থাকে কেন : কয়েকটি ব্যতিক্রম ছাড়া প্রায় সব কোষই আণুবীক্ষণিক। প্রয়োজনীয় কাজ-কর্মের সুবিধার জন্যই কোষ আকারে ছোটো থাকে। কোষের ঘনফল (volume) তার অভ্যন্তরন্থ মেটাবলিক কার্যক্রম নিয়ন্ত্রণ করে। কোষের সার্ফেস এরিয়া কোষের বাইরের পরিবেশের সাথে দ্রব্য আদান-প্রদানে ভূমিকা রাখে। কোষ ঘনফলে বৃদ্ধি পেলে সার্ফেস এরিয়া সেই অনুপাতে বৃদ্ধি পায় না। এর ফলে কোষের ভেতর ও বাইরের পরিবেশের মধ্যে প্রয়োজনীয় দ্রব্যাদির আদান-প্রদান সীমিত হয়ে আসে এবং কোষকে টিকে থাকতে অসুবিধা হয়।

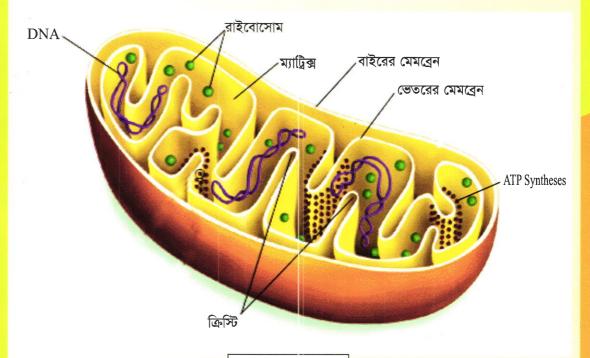

একটি কোষের আকার তথা ঘনফল কতবেশি হবে তার একটি সীমাবদ্ধতা আছে। কোষকে তার অন্তিত্ব রক্ষার্থে সেই সীমার ভেতরে থাকতে হবে। তাই কোয়কে বিভক্ত হতে হবে। কোষ তার আকারের সীমাবদ্ধতা রক্ষা করে বিভাজিত হয় বলেই বড়ো বড়ো জীবের উদ্ভব ঘটেছে।

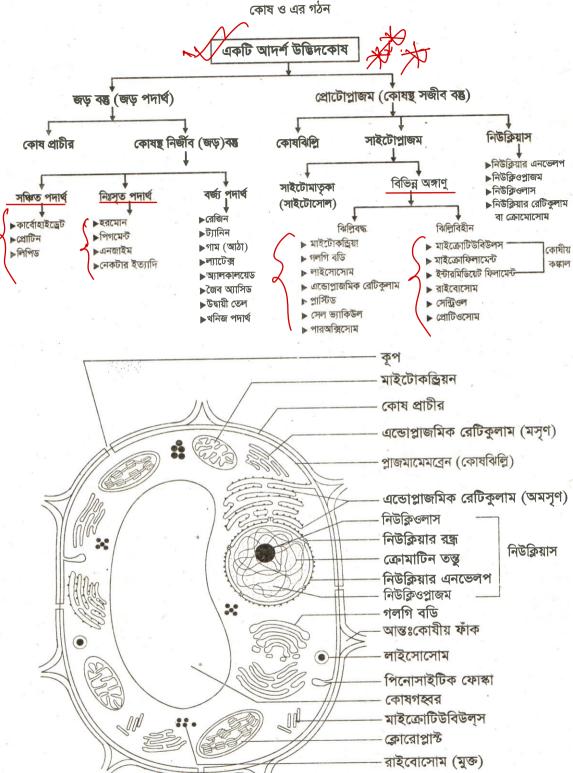
পার্থক্যকরণ (differentiation) : একই কোষ থেকে সৃষ্টি হয়ে এবং একই জিনোম বহন করে একটি জীবদেহের ভিন্ন ভিন্ন অঙ্গের ভিন্ন ভিন্ন কোষ ভিন্ন ভিন্নভাবে ক্রিয়া প্রদর্শন করে। মানুষের স্নায়ুকোষ এবং পেশিকোষ একই জিনোম ধারণ করে কিন্তু এরা দেখতে যেমন ভিন্নভর, কাজেও ভিন্নভর। এর কারণ হলো কতক কোষে বিশেষ কিছু জিন কার্যকরী হয়ে বিশেষ ক্রিয়া প্রদর্শন করে কিন্তু অন্য কোষে তা হয় না। যেমন অগ্ন্যাশয়ের বিটা কোষ ইনসুলিন নিঃসৃত করে কিন্তু তৃক কোষ তা করে না। একটি বহুকোষী জীবদেহের বিভিন্ন অঙ্গের কোষসমূহ আকার-আকৃতিগতভাবে এবং কার্যকারিতায় ভিন্নভর হওয়াকে বলা হয় পার্থক্যকরণ বা differentiation। মানুষের সকল কোষেই ক্রোমোসোম সংখ্যা ৪৬, সকল কোষের জিনোমই অভিন্ন, এরপরও কোনো কোষ নির্দিষ্ট হরমোন বা এনজাইম নিঃসৃত করে, অন্য কোষ তা করে না।


একটি আদর্শ উদ্ভিদকোষের গঠন

সব উদ্ভিদ যেমন একই রকম নয়, সব উদ্ভিদকোষও একই রকম নয়। এমনকি একটি বহুকোষী উদ্ভিদের বিভিন্ন টিস্যুর কোষও ভিন্নতর বৈশিষ্ট্যমণ্ডিত হয়। কাজেই কোনো একটি নির্দিষ্ট কোষে, কোষের সব গঠন উপাদান ও ক্ষুদ্রাঙ্গ নাও থাকতে পারে। বর্ণনার সুবিধার্থে তাই একটি কোষে সব উপাদান ও ক্ষুদ্রাঙ্গের উপস্থিতি ধরে নেয়া হয়, যাকে বলা হয় আদর্শ উদ্ভিদকোষ। একটি আদর্শ উদ্ভিদকোষ প্রধানত নিম্নলিখিত অঙ্গ ও অঙ্গাণু নিয়ে গঠিত।

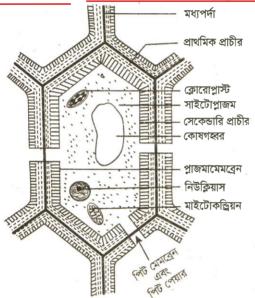

১। কোষ প্রাচীর, ২। কোষঝিলি, ৩। সাইটোপ্লাজম (এতে থাকে প্লাস্টিড, মাইটোকদ্রিয়া, এভোপ্লাজমিক রেটিকুলাম, রাইবোসোম, গলগি বডি, লাইসোসোম, কখনও সেন্ট্রোসোম, গ্লাইঅক্সিজোম, মাইক্রোটিউবিউল্স ইত্যাদি ক্ষুদ্রাঙ্গ এবং কোষগহরর), ৪। নিউক্লিয়াস (এতে আছে নিউক্লিয়ার এনভেলপ, নিউক্লিওপ্লাজম, নিউক্লিওলাস ও ক্রোমোসোম) এবং ৫। কোষছ নিজীব বন্ধ (সঞ্চিত খাদ্য, নিঃসৃত পদার্থ এবং বর্জ্য পদার্থ)। একটি আদর্শ উদ্ভিদকোষের অংশসমূহকে অপর পৃষ্ঠায় উপদ্থাপিত ছকের মাধ্যমে দেখানো যেতে পারে।


চিত্র : উদ্ভিদ কোষ (ইলেকট্রন অণুবীক্ষণ যন্ত্রে দৃশ্যমান)

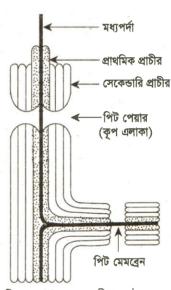

চিত্র : ফ্রুইড-মোজাইক মডেল অনুযায়ী কোষঝিল্লির গঠন

চিত্র : ক্লোরোপ্লাস্টের বিভিন্ন অংশ

চিত্র: মাইটোকদ্রিয়া



চিত্র ১.২ : ইলেকট্রন অণুবীক্ষণযন্ত্রে দৃষ্ট একটি আদর্শ উদ্ভিদকোষের দ্বিমাত্রিক গঠন ও চিহ্নিত চিত্র।


১.১ কোষ প্রাচীর (Cell Wall)

প্রতিটি উদ্ভিদকোষ একটি অপেক্ষাকৃত শক্ত ও জড় আবরণ দিয়ে আবৃত থাকে। এ জড় ও শক্ত আবরণকে কোষ প্রাচীর বলে। কোষ প্রাচীর উদ্ভিদকোষের অন্যতম বৈশিষ্ট্য। উদ্ভিদকোষে মধ্যপর্দা এবং কোষঝিল্লির (প্রাজমামেমব্রেন) মাঝখানে জড় কোষ প্রাচীরের অবস্থান। ব্যাকটেরিয়া এবং ছ্ত্রাকেও কোষ প্রাচীর আছে। কোষঝিল্লির বাইরে জড় প্রাচীরের অবস্থান। প্রাণিকোষে কোষ প্রাচীর থাকে না।

ভৌত গঠন (Physical structure) : একটি বিকশিত কোষ প্রাচীরকে প্রধানত তিনটি ভিন্ন স্তরে (layers) বিভক্ত দেখা যায়। এর প্রথম স্তরটি হলো মধ্যপর্দা (middle lamella)। মাইটোটিক কোষ বিভাজনের টেলোফেজ (telophase) পর্যায়ে এর সূচনা ঘটে। সাইটোপ্রাজম থেকে আসা ফ্র্যাগ্মোপ্রাস্ট (phragmoplast) এবং গলগি বিভ থেকে আসা পেকটিন জাতীয় ভেসিকলস্ (vesicles or droplets) মিলিতভাবে মধ্যপর্দা সৃষ্টি করে। মধ্যপর্দায় পেকটিক অ্যাসিড বেশি থাকার কারণে এটি প্রথম দিকে জেলির মতো থাকে। কোষ প্রাচীরের যে স্তরটি দুটি পাশাপাশি কোষের মধ্যবর্তী সাধারণ পর্দা হিসেবে অবস্থান করে তার নাম মধ্যপর্দা। মধ্যপর্দাও কোষ প্রাচীরের অংশ, যা সর্বপ্রথম তৈরি হয়। এর প্রধান কাজ পাশাপাশি দুটি কোষকে

চিত্র ১.৩ (খ) : কোষ প্রাচীরের গঠন।

শক্ত করে ধরে রাখা। এটি বিগলিত হয়ে গেলে দুটি কোষ পৃথক হয়ে যায়। দ্বিতীয় স্তরটি হলো প্রাথমিক প্রাচীর (primary wall)। মধ্যপর্দার দু'পাশে সেলুলোজ (cellulose), হেমিসেলুলোজ (hemicellulose) এবং গ্লাইকোপ্রোটিন (glycoprotein) ইত্যাদি জমা হয়ে একটি পাতলা স্তর (১-৩ μm পুরু) তৈরি হয়। এটিই প্রাথমিক প্রাচীর। কোষ প্রাচীরের প্রধান উপাদান সেলুলোজ। কোনো কোনো কোষে (যেমন- ট্রাকিড, ফাইবার ইত্যাদি) প্রাথমিক প্রাচীরের অক্তঃতলে আর একটি স্তর তৈরি হয়। এটি সাধারণত কোষের বৃদ্ধি পূর্ণাঙ্গ হবার পর ঘটে থাকে। এ স্তরটি অধিকতর পুরু (৫—১০ μm)। এতে সাধারণত সেলুলোজ এবং লিগনিন জমা হয়। <u>এটি সেকেন্ডারি প্রাচীর (secondary wall) বা তৃতীয় স্তর। ভাজক কোষ এবং অধিক মাত্রায় বিপাকীয় অন্যান্য কোষে সেকেন্ডারি প্রাচীর তৈরি হয় না। সেকেন্ডারি প্রাচীর তিন স্তরবিশিষ্ট হয়। বিরল ক্ষেত্রে সেকেন্ডারি প্রাচীরের ভেতরের দিকে টারশিয়ারি প্রাচীর (tertiary wall) সৃষ্টি হতে পারে। পাতা, ফল ও কর্টেক্স কোষে সাধারণত কেবল প্রাথমিক প্রাচীর থাকে। কোষ প্রাচীরের নিচেই প্রাজমামেমব্রেনের অবস্থান।</u>

কূপ এলাকা (Pit fields) : মধ্যপর্দার ওপর মাঝে মাঝে প্রাচীর সৃষ্টি না হওয়ার কারণে যে সরু নলাকার গর্তের সৃষ্টি হয় তাই হলো কৃপ। এটি হলো প্রাচীরের সবচেয়ে পাতলা (thin) এলাকা। দুটি পাশাপাশি কোষের কৃপও একটি অপরটির উল্টোদিকে মুখোমুখি অবস্থিত এবং কৃপ দুটির মাঝখানে কেবল মধ্যপর্দা থাকে। মধ্যপর্দাকে পিট মেমবেন (pit membrane) বলে। মুখোমুখি বা পাশাপাশি অবস্থিত দুটি কৃপকে পিট পেয়ার (pit pair) বলে। দুটি পাশাপাশি কোষের প্রাচীরের কূপ

এলাকায় সুক্ষ ছিদ্র পথে নলাকার সাইটোপ্লাজমিক সংযোগ স্থাপিত হয়। একে প্লা**জমোডেসমাটা** (একবচন : <mark>প্লাজমোডেসমা</mark>) বলে। পাশাপাশি কোষের মধ্যে সংযোগ স্থাপন ও খাদ্য বস্তু, পানি, হরমোন পরিবহণ প্রাসমোডেসমাটার কাজ।

রাসায়নিক গঠন (Chemical structure) : মধ্যপর্দায় অধিক পরিমাণে থাকে পেকটিক অ্যাসিড। এ ছাড়া অদ্রবণীয় ক্যালসিয়াম পেকটেট এবং ম্যাগনেসিয়াম পেকটেট লবণ থাকে- যাকে পেকটিন বলা হয়। এ ছাড়াও অল্প পরিমাণে থাকে প্রোটোপেকটিন। প্রাথমিক প্রাচীরে থাকে প্রধানত সেলুলোজ, হেমিসেলুলোজ এবং গ্লাইকোপ্রোটিন। হেমিসেলুলোজ-এ স্থারার, arabans, galactans ইত্যাদি বিভিন্ন ধরনের পলিস্যাকারাইডস থাকে। গ্লাইকোপ্রোটিনে কার্বোহাইড্রেট, প্রোটিন এবং অন্যান্য পদার্থ থাকে। Xyloglucan নামক হেমিসেলুলোজ প্রাচীর গঠনে ক্রসলিংক (cross-link) হিসেবে কাজ করে। অনেক সেকেন্ডারি প্রাচীরে শিগনিন (lignin) থাকে। কোনো প্রাচীরে সুবেরিন (suberin), গুয়াক্স ইত্যাদি থাকে। ছ্রাকের প্রাচীর কাইটিন এবং ব্যাকটেরিয়ার প্রাচীর লিপিড-প্রোটিন পলিমার দিয়ে গঠিত। শৈবালের কোষ প্রাচীর গ্লাইকোপ্রোটিন ও পলিস্যাকারাইড দিয়ে গঠিত। এককোষী শৈবাল ডায়াটমের কোষ প্রাচীরে সিলিসিক অ্যাসিড থাকে। আর্কিয়াদের কোষ প্রাচীর গ্লাইকোপ্রোটিন ন্তর ও পলিস্যাকারাইড নিয়ে গঠিত। সাধারণত কোষ প্রাচীরের 40% সেলুলোজ, 20% হেমিসেলুলোজ, 30% পেকটিন ও 10% গ্লাইকোপ্রোটিন বিদ্যমান।

সৃন্ধ গঠন (Ultra-structure) : উদ্ভিদকোষ প্রাচীরের প্রধান উপাদান হলো সেলুলোজ) সেলুলোজ হলো একটি পলিস্যাকারাইড যা ৬-কার্বনবিশিষ্ট ৪-D গ্রুকোজের অসংখ্য অণু নিয়ে গঠিত। ১ হাজার থেকে ৩ হাজার সেলুলোজ অণু নিয়ে একটি সেলুলোজ চেইন গঠিত হয়। প্রায় ১০০টি সেলুলোজ চেইন মিলিতভাবে একটি ক্রিস্টালাইন মাইসেলি (micelle) গঠন করে। মাইসেলিকে কোষ প্রাচীরের ক্ষুদ্রতম গাঠনিক একক ধরা হয়। প্রায় ২০টি মাইসেলি মিলে একটি মাইক্রোফাইবিল (microfibril) গঠন করে এবং ২৫০টি মাইক্রোফাইবিল মিলিতভাবে একটি ম্যাক্রোফাইবিল (macrofibril) গঠন করে। অনেকগুলো ম্যাক্রোফাইবিল মিলিতভাবে একটি তম্ভ (ফাইবার) গঠন করে।

কাষ প্রাচীরের কাজ: (i) কোষের সুনির্দিষ্ট আকৃতি দান করা; ধ্য়) বাইরের আঘাত হতে ভেতরের সজীব বস্তুকে রক্ষা করা; (iii) প্রয়োজনীয় শক্তি ও দৃঢ়তা প্রদান করা; ধ্য়) পানি ও খনিজ লবণ শোষণ ও পরিবহণে সহায়তা করা; ধ্যু এক কোষকে অন্য কোষ হতে পৃথক করা; (vi) কোষ প্রাচীরের কৃপ এলাকা (ছিদ্র পথ) দিয়ে প্রয়োজনীয় বস্তু কোষের ভেতরে বা বাইরে চলাচল করে থাকে এবং (vii) বহিঃ ও অন্তঃ উদ্দীপনার পরিবাহকরূপে প্রাজমোডেসমাটা কাজ করে।

প্রোটোপ্লাস্ট (Protoplast)

কোষ প্রাচীর দ্বারা পরিবেষ্টিত সমুদয় পদার্থ একসাথে প্রোটোপ্লাস্ট নামে পরিচিত। উদ্ভিদকোষ, ব্যাকটেরিয়া ও ছত্রাকে জড় কোষ প্রাচীরের নিচেই প্রোটোপ্লাস্টের অবস্থান। প্রোটোপ্লাস্ট দু'ভাগে বিভক্ত। যথা— সজীব প্রোটোপ্লাজম ও নির্জীব বস্তু বা অপ্রোটোপ্লাজমীয় উপাদান। নিম্নে এদের বর্ণনা দেয়া হলো:

কোষীয় বিপাক ক্রিয়ায় সৃষ্ট বহু নির্জীব বস্তু কোষের সাইটোপ্লাজমে এবং কোষগহ্বরে জমা হয়। এদেরকে কোষহু নির্জীব বস্তু বলা হয়। নির্জীব বস্তুগুলো দ্রবীভূত অবস্থায়, ক্রিস্টাল হিসেবে, ফোঁটা বা দানাদার বস্তু হিসেবে অবস্থান করতে পারে। নির্জীব বস্তুগুলোকে প্রধান তিনটি ভাগে ভাগ করা যায়। যথা— সঞ্চিত খাদ্য, নিঃসৃত পদার্থ ও বর্জ্য পদার্থ।

প্রোটোপ্লাজম (Protoplasm) : কোমের অভ্যন্তরে অর্ধন্বচছ, আঠালো এবং জেলির ন্যায় অর্থতরল, কলয়ভালধর্মী সজীব পদার্থকে প্রোটোপ্লাজম বলে। ১৮৩৫ খ্রিষ্টাব্দে ফ্রাসি কোষবিদ ফেলিক্স ডুজারডিন (Felix Dujardin) কোমের মধ্যে জেলির মতো থকথকে পদার্থকে সারকোড (sarcode) নামে অভিহিত করে। প্রোটোপ্লাজম শব্দটি ১৮৪০ খ্রিষ্টাব্দে বিজ্ঞানী পার্কিনজে (Purkinje) সর্বপ্রথম ব্যবহার করেন। (Gk. proto = আদি + plasma = সংগঠন অর্থাৎ আদি বস্তু)। বিজ্ঞানী হাঙ্গলে (Huxley)-এর মতে প্রোটোপ্লাজম হচ্ছে জীবনের ভৌত ভিত্তি। কারণ প্রোটোপ্লাজমই কোমের তথা দেহের সকল মৌলিক জিবিক কার্যাদি সম্পন্ন করে থাকে। এ জন্যই প্রোটোপ্লাজমকে জীবনের ভৌত ভিত্তি হিসেবে চিহ্নিত করা হয়। এতে ৭০% – ৯০% পানি থাকে। এ থেকেই বোঝা যায়, কেন পানির অপর নাম জীবন। পানিকে ফুইড অব লাইফ বলা হয় কারণ, কোমের শারীরবৃত্তীয় প্রক্রিয়াসমূহ পানির উপদ্থিতি ছাড়া সুসম্পন্ন হয় না। পানির অভাবে প্রোটোপ্লাজম শুকিয়ে কোম মারা যেতে পারে। এছাড়া, উদ্ভিদের ক্ষেত্রে বীজের অঙ্কুরোদগমের জন্য পানির প্রয়োজন।

প্রোটোপ্লাজমের ভৌত বৈশিষ্ট্য (Physical properties) : (i) প্রোটোপ্লাজম অর্ধস্বচ্ছ, বর্ণহীন, জেলির ন্যায় অর্ধতরল আঠালো পদার্থ। (ii) এটি দানাদার ও কলয়ডালধর্মী। (iii) এটি কোষস্থ পরিবেশ অনুযায়ী জেলি থেকে তরলে এবং তরল

থেকে জেলিতে পরিবর্তিত হতে পারে। (iv) প্রোটোপ্লাজমের আপেক্ষিক গুরুত্ব পানি অপেক্ষা বেশি। (v) উত্তাপ, অ্যাসিড ও অ্যালকোহলের প্রভাবে প্রোটোপ্লাজম জমাট বাঁধে।

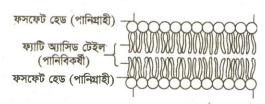
প্রোটোপ্লাজমের রাসায়নিক বৈশিষ্ট্য (Chemical properties) : রাসায়নিকভাবে প্রোটোপ্লাজমে জৈব এবং অজৈব পদার্থ আছে। এতে অধিক পরিমাণে আছে পানি। জৈব পদার্থের মধ্যে সবচেয়ে বেশি আছে বিভিন্ন ধরনের প্রোটিন, এরপর আছে কার্বোহাইড্রেট, লিপিড ও ভিটামিন। এছাড়াও আছে অক্সিজেন, হাইড্রোজেন, নাইট্রোজেন, কার্বন, কপার, জিঙ্ক, সোডিয়াম, পটাসিয়াম, ম্যাগনেসিয়াম, ক্যালসিয়াম, সালফার, আয়রন ইত্যাদি।

প্রোটোপ্লাজমের জৈবিক বৈশিষ্ট্য (Biological properties) : প্রোটোপ্লাজম বিভিন্ন ধরনের উত্তেজনায় সাড়া দেয়। খাদ্য তৈরি, খাদ্য হজম, আত্তীকরণ, শ্বসন, বৃদ্ধি, জনন ইত্যাদি সকল মেটাবলিক কার্যকলাপ প্রোটোপ্লাজম করে থাকে। প্রোটোপ্লাজমের জৈবিক বৈশিষ্ট্যই জীবের বৈশিষ্ট্য। অভিস্থান প্রক্রিয়ায় প্রোটোপ্লাজম পানি গ্রহণ ও ত্যাগ করতে পারে। এদেবও মৃত্যু ঘটে।

প্রোটোপ্লাজমের চলন (Movement of protoplasm) : প্রোটোপ্লাজম কখনো ছির থাকে না। প্রোটোপ্লাজমের এ গতিময়তাকে চলন (movement) বলে। কোষ প্রাচীরযুক্ত ও কোষ প্রাচীরবিহীন প্রোটোপ্লাজমের চলনে ভিন্নতা দেখা যায়। কোষ প্রাচীরযুক্ত প্রোটোপ্লাজমে জলশ্রোতের মতো যে চলন দেখা যায় তাকে **আবর্তন বা সাইক্রোসিস** (cyclosis) বলে। আবর্তন আবার দু'ধরনের হয়ে থাকে।


- (i) <u>একমুখী আবর্তন</u>: যে চলনে প্রোটোপ্লাজম একটি গহ্বরকে কেন্দ্র করে কোষপ্রাচীরের পাশ দিয়ে নির্দিষ্ট পথে একদিকে ঘুরতে থাকে তাকে **একমুখী আবর্তন** (rotation) বলে। যেমন- পাতা ঝাঁঝির কোষস্থ প্রোটোপ্লাজমের চলন।
- (ii) বহুমুখী আবর্তন : যে চলনে প্রোটোপ্লাজম কতগুলো গহ্বরকে কেন্দ্র করে অনিয়মিতভাবে বিভিন্ন দিকে ঘুরতে থাকে তখন তাকে বহুমুখী আবর্তন (circulation) বলে। যেমন- *Tradescantia*-র কোষস্থ প্রোটোপ্লাজমের চলন।

প্রোটোপ্লাজমের প্রধান অংশসমূহ: (i) প্রাজমামেমব্রেন বা কোষঝিল্লি, (ii) সাইটোপ্লাজম এবং (iii) নিউক্লিয়াস—এ তিনটি হলো প্রোটোপ্লাজমের প্রধান অংশ।


১.২ প্লাজমামেমব্রেন বা কোষঝিল্লি (Plasmamembrane or Cell membrane)

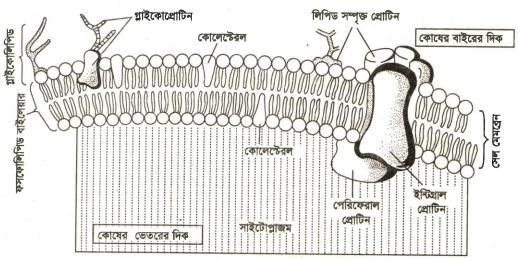
কোষ প্রাচীরের ঠিক নিচে সমন্ত প্রোটোপ্রাজমকে ঘিরে একটি সজীব ঝিল্লি থাকে। এ ঝিল্লিকে প্লাজমামেমব্রেন বা কোষঝিল্লি বলে। অন্যভাবে, প্রতিটি সজীব কোষের প্রোটোপ্রাজম যে সৃন্ধ, ছিতিছাপক, বৈষম্যভেদ্য, লিপো-প্রোটিন দ্বারা গঠিত সজীব দিন্তরী ঝিল্লি দিয়ে আবৃত থাকে, তাকে প্রাজমামেমব্রেন বা কোষঝিল্লি বলে। একে প্রাজমালেমা, সাইটোমেমব্রেন এসব নামেও অভিহিত করা হয়। কার্ল নাগেলি ও ক্র্যামার (Carl Nageli & Cramer, 1855) সর্বপ্রথম এ ঝিল্লিকে প্রাজমামেমব্রেন নামকরণ করেন। তবে বর্তমানে অনেকেই একে বায়োমেমব্রেন (biomembrane) বলতে চান। J. Q. Plower (1931) প্রাজমালেমা শুলটি ব্যবহার করেন। ঝিল্লিটি ছানে ছানে ভাঁজবিশিষ্ট হতে পারে। প্রতিটি ভাঁজকে মাইক্রোভিলাস (বহুবচনে মাইক্রোভিলাই) বলে। কোষাভ্যন্তরে অধিক প্রবিষ্ট মাইক্রোভিলাসকে বলা হয় পিনোসাইটিক ফোন্ডা। প্রাণিকোষে এসব ভালো দেখা যায়।

ভৌত গঠন (Physical Structure) : কোষঝিল্লির ভৌত গঠন ব্যাখ্যা করতে গিয়ে Danielli & Davson (1935) সর্বপ্রথম একটি সুনির্দিষ্ট মডেল প্রস্তাব করেন। এটি স্যান্ডউইচ (Sandwitch) মডেল নামে পরিচিত। তাঁদের মতে ঝিল্লিটি দ্বিস্তরবিশিষ্ট এবং প্রতি স্তরে প্রোটিন (monomolecular) এবং লিপিড (bimolecular) উপ-স্তর আছে। দ্বিস্তরবিশিষ্ট ঝিল্লির ওপর ও নিচে প্রোটিন স্তর এবং মাঝখানে লিপিড স্তর অবস্থিত।

চিত্র ১.৪ : Danielli & Davson প্রস্তাবিত কোষঝিল্লর গঠন।

চিত্র ১.৫ : ফসফোলিপিড বাইলেয়ার।

এছাড়াও প্লাজমামেমব্রেন বা কোষঝিল্লির গঠন সম্বন্ধে Benson's model (1966), Lenard & Singer's model (1966), Robertson এর Unit membrane hypothesis (1959), Singer & Nicolson (1972) এর Fluid-mosaic model ইত্যাদি মডেল প্রস্তাবিত হয়েছে।


ইউনিট মেমব্রেন (Unit membrane): বিজ্ঞানী রবার্টসন ১৯৫৯ খ্রিষ্টাব্দে প্লাজমামেমব্রেনের ইউনিট মেমব্রেন মতবাদ ব্যক্ত করেন। তাঁর মতে— সব বায়োলজিক্যাল মেমব্রেনের আণবিক গঠন একই প্রকার অর্থাৎ ফসফোলিপিড বাইলেয়ার দিয়ে গঠিত যার ছানে ছানে প্রোটিন প্রোথিত থাকে। ছানে ছানে প্রোথিত প্রোটিনসহ ফসফোলিপিড বাইলেয়ারকে কখনো কখনো ইউনিট মেমব্রেন বলা হয়।

ফুইড-মোজাইক মডেল (Fluid -mosaic model)

বিভিন্ন মডেলের মধ্যে সবচেয়ে গ্রহণীয় মডেল হলো ফুইড-মোজাইক মডেল (S.J. Singer and G.L. Nicolson-1972)। প্রাজমামেমব্রেন-এর গঠনসংক্রান্ত ব্যাখ্যাদান প্রসঙ্গে ১৯৭২ খ্রিষ্টাব্দে এস. জে. সিঙ্গার এবং জি. এল. নিকলসন কর্তৃক প্রবর্তিত মডেলকে ফুইড-মোজাইক মডেল বলে। এ মডেল অনুযায়ী কোষবিশ্বি দিন্তরবিশিষ্ট। প্রতিটি ন্তর ফসফোলিপিড দিয়ে গঠিত (চিত্র ১.৬)। উভয় ন্তরের হাইড্রোকার্বন লেজটি সামনাসামনি (মুখোমুখী) থাকে এবং পানিহারী (hydrophillic) মেরু অংশ বিপরীত দিকে থাকে। বিল্লির প্রোটিন অণুগুলো ফসফোলিপিড ন্তরে এখানে সেখানে বিক্ষিপ্তাবস্থায় থাকে। কার্বোহাইড্রেট এবং অন্যান্য উপাদানও ফসফোলিপিড মাধ্যমে এখানে সেখানে মিশে থাকতে পারে। লিপিড অণুর মধ্যে প্রোটিনের এরূপ বিন্যাসকে সিঙ্গার ও নিকলসন সমুদ্রতলে ভাসমান হিমশৈল (Iceberg) এর সঙ্গে তুলনা করেছেন। সদৃশগত কারণে এ মডেলকে আইসবার্গ মডেলও বলা হয়।

ফুইড-মোজাইক মডেল অনুযায়ী কোষঝিল্লির গাঠনিক উপাদান নিমুরূপ:

(ক) ফসফোলিপিড বাইলেয়ার : এটি দুই ন্তরবিশিষ্ট এবং ফসফোলিপিড অণু দিয়ে তৈরি। প্রতিটি ফসফোলিপিডে এক অণু গ্রিসারল থাকে এবং গ্রিসারলের সাথে দুটি ননপোলার ফ্যাটি অ্যাসিড লেজ বা টেইল এবং একটি পোলার ফসফেট মাখা বা হেড থাকে। ফসফেট হেড ও ফ্যাটি অ্যাসিড লেজের মাঝে গ্রিসারল থাকে। মেমব্রেনে ৪০% লিপিড এবং ৬০% প্রোটিন থাকে। ফসফোলিপিড বাইলেয়ার হলো amphipathic অর্থাৎ এর এক অংশ পানিগ্রাহী (মাখা) এবং অপর অংশ পানি বিকর্ষী (লেজ)।

চিত্র ১.৬ : ফুইড-মোজাইক মডেল অনুযায়ী কোষঝিলুর গঠন।

(খ) মেমবেন প্রোটিন : কোষঝিল্লিতে তিন ধরনের প্রোটিন শনাক্ত করা হয়েছে। যেমন : (i) ইনিফাল প্রোটিন-এগুলো ঝিল্লির উভয় সার্ফেস পর্যন্ত থাকে। (ii) পেরিফেরাল বা বাহ্যিক প্রোটিন-এগুলো ঝিল্লির সার্ফেসে হালকাভাবে অবস্থান করে এবং (iii) শিপিড সম্পৃক্ত প্রোটিন-এগুলো নিপিড কোর-এ সম্পৃক্ত থাকে। মেমব্রেনে অবস্থিত প্রোটিনই মেমব্রেন প্রোটিন।

মেমব্রেন প্রোটিনের কাজ

প্রকৃতকোষে প্লাজমামেমব্রেন অনেক ধরনের কাজ করে থাকে। প্রধান কাজ হলো একটি প্রতিবন্ধকতা হিসেবে কাজ করা যাতে পানিগ্রাহী অণু, আয়ন সহজে এপার-ওপার আসা-যাওয়া না করতে পারে। এ কাজটি করে থাকে ফসফোলিপিড বাইলেয়ার। অন্য সকল কাজ করে থাকে মেমব্রেন প্রোটিন। যেমন—

হরমোন, নিউরোট্রান্সমিটার, রিসেপ্টর মেডিয়েটেড এন্ডোসাইটোসিস ইত্যাদির জন্য **রিসেপ্টর** হিসেবে কাজ করে। যেমন- ইনসুলিন রিসেপ্টর।

বিশেষ চ্যানেল, পাম্প, ক্যারিয়ার ও ইলেক্ট্রন ট্রাঙ্গপোর্ট চেইনের মাধ্যমে বিভিন্ন অণু, আয়ন, ইলেক্ট্রন ট্রাঙ্গপোর্ট করে।

- ৩। এনজাইম হিসেবে কাজ করে। সেল মেমব্রেনে অবস্থিত 'মেমব্রেন বাউন্ড এনজাইম' adenylate cyclase ATP থেকে সাইক্রিন AMP সংশ্লেষ করে।
- ৪। টিস্যু এবং অঙ্গের কোষ গ্রুপের সাথে শক্তভাবে ধরে রাখে অর্থাৎ কোষের সাথে কোষের সংযুক্তি রক্ষা করে।
- ৫। কতক প্রোটিন সাইটোক্ষেলিটনের সাথে সংযুক্ত হয়ে ছির অবস্থায় থাকে।

(গ) গ্রাইকোক্যালিক্স: এটি ঝিল্লির ওপর একটি চিনির ন্তরবিশেষ। ফসফোলিপিড অণুর সঙ্গে কার্বোহাইড্রেট শৃঙ্খল যুক্ত হয়ে গ্রাইকোলিপিড ও প্রোটিন অণুর সাথে কার্বোহাইড্রেট শৃঙ্খল যুক্ত হয়ে গ্রাইকোপ্রোটিন গঠন করে। গ্রাইকোপ্রোটিন এবং গ্রাইকোলিপিডকে মিলিতভাবে গ্রাইকোক্যালিক্স বলা হয়। কার্বোহাইড্রেট শৃঙ্খলগুলো সবসময় ঝিল্লির বহিঃন্তরে অবস্থান করে।

(च) কোলেস্টেরল : এটি লিপিড জাতীয় পদার্থ তবে ফ্যাট বা তেল নয়, এটি স্টেরয়েড। কোলেস্টেরলের এক মাথায় অবছিত OH ফ্রপটি পানিগ্রাহী, অন্য অংশ পানিবিকর্ষী। ফ্রমফোলিপিড অণুর ফ্রাঁকে ফ্রাঁকে এগুলো অবস্থান করে। প্রাণিকোষের ঝিল্লিতে এটি অপেক্ষাকৃত বেশি থাকে। সেল সার্ফেস (cell surfaces)-এ ভেদ্যতা (permeability) ও এনজাইমের কার্যকারিতা পরিবর্তনশীল হতে দেখা যায়। এতে বোঝা যায়, সার্ফেস এলাকা এবং এর উপাদান উভয়ই পরিবর্তনযোগ্য। ফুইড-মোজাইক মডেল অনুযায়ী এসব পরিবর্তনশীলতা ঘটা সম্ভব। এ মডেল অনুযায়ী প্রোটিন এবং গঠন উপাদানসমূহকে ছির (fixed) ধরা হয় না, বরং মনে করা হয় এরা ফ্রসফোলিপিডে ভেসে থাকে। ফলে বস্তুর একটি মোজাইক তৈরি হয়। প্রোটিনসমূহ আংশিক পানিগ্রাহী (hydrophilic-যখন ঝিল্লের সার্ফেস-এ থাকে) এবং আংশিক পানিরোধী (hydrophobic-যখন লিপিডের সাথে মিশ্রিত অবস্থায় মাঝের দিকে থাকে) হতে পারে। এ মডেল কোষঝিল্লির কার্বোহাইড্রেট এবং প্রোটিন হতে উৎপন্ন অন্য দ্রব্যাদির (protein derivatives) উপস্থিতি সমর্থন করে। কতিপয় বস্তু কোষের ভেতর হতে বাইরে বের করতে এবং বাইর হতে ভেতরে প্রবেশ করাতে কোষঝিল্লির কার্বোহাইড্রেটর উপস্থিতি অত্যন্ত গুরুত্বপূর্ণ বিবেচনা করা হয়।

সাম্প্রতিক গবেষণায় দেখা গিয়েছে কোষঝিল্লিটি অনেকটা তরল পদার্থের ন্যায় আচরণ করে। <u>লিপিড অণু তরল</u> পদার্থের ন্যায় ঝিল্লির একই স্তরে ছান পরিবর্তন করে, পাশে ব্যাপ্ত (diffuse) হয় এবং অক্ষ (long axis) বরাবর ঘূরতে (rotate) পারে। <u>একে flip-flop movement বলে।</u> এ তথ্যগুলো ফুইড-মোজাইক মডেলকে বিশেষভাবে সমর্থন করে।

কোষঝিল্লির রাসায়নিক উপাদান : (i) কোষঝিল্লিতে থাকে প্রোটিন (৬০–৮০%), লিপিড (২০–৪০%) এবং কোনো কোনো ক্ষেত্রে পলিস্যাকারাইড (polysaccharides) (৪–৫%)। (ii) প্রোটিন গাঠনিক উপাদান হিসেবে (structural), এনজাইম হিসেবে (enzymes) এবং বাহক প্রোটিন (carrier protein) হিসেবে থাকে। এদের গঠন ও পরিমাণগত পার্থক্য থাকতে পারে। (iii) কোষঝিল্লির মোট শুষ্ক ওজনের প্রায় ৭৫ ভাগই লিপিড। লিপিড প্রধানত ফসফোলিপিড (phospholipids) হিসেবে থাকে। ইতোমধ্যেই পাঁচ রকম ফসফোলিপিড শনাক্ত করা হয়েছে। স্বচেয়ে সরল ফসফোলিপিড হলো ফসফোটাইডিক অ্যাসিড এবং অন্য চারটি জটিল প্রকৃতির (complex)। জটিল ফসফোলিপিডের মধ্যে লেসিথিন (lecithin) প্রধান। ঝিল্লিছ্ ফসফোলিপিডের অর্ধেকের বেশি থাকে লেসিথিন। (iv) কোনো কোনো ক্ষেত্রে RNA (পিয়াজের কোষে) থাকতে পারে।

কোৰবিধিপুর কাজ : **

- প্র) এটি কোষীয় সব বস্তুকে ঘিরে রাখে।
- ্রে) বাইরের প্রতিকূল অবস্থা হতে অভ্যন্তরীণ বন্তুকে রক্ষা করে।
- (টা) কোষঝিল্লির মধ্যদিয়ে বন্তুর ছানান্তর, ব্যাপন নিয়ন্ত্রণ ও সমন্বয় (control and coordinate) হয়।
- ্ব্যেস ঝিল্লিটি একটি কাঠামো হিসেবে কাজ করে যাতে বিশেষ এনজাইম এতে বিন্যপ্ত থাকতে পারে।
- (y) ভেতর থেকে বাইরে এবং বাইরে থেকে ভেতরে **বন্ধ ছানান্তর** করে।
- ্র (পা) বিভিন্ন বৃহদাণু (macro-molecule) সংশ্লেষ করতে পারে।
- (vii) বিভিন্ন রকম তথ্যের ভিত্তি (information source) হিসেবে কাজ করে।
- (viii) পারস্পরিক বন্ধন, বৃদ্ধি ও চলন ইত্যাদি কাজেও এর ভূমিকা আছে।
- ্র্(ix) ফ্যাগোসাইটোসিস প্রক্রিয়ায় কঠিন ও পিনোসাইটোসিস প্রক্রিয়ায় **তরুল বন্ধ** গ্রহণ করে।
- ্(x) এনজাইম ও অ্যান্টিজেন ক্ষরণ করে।
- (x) কোষের বাইরে থেকে নিউরোট্রাঙ্গমিটার, হরমোন ইত্যাদি রূপে তথ্য সংগ্রহ করে।
- ্ব(xii) স্নায়ু উদ্দীপনা **সংবহন** করে।
- প্রার্থা) ব্যাকটেরিয়ার কোষঝিল্লি ভাঁজ হয়ে মেসোসোম সৃষ্টি করে যা শক্তি উৎপাদন করে।
- (yiv) গ্লাইকোক্যালিক্স কোষের শনাক্তকারী (recognizer) হিসেবে কাজ করে।

কোষঝিশ্রির বিভিন্ন অবছা

- (i) মাইক্রোভিলাই (Microvilli) : <u>অস্ত্রের এপিথেলিয়াম কোষের মুক্ত প্রান্তের কোষঝিল্লি অন্ত্রগহ্বরে অসংখ্য ক্ষুদ্রাকৃতির অভিক্ষেপ তৈরি করে।</u> মাইক্রোভিলাই নামে পরিচিত এ অভিক্ষেপগুলোর সংখ্যা প্রতি কোষে ৩,০০০ পর্যন্ত হতে পারে। মাইক্রোভিলাই-এর কাজ হলো কোষের শোষণ অঞ্চলের আয়তন বৃদ্ধি করা।
- (ii) **ডেসমোসোম (Desmosome**) : কোষঝিল্লির কোনো কোনো **ছানে টনোফাইব্রিল** নামক অসংখ্য ফিলামেন্টযুক্ত বৃত্তাকার অঞ্চল দেখা যায়। টনোফাইব্রিলসহ ঐ বৃত্তাকার অঞ্চলকে ডেসমোসোম বলে।
- (iii) **ফ্যাণোসাইটিক ভেসিকল (Phagocytic vessicle)** : কঠিন খাদ্যকণাকে আবৃত করে যে গহ্বর সৃষ্টি করে তাকে ফ্যাণোসাইটিক ভেসিকল এবং এ প্রক্রিয়াকে **ফ্যাণোসাইটোসিস** বলে।
- (iv) পিনোসাইটিক ভেসিকল (Pinocytic vessicle) : কোষঝিল্লির কোনো ছানে ফাটল সৃষ্টি হলে উক্ত ফাটল ছান দিয়ে পানি বা অন্য কোনো তরল পদার্থ গড়িয়ে কোষাভ্যন্তরে প্রবেশ করে পিনোসাইটিক ভেসিকল সৃষ্টি করে এবং এপ্রক্রিয়াকে পিনোসাইটোসিস (Pinocytosis) বলে।

काष शांठीत ७ काषिशिन्नत मस्य अर्थका Reading

পার্থক্যের বিষয়	কোষ প্রাচীর	কোষঝিল্লি / গ্লাজমামেমব্রেন
১। সজীবতা	কোষ প্রাচীর নির্জীব তথা জড়।	কোষঝিল্পি সজীব।
২। অবস্থান	কোষ প্রাচীর উদ্ভিদ কোষের বৈশিষ্ট্য, কোষঝিল্লির বাইরে অবস্থিত।	কোষঝিল্লি উদ্ভিদ ও প্রাণী উভয় প্রকার কোষে থাকে।
৩। গঠন	প্রধানত সেলুলোজ নির্মিত : জড়, শক্ত, ভেদ্য প্রাচীরযুক্ত।	প্রধানত প্রোটিন ও লিপিড সমন্বয়ে গঠিত : জীবন্ত, স্থিতিস্থাপক ও অর্ধভেদ্য পর্দাযুক্ত।
৪। কাজ	প্রধান কাজ হলো কোষের আকার-আকৃতি নিয়ন্ত্রণ এবং কোষকে দৃঢ়তা প্রদান।	প্রধান কাজ হলো কোষের ভেতর-বাইরে প্রয়োজনীয় বস্থুর চলাচল নিয়ন্ত্রণ এবং কোষস্থ প্রোটোপ্লাজমীয় অংশ সংরক্ষণ।
৫। অলংকরণ	গৌণস্তরের বিশেষ বিন্যাসের জন্য নানাবিধ অলংকরণ দেখা যায়।	কোনোরূপ অলংকরণ দেখা যায় না।

কাজ: কোষ প্রাচীর ও প্লাজমামেমব্রেনের মধ্যকার পার্থক্যগুলো পাশাপাশি একটি ছকে উপদ্থাপন করতে হবে। পার্থক্য নির্ণয়কালে এদের অবস্থান, গঠন, স্তরায়ন, অলংকরণ, সজীবতা ও কাজ ইত্যাদি বিষয়ের প্রতি লক্ষ্য রাখতে হবে।

১.৩ সাইটোপ্লাজম ও এর অঙ্গাণু (Cytoplasm and Organelles)

নিউক্লিয়াসের বাইরে অবস্থিত এবং কোষঝিল্লি দিয়ে পরিবেষ্টিত প্রোটোপ্লাজমীয় অংশের নামই হলো **সাইটোপ্লাজম**। এটি মাতৃকা ও অঙ্গাণু অংশ নিয়ে গঠিত।

সাইটোপ্লাজমীয় মাতৃকা (Cytoplasmic matrix) : মাতৃকা হলো সাইটোপ্লাজমের ভিত্তি পদার্থ।

ভৌত গঠন : মাতৃকা হলো একটি অর্ধতরল, দানাদার, অর্ধয়চ্ছ, সমধর্মী, কলয়ডাল তরল পদার্থ। একে হায়ালোপ্রাজমও (Hyaloplasm) বলা হয়। বর্তমানে একে সাইটোসোল (Cytosol) বলা হয়। ম. H. Lardy (1965) প্রথম সাইটোসোল শব্দটি ব্যবহার করেন। সাইটোপ্রাজমে প্রচুর পরিমাণে পানি এবং পানিতে দ্রবীভূত বিভিন্ন ধরনের প্রায় ৩৬টি বিভিন্ন জৈব ও অজৈব পদার্থ, বিভিন্ন অ্যাসিড ও এনজাইম বিদ্যমান। সাইটোপ্রাজমীয় মাতৃকার অপেক্ষাকৃত ঘন, কম দানাদার বহিছ্ শক্ত অঞ্চলকে এক্টোপ্রাজম (কর্টেক্স, প্রাজমাজেল) বলে এবং কেন্দ্রন্থ অপেক্ষাকৃত কম ঘন অঞ্চলকে এন্ডোপ্রাজম বলে। সাইটোপ্রাজমের আপেক্ষিক গুরুত্ব পানি অপেক্ষা বেশি।

সাইটোপ্লাজমীয় অঙ্গাণুসমূহ (Cytoplasmic Organelles) : সাইটোপ্লাজমীয় মাতৃকায় প্লাস্টিড, মাইটোকব্রিয়া, এন্ডোপ্লাজমিক রেটিকুলাম, রাইবোসোম, গলগি বিড, লাইসোসোম, সেন্ট্রোসোম, মাইক্রোটিউবিউল্স প্রভৃতি অঙ্গাণু (ক্ষুদ্রাঙ্গ) এবং বিভিন্ন নির্জীব পদার্থও থাকে।

সাইটোপ্লাজমের কাজ: (i) বিভিন্ন ক্ষুদ্রাঙ্গ ধারণ করা, (ii) কতিপয় জৈবিক কাজ করা, (iii) কোষের অমুত্ব ও ক্ষারত্ব নিয়ন্ত্রণ করা, (iv) রেচন প্রক্রিয়ায় সৃষ্ট বর্জ্য পদার্থ নিষ্কাশনে সাহায্য করা, (v) পরিবেশের উত্তেজনায় সাড়া দেয়া এবং (vi) নির্দিষ্ট পরিমাণ পানি পরিশোষণে সাহায্য করা। (vii) আবর্তনের (Cyclosis) মাধ্যমে অঙ্গাণুগুলোকে নড়াচড়ায় সাহায্য করা। সাইটোপ্লাজমের ভেতর কোষ গহ্মরের চারদিকে অত্যন্ত পাতশা পর্দার আকারে অবন্থিত সাইটোপ্লাজমীয় পর্দাটির নাম টনোপ্লাস্ট।

সাইটোপ্লাজমের রাসায়নিক উপাদান ও প্রকৃতি (Chemical nature of cytoplasm)

সাইটোপ্লাজমের রাসায়নিক উপাদানকে অজৈব (inorganic) এবং জৈব (organic)— এ দু' শ্রেণিতে বিভক্ত করা যায়। অজৈব উপাদানের মধ্যে প্রধান হলো পানি ও পানিতে দ্রবীভূত গ্যাস। এছাড়াও আছে বিভিন্ন খনিজ বস্তু, আয়ন। জৈব উপাদানের মধ্যে আছে কার্বোহাইড্রেট, জৈব অ্যাসিড, লিপিড, প্রোটিন, নিউক্লিক অ্যাসিড, হরমোন, ভিটামিন, বিভিন্ন রক্ত্বক পদার্থ। <u>সাইটোপ্রাজমে পানির পরিমাণ কোষভেদে ৬৫–৯৬%।</u> সাইটোপ্রাজমের প্রকৃতি অর্ধতরল, দানাদার, অর্ধস্বচছ, সমধর্মী ও কলয়ডাল। উদ্ভিদ কোষের সাইটোপ্রাজমে ৭৫% পানি, ২০% শর্করা, ২% প্রোটিন, ২% খনিজ লবণ এবং ১% চর্বি, ভিটামিন, পিগমেন্টস ও অন্যান্য বস্তু থাকে।

সাইটোপ্লাজমের বিপাকীয় ভূমিকা (Metabolic role of cytoplasm) : বিপাক (metabolism) বলতে জীবদেহে সংঘটিত সব ধরনের জৈব রাসায়নিক বিক্রিয়ার যোগফলকে বোঝায়। বিপাককে ছুলভাবে গঠনমূলক বা উপচিতি (anabolism) ও ধ্বংসাত্মক বা অপচিতি (catabolism)—এ দু ধরনের বিক্রিয়ায় ভাগ করা হয়। যেকোনো জীবদেহে প্রতিনিয়ত বিভিন্ন বিপাকীয় ক্রিয়া-বিক্রিয়া চলতে থাকে। এর অধিকাংশই সাইটোপ্লাজম নির্ভর। বিপাকীয় ক্রিয়াগুলোর কতক সাইটোপ্লাজমে সংঘটিত হয়, কতক সাইটোপ্লাজমের অঙ্গাণুগুলোতে সংঘটিত হয়। জীবের জন্য সবচেয়ে বড়ো শারীরবৃত্তীয় কাজ হলো শ্বসন। শ্বসনের প্রথম পর্যায় তথা গ্লাইকোলাইসিস সংঘটিত হয় সাইটোপ্লাজমে। এছাড়া সাইটোপ্লাজম হলো বিভিন্ন এনজাইমের আধার, আর সকল জৈবিক ক্রিয়া-বিক্রিয়া নিয়ন্ত্রণ করে থাকে বিভিন্ন ধরনের এনজাইম। কাজেই পরোক্ষভাবে জীবের সকল বিপাকীয় কাজের নিয়ন্ত্রকও সাইটোপ্লাজম। সাইটোপ্লাজমে সংঘটিত বিভিন্ন বিপাক ক্রিয়ার মধ্যে উল্লেখযোগ্য কয়েকটির সংক্ষিপ্ত বর্ণনা দেওয়া হলো—

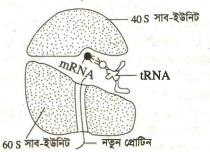
১। শ্বসন : এটি একটি জারণ-বিজারণ প্রক্রিয়া যার মাধ্যমে কোষে ATP তৈরি হয়। শ্বসনের গ্লাইকোলাইসিস ধাপটি সাইটোপ্লাজমীয় মাতৃকায় এবং অন্য ধাপগুলো সাইটোপ্লাজমে অবস্থিত মাইটোকন্দ্রিয়াতে সংঘটিত হয়। এটি একটি অপচিতিমূলক বিপাকীয় প্রক্রিয়া।

২। জীবনের স্পন্দন: যেকোনো শারীরবৃত্তীয় প্রক্রিয়া কেবলমাত্র জলীয় মাধ্যমেই সম্ভব। সাইটোপ্লাজমে অবস্থিত প্রচুর পরিমাণ পানি এবং এতে দ্রবীভূত অন্যান্য রাসায়নিক দ্রব্য বিপা**কীয় কার্যকলাপ** চালু রেখে জীবনের অন্তিত্ব প্রকাশ করে। পানির অভাবে কোষ তার কার্যকারিতা হারিয়ে ফেলে এমনকি মারাও যেতে পারে।

- ৩। সালোকসংশ্রেষণ : স্বভোজী জীবকোষের সাইটোপ্রাজমের ক্লোরোপ্রাস্টে যে বিপাক ঘটে তাতে শর্করা উৎপন্ন হয়। এ শর্করাই সমগ্র জীবজগতের জন্য প্রাথমিক খাদ্য।
- 8। প্রোটিন সংশ্লেষণ : জীবদেহ গঠনে প্রোটিন এক গুরুত্বপূর্ণ উপাদান হিসেবে কাজ করে। আর এ প্রোটিন তৈরির কারখানা হিসেবে কাজ করে সাইটোপ্লাজমীয় অঙ্গাণু— রাইবোসোম।
 - **ে। নিউক্রিক অ্যাসিড সংশ্রেষ :** আদিকোষে নিউক্রিক অ্যাসিডের সংশ্রেষ সাইটোপ্রাজমে সংঘটিত হয়।
 - ৬। লিপিড বিপাক: সাইটোপ্লাজমে অবস্থিত মাইক্রোবডিজ ও মাইটোকন্দ্রিয়া লিপিড বিপাকে সহায়তা করে।

প্রোটোপ্রাক্তম ও সাইটোপ্রাক্তমের মধ্যে পার্থক্য

প্রোটোপ্লাজম	সাইটোপ্লাজম
 ১। কোষের সমৃদয় সজীব অংশকে বলা হয় প্রোটোপ্রাজম। প্রোটোপ্রাজম জীবনের ভৌত ভিত্তি। 	 নিউক্লিয়াসের বাইরে অবিছিত এবং কোষঝিল্লি দিয়ে পরিবেষ্টিত প্রোটোপ্লাজমের অংশ হলো সাইটোপ্লাজম।
২। প্রোটোপ্লাজম কোষঝিল্লি, সাইটোপ্লাজম ও নিউক্লিয়াস—এ তিন অংশে বিভেদিত।	অঙ্গাণু ও মাতৃকা। এটি প্রোটোপ্লাজমেরই এক অংশ।
৩। প্রোটোপ্রাজম নিউক্লিয়াসযুক্ত, তাই বংশগতির ধারক ও বাহক।	৩। সাইটোপ্লাজম নিউক্লিয়াসবিহীন, তাই সাধারণত বংশগতির ধারক ও বাহক নয়।
৪। জীবনের আধার হিসেবে কাজ করে।	৪। কতিপয় অঙ্গাণুর আধার হিসেবে কাজ করে।


সাইটোপ্লাজমে বিরাজমান অঙ্গাণুসমূহ

কোষের সাইটোপ্লাজমে উপস্থিত ঝিল্লিযুক্ত ও ঝিল্লিবিহীন যেসব ক্ষুদ্র অঙ্গগুলো বিভিন্ন প্রকার শারীরবৃত্তীয় কাজ সম্পন্ন করে তাদের সাইটোপ্লাজমীয় অঙ্গাণু বা কোষীয় অঙ্গাণু বলে। সাইটোপ্লাজমে বেশ কিছু গুরুত্বপূর্ণ অঙ্গাণু বিরাজ করে। নিচে সাইটোপ্লাজমের প্রধান প্রধান অঙ্গাণুর বিবরণ উপস্থাপন করা হলো:

১। রাইবোসোম (Ribosome)

সাইটোপ্লাজমে মুক্ত অবস্থায় বিরাজমান অথবা অন্তঃপ্লাজমীয় জালিকার গায়ে অবস্থিত যে দানাদার কণায় প্রোটিন

সংশ্লেষণ ঘটে তাই রাইবোসোম। রাইবোসোম অত্যন্ত ক্ষুদ্র এবং প্রায় গোলাকার। সাধারণত অমসৃণ এন্ডোপ্লাজমিক রেটিকুলামের উভয় দিকে এরা সারিবদ্ধভাবে অবস্থিত থাকে। যে কোষে প্রোটিন সংশ্লেষণের হার বেশি সে কোষে বেশি সংখ্যক রাইরোসোম থাকে। সাইটোপ্রাজমে মুক্ত অবস্থায়ও রাইবোসোম থাকে। 70 S রাইবোসোম আদি কোষের একটি উল্লেখযোগ্য বৈশিষ্ট্য। রাইবোসোমের কোনো আবরণী নেই। সাইটোপ্লাজমে একাধিক রাইবোসোম মুক্তোর মালার মতো অবস্থান করলে তাকে পশিরাইবোসোম বা পশিসোম বলে। E. coli-এর কোষে এদের সংখ্যা প্রায় ২০,০০০ এবং শুষ্ক ওজনের প্রায় ২২%। আদিকোষ ও প্রকৃতকোষ—এ উভয় প্রকার কোষেই রাইবোসোম উপস্থিত থাকার কারণে রাইবোসোমকে সর্বজনীন অঙ্গাণু বলা হয়।

চিত্র ১.৭ : (প্রকৃতকোষের) রাইবোসোম : দুই সাব-ইউনিট এবং mRNA ও tRNA এর সম্ভাব্য অবস্থান দেখানো হয়েছে।

আবিষ্কার : আালবার্ট ক্লড (Albert Claude, 1899–1983) নামক একজন বিজ্ঞানী ১৯৫৪ সালে যকৃত কোষের সাইটোপ্রাজমকে সেন্ট্রিফিউজ করে RNA সমৃদ্ধ ৬০০–২০০০ Å (৬০–২০০ nm) ব্যাসবিশিষ্ট বহু ক্ষুদ্রকণা পৃথক করেন এবং নাম দেন মাইক্রোসোম। এরপর রোমানিয়ান কোষ বিজ্ঞানী জর্জ প্যালেড (George Palade) ১৯৫৫ সালে কোষের ভারী পদার্থরূপে রাইবোসোম আবিষ্কার ও নামকরণ করেন। পরবর্তীতে ইলেক্ট্রন আণুবীক্ষণিক চিত্রে মাইক্রোসোমর দুটি অংশ পৃথকযোগ্য দেখা যায়— একটি হলো অন্তঃপ্রাজমীয় ঝিল্লি এবং অপরটি হলো ক্ষুদ্রাকার কণা। এ কণাই হলো রাইবোসোম। ক্রোরোপ্রাস্ট, মাইটোকন্দ্রিয়া এবং নিউক্লিওপ্রাজমে রাইবোনিউক্লিও-প্রোটিন কণা (Ribonucleo-protein Particle-RNP) নামক ক্ষুদ্রাকার রাইবোসোম আবিষ্কৃত হয়েছে।

সাইটোপ্লাজমে এককভাবে অবস্থানকারী রাইবোসামকে বলা হয় **মনোসোম**। mRNA-র ওপর সারিবদ্ধভাবে থাকা রাইবোসোমকে বলা হয় **পলিরাইবোসোম** বা **পলিসোম**। সা<u>ইটোপ্লাজমে অবস্থানকারী রাইবোসোমকে **সাইটোরাইবোসোম** এবং মাইটোকড্রিয়াতে অবস্থানকারী রাইবোসোমকে **মাইটোরাইবোসোম** বলা হয়।</u>

প্রকার ভেদ : আকার ও সেডিমেন্টেশন সহগ (কো-এফিসিয়েন্ট) হিসেবে রাইবোসোম মূলত 70 S এবং 80 S—এ দু' প্রকার । 70 S রাইবোসোম (আণবিক ওজন 2.7 × 106 ডাল্টন) থাকে আদিকোষী জীবে । আর 80 S রাইবোসোম (আণবিক ওজন 40 × 106 ডাল্টন) থাকে প্রকৃতকোষী জীবে । 70 S রাইবোসোম, 50 S এবং 30 S—এ দু' সাব-ইউনিটে বিভক্ত থাকে । 80 S রাইবোসোম, 60 S এবং 40 S এ দু' সাব-ইউনিটে বিভক্ত থাকে । প্রোটিন সংশ্লেষণের সময় আদিকোষে 50 S ও 30 S সাব-ইউনিট একত্রিত হয়ে 70 S একক গঠন করে এবং প্রকৃত কোষে 60 S ও 40 S সাব-ইউনিট একত্রিত হয়ে 80 S একক গঠন করে । এ ছাড়া 77 S রাইবোসোমের উপস্থিতি ছ্রোকে আছে বলে জানা গেছে । স্তন্যপায়ী প্রাণীর মাইটোকড্রিয়ায় 55 S রাইবোসোম থাকে বলে জানা যায় । [কোনো বস্তুকে সেট্রিফিউজ করলে তলায় তার অধ্যক্ষেপ জমা হয় । সেট্রিফিউজ করা কালে বিভিন্ন ভরসম্পন্ন বস্তুর অধ্যক্ষেপণের হারকে S দিয়ে বোঝানো হয় । S = Svedberg unit = ভেদবার্গ একক; সেট্রিফিউজ যন্ত্রের ক্রত ঘূর্ণন প্রক্রিয়ায় বিভিন্ন ভরসম্পন্ন বস্তুর অধ্যক্ষেপণের হারকে ভেদবার্গ একক বলে । সুইডিস প্রাণ-রসায়নবিদ Theodor Svedberg এর নামের প্রথম অক্ষর S দিয়ে তা বোঝানো হয়ে থাকে ।]

আকৃতি ও ভৌত গঠন : এরা প্রধানত উপ-বৃত্তাকার তবে দু'পাশ থেকে সামান্য চ্যাপ্টা। এটি চওড়ায় 22 nm এবং উচ্চতায় 20 nm। রাইবোসোম প্রধানত বহু প্রকার প্রোটিন ও rRNA দিয়ে তৈরি। রাইবোসোমের বহু প্রোটিন মূলত এনজাইম।

J. A. Luke প্রদত্ত গঠন মডেল অনুসারে ছোটো উপ-এককটিতে মন্তক. পাদদেশ এবং মঞ্চ—এ তিনটি অংশ থাকে। বড়ো উপ-এককটিতে চূড়া, বৃদ্ধ এবং কেন্দ্রীয় স্ফীত অংশ—এ তিনটি অংশ থাকে।

mRNA অণু রাইবোসোমের সাথে যুক্ত হলে tRNA-র সংয়েতায় অ্যামিনো অ্যাসিড দিয়ে পলিপেপটাইড তথা প্রোটিন সংশ্লেষিত হয়। রাইবোসোমে ট্রান্সলেশন প্রক্রিয়া ঘটে। এর ফলে প্রোটিন তৈরি হয়। রাইবোসোম mRNA এর নির্দেশ অনুযায়ী tRNA এর সহায়তায় প্রোটিন তৈরি করে। প্রোটিন অসংখ্য অ্যামিনো অ্যাসিডের সমন্বয়ে গঠিত বৃহদাকার জৈব রাসায়নিক পদার্থ। এটি জীবদেহের জন্য অত্যন্ত গুরুত্বপূর্ণ।

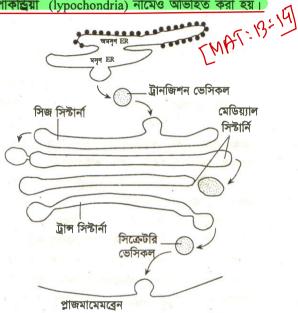
স্বাভাবিক অবস্থায় রাইবোসোমে সাব-ইউনিটগুলো পৃথক থাকে। কেবলমাত্র প্রোটিন সংশ্লেষণের সময় এরা একত্রিত হয়। এ সময় রাইবোসোমে ৪টি স্থান লক্ষ্য করা যায়। এগুলো হলো অ্যামাইনোঅ্যাসাইল বা A স্থান, পেপটাইডিল বা P স্থান, নির্গমন বা E স্থান এবং mRNA সংযুক্তি স্থান। অধিকাংশ ক্ষেত্রে দু'য়ের অধিক রাইবোসোম একটি mRNA সূত্র দ্বারা সংযুক্ত হয়ে পলিরাইবোসোম (Polyribosome) বা পলিসোম (Polysome) গঠন করে।

রাসায়নিক গঠন : রাইবোসোমের প্রধান উপাদান হচ্ছে প্রোটিন ও RNA। এদের অনুপাত প্রায় ১ ঃ ১। 70 S রাইবোসোমে রয়েছে 23 S, 16 S ও 5 S মানের ৩টি rRNA অণু এবং ৫২ প্রকারের প্রোটিন অণু। অপরদিকে 80 S রাইবোসোমে রয়েছে 28 S, 18 S, 5.8 S ও 5 S মানের ৪টি rRNA অণু এবং ৮০ প্রকারের প্রোটিন অণু। এছাড়া এতে ২—৩ ধরনের RNAase এনজাইম এবং অল্প পরিমাণে ধাতব আয়ন, যেমন-Mp⁺⁺ Ca⁺⁺ও Mn⁺⁺ ইত্যাদি থাকে।

আদি কোষের রাইবোসোম রাসায়নিকভাবে পৃথক ধরনের, তাই টেট্রাসাইক্লিন বা স্ট্রেন্টোমাইসিন অ্যান্টিবায়োটিক ওম্ব ব্যাকটেরিয়ার প্রোটিন সংশ্রেষ বন্ধ করে দিয়ে ব্যাকটেরিয়াকে ধ্বংস করে কিন্তু মানবদেহের প্রোটিন সংশ্রেষণে কোনো ব্যাঘাত সৃষ্টি করে না।

উৎপত্তি: আদিকোষে DNA (আদি ক্রোমোসোম) থেকে উৎপন্ন হয় কিন্তু প্রকৃতকোষে সাব-ইউনিট দু'টি পৃথকভাবে নিউক্লিয়াসের অভ্যন্তরে তৈরি হয় এবং পরে সাইটোপ্লাজমে চলে আসে। পলিপেপটাইড তৈরি শুরু হওয়ার আগ পর্যন্ত সাব-ইউনিট পৃথক থাকে।

রাইবোসোমের কাজ : রাইবোসোমের প্রধান কাজ হলো গ্রোটিন সংশ্রেষণ (তৈরি) করা। তাই রাইবোসোমকে কোষের প্রোটিন ফ্যান্টরি বলা হয়। প্রোটিন সংশ্রেষণের শুরুতে mRNA আদিকোষের 30 S এবং প্রকৃতকোষের 40 S সাব-ইউনিটের সাথে সংযোগ ছাপন করে। এরপর আদিকোষে 30 S এর সাথে 50 S মিলে 70 S একক গঠন করে এবং প্রকৃত কোষে 40 S এর সাথে 60 S সাব-ইউনিট এসে একত্রিত হয়ে 80 S একক গঠন করে এবং প্রোটিন সংশ্রেষণ শুরু হয়। এরা সাইটোক্রোম উৎপন্ন করে যারা কোষীয় শ্বসনে ইলেকট্রন পরিবহণ করে। গ্রুকোজের ফসফোরাইলেশন এবং স্লেহজাতীয় পদার্থের বিপাক রাইবোসোমে সংঘটিত হয়। mRNA কে নিউক্লিয়েজ এনজাইম ও নতুন পলিপেপটাইড চেইনকে প্রোটিওলাইটিক এনজাইমের যেকোনো ক্ষতিকর ক্রিয়া থেকে সুরক্ষা করে।


এন্ডোপ্লাজমিক রেটিকুলাম, গলগি বড়ি, লাইসোসোম, প্লাজমামেমব্রেন বা কোষের বাইরে ব্যবহার্য প্রোটিন যুক্ত-রাইবোসোমে উৎপন্ন হয়। মুক্ত-রাইবোসোমে তৈরি হয় সাইটোপ্লাজম, মাইটোকন্দ্রিয়া ও ক্লোরোপ্লাস্টে ব্যবহার্য প্রোটিন।

২। গলগি বডি (Golgi body)

নিউক্লিয়াসের কাছাকাছি অবস্থিত এবং দিন্তরবিশিষ্ট ঝিল্লি দ্বারা আবদ্ধ ছোটো নালিকা, ফোন্ধা, চৌবাচ্চা বা ল্যামেলির ন্যায় সাইটোপ্লাজমিক অঙ্গাণুর নাম গলগি বিড (গলগি যন্ত্র বা গলগি ক্ষেত্র)। গলগি বিড চেন্টা, গোলাকার বা লম্বা হতে পারে। এরা সাধারণত নিউক্লিয়াসের কাছাকাছি একত্রিত হয়ে অবস্থান করে। ইতালীয় স্নায়ুতত্ত্বিদ ক্যামিলো গলগি (Camillo Golgi, 1843–1926) ১৮৯৮ সালে প্রথম পোঁচা ও বিড়ালের স্নায়ুকোষে এটি দেখতে পান এবং তাঁর নামানুসারে পরবর্তীকালে এ অঙ্গাণুর নাম রাখা হয়েছে গলগি বিড। স্নায়ুতন্ত্রের গঠনের বিষয়ে গবেষণার জন্য ক্যামিলো গলগিকে ১৯০৬ সালে নোবেল পুরন্ধার প্রদান করা হয়। ডাল্টন ও ফেলিক্স (Dalton & Felix) ১৯৫৪ সালে গলগি বন্তুর ইলেক্ট্রন আণুবীক্ষণিক গঠন সম্পর্কে ধারণা দেন। মসৃণ এডাপ্লাজমিক রেটিকুলাম থেকে গলডি বিড সৃষ্টি হয়। এদেরকে ডিকটারোসোম (dictaosome), ইডিওসোম (Idiosome) বা লাইণোকছিয়া (lypochondria) নামেও অভিহিত করা হয়।

প্রায় সব প্রাণী কোষেই এরা বিদ্যমান। গলগি বডিতে ফ্যাটিঅ্যাসিড, ভিটামিন-কে, বিভিন্ন প্রকার এনজাইম (ATPase, ADPase, ট্রাঙ্গফারেজ ইত্যাদি) থাকে। কখনো ক্যারটিনয়েডও থাকে। গলগি বডিকে 'কোষের ট্রাফিক পুলিশ' (Traffic Police of Cell)-ও বলা হয়। কারণ গলগি বডি কোষের কেন্দ্রীয় অংশ থেকে ঝিল্রিবদ্ধ বস্তু (ভেসিকল) কোষের পরিধির দিকে প্রাজমামেমব্রেন পর্যন্ত নিয়ে যায়।

ভৌত গঠন : আকৃতি ভিন্ন ভিন্ন হলেও এদের নির্দিষ্ট গঠন কাঠামো থাকে। সাধারণত এরা একক পর্দা দ্বারা আবৃত নালিকা বা গহ্বরের মতো। গলগি বডিতে তিন ধরনের গঠনগত উপাদান লক্ষ্য করা যায়। গলগি যন্ত্রের কতগুলো চ্যান্টা থলে বা চৌবাচ্চা আকৃতির গঠনসমূহকে সিস্টার্নি (এক বচনে-সিস্টার্না) বলে এবং কিছুটা অনিয়মিত নালিকা ও ভেসিকলসমূহকে ট্রান্স-গলগি নেটপ্তয়ার্ক (Trans-Golgi Network-TGN) বলে। সিস্টার্নি একসাথে গাদা করে (stack) থাকে। প্রতিটি স্বতন্ত্র গাদাকে (stack) বলা হয় গলগি বঙি বা ভিকটায়োসোম (dictyosome)। গলগি যন্ত্রের প্রাজমামেমব্রেনের কাছাকাছি অংশকে বলা হয় ট্রান্স-

চিত্র ১.৮ : গলগি বঙি ও এর কার্যক্রম।

ক্ষেইস (trans-face)। আর কোষের কেন্দ্রের দিকের অংশকে বলা হয় সিজ-ফেইস (cis-face)। ট্রাসফেইস-এর শেষ সিস্টার্নাকে বলা হয় ট্রাঙ্গ সিস্টার্না (trans cisterna) এবং সিজ-ফেইসের শেষ সিস্টার্নাকে বলা হয় সিজ-সিস্টার্না (cis-cisterna), মধ্যভাগের গুলোকে বলা হয় মেডিয়াল সিস্টার্নি (medial cisternae)। সিস্টার্নির পার্শ্বদেশে অবস্থিত গোলাকার থালার মতো গঠনগুলোকে ভ্যাকুওল বলে। ট্রাঙ্গ সিস্টার্নার নিচের দিকে অপেক্ষাকৃত ক্ষুদ্র ক্ষুদ্র থলির মতো বন্তুগুলোকে ভেসিকল বলা হয়। সবগুলো সংগঠন ইন্টারসিস্টার্নাল বন্তু দিয়ে একসাথে সংঘবদ্ধ অবস্থায় থাকে। তিন অংশে তিন ধরনের এনজাইম থাকে এবং এদের কাজও তিন ধরনের।

প্রাণিকোষে সাধারণত গলগি যদ্র কোষের এক জায়গায় একসাথে অবছান করে কিন্তু উদ্ভিদকোষে দৃশ্যত পৃথক পৃথক শতাধিক গলগি বিভি সাইটোপ্লাজমে ছড়িয়ে থাকে।

উদ্ভিদকোষে গলগি বডির প্রধান কাজ হলো গ্লাইকোপ্রোটিনের অলিগোস্যাকারাইড-এ পার্শ্ব শৃভ্থল সংযুক্ত করা এবং জটিল পলিস্যাকারাইড সংশ্রেষ ও নিঃসরণ করা। উদ্ভিদকোষে গলগি বডির আর একটি উল্লেখযোগ্য কাজ হলো কোষ প্রাচীর গঠন করা।

এন্ডোপ্লাজমিক রেটিকুলামে উৎপাদিত দ্রব্যাদির ঝিল্লিবদ্ধ ভেসিকল (ট্রানজিশন ভেসিকল) সিজ-সিস্টার্না গ্রহণ করে এবং পর্যায়ক্রমিকভাবে মেডিয়্যাল সিস্টার্নির মাধ্যমে শেষ পর্যন্ত ট্রাঙ্গ সিস্টার্না হয়ে কোষে অন্যত্র বা প্লাজমামেমব্রেনে চলে যায়। 247

রাসায়নিক গঠন : গলগি বডি আবরণীতে ৬০ ভাগ প্রোটিন এবং ৪০ ভাগ ফসফোলিপিড থাকে। এছাড়<u>া</u> এতে ফ্যাটি অ্যাসিড, ভিটামিন-K ও ক্যারোটিনয়েড থাকে। বিভিন্ন ধরনের এনজাইম দ্বারা এদের থলিগুলো পূর্ণ থাকে। <u>শুরুত্বপূর্ণ</u> এনজাইমগুলো হলো— ADPase, ATPase, CTPase, TTPase, NADH সাইটোক্রোম ও গ্রুকোজ-৬-ফসফেটেজ।

উৎপত্তি: সম্ভবত মসৃণ এন্ডোপ্লাজমিক রেটিকুলাম হতে উৎপত্তি হয়।

প্রকারভেদ : তিন প্রকার; যথা—(১) সিস্টার্নি বা চ্যাপ্টা থলি, (২) ভেসিকল বা ছোটো গহরর, (৩) ভ্যাকৃওল বা বড়ো গহরর।
ক্রাপ্টির কাজ (Function of Golgi Apparatus) : (i) লাইসোসোম ও ভিটামিন তৈরি করা। (ii) অ-প্রোটিন জাতীয় পদার্থের (যেমন— লিপিড) সংশ্রেষণ করা, (iii) কিছু এনজাইম ও প্রাণরস নির্গমন করা, (iv) কোষ বিভাজনকালে কোষপ্রেট তৈরি করা, (v) প্রোটিন, হেমিসেলুলোজ, মাইক্রোফাইব্রিল তৈরি করা, (vi) কোষছ পানি বের করা, (vii) এভোপ্রাজমিক রেটিকুলামে প্রস্তুতকৃত দ্রব্যাদি ঝিল্লিবদ্ধ করা, (viii) বিভিন্ন পলিস্যাকারাইড সংশ্রেষণ ও পরিবহণে অংশ্মহণ করা। তাই উদ্ভিদকোষে গলগি বিডিকে কার্বোহাইড্রেট ফ্যাব্রারি বলা হয়। (ix) মাইটোকন্দ্রিয়াকে ATP উৎপাদনে উদ্বৃদ্ধ করা, (x) প্রোটিন ও Vit-C সঞ্চয় করা, (xi) কোষ প্রাচীর গঠনের জন্য প্রয়োজনীয় পদার্থ ক্ষরণ করা, (xii) শুক্রাপুর অ্যাক্রোজোম তৈরিতে সহায়তা করা এবং (xiii) লিপিড সংশ্বেষণ ও প্রোটিন ক্ষরণের সাথে জড়িত থাকা।

৩। লাইসোসোম (Lysosome)

সাইটোপ্লাজমে অবস্থিত যে অঙ্গাণু হাইড্রোলাইটিক এনজাইমের আধার হিসেবে কাজ করে তাকে **লাইসোসোম** বলে (Gk. Lyso = হজমকারী এবং soma = বন্ধ)। বহু সংখ্যক নানাবিধ হাইড্রোলাইটিক এনজাইম একটি একন্ধরী ঝিল্লী দ্বারা আবদ্ধ হয়ে একটি লাইসোসোম তৈরি করে। ১৯৫৫ সালে ক্রিন্টিয়ান দ্য দুবৈ (Christain de Duve, 1917–2013) এ ধরনের অঙ্গাণুর নামকরণ করেন লাইসোসোম।

উৎপত্তি : এন্ডোপ্লান্ধমিক রেটিকুলাম হতে এদের উৎপত্তি এবং গলগি বডি কর্তৃক প্যাকেজকৃত।

বিশ্তৃতি: প্রাণিদেহের শ্বেত রক্তকণিকা কোষে অধিক সংখ্যায় লাইসোসোম দেখা যায়। প্রায় সব প্রাণিকোষে, বিশেষ করে বৃক্ কোষ, অন্ত্রের আবরণী কোষেও লাইসোসোম আছে। RBC-তে লাইসোসোম থাকে না। সম্প্রতি উদ্ভিদকোষেও লাইসোসোমের ন্যায় ক্রেরোসোম (spherosome) আবিশ্বুত হয়েছে। এদেরকে প্রলিওসোম (oleosome)-ও বলা হয়। এরা আকারে ছোটো। তৈল জাতীয় পদার্থ ঝিল্লিবদ্ধ করা এদের প্রধান কাজ। Oleosome-এর বিশ্রি একস্করবিশিষ্ট বলে জানা যায়।

চিত্র ১.৯ : লাইসোসোমের গঠন।

ভৌত গঠন : লাইসোসোম সাধারণত বৃত্তাকার (গোলাকার), এদের ব্যাস সাধারণত ০.২-০.৮ μm । বৃক্ক কোষের লাইসোসোম অপেক্ষাকৃত বড়ো হয়ে থাকে। প্রতিটি লাইসোসোম একটি **এক্স্করবিশিষ্ট আবরণী** দ্বারা আবদ্ধ থাকে। এদের ভ্যাকৃওল ঘন তরলে পূর্ণ থাকে।

কতক বস্তু লাইসোসোমের ঝিল্লিকে ছিতি দান করে যার ফলে লাইসোসোম থেকে এনজাইমসমূহ বের হয়ে আসতে পারে না। এদেরকে বলা হয় লাইসো<u>সোম stabilizer, যেমন— কোলেস্টেরল; কর্টিজেন।</u> কতক বস্তু লাইসোসোমের ঝিল্লি বিদীর্গ হতে সাহায্য করে যার ফলে এর এনজাইমসমূহ বের হয়ে এসে অটোলাইসিস ঘটায়। এদেরকে বলা হয় labilizer, যেমন—প্রোজেস্টেরন, টেস্টোস্টেরন।

রাসায়নিক গঠন : লাইসোসোমের আবরণী ঝিল্লি লিপো-প্রোটিন নির্মিত। ঝিল্লি দ্বারা আবদ্ধ অবস্থায় এতে প্রায় ৪০–৫০ ধরনের এনজাইম থাকে। উল্লেখযোগ্য এনজাইমগুলো হলো DNAase, RNAase, অ্যাসিড লাইপেজ, এস্টারেজ, স্যাক্তব্লেজ, লাইসোজাইম, ফসফোলাইপেজ ইত্যাদি। প্রতিটি লাইসোসোমে নির্দিষ্ট এক ধরনের এনজাইম বিদ্যমান।

্ধ প্রিবেশে কর্মক্ষম হয়; সাইটোপ্লাজমের নিউট্রাল pH-এ এরা কর্মক্ষম থাকে না; তাই কোষের তেমন কোনো ক্ষতি হয় না। প্রয়োজনের সময় সাইটোপ্লাজম থেকে প্রোটন (H[†]) এনে অম্লীয় পরিবেশ তৈরি করে এরা কাজ করে। এদের কাজ হলো-(i) এরা **ফ্যাগোসাইটোসিস** (Phagocytosis) পদ্ধতিতে

JMAT: 23-24]

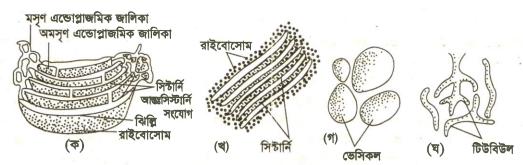
জীবাণু ধ্বংস করে। (ii) বিগলনকারী এনজাইমসমূহকে আবদ্ধ করে রেখে এটি কোষের অন্যান্য অঙ্গাণুকে রক্ষা করে। (iii) লাইসোসোম অস্ক্রকোষীয় পরিপাক কাজে সাহায্য করে। (iv) তীব্র খাদ্যাভাবের সময় এর প্রাচীর ফেটে যায় এবং আবদ্ধকৃত এনজাইম বের হয়ে কোষের অন্য অঙ্গাণুগুলো বিনষ্ট করে দেয়। এ কাজকে বলে ঘ-প্রাস বা অটোফ্যাগী (autophagy)। এভাবে সমন্ত কোষটিও পরিপাক হয়ে যেতে পারে। একে বলা হয় অটোলাইসিস (autolysis)। (v) এরা জীবদেহের ব্র অকজো কোষসমূহকে অটোলাইসিস পদ্ধতিতে ধ্বংস করে বলে এদের আত্মঘাতী থলিকা বা জোয়াড (Suicidal bag or squad) বলা হয়। (vi) কোষ বিভাজনকালে এরা কোষীয় ও নিউক্লীয় আবরণী ভাঙ্গতে সাহায্য করে। (vii) এরা কোষে কেরাটিন প্রস্তুত করে। (viii) ক্যাঙ্গার সৃষ্টি করতে পারে। (ix) টিস্যু বিগলনকারী অ্যাসিড ফসফেটেজ এনজাইম থাকে। (ম) শুক্রাণুর লাইসোসোম নিঃসৃত হায়ালিউরোনিডেজ এনজাইম ডিম্বাণুর আবরণের অংশবিশেষের বিগলন ঘটায়। লাইসোসোমের কার্যকলাপ স্টাডি করে জাপানি সেলবায়োলজিস্ট ড. ইয়োশিনোরি ওপ্তমি ২০১৬ সালে নোবেল প্রাইজ পান। ১৫টি জিন লাইসোসোমের অটোফ্যাগী নিয়ন্ত্রণ করে থাকে।

রাইবোসোম ও লাইসোসোমের মধ্যে পার্থক্য

পার্থক্যের বিষয়	রাইবোসোম	লাইসোসোম
১। আবরণ	কোনো আবরণী দিয়ে এটি আবৃত নয়।	আবরণী দিয়ে এটি আবৃত থাকে।
২। অবহান	এরা বিভিন্ন কোষ অঙ্গাণুর গায়ে লাগানো বা সাইটোপ্রাজমে বিচ্ছিন্নভাবে থাকে।	কোষের সাইটোপ্লাজমে সর্বত্র প্রায় সমানভাবে সাজানো থাকে।
৩। গঠন	এটি RNA ও হিস্টোন প্রোটিন দিয়ে গঠিত থাকে।	এতে বিভিন্ন ধরনের এনজাইম বিদ্যমান থাকে।
৪। খণ্ডায়ন	এটি দুটি অসমান খণ্ডে বিভক্ত থাকে।	এটি অখণ্ডিত থাকে।
৫। কাজ	প্রোটিন সংশ্লেষে বিশেষ ভূমিকা রাখে।	এটি আশুংকোষীয় পরিপাকে সহায়তা করে।

8। এন্ডোপ্লাজমিক রেটিকুলাম (Endoplasmic reticulum)

পরিণত কোষে সাইটোপ্লাজমে যে জালিকা বিন্যাস দেখা যায় তাই এন্ডোপ্লাজমিক রেটিকুলাম বা অপ্তঃপ্লাজমীয় জালিকা। আবিষ্কার: বিজ্ঞানী কেইথ আর. পোর্টার (Keith R. Porter) এবং তাঁর সঙ্গী আনুলবার্ট ক্রছ ও ফুলম্যান (A. Claude & Fullam) ১৯৪৫ সালে মুরগির জ্রণীয় কোষের সাইটোপ্লাজম থেকে এটি আবিষ্কার করেন। এন্ডোপ্লাজমিক রেটিকুলাম নামকরণ করা হয় ১৯৫৩ সালে।


উৎপত্তি: সাইটোপ্লাজমীয় ঝিল্লি, নিউক্লীয় ঝিল্লি অথবা কোষঝিল্লি হতে উৎপন্ন হয়।

বিছ্ণতি : অধিকাংশ ইউক্যারিয়টিক কোষেই এ অঙ্গাণু পাওয়া যায়। তবে বেশি থাকে যকৃত, অগ্ন্যাশয় ও অঞ্চক্ষরা গ্রন্থির কোষে।

প্রকার: এন্ডোপ্লাজমিক রেটিকুলাম দু'প্রকার— মসৃণ এবং অমসৃণ। রেটিকুলামের গায়ে রাইবোসোম থাকলে তা অমসৃণ বা দানাদার (প্রোটিন ও এনজাইম সংশ্লেষণ) হয়, রাইবোসোম না থাকলে তা মসৃণ বা অদানাদার (লিপিড ও হরমোন সংশ্লেষণ) হয়।

ভৌত গঠন : এন্ডোপ্লাজমিক রেটিকুলাম দ্বিস্তরবিশিষ্ট আবরণী দ্বারা আবৃত থাকে। <u>গঠনগতভাবে এন্ডোপ্লাজমিক</u>রেটিকুলাম তিন প্রকার; যথা—

- (क) সিস্টার্নি (Cisternae) : এরা দেখতে অনেকটা চ্যাপ্টা, শাখাবিহীন ও লম্বা চৌবাচ্চার মতো এবং সাইটোপ্লাজমে পরস্পর সমান্তরালভাবে বিন্যন্ত থাকে। এগুলোর ব্যাস ৪০–৫০ মিলিমাইক্রন (mµ)। এগুলোর গায়ে অনেক সময় রাইবোসোম যুক্ত থাকে।
 - (খ) ভেসিক্স (Vesicles) : এগুলো বর্তুলাকার ফোন্ধার মতো। ২৫৩৫০ মিলিমাইক্রন ব্যাসযুক্ত।
- (গ) টিউবিউশ (Tubules) : এগুলো নালিকার মতো, শাখান্বিত বা অশাখ। এদের ব্যাস ৫০–১৯০ মিলিমাইক্রন। এদের গায়ে সাধারণত রাইবোসোম যুক্ত থাকে না।

চিত্র ১.১০ : এন্ডোপ্লাজমিক রেটিকুলাম (ক) ত্রিমাত্রিক গঠন, (খ) অমসৃণ ঝিল্লি, (গ) মসৃণ ভেসিকল এবং (ঘ) মসৃণ টিউবিউল।

রাসায়নিক গঠন : এন্ডোপ্রাজমিক রেটিকুলামের প্রধান রাসায়নিক উপাদান হলো- প্রোটিন (৬০–৭০ ভাগ) ও লিপিড (৩০–৪০ ভাগ)। এতে প্রায় ১৫ ধরনের এনজাইম পাওয়া যায়; যেমন—গ্রুকোজ ৬-ফসফেটেজ, সক্রিয় ATPase, NADH ডায়াফোরেজ ইত্যাদি। অমসৃণ জালিতে RNA এবং গ্রাইপ্রক্সিসোম নামক ক্ষুদ্রাকার কণা থাকতে পারে। অমসৃণ রেটিকুলামের ক্ষুদ্র ক্ষুদ্র ক্ষুদ্র বিচ্ছিন্ন অংশকে মাইক্রোসোম (microsome) বলে।

প্রতিপ্রাজমিক রেটিকুশামের কাজ: (i) এটি প্রোটোপ্রাজমের কাঠামো হিসেবে কাজ করে। (ii) অমসূণ রেটিকুলামে প্রোটিন সংশ্লেষিত হয়। (iii) মসূণ রেটিকুলামে (বিশেষত প্রাণী কোষে) লিপিড, মতান্তরে বিভিন্ন হরমোন, গ্লাইকোজেন, ভিটামিন, স্টেরয়েড প্রভৃতি সংশ্লেষিত হয়। (iv) এটি লিপিড ও প্রোটিনের অঞ্ভবাহক হিসেবে কাজ করে। (v) অনেকের মতে এতে কোষ প্রাচীরের জন্য সেলুলোজ তৈরি করে। (vi) রাইবোসোম, গ্লাইঅক্সিসোমের ধারক হিসেবে কাজ করে। (vii) এরা কোষে অনুপ্রবেশকারী বিভিন্ন বিষাক্ত পদার্থকে নিষ্ক্রিয় করে। (viii) রাইবোসোমে উৎপন্ন প্রোটিন পরিবহণে এটি প্রধান ভূমিকা রাখে।

🖈 🖟 এন্ডোপ্লাজমিক রেটিকুলাম ও গলগি বডির মধ্যে পার্থক্য

পার্থক্যের বিষয়	এন্ডোপ্লাজমিক রেটিকুশাম	গ্শগি বডি
১। অবহান	সকল প্রকৃতকোষে থাকে।	সকল প্রকৃতকোষে থাকে না , প্রাণিকোষে অধিক থাকে।
২। বিভৃতি	কোষঝিল্লি থেকে নিউক্লিয়ার মেমব্রেন পর্যন্ত বিস্তৃত।	সাধারণত নিউক্লিয়াসের কাছাকাছি অবস্থান করে।
৩। মসৃণতা	আবরণী ঝিল্লি মসৃণ এবং অমসৃণ—দু' ধরনের হয়।	আবরণী ঝিল্লি মসৃণ হয়।
৪। জাপিকা	সমন্ত সাইটোপ্লাজমে জালিকা সৃষ্টি করে অবস্থিত।	সাইটোপ্লাজমে কোনো জালিকা সৃষ্টি করে না।
৫। কাজ	কাঠামো গঠন ও অন্তঃপরিবহণের কাজ করে।	সাধারণত সংশ্লেষ ও ক্ষরণকারী কাজ করে।

স্প অমসৃণ এন্ডোপ্লাজমিক রেটিকুলাম ও মসৃণ এন্ডোপ্লাজমিক রেটিকুলাম-এর মধ্যে পার্থক্য

পার্থক্যের বিষয়	অমসৃণ এডোপ্লাজমিক রেটিকুশাম (REIR)	মসৃণ এন্ডোপ্লাজমিক রেটিকুসাম (SER)
১। অবছান	প্রোটিন বিপাক হয় এমন কোষে (যেমন- অগ্ন্যাশয়	ফ্যাট বিপাক হয় এমন কোষে (যেমন- পেশিকোষ,
	কোষ, মিউকাস কোষ ইত্যাদি) অবছান করে। এরা	অ্যাড্রেনাল গ্রন্থির কোষ, শুক্রাশয়ের লেডিগ কোষ
	কখনো কখনো নিউক্লিয়ার মেমব্রেন সংলগ্ন থাকে।	ইত্যাদি) অবছান করে। এরা কখনো কখনো
	± "	প্লাজমামেমব্রেন সংলগ্ন থাকে।
২। রাইবোসোম	যুক্ত থাকে।	যুক্ত থাকে না।
৩। গঠন	প্রধান উপাদান সিস্টার্নি ও কিছু টিউবিউল।	প্রধান উপাদান টিউবিউল ও ভেসিকল।
৪। উৎপত্তি	এরা নিউক্লীয় পর্দা থেকে তৈরি হয়।	রাইবোসোম মুক্ত হয়ে RER থেকে SER সৃষ্টি হয়।
৫। কাজ	প্রধান কাজ প্রোটিন ও এনজাইম সংশ্লেষ। এছাড়া	প্রধান কাজ ফ্যাট, গ্লাইকোজেন ও হরমোন সংগ্লেষ।
	লাইসোসোম উৎপাদন ও ক্যালসিয়াম সঞ্চয় করে।	এছাড়া ক্ষেরোসোম উৎপাদন ও ক্যালসিয়াম মুক্ত করে।

৫। মাইটোকদ্রিয়া (Mitochondria)

মাইটোকন্দ্রিয়া ATP উৎপাদনের জন্য বিশেষায়িত অঙ্গাণু।

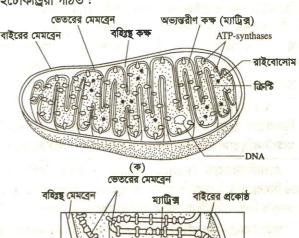
প্রকৃত জীবকোষের গুরুত্বপূর্ণ অঙ্গাণু হলো মাইটোকন্ত্রিয়া। কোষের যাবতীয় জৈবনিক কাজের শক্তি সরবরাহ করে বলে মাইটোকন্ত্রিয়াকে কোষের 'পাওয়ার হাউস' বা শক্তিঘর বলা হয়। এ অঙ্গাণুতে ক্রেবস্ চক্র, ফ্যাটি অ্যাসিড চক্র, ইলেকট্রন ট্রাঙ্গপোর্ট প্রক্রিয়া প্রভৃতি ঘটে থাকে। দ্বিভরবিশিষ্ট আবরণী ঝিল্লি দ্বারা সীমিত সাইটোপ্লাজমছ যে অঙ্গাণুতে ক্রেবস্ চক্র, ইলেকট্রন ট্রাঙ্গপোর্ট ইত্যাদি ঘটে থাকে এবং শক্তি উৎপন্ন হয় সেই অঙ্গাণুকে মাইটোকন্ত্রিয়া বলে।

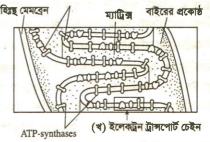
আবিষ্কার ও নামকরণ : ১৮৫০ সালে সুইস বিজ্ঞানী কলিকার (Albert Von Kolliker) পতঙ্গের পেশিকোষের সাইটোপ্রাজমে ক্ষুদ্র এমন অঙ্গাণুর উপস্থিতি লক্ষ্য করেন এবং এর নাম দেন সারকোসোম। W. Fleming (1882) কোষে সূতাকৃতির মাইটোকন্দ্রিয়া প্রত্যক্ষ করেন এবং ফিলা (fila) নামকরণ করেন। Altman (1890) এদের বায়োপ্রাস্ট (bioplast) নামকরণ করেন। কার্ল বেডা (Carl Benda-1898) এ অঙ্গাণুগুলোকে মাইটোকন্দ্রিয়া নামকরণ করেন। কোষের সাইটোপ্রাজমে এরা বিক্ষিপ্তভাবে অবস্থান করে। কোষ আয়তনের প্রায় ২০ ভাগ হলো মাইটোকন্দ্রিয়া, [(Gk- Mitos=thread-সূতা এবং chondrion = grain-দানা; একবচন- মাইটোকন্দ্রিয়া।]

উৎপত্তি : বিভাজনের মাধ্যমে এদের সংখ্যা বৃদ্ধি হয়ে থাকে। কোষে একটিমাত্র মাইটোকন্দ্রিয়ন (বছবচনে-মাইটোকন্দ্রিয়া) থাকলে তা কোষ বিভাজনের সাথেই বিভাজিত হয়ে থাকে।

সংখ্যা : প্রকারভেদে প্রতি কোষে এক (ঈস্ট কোষে একটি) হতে একাধিক থাকতে পারে। সা<u>ধারণত গড়ে প্রতি কোষে</u> ৩০০ হতে ৪০০টি মাইটোকদ্রিয়া থাকে। <mark>যেকৃত কোষে ১০০০ বা ততোধিক থাকে। Amoeba-</mark>তে আরও বেশি থাকে।

আকৃতি : আকৃতিতে এরা বৃত্তাকার, দণ্ডাকার, তম্ভকার (সূত্রাকার), তারকাকার ও কুণ্ডলী আকার হতে পারে।


আয়তন : মাইটোকন্দ্রিয়ার দৈর্ঘ্য সাধারণত ০.৩ মাইক্রন হতে ৪০.০ মাইক্রন পর্যন্ত হতে পারে। বৃত্তাকার মাইটোকন্দ্রিয়ার ব্যাস ০.২–২.০ মাইক্রন। সূত্রাকার মাইটোকন্দ্রিয়ার দৈর্ঘ্য ৪০ থেকে ৭০ মাইক্রন। দণ্ডাকার মাইটোকন্দ্রিয়ার দৈর্ঘ্য ৯ মাইক্রন ও প্রস্থ ০.৫ মাইক্রন পর্যন্ত হতে পারে। কোষ আয়তনের প্রায় ২০% হলো মাইটোকন্দ্রিয়া।


মাইটোকন্দ্রিয়ার ভৌত গঠন : নিমলিখিত অংশ নিয়ে মাইটোকন্দ্রিয়া গঠিত :

১। আবরণী: প্রতিটি মাইটোকন্ত্রিয়ন লিপোপ্রোটিন বাইলেয়ারের দুটি মেমব্রেন নিয়ে গঠিত। বাইরের মেমব্রেনটি খাঁজবিহীন, মূলত ভেতরের অংশসমূহকে রক্ষা করাই এর প্রধান কাজ। বাইরের মেমব্রেন ভেদ করে বিভিন্ন ক্ষুদ্র অণু এবং আয়ন ভেতরে প্রবেশ করতে পারে, আবার বের হয়ে যেতেও পারে। এতে কিছু ট্রান্সপোর্ট প্রোটিন থাকে যা প্রয়োজনে সক্রিয় ট্রান্সপোর্টে সহায়তা করে। এতে কোনো ETC, ATP Synthases, ATP তৈরির এনজাইম ইত্যাদি থাকে না। এর কাজ মূলত রক্ষণাত্মক। দুটি আবরণীর মধ্যে ব্যবধান ৬–৮ nm।

২। প্রকোষ্ঠ : দু' মেমব্রেনের মাঝখানের ফাঁকা ছানকে বলা হয় বহিঃছ কক্ষ (প্রকোষ্ঠ) বা আন্তঃমেমব্রেন ফাঁক এবং ভেতরের মেমব্রেন দিয়ে আবদ্ধ কেন্দ্রীয় অঞ্চলকে বলা হয় অভ্যন্তরীণ কক্ষ। অভ্যন্তরীণ কক্ষ জেলির ন্যায় ঘন সমসত্ত্ব পদার্থ বা ধাত্র দ্বারা পূর্ণ থাকে। এ ধাত্র পদার্থকে ম্যাটিক্স বলে।

৩। ক্রিস্টি বা প্রবর্ধক : বাইরের মেমব্রেন সোজা কিন্তু ভেতরের মেমব্রেনটি নির্দিষ্ট ব্যবধানে ভেতরের দিকে ভাঁজ হয়ে আঙ্গুলের মতো প্রবর্ধক সৃষ্টি করে। প্রবর্ধিত অংশকে ক্রিস্টি (cristae) বলে। এদের সংখ্যা ও

চিত্র ১.১১ : ইলেক্সন অণুবীক্ষণ যত্রে দৃষ্ট মাইটোক্ড্রিয়ার দৈর্ঘ্যচ্ছেদ।
(ক) অর্থাংশ ত্রিমাত্রিক, (খ) পাতলা দৈর্ঘ্যচ্ছেদ।

আকৃতি বিভিন্ন কোষে বিভিন্ন রকম হয়। এগুলো মাইটোকন্ত্রিয়ার ধাত্রকে কতগুলো অসম্পূর্ণ প্রকোষ্ঠে বিভক্ত করে। ক্রিস্টির মধ্যবর্তী ফাঁকা ছানকে অস্ক্যক্রিস্টি ফাঁকা ছান (intracristal space) বলে-যা বহিঃপ্রকোষ্ঠের সাথে সংযুক্ত।

- 8। <u>অক্সিসোম (Oxysome)</u> : মাইটোকন্ড্রিয়ার অন্তঃআবরণীর <mark>অন্তর্গাত্রে অতি সৃক্ষ্ম অসংখ্য দানা লে</mark>গে থাকে। এদের অক্সিসোম বলে। অক্সিসোম বৃন্তক বা অবৃন্তক হতে পারে। বৃন্তক অক্সিসোম মন্তক, বোঁটা ও ভূমি নিয়ে গঠিত হয়ে থাকে। সম্ভবত ATP-Synthases-ই অক্সিসোম।
- ৫। <u>ATP-Synthases ও ETC</u>: ক্রিস্টিতে ছানে ছানে ATP-Synthases নামক গোলাকার বস্তু আছে। এতে ATP সংশ্লেষিত হয়। এছাড়া সমস্ত ক্রিস্টিব্যাপী অনেক ইলেক্ট্রন ট্রাঙ্গপোর্ট চেইন (ETC) অবস্থিত। সামুক্ত বিশ্বনিত্ত বিশ্বনিত বিশ্বনিত্ত বিশ্বনিত্ত বিশ্বনিত্ত নিত্ত বিশ্বনিত্ত বিশ্বনিত বিশ্বনিত বিশ্বনিত্ত বিশ্বনিত বিশ্বনিত্ত বিশ্বনিত্ত বিশ্বনিত্ত বিশ্বনিত্ত বিশ্বনিত্ত বিশ্বনিত বিশ্বনিত্ত বিশ্বনিত্ত বিশ্বনিত্ত বিশ্বনিত্ত বিশ্বনিত বিশ্বনিত বিশ্বনিত্ত বিশ্বনিত্ত বিশ্বনিত বিশ্বন
- ৬। বৃত্তাকার DNA ও রাইবোসোম: মাইটোকন্ত্রিয়ার নিজস্ব বৃত্তাকার DNA এবং রাইবোসোম (70S) রয়েছে। এটিও আদি কোষীয় বৈশিষ্ট্যসম্পন্ন। এরা ম্যাট্রিক্স-এ থাকে। মাইটোকন্ত্রিয়া আকার, গঠন ও প্রাণ-রাসায়নিকভাবে ব্যাকটেরিয়া তুল্য। এদের নিজস্ব DNA ব্যাকটেরিয়ার DNA তুল্য। কোষ বিভাজনের সাথে সম্পর্কহীনভাবে এরা বিভাজিত হয়। এদের নিজস্ব রাইবোসোম (70S) থাকে। এ কারণেই বলা হয়ে থাকে এন্ডোসিমবায়োসিস প্রক্রিয়াতে একটি বায়বীয় ব্যাকটেরিয়া স্থায়িভাবে পোষক কোষে আশ্রয়নের মাধ্যমে মাইটোকন্ত্রিয়া সৃষ্টি হয়েছে।

নিজৰ DNA না থাকলে মাইটোকন্দ্রিয়ার পক্ষে কোষীয় শসন সম্পন্ন করা সম্ভব হতো না।

রাসায়নিক গঠন: মাইটোকন্দ্রিয়ার শুষ্ক ওজনের প্রায় ৬৫% প্রোটিন, ২৯% গ্লিসারাইডসমূহ, ৪% লেসিথিন ও সেফালিন এবং ২% কোলেস্টেরল। লিপিডের মধ্যে ৯০% হচ্ছে ফসফোলিনিড, বাকি ১০% ফ্যাটি অ্যাসিড, ক্যারোটিনয়েড, ভিটামিন E এবং কিছু অজৈব পদার্থ।

মাইটোকন্দ্রিয়ার ঝিল্লি লিপো-প্রোটিন সমৃদ্ধ। মাইটোকন্দ্রিয়াতে প্রায় ১০০ প্রকারের এনজাইম ও কো-এনজাইম রয়েছে। এছাড়া এতে ০.৫% RNA ও সামান্য DNA থাকে। <mark>মাইটোকন্দ্রিয়ার অন্</mark>কঃঝি**ল্লিতে কার্ডিওলিপিন** নামক বিশেষ ফসফোলিপিড থাকে।

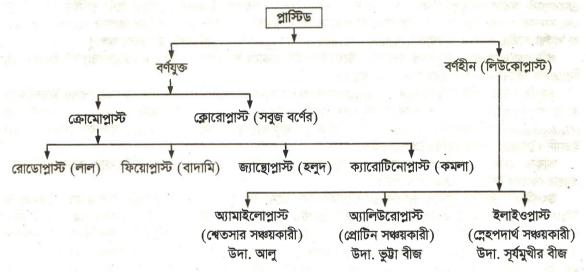
মাইতে কিন্ত্রিয়ার কাজ: (i) কোষের যাবতীয় কাজের জন্য শক্তি উৎপাদন ও নিয়ন্ত্রণ করা। (ii) শ্বসনের জন্য প্রয়োজনীয় দুর্বনিজাইম, কো-এনজাইম প্রভৃতি ধারণ করা। (iii) শ্বসনের বিভিন্ন পর্যায় যেমন- ক্রেবস্ চক্র, ইলেক্ট্রন ট্রাঙ্গপোর্ট, অক্সিডেটিভ ফসফোরাইলেশন সম্পন্ন করা। (iv) নিজস্ব DNA, RNA উৎপন্ন করা এবং বংশগতিতে ভূমিকা রাখা। (v) প্রোটিন সংশ্লেষ ও স্নেহ বিপাকে সাহায্য করা। (vi) এরা Ca, K প্রভৃতি পদার্থের সক্রিয় পরিবহণে সক্ষম। (vii) শুক্রাণু ও ডিম্বাণু গঠনে সহায়তা করা। (viii) কোষের বিভিন্ন অংশে ক্যালসিয়াম আয়নের (Ca²+) সঠিক ঘনত্ব রক্ষা করা। (ix) কোষের পূর্বনির্ধারিত মৃত্যু (apoptosis) প্রক্রিয়া নিয়ন্ত্রণ করা। (x) রক্ত কণিকা ও হরমোন উৎপাদনে সহায়তা করা। (xi) এতে বিভিন্ন ধরনের ক্যাটায়ন, যেমন- Ca²+, K+, S²+, Fe²+, Mn²+ ইত্যাদি সঞ্চিত রাখা।

মাইটোকন্দ্রিয়ার DNA-তে মিউটেশন ঘটতে পারে যা মাইটোকন্দ্রিয়্যাল ডিসঅর্ডার সৃষ্টি করে। এরূপ ১০০ ডিসঅর্ডার জানা গেছে। বৃদ্ধ বয়সের অনেক অসুখ (পার্কিনসন, অ্যালজেইমার, টাইপ-১ ডায়াবেটিস ইত্যাদি) মাইটোকন্দ্রিয়াল ডিসঅর্ডারের সাথে সম্পর্কযুক্ত। সঠিক গঠন ও কার্যকর মাইটোকন্দ্রিয়ার ওপর সঠিক স্বাস্থ্য নির্ভরশীল।

প্রভোসিমবায়োন্ট (Endosymbiont) : ইউক্যারিয়টিক কোষে বিদ্যমান ক্লোরোপ্লাস্ট ও মাইটোকন্দ্রিয়াকে কোষের এভোসিমবায়োন্ট হিসেবে গণ্য করা হয়ে থাকে । ধারণা করা হয় ইউক্যারিয়টিক কোষ দ্বারা এভোফ্যাগোসাইটোসিস প্রক্রিয়ায় ভক্ষণকৃত কিছু ব্যাক্টেরিয়া থেকে বিবর্তিত হয়ে এসব অঙ্গাণুর উৎপত্তি হয়েছে ।

মাইটোকন্দ্রিয়নের বহির্গঠন ও অন্তর্গঠনের সাথে এর কাজের আন্তঃসম্পর্ক

মাইটোকন্দ্রিয়ার বাইরের মেমব্রেনটি মূলত রক্ষণাত্মক ভূমিকা পালন করে। ভেতরের অংশকে রক্ষা করাই এর প্রধান কাজ। শক্তি উৎপাদন কাজটি সংঘটিত হয় ভেতরের মেমব্রেন দ্বারা সৃষ্ট ক্রিস্টিতে। ক্রিস্টিতে ইলেকট্রন ট্রাঙ্গপোর্ট চেইনের সব উপাদান সজ্জিত থাকে এবং এখানেই শক্তি উৎপন্ন হয়। কাজেই মাইটোকন্দ্রিয়ার বহির্গঠন রক্ষণাত্মক এবং অন্তর্গঠন কর্মধায়ক। বহির্গঠন কর্মধায়ক অংশের কাঁচামাল ও উৎপন্ন দ্রব্য আদান-প্রদান নিয়ন্ত্রণ করে থাকে।


কাজ : পোস্টার পেপারে পাশাপাশি ক্লোরোপ্লাস্ট ও মাইটোকন্দ্রিয়ার চিত্র আঁকতে হবে। অঙ্কিত চিত্রে বিভিন্ন অংশ চিহ্নিত করতে হবে। চিত্রের নিচে পাশাপাশি একটি ছকে এদের মধ্যকার পার্থক্য লিখতে হবে।

উপকরণ: পোস্টার পেপার, পেন্সিল, রং পেন্সিল, ক্ষেল, ক্লোরোণ্লাস্ট ও মাইটোকন্দ্রিয়ার চিত্র।

৬। প্লাস্টিড (Plastid)

MAT: 17-18

উদ্ভিদকোষের সাইটোপ্লাজমে বিক্ষিপ্ত ডিমাকৃতি, ফিতাকৃতি অথবা তারকাকৃতি সজীব বর্ণাধার বছগুলোই হলো প্লাস্টিড। স্ট্রোমা ও গ্রানা সমৃদ্ধ এবং লিপো-প্রোটিন ঝিল্লি দ্বারা সীমিত সাইটোপ্লাজমন্থ সর্ববৃহৎ ক্ষুদ্রাঙ্গের নাম প্লাস্টিড। ১৮৮৩ সালে শিম্পার (W. Schimper, 1856–1901) সর্বপ্রথম উদ্ভিদকোষে সবুজ বর্ণের প্লাস্টিড লক্ষ্য করেন এবং এর নামকরণ করেন ক্লোরোপ্লাস্ট। পরবর্তীতে অন্যান্য প্লাস্টিড আবিষ্কৃত হয়েছে। আলোক অণুবীক্ষণ যন্ত্রের সাহায্যেই এদেরকে ক্লাস্ট্র দেখা যায়। ছ্রাক, ব্যাকটেরিয়া, নীলাভ-সবুজ শৈবাল এবং প্রাণী কোমে প্লাস্ট্রিড নেই। নীলাভ সবুজ শৈবাল প্রাজমামেমব্রেন ভেতরে প্রবিষ্ট হয়ে পাইলাকয়েড সৃষ্টি করে এবং পাইলাকয়েড ক্লোরোফিল ধারণ করে মান্ত্রমান বিভিন্ন ধরনের প্লাস্ট্রিড ছক আকারে দেখানো হলো:

প্লাস্টিড প্রধানত তিন প্রকার; যথা— (ক) **লিউকোপ্লাস্ট**, (খ) ক্রোমোপ্লা<mark>স্ট এবং (গ) ক্রোরোপ্লাস্ট</mark>। প্লাস্টিডগুলোর মধ্যে ক্লোরোপ্লাস্ট সবচেয়ে গুরুত্বপূর্ণ। নিচে এদের সংক্ষিপ্ত বর্ণনা দেওয়া হলো—

(ক) লিউকোপ্লাস্ট (Leucoplast) : এরা বর্ণহীন (leucos = colourless অর্থাৎ বর্ণহীন, plast = living)। আলোর সংস্পর্শে এলে লিউকোপ্লাস্ট, ক্রোমোপ্লাস্টে, বিশেষ করে ক্লোরোপ্লাস্টে রূপান্তরিত হতে পারে।

অবস্থান: মূল, ভূ-নিমুস্থ কাণ্ড প্রভৃতি যেসব অঙ্গে সূর্যালোক পৌছায় না সেসব অঙ্গের কোষে লিউকোপ্লাস্ট অবস্থিত। আকার-আকৃতি: লিউকোপ্লাস্ট অর্ধবৃত্তাকৃতি, মূলাকৃতি বা নলাকৃতির হতে পারে।

প্রকারভেদ : সঞ্চিত খাদ্যের প্রকৃতির ওপর ভিত্তি করে লিউকোপ্লাস্টকে তিনভাগে ভাগ করা হয়। যথা—

<mark>স্থ্যামাইলোপ্লাস্ট (amyloplast) :</mark> স্টার্চ বা শ্বেতসার জতীয় খাদ্য সঞ্চয়কারী লিউকোপ্লাস্টকে <mark>অ্যামাইলোপ্লাস্ট বলা হয়।</mark> ইলাইওপ্লাস্ট (elaioplast) : তেল ও চর্বিজাতীয় খাদ্য সঞ্চয়কারী লিউকোপ্লাস্টকে **ইলাইওপ্লাস্ট** বলা হয়।

ভ্যালিউরোপ্লাস্ট (aleuroplast) : প্রোটিন সঞ্চয়কারী লিউকোপ্লাস্টকে <mark>ভ্যালিউরোপ্লাস্ট</mark> বা প্রোটিনোপ্লাস্ট বলা হয়।

কাজ: খাদ্য সঞ্চয় করে রাখা এবং শর্করা থেকে শ্বেতসার জাতীয় খাদ্য তৈরি করা এদের প্রধান কাজ।

(খ) ক্রোমোপ্লাস্ট (Chromoplast) : রিঙন (chrome = রিঙন) প্লাস্টিডকে ক্রোমোপ্লাস্ট বলা হয়। ক্যারোটিন (কমলা-লাল) এবং জ্যান্থোফিল (হলুদ) পিগমেন্টের জন্যে এরা রিঙন হয়। আকৃতিতেও এরা ভিন্নতর। উদ্ভিদের যেসব অঙ্গ বর্ণময় সেসব অঙ্গে ক্রোমোপ্লাস্ট থাকে। যেমন— ফুলের পাপড়ি, রিঙন ফল ও বীজ, গাজরের মূল ইত্যাদি। সম্ভবত ক্রোরোপ্লাস্ট হতে ক্রোমোপ্লাস্ট সৃষ্টি হয়।

কাজ: ক্রোমোপ্রাস্টের উপস্থিতির জন্য পুষ্প ও পাতা রঙিন ও সুন্দর হয় তাই কীটপতঙ্গ আকৃষ্ট হয়ে পরাগায়নে সাহায্য করে। রঙের কারণে ফল এবং বীজের বিস্তারেও এদের ভূমিকা আছে। এদের পৃথক খাদ্যমূল্য আছে। <u>1</u>7 – 18

ফুলের পাপড়ির রং নানা ধরনের হওয়ার কারণ:

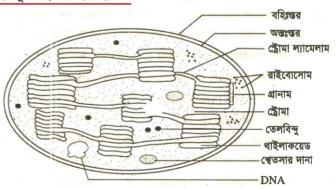
ফুলের পাপড়ির বৈচিত্র্যপূর্ণ রং প্রধানত অ্যান্থেসায়ানিন, বিটাসায়ানিন জাতীয় রঞ্জকের ওপর নির্ভরশীল। অ্যান্থোসায়ানিন কতগুলো জটিল যৌগের সমষ্টিগত নাম। এটি গ্লাইকোসাইড হিসেবে কোষরসে মিশে থাকে। <u>কোষরসের হাইড্রোজেন আয়নের গাঢ়ত্ব অর্থাৎ pH এর তারতম্য ঘটলে তবেই রং-এর তারতম্য ঘটে। যেমন— (i) কোষরসের pH ক্ষারীয় প্রকৃতির হলে ফুলের রং নীল হয়, (ii) অ্যাসিড প্রকৃতির হলে লাল রং হয়, (iii) যখন কোষরসের pH নিউট্রাল হয় তখন বেগুনি রং বা কালচে নীল বর্ণ হয়।</u>

(গ) ক্লোরোপ্লাস্ট (Chloroplast) : সবুজ বর্ণের প্লাস্টিভকে বলা হয় ক্লোরোপ্লাস্ট। ক্লোরোফিল-a, ক্লোরোফিল-b, ক্যারোটিন ও জ্যান্থোফিলের সমন্বয়ে ক্লোরোপ্লাস্ট গঠিত। ক্লোরোফিল নামক সবুজ বর্ণকিণিকা (pigment) অধিক মাত্রায় ধারণ করে বলে এরা সবুজ বর্ণের। এতে অন্যান্য বর্ণকিণিকাও কিছু কিছু পরিমাণে বিদ্যমান থাকে। উদ্ভিদের জন্য ক্লোরোপ্লাস্ট অতীব শুরুত্বপূর্ণ অঙ্গাণু। ১৮৮৩ সালে বিজ্ঞনী শিম্পার সর্বপ্রথম উদ্ভিদকোষে সবুজ বর্ণের প্লাস্টিভ লক্ষ্য করেন এবং নামকরণ করেন ক্লোরোপ্লাস্ট। ক্লোরোপ্লাস্ট খাদ্য সংশ্রেষে সাহায্য করে বলে একে ক্লোমের রান্নাঘর (kitchen of cell) বা শৈর্করা জাতীয় খাদ্যের কারখানা (factory of synthesis of sugar) বলে। এটি শক্তি রূপান্তরের অঙ্গাণু।

প্রতি কোষে সংখ্যা : এক হতে একাধিক। উচ্চশ্রেণির উদ্ভিদকোষে সাধারণত ১০ হতে ৪০টি ক্লোরোপ্লাস্ট থাকে। কিন্তু

নিমুশ্রেণির উদ্ভিদকোষে সাধারণত আরও কম থাকে।

আকৃতি: উচ্চশ্রেণির উদ্ভিদকোষে ক্লোরোপ্লাস্টের আকৃতি সাধারণত লেন্সের মতো হয়ে থাকে। নিমুশ্রেণির উদ্ভিদকোষে এদের আকৃতি হরেক রকম হতে পারে; যেমন- প্রয়ালাকৃতি (Chlamydomonas), সর্পিলাকার (Spirogyra), জালিকাকার (Oedogonium), তারকাকার (Zygnema), ফিতা বা আংটি আকৃতির/গার্ডলাকৃতির (Ulothrix), গোলাকার (Pithophora) ইত্যাদি। শৈবালে ক্লোরোপ্লাস্টের বৈচিত্র্য বেশি।

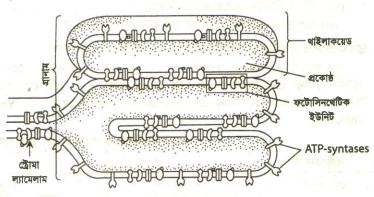

আকার: লেন্স আকৃতির ক্লোরোপ্লাস্টের ব্যাস সাধারণত ৩-৫ মাইক্রন। Spirogyra এর সর্পিলাকার ক্লোরোপ্লাস্ট সোজা অবস্থায় কোষের দৈর্ঘ্যের চেয়েও বেশি লম্বা।

উৎপত্তি: নিম্প্রেণির উদ্ভিদে পুরাতন ক্লোরোপ্লাস্টের বিভাজনের মাধ্যমে নতুন ক্লোরোপ্লাস্টের উৎপত্তি হয়। উচ্চ শ্রেণির উদ্ভিদে আদি প্লাস্টিড হতে এদের উৎপত্তি হয়। আদি প্লাস্টিড ০ ৫ মাইক্রন ব্যাসবিশিষ্ট একটি গোলাকার বস্তু। প্রতিটি আদি প্লাস্টিডে ঘন স্ট্রোমা (ধাত্র পদার্থ) একটি দ্বিস্তরবিশিষ্ট আবরণী দ্বারা আবৃত থাকে। সূর্যালোকের উপস্থিতিতে ক্লোরোফিল সৃষ্টির সাথে সাথে আদি প্লাস্টিড পূর্ণাঙ্গ ক্লোরোপ্লাস্টে পরিণত হতে থাকে। আদি প্লাস্টিডের দ্বিস্তরবিশিষ্ট আবরণীর ভেতরের স্তর হতে ফোন্ধা (vesicles) বের হয়ে আসে এবং ধাত্র পদার্থে সমান্তরালভাবে সজ্জিত হয়। এ ফোন্ধাণ্ডলো মিলিত হয়ে একটি ল্যামেলাম তৈরি করে। কিছু কিছু স্থানে একাধিক ল্যামেলি গ্রানাম তৈরি করে। কিছু কিছু ল্যামেলি বিভিন্ন গ্রানার মধ্যে সংযোগ রক্ষা করে। এভাবে আদি প্লাস্টিড হতে সূর্যালোকের উপস্থিতিতে নতুন ক্লোরোপ্লাস্টের সৃষ্টি হয়। কিছুদিন স্থালোক না পেলে ক্লোরোপ্লাস্ট লিউকোপ্লাস্টে পরিণত হয়, তাই সবুজ অংশ বর্ণহীন হয়।

ক্রোরোপ্রাস্টের গঠন (ভৌত গঠন) : একটি পরিণত ক্রোরোপ্রাস্ট নিম্মলিখিত অংশগুলো নিয়ে গঠিত।

১। <u>আবরণী ঝিল্লি:</u> সমন্ত ক্লোরোপ্লাস্ট একটি দু ন্তরবিশিষ্ট আংশিক অনুপ্রবেশ্য (semipermeable) মেমব্রেন (ঝিল্লি) দ্বারা আবৃত থাকে। ক্লোরোপ্লাস্ট মেমব্রেনে ফসফোলিপিড-এর পরিবর্তে গ্লাইকোসিল গ্লিসারাইড (glycosyl glyceride) থাকে। এটি একটি ব্যতিক্রমী গঠন।

ক্লোরোপ্লাস্ট হলো তিন মেমব্রেন দ্বারা তৈরি ৩ প্রকোষ্ঠবিশিষ্ট একটি অঙ্গাণু। প্রথম মেমব্রেন হলো


চিত্র ১.১২ : ক্লোরোপ্লাস্টের বিভিন্ন <mark>অংশ (সরশী</mark>কৃত)।

সর্ববাইরের মেমব্রেন, দ্বিতীয় মেমব্রেন হলো প্রথম মেমব্রেনের নিচে অবস্থিত ইনার মেমব্রেন যার দ্বারা স্ট্রোমা পরিবেষ্টিত থাকে। তৃতীয় মেমব্রেন হলো থাইলাকয়েড মেমব্রেন যেখানে আলোকনির্ভর বিক্রিয়া ঘটে থাকে। থাইলাকয়েডগুলোরও অভ্যন্তরীণ প্রকোষ্ঠ আছে।

২। স্ট্রোমা/ম্যাট্রক্স: আবরণী ঝিল্লি দ্বারা আবৃত পানিগ্রাহী, কলয়েডধর্মী ম্যাট্রিক্স তরলকে স্ট্রোমা (stroma) বলে। স্ট্রোমাতে 70 S রাইবোসোম, অসমোফিলিক দানা, DNA, RNA ইত্যাদি থাকে। এতে শর্করা তৈরির এনজাইমও থাকে।

সালোকসংশ্রেষণে কার্বন বিজারণের মাধ্যমে শর্করা উৎপাদন প্রক্রিয়া (C3 বা C4 চক্র) স্ট্রোমাতে ঘটে থাকে।

৩। থাইলাকয়েড অসংখ্য থলে স্ট্রোমাতে 100-300 Å প্রস্থবিশিষ্ট ত্রিমাত্রিক সজ্জার গঠন বিদ্যমান। এদেরকে **থাইলাকয়েড** প্রত্যেকটি (thylacoid) বলে ৷ থাইলাকয়েডের ভেতরে একটি প্রকোষ্ঠ থাকে। এ প্রকোষ্ঠে থাকে ক্লোরোফিল-2. ক্লোরোফিল-b, জ্যান্থোফিল, ক্যারোটিন, লিপিড ও এনজাইম। এসব বন্ধকে একত্রে ক্ষটিকাকার দানার মতো

চিত্র ১.১৩ : ক্লোরোপ্লাস্ট-গ্রানামের ত্রিমাত্রিক সৃক্ষ গঠন।

একসময় এদেরকে কোয়ান্টোসোম বলা হতো। কতগুলো থাইলাকয়েড একসাথে একটির ওপর আর একটি সজ্জিত হয়ে স্তুপের মতো থাকে। থাইলাকয়েডের এ স্থপকে গ্রানাম (granum, বহুবচনে গ্রানা) বলা হয়। ১০ থেকে ১০০টি থাইলাকয়েড উপর্যুপরি সজ্জিত হয়ে একটি গ্রানাম গঠন করে। প্রতিটি ক্লোরোপ্লাস্টে সাধারণত ৪০—৬০টি গ্রানা থাকে। একটি গ্রানামের আকার ০.৩–১.৭ µm (মাইক্রোমিটার)।

8। স্ট্রোমা ল্যামেলি : দুটি পাশাপাশি গ্রানার কিছু সংখ্যক থাইলাকয়েডস সৃক্ষ্ম নালিকা দ্বারা সংযুক্ত থাকে। এ সংযুক্তকারী নালিকাকে স্ট্রোমা ল্যামেলি (একবচন-ল্যামেলাম) বলে। এদের অভ্যন্তরেও কিছু পরিমাণ ক্লোরোফিল বিদ্যমান থাকে।

ে। ফটোসিনথেটিক ইউনিট ও ATP-synthases: থাইলাকয়েড মেমব্রেন বহু গোলাকার বস্তু বহন করে। থাইলাকয়েড মেমব্রেনের ভেতরের গাত্রে অসংখ্য সালোকসংশ্লেষণকারী একক ও ATP সিহেসেস নামক বস্তু থাকে। ATP-সিহেসেস নামক বস্তুতে ATP-তৈরির সকল এনজাইম থাকে। মেমব্রেনগুলোতে অসংখ্য ফটোসিনথেটিক ইউনিট থাকে। প্রতি ইউনিট ক্রোরোফিল-এ, ক্লোরোফিল-বি, ক্যারোটিন, জ্যান্থোফিল এর প্রায় ৩০০—৪০০টি অণু থাকে। এছাড়া বিভিন্ন ধরনের এনজাইম, মেটাল আয়ন, ফসফোলিপিড, কুইনোন, সালফোলিপিড ইত্যাদি থাকে।

৬। DNA ও রাইবোসোম : একটি ক্লোরোপ্লাস্টের মধ্যে সমআকৃতির প্রায় ২০০টি DNA অণু থাকতে পারে। ক্লোরোপ্লাস্টে তার নিজন্ব বৃত্তাকার DNA ও রাইবোসোম থাকে। এদের সাহায্যে ক্লোরোপ্লাস্ট নিজের অনুরূপ সৃষ্টি (reproduce) ও কিছু প্রয়োজনীয় প্রোটন তৈরি বা সংশ্রেষ করতে পারে। বিজ্ঞানীদের ধারণা কোনো আদিকোষীয় DNA ও রাইবোসোম এতে অন্তর্ভুক্ত হয়েছে। নিজন্ব এ DNA না থাকলে ক্লোরোপ্লাস্টের পক্ষে ফটোসিনথেসিস প্রক্রিয়া সম্পন্ন করা সম্ব হতো না। বিজ্ঞানীদের ধারণা এন্ডোসিমবায়োসিস প্রক্রিয়াতে. একটি ফটোসিনথেটিক ব্যাকটেরিয়া পোষক কোষে ছায়ীভাবে আশ্রয় নিয়ে সৃষ্টি করেছে ক্লোরোপ্লাস্ট। ক্লোরোপ্লাস্টের নিজন্ব রাইবোসোম (70 S) আছে।

ক্লোরোপ্লাস্ট জিনোমে ১২০—১৬০ কিলোবেস থাকে। এতে উল্টোভাবে সাজানো ডুপ্লিকেট রিপিট (duplicat inverted repeat) থাকে এবং ১২০ প্রকার প্রোটিনের জন্য কোডিং সিকোয়েন্স আছে।

ক্রোরোপ্রাস্টের রাসায়নিক গঠন : রাসায়নিকভাবে ক্লোরোপ্লাস্ট প্রধানত কার্বোহাইড্রেট, লিপিড, প্রোটিন, DNA, RNA, কিছু এনজাইম, কো-এনজাইম এবং বিভিন্ন খনিজ পদার্থ নিয়ে গঠিত। এছাড়া এতে থাকে ক্লোরোফিল। শুষ্ক ওজনের ১০–২০% লিপিড এবং ৩৫–৫৫% প্রোটিন। প্রোটিনের মধ্যে ৮০% হচ্ছে অদ্রবণীয় যা লিপিডের সঙ্গে একত্রে ঝিল্ল নির্মাণ করে, বাকি ২০% দ্রবণীয় এবং এনজাইম হিসেবে থাকে। ক্লোরোপ্লাস্টে রয়েছে ক্লোরোফিল নামক সবুজ বর্ণকিণিকা। ক্লোরোপ্লাস্টে ৭৫% ক্লোরোফিল-৪ ও ২৫% ক্লোরোফিল-৮ রয়েছে। এছাড়াও রয়েছে সামান্য ক্যারোটিন ও জ্যাছোফিল।

কোরোপ্লাস্টের কাজ 🖟 (i) সালোকসংশ্রেষণ প্রক্রিয়ায় শর্করা জাতীয় খাদ্য প্রস্তুত করা ক্লোরোপ্লাস্টের প্রধান কাজ।

(ii) সৌরশক্তিকে জৈবিক শক্তিতে রূপান্তর করা এবং বায়ুর CO2 কে RuBP-তে যুক্ত করা।

(iii) ক্লোরোপ্রাস্টের প্রয়োজনে প্রোটিন, নিউক্লিক অ্যাসিড তৈরি করা।

- (iv) ফটোফসফোরাইলেশন অর্থাৎ সূর্যালোকের সাহায্যে ADP-কে ATP-তে রূপান্তর করা।
- সালোক-শ্বসন (ফটোরেসপিরেশন) ঘটাতে সাহায্য করা।
- (vi) সাইটোপ্লাজমিক ইনহেরিটেন্সে সাহায্য করা।
- (vii) বংশানুক্রমে নিজম্ব বৈশিষ্ট্যের ম্বকীয়তা ধারণ করে রাখা।

ক্লোরোপ্লাস্টের বহির্গঠন ও অন্তর্গঠনের সাথে এর কাজের আন্তঃসম্পর্ক

ক্লোরোপ্রাস্ট দ্বিন্তরবিশিষ্ট আবরণী দ্বারা আবদ্ধ অঙ্গাণু। আবরণীর কাজ রক্ষণাত্মক। ভেতরে স্ট্রোমা, থাইলাকয়েড, ফটোসিনথেটিক ইউনিটসমূহ মিলিতভাবে শর্করাজাতীয় খাদ্য তৈরি করে থাকে। ক্লোরোপ্রাস্টের অঙ্কঃগঠন কর্মবিধায়ক, উৎপাদক। বহিঃগঠন রক্ষণাত্মক এবং অভ্যন্তরে কাঁচামাল পাঠানো এবং অভ্যন্তর থেকে উৎপাদিত দ্রব্য বাইরে পাঠানো নিয়ন্ত্রণ করা।

মাইটোকন্ত্রিয়া ও প্লাস্টিড-এর মধ্যে পার্থক্য

পার্থক্যের বিষয় মাইটোকন্দ্রিয়া		প্লাস্টিড	
১। রম্ভক পদার্থ	রঞ্জক পদার্থ অনুপন্থিত।	বিভিন্ন রঞ্জক পদার্থ উপস্থিত।	
২। অবছান	উদ্ভিদ ও প্রাণী উভয় কোষেই থাকে।	শুধুমাত্র উদ্ভিদ কোষে থাকে।	
৩। অক্টপর্দা	অস্কঃপর্দা ভেতরের দিকে অসংখ্য ভাঁজযুক্ত, এদের ক্রিস্টি বলে।	অন্তঃপর্দায় কোনো ভাঁজ থাকে না, থাইলাকয়েড বিদ্যমান।	
৪। প্রকোষ্ঠ	এটি অসম্পূর্ণ প্রকোষ্ঠে বিভক্ত।	এতে ৩ ধরনের প্রকোষ্ঠ শনাক্তযোগ্য।	
 শক্তি উৎপন্ন করা এর প্রধান কাজ। 		খাদ্য তৈরি করা এর প্রধান কাজ।	
৬। খাদ্য সঞ্চয় করে না।		লিউকোপ্লাস্ট খাদ্য সঞ্চয় করে।	
৭। রাসায়নিক উপাদান	প্রধান রাসায়নিক উপাদান প্রোটিন, লিপিড ও নিউক্লিক অ্যাসিড।	প্রধান রাসায়নিক উপাদান প্রোটিন, লিপিড, ক্লোরোফিল ও এনজাইম।	

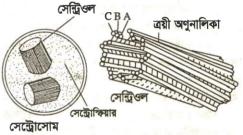
মাইটোকন্দ্রিয়া ও ক্লোরোপ্লাস্টের মধ্যে সাদৃশ্য

মাইটোকন্দ্রিয়া ও ক্লোরোপ্লাস্টের মধ্যে নিম্নবর্ণিত কয়েকটি সাদৃশ্য লক্ষ্য করা যায়; যেমন— (i) মাইটোকন্দ্রিয়া ও ক্লোরোপ্লাস্ট দূটিই পর্দাবেষ্টিত কোষীয় অঙ্গাণু। (ii) দুটি অঙ্গাণু নিজম্ব প্রতিরূপ সৃষ্টি করতে পারে। (iii) দুটি অঙ্গাণুতেই নিজম্ব রাইবোসোম এবং DNA থাকে। (iv) দুটি অঙ্গাণুতে ETC বর্তমান এবং ATP এর উৎপাদন ঘটে এবং (v) দুটি অঙ্গাণুই একপ্রকার শক্তিকে অন্যুপ্রকার শক্তিতে রূপান্তরিত করে।

স্টিকোপ্লাস্ট, ক্রোমো্লাস্ট ও ক্লোরোপ্লাস্ট এর তুলনামূলক পার্থক্য

	<u>লিউকোপ্লাস্ট</u>	<u>ক্রোমোপ্লাস্ট</u>	ক্লোরোপ্রাস্ট
১। বর্ণ	এরা বর্ণহীন।	এরা রঙিন।	এরা সবুজ।
২। অবস্থান	মূল, ভূনিমুছ কাণ্ড প্রভৃতি যেসব	উদ্ভিদের যেসব অঙ্গ বর্ণময় যেমন-ফুলের	উদ্ভিদের সবুজ অঙ্গ যেমন-
	অঙ্গে সূর্যের আলো পৌছায় না সেসব	পাপড়ি, রঙিন ফল ও বীজ, গাজরের	পাতা, ফুলের সবুজ বৃতি ও কচি
	অঙ্গের কোষে লিউকোপ্লাস্ট থাকে।	মূল ইত্যাদিতে ক্রোমোপ্লাস্ট থাকে।	কাণ্ডে ক্লোরোপ্লাস্ট থাকে।
৩। রঞ্জক	এতে কোনো ধরনের পিগমেন্ট	এতে ক্যারোটিন, জ্যাহোফিল ইত্যাদি	এতে ক্লোরোফিশ নামক সবুজ
	থাকে না।	পিগমেন্ট থাকে।	রপ্তক পদার্থ থাকে।
৪। উৎপত্তি হ	এরা সূর্যালোকের উপস্থিতিতে ক্রোমোপ্লাস্ট ও ক্লোরোপ্লাস্টে পরিণত হয়।	সূর্যালোকের উপদ্থিতিতে ক্লোরোপ্লাস্ট হতে ক্রোমোপ্লাস্টে পরিণত হয়।	সূর্যালোকের অনুপদ্থিতিতে লিউকোপ্লাস্টে পরিণত হয় অর্থাৎ সবুজ অঙ্গ বর্ণহীন হয়ে যায়।
৫। কাজ	খাদ্য সঞ্চয় করে রাখা এবং শর্করা	ফুলের পরাগায়ন এবং ফল ও বীজ	সালোকসংশ্রেষণ প্রক্রিয়ার
	থেকে শ্বেতসার জাতীয় খাদ্য তৈরি	বিস্তারের জন্য কীটপতঙ্গ ও প্রাণিকুলকে	মাধ্যমে শর্করা জাতীয় খাদ্য
	করা এর প্রধান কাজ।	আকৃষ্ট করা এর প্রধান কাজ।	প্রস্তুত করা এর প্রধান কাজ।

৭। সেন্ট্রিওল (Centriole)


প্রধানত প্রাণিকোষে ও কিছু সংখ্যক উদ্ভিদকোষে যে অঙ্গাণু নিউক্লিয়াসের কাছে অবস্থিত, স্বপ্রজননক্ষমতাসম্পন্ন এবং একটি গহররকে ঘিরে ৯টি শুচ্ছ প্রান্তীয় উপনালিকা নির্মিত খাটো নলে গঠিত তাকে সেন্ট্রিওল বলে। বিজ্ঞানী Van Benden ১৮৮৭ সালে সেন্ট্রিওল আবিষ্কার করেন এবং জার্মান জীববিজ্ঞানী Theodor Bovery ১৮৮৮ সালে এদের নামকরণ করেন ও বিশ্বদ বিবরণ দেন।

বিচ্চতি : ক্রতক শৈবাল, ছত্রাক, মসবর্গীয় উদ্ভিদ, ফার্নবর্গীয় উদ্ভিদ, নগ্নবীজী উদ্ভিদে এবং অধিকাংশ প্রাণিকোষে সেন্ট্রিওল থাকে । আদিকোষ, ডায়াটম, ঈস্ট ও আবৃতবীজী উদ্ভিদে এটি অনুপস্থিত । সাধারণত নিউক্লিয়াসের খুব কাছাকাছি এটি অবস্থান করে । সেন্ট্রিওল জোড়ায় জোড়ায় অবস্থান করে । একজোড়া সেন্ট্রিওলকে একসাথে ডিপ্লোসোম (diplosome) বলে ।

ভৌত গঠন : এটি নলাকার, প্রায় ০.১৫—০.২৫ µm ব্যাসবিশিষ্ট। এরা দেখতে বেলনাকার, দুই মুখ খোলা পিপার মতো। প্রতিটি সেন্ট্রিওল তিনটি প্রধান অংশ নিয়ে গঠিত; যথা— (১) প্রাচীর বা সিলিভার ওয়াল (cylinder wall) (২) ত্রয়ী

অণুনালিকা বা ট্রিপলেটস (triplets) এবং (৩) <u>যোজক বা লিংকার</u> (linkers)। এদেরকে একত্রে সেন্ট্রিওল বলে। <u>সেট্রিওল আবরণী</u> বেষ্টিত নয় এবং এতে কোনো DNA বা RNA থাকে না। এরা প্রোটিন, লিপিড এবং ATP নিয়ে গঠিত।

সেন্দ্রিওল প্রাচীর ৯টি ত্রয়ী অণুনালিকা দিয়ে গঠিত। প্রত্যেক অণুনালিকা সমদূরে অবস্থিত এবং প্রতিটি তিনটি করে উপনালিকা নিয়ে গঠিত। বিজ্ঞানী Threadgold (1968) পরপর সংলগ্ন তিনটি উপনালিকাকে ভেতর থেকে বাইরের দিকে যথাক্রমে A, B ও C নামে চিহ্নিত করেন। উপনালিকাগুলো পার্শ্ববর্তী অণুনালিকার সাথে এক প্রকারের ঘন উপাদানের সাহায্যে যুক্ত থাকে। সেন্দ্রিওলের

চিত্র ১.১৪ : সেন্ট্রোসোম ও সেন্ট্রিওল এর গঠন।

চারপাশে অবন্থিত গাঢ় তরল পদার্থকে সেন্ট্রোক্ষিয়ার (Centrosphere) বলে। সেন্ট্রোক্ষিয়ার সেন্ট্রিওল ধারণ করে। সেন্ট্রোক্ষিয়ার ও সেন্ট্রিওলকে একত্রে সেন্ট্রোক্ষোম (Centrosome) বলে।

রাসায়নিক গঠন : সেন্ট্রিওল সাধারণত প্রোটিন , লিপিড ও ATP নিয়ে গঠিত।

বিভাজনের সময় মাকুতন্ত গঠন করা । (ii) কিলয়া ও ফ্ল্যাজেলাযুক্ত কোষে বিভাজনে সাহায্য করা । (iii) সিলিয়া ও ফ্ল্যাজেলাযুক্ত কোষে সিলিয়া ও ফ্ল্যাজেলা সৃষ্টি করা । (iv) শুক্রাণুর লেজ গঠন করা ।

৮। কোষীয় কন্ধাল (Cytoskeleton)

সকল প্রকৃতকোষের সাইটোপ্লাজমীয় অঙ্গাণুগুলোর অন্তর্বর্তী দ্বানে কতগুলো সূত্রক সম্মিলিতভাবে জালিকার ন্যায় গঠন তৈরি করে। এদেরকে কোষীয় কঙ্কাল বা সাইটোঙ্কেলিটন বলে। বিজ্<u>বানী কোলজ্বক (Koltzoff, 1928) প্রথম সাইটোঙ্কেলিটন শব্দটি ব্যবহার করেন।</u> সাধারণত প্রোটিন নির্মিত তিন ধরনের সূত্রক নিয়ে কোষীয় কঙ্কাল গঠিত। এগুলো হলো- মাইক্রোটিউবিউল্স, মাইক্রোফিলামেন্ট ও ইন্টারমিডিয়েট ফিলামেন্ট। এরা কোষীয় চলনে এবং সেন্ট্রিওল, সিলিয়া ও ফ্ল্যাজেলা সৃষ্টিতে অংশগ্রহণ করে।

(১) মাইক্রোটিউবিউল্স (Microtubules) : মাইক্রোটিউবিউল্স অশাখ, লম্বা ও নলাকার। এরা কোষ বিভাজন, া আজ্ঞকোষীয় পরিবহণ এবং ফ্র্যাজেলা ও সিলিয়ার আন্দোলনে বিভিন্ন ক্ষুদ্রাঙ্গ মাইক্রোটিউবিউল্স

ক্ষরণ, আগুকোষীয় পরিবহণ এবং ফ্ল্যাজেলা ও সিলিয়ার আন্দোলনে ভূমিকা পালন করে। বিজ্ঞানী রবার্ট ও ফ্রাঞ্চি (Robert ও Franchi) ১৯৫৩ সালে প্রাণীর স্লায়ুকোষে মাইক্রোটিউবিউলস আবিষ্কার করেন। বিজ্ঞানী Ledbetter এবং Porter ১৯৫৩ সালে উদ্ভিদকোষে এদের অবস্থান প্রথম প্রত্যক্ষ করেন।

ভৌত গঠন : প্রতিটি মাইক্রোটিউবিউল্স দেখতে লম্বা , শাখাহীন , ফাঁপা টিউবজাতীয়। সাধারণত এদের ব্যাস ১০-২০ মিলিমাইক্রন এবং লম্বায় কয়েক মাইক্রন পর্যন্ত হয়। এদের এক প্রান্তকে '+' এবং অন্য প্রান্তকে '–' হিসেবে চিহ্নিত করা হয়।

চিত্র ১.১৫ : মাইক্রোটিউবিউল্স-এর গঠন ও অবস্থান।

রাসায়নিক গঠন : প্রতিটি মাইক্রোটিউবিউল্সে ১৩টি প্রোটোটিউবিউল সর্পিলাকারে সজ্জিত থাকে। মাইক্রোটিউবিউল্সের প্রতিটি প্রোটোটিউবিউল ডাইমেরিক প্রোটিন দিয়ে গঠিত। এদের প্রতিটি প্রোটিন অণু $\alpha-\beta$ (আলফা-বিটা) টিউবিউলিন (tubulin) প্রোটিন অণু দিয়ে গঠিত।

<mark>অবছান : এরা ফ্ল্যাজেলা, সিলিয়া ইত্যা</mark>দির উপ-গাঠনিক উপাদান হিসেবে অবছান করে, ক্রোমোসোমের সেন্ট্রোমিয়ারের সাথে সংযক্ত থাকে, স্পিভল ফাইবারে থাকে, সেন্ট্রিওল ও বেসাল বডিতে থাকে।

মাইক্রোটিউবিউলস-এর কাজ:

্রুণ্যাজেলা, সিলিয়া ইত্যাদির বিচলনে সাহায্য করে।

- কোষ বিভাজনের সময় মাকুয় গঠন করে; সেন্ট্রোমিয়ারের সাথে সংযুক্ত হয়ে ক্রোমোসোমকে পৃথক করতে এবং বিপরীত মেন্দতে পৌছাতে সাহায্য করে।
- ্র্রা) মাইক্রোফাইব্রিলের বিন্যাস নির্দেশ করে। এরা ফোষ প্রাচীর গঠনেও সাহায্য করে।

্রে) এরা সাইটোক্ষেলিটন বা কোষীয় কঙ্কাল হিসেবে কাজ করে এবং কোষকে দৃঢ়তা প্রদান করে।

সেল মেমব্রেন, নিউক্লিয়ার এনভেলপ ও অন্যান্য অঙ্গাণুর সাথে সংযুক্ত থেকে এদের সাথে যোগাযোগ ও পরিবহণ কার্যে সাহায্য করে।

(র্মা) যোগাযোগ ও পরিবহণে সাহায্য করে।

(২) মাইক্রোফিলামেন্ট (Microfilaments) : প্রকৃতকোষের সাইটোপ্লাজমে প্রোটিন দিয়ে তৈরি যেসব অতিসূক্ষ্ম সংকোচনশীল তন্তু কোষের চলনে অংশগ্রহণ করে তাদের মাইক্রোফিলামেন্ট বলে। বিজ্ঞানী প্যালেভিজ (Paleviz, 1974) প্রথম কোষে এদের অবস্থান পর্যবেক্ষণ করেন। এদেরকে জ্যাকটিন ফিলামেন্টও (actin filaments) বলা হয়। এগুলো কোষ বিশ্বির নিচে ফিতার ন্যায় বিন্যন্ত থাকে।

গঠন: মাইক্রোফিলামেন্ট সরু, লম্বা, সংকোচনশীল ও প্যাঁচানো দ্বিতন্ত্রী। সাধারণত এদের ব্যাস 30–60Å পর্যন্ত হয়। এরা অ্যাকটিন ও মায়োসিন প্রোটিন দিয়ে গঠিত।

কাজ: (१) কোষের আকৃতি দান ও যাদ্রিক দৃঢ়তা প্রদানে অংশগ্রহণ করে।

্র্মে) এরা সাইটোপ্লাজমীয় চলন, ফ্যাগোসাইটোসিস, পিনোসাইটোসিস ইত্যাদি নিয়ন্ত্রণ করে।

(প্রা) এরা কোষের সাইটোকাইনেসিস ঘটিয়ে কোষ বিভাজনে সহায়তা করে।

(ix) কোষীয় অঙ্গাণুর অবস্থান পরিবর্তনে অংশগ্রহণ করে।

প্রে এরা ক্রোমোসোমের বিপরীত মেরুতে চলনে সাহায্য করে।

(৩) ইন্টারমিডিয়েট ফিলামেন্ট (Intermediate filaments) : এগুলো মাইক্রোটিউবিউল্স ও মাইক্রোফিলামেন্টের মধ্যবর্তী এক ধরনের তন্তু । এদের আকৃতি প্রায় 10 nm (ন্যানোমিটার) ব্যাসবিশিষ্ট ফিলামেন্ট । এগুলো তন্তুময় প্রোটিন দিয়ে গঠিত । বিভিন্ন কোষে চার ধরনের ইন্টারমিডিয়েট ফিলামেন্ট পাওয়া যায়; যেমন— কেরাটিন , ল্যামিনিন , নিউরোফিলামেন্ট এবং ভাইমেন্টিন ।

কাজ 🕻 🕢 এরা কোষের আকৃতি দান ও যান্ত্রিক দৃঢ়তা প্রদানে অংশগ্রহণ করে।

্রি কোষের অন্যান্য তদ্ভকে যথাছানে রাখতে সহায়তা করে।

<u>সাইটোন্ধেলিটনের সবচেয়ে ছায়ী অংশ হলো ইন্টারমিডিয়েট ফিলামেন্টস।</u> অন্যগুলো প্রয়োজন হলে তৈরি হয়, আবার প্রয়োজন শেষে মিলিয়ে যায়। যেমন কতক মাইক্রোটিউটিউলস প্রকৃত কোষে কোষ বিভক্তি, ডুপ্লিকেটেড ক্রোমোসোমকে পৃথককরণ শেষে বিলীন হয়ে যায়।

৯। পারঅক্সিসোম (Peroxisome)

পারঅক্সিসোম প্রায় সব ধরনের কোষে দেখা গেলেও প্রাণীর কিডনি ও লিভার কোষে অধিক থাকে। অমসৃণ এন্ডোপ্রাজমিক রেটিকুলামের আউটপকেটিং-এর মাধ্যমে এরা তৈরি হয়। এরা এক আবরণী বিশিষ্ট, ব্যাস ০.২–১৭ µm এবং এরা দানাদার। এর ভেতরে ক্রিস্টাল বা দানার আকারে সঞ্চয়ী এনজাইম জমা থাকে। এর মধ্যে catalase প্রধান এনজাইম। এদেরকে মাইক্রোসোম (microsome) নামেও অভিহিত করা হয়। ১৯৬৭ সালে বেলজিয়াম সাইটোলজিস্ট Christian de Duve কোষের সাইটোপ্রাজম থেকে পারঅক্সিসোম অঙ্গাণ্টি আবিষ্কার করেন। এর এনজাইম $2H_2O_2$ (হাইড্রোজেন পারঅক্সাইড)কে $2H_2O$ + O_2 (পানি ও অক্সিজেন)-এ রূপান্তরিত করে। H_2O_2 বিষতুল্য, তাই catalase এনজাইমের সাহায্যে H_2O_2 কে H_2O ও O_2 এ রূপান্তর করে কোষকে রক্ষা করে। এছাড়া কোষে অক্সিজেনের ঘনতু নিয়ন্ত্রণ করাও এদের কাজ। O_2 প্রয়োজনীয়, কিন্তু অধিক হলে কোষের জন্য ক্ষণ্ডিকর। এছাড়া কো-এনজাইম NAD পুনঃউৎপাদনে, DNA এবং RNA এর নাইট্রোজেন ক্ষারসমূহ ভাঙতে (breakdown) এবং পুনঃউৎপাদনে (recycling) পারঅক্সিসোমের ভূমিকা আছে। পারঅক্সিসোম প্রাণীর কিডনি ও লিভার কোষে অধিক থাকে।

১০। গ্লাইঅক্সিসোম (Glyoxisome)

কতক উদ্ভিদকোষের সাইটোপ্লাজমে বিদ্যমান একক পর্দাবেষ্টিত ক্ষুদ্র, গোলাকার বা ডিম্বাকার অঙ্গাণু <mark>যারা শ্লেহ পদার্থ</mark> বিপাকের এনজাইম ধারণ করে তাদের **গ্রাইঅক্সিসোম** বলে। বিজ্ঞানী R. W. Briedenback (1967) এটি আবিষ্কার ও নামকরণ করেন। সূত্রাকার ছত্রাক, ঈস্ট, Neurospora এবং তৈলবীজের কোষে গ্লাইঅক্সিসোম পাওয়া যায়। বী<u>জের লিপিড</u> সঞ্চয়ী কোষেও এদেরকে দেখা যায়। এন্ডোপ্লাজমিক জালিকার সিস্টার্নি অংশ হতে এদের উৎপত্তি।

গঠন: গ্রাইঅক্সিসোম এক আবরণীবিশিষ্ট, গোলাকার, ডিম্বাকার বা ষড়ভূজাকার শ্লেহ পদার্থসমৃদ্ধ অঙ্গাণু। এদের ব্যাস ο.৫–১.৫ μm। এদের মাতৃকা দানাদার এবং কখনও কেন্দ্রে কোর অংশ দেখা যায়। β অক্সিডেশন ও গ্লাইঅক্সালো চক্রের বিভিন্ন ধরনের এনজাইম; যেমন— আইসোসাইট্রেট লাইগেজ, ম্যালেট সিন্থেটেজ, গ্লাইকোলো অক্সিডেজ এবং ক্যাটালেজ প্রভৃতি থাকে।

কাজ: (i) প্রধানত চর্বি বা লিপিড বিপাক নিয়ন্ত্রণ করা। (ii) বীজের অঙ্কুরোদগমকালে লিপিডকে ভেঙ্গে গ্রহণোপযোগী চিনিতে পরিণত করা যাতে করে ফটোসিনথেসিসের মাধ্যমে নিজের খাদ্য তৈরির আগ পর্যন্ত অঙ্কুরিত চারার বৃদ্ধি অব্যাহত থাকে। (iii) গ্রাইঅক্সালেট চক্রের মাধ্যমে শ্বসন বস্তু জারিত করে শক্তি উৎপন্ন করে। (iv) এ অঙ্গাণুর সাহায্যে অ্যামিনো অ্যাসিডের বিপাক ঘটে।

১১। কোষ গহ্বর (Cell Vacuole)

কোষ গহ্বর একটি সাইটোপ্লাজমীয় অঙ্গাণু। সাইটোপ্লাজমে দৃশ্যত যে ফাঁকা অংশ দেখা যায় তাই কোষ গহ্বর। অপরিণত কোষে এদের সংখ্যা অনেক থাকে এবং আকারে অত্যন্ত ছোটো থাকে। কিন্তু পরিণত উদ্ভিদকোষে সবগুলো গহ্বর মিলিতভাবে একটি বড়ো আকৃতির গহ্বর সৃষ্টি করে। প্রোটোপ্লাজম দিয়ে গঠিত যে পাতলা পর্দা কোষ গহ্বরকে বেষ্টন করে থাকে তাকে টনোপ্লাস্ট (tonoplast) বলে। টনোপ্লাস্ট একন্তরবিশিষ্ট। এ পর্দা রাবার জাতীয়। কোষ গহ্বরের অভ্যন্তরের বসকে কোষরস বলে। কোষ রুসে পানি, নানা প্রকার অজৈব লবণ, জৈব অ্যাসিড, শর্করা, আমিষ ও চর্বিজাতীয় বিভিন্ন যৌগিক পদার্থ, বিভিন্ন প্রকার রং ইত্যাদি বিদ্যমান থাকে।

কাজ । (ii) কাষরস ধারণ করা। (ii) প্রয়োজনীয় বর্জ্য পদার্থ ধারণ করা। (iii) <mark>এরা কোষের অভ্যন্তরের pH রক্ষা করে।</mark> (iv) এরা কোষের ভেতরের পানির চাপ রক্ষা করে এবং তরলের ভারসাম্য রক্ষা করে। (v) উদ্ভিদ কোষ তথা অঙ্গকে দৃঢ়তা দান করে।

১২। ভেসিকল (Vesicles)

ভেসিকল হলো মেমব্রেন দ্বারা আবৃত থলি আকৃতির অঙ্গাণু। কোষে অনেক ভেসিকল থাকে। এরা নিজে থেকে তৈরি হয় বা কোন অঙ্গাণু থেকে বা প্রাজমামেমব্রেন থেকে তৈরি হয়। এরা প্রধানত অঙ্গাণু থেকে অঙ্গাণুতে প্রোটিন ট্রাঙ্গপোর্ট করে অথবা প্রাজমামেমব্রেনে প্রোটিন আনা-নেয়া করে।

১.৪ নিউক্লিয়াস (Nucleus)

প্রকৃতকোষে যে অঙ্গাণু দিন্তরবিশিষ্ট ডবল আবরণী বেষ্টিত অবস্থায় প্রোটোপ্লাজমিক রস ও ক্রোমাটিন জালিকা ধারণ করে তাই নিউক্লিয়াস। নিউক্লিয়াসকে কোষের মন্তিষ্ক, প্রাণকেন্দ্র, কেন্দ্রিকা ইত্যাদি নামেও অভিহিত করা হয়। রবার্ট ব্রাউন (Robert Brown) ১৮৩১ সালে অর্কিড (রাম্না) পত্রকোষে নিউক্লিয়াস আবিষ্কার ও নামকরণ করেন। ল্যাটিন Nux (অর্থ nut) থেকে Nucleus শব্দের উৎপত্তি।

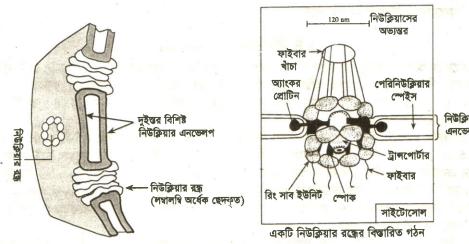
সংখ্যা ও বিভূতি : প্রতি কোষে সাধারণত একটি নিউক্লিয়াস থাকে। আদিকোষে কোনো নিউক্লিয়াস থাকে না। কিছু সংখ্যক প্রকৃতকোষ, যেমন— <u>সিভ কোষ, মানুষের লোহিত রক্ত কণিকা প্রভৃতিতে পরিণত অবস্থায় নিউক্লিয়াস থাকে না। অনেক কোষে একাধিক নিউক্লিয়াসও থাকতে পারে;</u> যেমন— <u>Vaucheria, Botrydium, Sphaeroplea ইত্যাদি শৈবাল ও Penicillium সহ কতিপয় ছ্ত্রাক। বহু নিউক্লিয়াসবিশিষ্ট এ ধরনের গঠনকে সিনোসাইট (Coenocyte) বলা হয়।</u>

আকৃতি : নিউক্লিয়াস সাধারণত বৃত্তাকার হয়। কোনো কোনো ক্ষেত্রে উপবৃত্তাকার, ফিউজিফরম (মূলাকার), প্যাঁচানো থালার মতো এবং শাখান্বিতও হতে পারে।


অবস্থান : নিউক্লিয়াস সাধারণত কোষের মাঝখানে অবস্থিত থাকে; কোষগহুরর বড়ো হলে নিউক্লিয়াসটি কিনারার দিকে অবস্থান করে।

আকার ও আয়তন : আকার ও আয়তনে এটি ছোটো বড়ো হতে পারে। গোলাকার নিউক্লিয়াসের ব্যাস সাধারণত এক মাইক্রন। নিউক্লিয়াস কোষের ১০—১৫% স্থান দখল করে থাকতে পারে। স্পার্ম বা শুক্রাণুর প্রায় ৯০%ই নিউক্লিয়াস। রাসায়নিক গঠন . রাসায়নিকভাবে এটি মূলত নিউক্লিক অ্যাসিড ও প্রোটিন দিয়ে গঠিত। এতে থাকে সাধারণ পানি, লিপিড, এনজাইম, DNA এবং সামান্য RNA, কিছু পরিমাণ কো-এনজাইম ও অন্যান্য উপাদান । স্পি শ: 22-23 সিউক্লিয়াসের কাজ : (সিনিউক্লিয়াস কোষের সব ধরনে<u>র জৈবিক কাজ নিয়ন্ত্রণ করে ।</u> তাই একে কোষের মন্তিক, কোষের প্রাণ বা প্রাণকেন্দ্র বলা হয়। (ii) এতে ক্রোমোসোম থাকে যার দ্বারা বংশ পরস্পরায় জীবের বৈশিষ্ট্য রক্ষা পায় । (iii) এরা RNA ও প্রোটিন সংশ্রেষণে বিশেষ ভূমিকা পালন করে।

একটি আদর্শ নিউক্লিয়াসের গঠন


নিমূলিখিত চারটি অংশ নিয়ে একটি নিউক্লিয়াস গঠিত হয়— (ক) নিউক্লিয়ার এনভেলপ, (খ) নিউক্লিওপ্লাজম, (গ) নিউক্লিওলাস এবং (ঘ) নিউক্লিয়ার রেটিকুলাম বা ক্রোমাটিন তম্ভ :

(ক) নিউক্লিয়ার এনভেশপ (Nuclear envelope) :
নিউক্লিয়াস দুটি বিভরী মেমবেন দ্বারা আবৃত স্থান। প্রতিটি
মেমবেন দ্বিভরী ফসফোলিপিড বাইলেয়ার দ্বারা গঠিত।
প্রাজমামেমবেন এবং অধিকাংশ অঙ্গাণুর আবরণী একটি
দ্বিভরী মেমবেন দ্বারা গঠিত। নিউক্লিয়াসের আবরণীকে

চিত্র ১.১৬ : ইলেকট্রন অপুবীক্ষণে দৃষ্ট নিউক্লিয়াস ও এর বিভিন্ন অংশ।

নিউক্লিয়ার এনভেশপ বলা হয়। নিউক্লিয়ার এনভেশপে সর্বত্তই বিশেষ ধরনের অসংখ্য ছিদ্র (রজ্ব) থাকে যা অন্যান্য আবরণীতে থাকে না। নিউক্লিয়ার রক্ত্রের ব্যাস ৯ nm. ছিদ্রের কাছে দুটি আবরণী এক সাথে মিলিত থাকে। প্রতিটি ছিদ্র সংকোচন-প্রসারণলীল। একটি প্রোটিন নেটওয়ার্ক দ্বারা এর সংকোচন-প্রসারণ নিয়ন্ত্রিত হয়। ছিদ্রটিকে ঘিরে চারপাশে বৃত্তাকারে প্রোটিন গ্রানিউল থাকে এবং মাঝখানে একটি অপেক্ষাকৃত বড়ো আকারের প্রোটিন থাকে। একে ট্রাঙ্গপোর্টার বলে। অ্যাংকর প্রোটিন গ্রানা ট্রাঙ্গপোর্টার নিউক্লিয়ার এনভেলপের সাথে সংযুক্ত থাকে। বৃত্তাকার প্রোটিনগুলো স্পোক দ্বারা পরস্পর সংযুক্ত থাকে। প্রোটিন-এ সাব-ইউনিট ও ফাইবার থাকতে পারে। নিউক্লিয়াসের ভেতরের দিকে একটি ফাইবার খাঁচার মাধ্যমে সবগুলো প্রোটিন একসাথে ঝুলে থাকে। মোট ৮টি প্রোটিন গ্রানিউল দ্বারা ছিদ্রটি নিয়ন্ত্রিত। কেন্দ্রীয় প্রোটিনটি বিভিন্ন দ্বারা, বিশেষ করে বড়ো অণু যেমন-RNA, নিউক্লিয়াসের ভেতর থেকে বাইরে এবং বাইর থেকে ভেতরে পরিবহণে প্রধান ভূমিকা পালন করে। কোনো কোনো ছানে নিউক্লিয়ার এনভেলপের বাইরের আবরণী অন্য কোনো অঙ্গাণুর, বিশেষ করে এভোপ্লাজমিক রেটিকুলামের সাথে সংযুক্ত থাকে। নিউক্লিয়ার এনভেলপের ভেতর হতে উৎপন্ন ফোছাকে নিউক্লিয়ার ফোছাবলা হয়।

চিত্র ১.১৭ : নিউফ্লিয়ার রক্ষের গঠন।

ুর্নিউক্লিয়ার এনভেশপ-এর কাজ: (i) সাইটোপ্রাজম হতে নিউক্লিওপ্রাজম, নিউক্লিওলাস এবং ক্রোমাটিন জালিকাকে পৃথক করে রাখা এবং সংরক্ষণ করা। (ii) অভ্যন্তরীণ দ্রব্য ও বহিন্থ সাইটোপ্রাজমের মধ্যে যোগাযোগ রক্ষা ও পরিবহণ করা।

(iii) এন্ডোপ্রাজমিক রেটিকুলামের সাথে যুক্ত হয়ে নিউক্লিয়াসের অবস্থানকে দৃঢ় করা। (iv) অভ্যন্তরে উৎপন্ন উপাদান রক্রের মাধ্যমে সাইটোপ্রাজমে পাঠানো।

(খ) নিউক্লিওপ্লাজম (Nucleoplasm) : নিউক্লিয়ার এনভেলপ দ্বারা আবৃত দ্বচ্ছ, ঘন ও দানাদার তরল পদার্থই নিউক্লিওপ্লাজম। একে ক্যারিওলিক্ষ-ও বলে। এটি নিউক্লিয়াসের অভ্যন্তরন্থ প্রোটোপ্লাজমিক রস। প্রোটোপ্লাজমের বৈশিষ্ট্যসমূহ এতে বিদ্যমান। নিউক্লিওলাস এবং ক্রোমোসোম এতে অবন্থান করে।

নিউক্লিওপ্লাজমের কাজ: (i) ক্রোমাটিন জালিকা ধারণ করা, (ii) নিউক্লিওলাস ধারণ করা, (iii) নিউক্লিয়াসের বিভিন্ন জৈবনিক কাজে সাহায্য করা, (iv) এনজাইমের কার্যকলাপের মূল ক্ষেত্র হিসেবে কাজ করা।

সাইটোপ্রাক্তম ও নিউক্লিওপ্রাক্তমের মধ্যে পার্থক্য

পার্থক্যের বিষয়	সাইটোপ্লাজম	নিউক্লিওপ্লাজম	
১। প্রধান অংশ	প্রোটোপ্রাজমের প্রধান অংশ অর্থাৎ কোষের ধাত্রবিশেষ।	নিউক্লিয়াসের প্রধান অংশ অর্থাৎ নিউক্লিয়াসের ধাত্রবিশেষ।	
২। অবস্থান	প্লাজমামেমব্রেন ও নিউক্লিয়ার এনভৈলপের মাঝখানে থাকে।	নিউক্লিয়ার এনভেলপ দারা আবৃত <mark>অবছা</mark> য় নিউক্লিয়াসের ভেতরে থাকে।	
৩। নিউক্লিক অ্যাসিড	शांक ना।	थाक ।	
৪। প্রোটিন ও রাইবোসোম	উপছিতি বেশ কম :	উপন্থিতি অনেক বেশি।	
৫। শ্বসনিক এনজাইম	থাকে।	থাকে না।	
৬ ৷ রঞ্জ	थारक।	थारक ना ।	
৭। কাজ	কোষীয় অঙ্গাণু ধারণ করে এবং কোষীয় বিপাক ক্রিয়ার সকল কাঁচামাল সরবরাহ করে।	নিউক্লিওলাস ও ক্রোমাটিন ধারণ করে এবং DNA তৈরির কাঁচামাল সরবরাহ করে।	

(গ) নিউক্লিওলাস (Nucleolus) : নিউক্লিয়াসে যে ছোটো ও অধিকতর ঘন গোলাকার বস্তু দেখা যায় তাই নিউক্লিওলাস। বিজ্ঞানী ফাটানা (Fontana) ১৭৮১ সালে সর্বপ্রথম নিউক্লিয়াসের অভ্যন্তরে এটি দেখতে পান এবং ১৮৪০ সালে বোমানে (Bowman) এর নামকরণ করেন।

অবছান : নিউক্লিওলাস সাধারণত নির্দিষ্ট ক্রোমোসোমের একটি নির্দিষ্ট ছানে লাগানো থাকে। ক্রোমোসোমের যে ছানটিতে এটি লাগানো থাকে সে ছানটিকে বলা হয় SAT বা স্যাটেলাইট।

সংখ্যা: প্রতি নিউক্লিয়াসে সাধারণত একটি নিউক্লিওলাস থাকে। সাধারণত যেসব কোষে প্রোটিন সংশ্লেষণ হয় না সে সব কোষের নিউক্লিয়াসে নিউক্লিওলাস থাকে না। যেসব <u>কোষে প্রোটিন সংশ্</u>লেষণ বেশি পরিমাণ হয় সেসব কোষের নিউক্লিয়াসে একাধিক নিউক্লিওলাস থাকতে পারে।

উৎপত্তি : SAT ক্রোমোসোমের স্যাটেলাইটে অবন্থিত জিন নিউক্লিওলাস উৎপাদনে প্রত্যক্ষ ভূমিকা পালন করে বলে যথেষ্ট প্রমাণ পাওয়া গিয়েছে।

ভৌত গঠন : এর কোনো ঝিল্লি আবিষ্কৃত হয়নি। নিউক্লিওলাসকে সাধারণত তদ্ভময়, দানাদার ও ম্যাট্রিক্স -এ তিন অংশে ভাগ করা যায়।

রাসায়নিক গঠন : নিউক্লিওলাসের প্রধান রাসায়নিক উপাদান হলো প্রোটিন, RNA এবং যৎসামান্য DNA। নিউক্লিওলাসের কান্ধ : (i) বিভিন্ন প্রকার RNA সংশ্লেষণ করা, (ii) প্রোটিন সংশ্লেষণ ও সংরক্ষণ করা,

(iii) নিউক্লিওটাইডের ভাগ্বার হিসেবে কার্জ করা।

নিউক্লিয়াস ও নিউক্লিওলাসের মধ্যে পার্থক্য

পার্থক্যের বিষয়	নিউক্লিয়াস	নিউক্লিঞ্জাস	
১। অবছান	সাইটোপ্লাজমে অবছিত। (কোষের অংশ)	নিউক্লিওপ্লাজমে অবন্থিত। (নিউক্লিয়াসের অংশ)	
২। ঝিল্ল	দিন্তরবিশিষ্ট ঝিল্লি দারা আবদ্ধ।	কোনো ঝিল্লি দারা আবদ্ধ নয়।	
৩। ক্রোমাটিন	ক্রোমাটিন জালিকা বা ক্রোমোসোম থাকে।	এতে কোনো ক্রোমাটিন জালিকা বা ক্রোমোসোম থাবে	
জালিকা		ना ।	
৪। কাজ	কোষের সকল কাজ নিয়ন্ত্রণ করে।	RNA ও প্রোটিন সংশ্লেষণে সাহায্য করে।	
৫। বংশগতি বংশগতির শুণাবলি বহন করে। বংশ		বংশগতির সাথে কোনো সম্পর্ক নেই।	

(ঘ) নিউক্লিয়ার রেটিকুলাম বা ক্রোমাটিন তন্তু (Nuclear reticulum or Chromatin fibre) : কোমের বিশ্রাম অবস্থায় (অ-বিভাজন অবস্থায়) নিউক্লিয়াসের ভেতরে জালিকার আকারে কিছু তন্তু দেখা যায়। তন্তুঘটিত এ জালিকাকে নিউক্লিয়ার রেটিকুলাম বা ক্রোমাটিন তন্তু বলা হয়। নিউক্লিয়াসের বিভাজনরত অবস্থায় বা পর্যায় মধ্যক অবস্থায় যে অংশ বা বস্তু ফুলজিন রং নেয় সেই বস্তুকে বলা হয় ক্রোমাটিন। প্রকৃতপক্ষে DNA এবং এর সাথে সাথী প্রোটিনের মিলিত তন্তুই ক্রোমাটিন। কোষ বিভাজন অবস্থায় ক্রোমাটিন তন্তু ক্রমাগত কুওলিত হয়ে অপেক্ষাকৃত খাটো ও মোটা হয়ে পৃথক পৃথকভাবে সুনির্দিষ্ট সংখ্যা ও আকৃতিতে দৃশ্যমান হয় তখন এদেরকে ক্রোমোসোম বলা হয়। প্রত্যেক নিউক্লিয়াসেই সাধারণত প্রজাতির বৈশিষ্ট্য অনুসারে নির্দিষ্ট সংখ্যক ক্রোমোসোম থাকে। সাধারণ অণুবীক্ষণযন্ত্রের সাহায্যে কেবলমাত্র বিভাজনরত কোষেই বিশেষ রঞ্জন পদ্ধতিতে এদেরকে দেখা যায়। প্রতিটি ক্রোমোসোমে এক বা একাধিক সেন্ট্রোমিয়ার, দু'টি ক্রোমাটিড এবং কোনো ক্রোমোসোমে স্যাটেলাইট থাকে। ক্রোমোসোমে জিন অবস্থিত এবং জিনগুলোই প্রজাতির চারিত্রিক বৈশিষ্ট্য প্রকাশের জন্য দায়ী।

রাসায়নিক গঠন : রাসায়নিকভাবে প্রতিটি ক্রোমোসোম DNA , RNA , হিস্টোন ও নন-হিস্টোন প্রোটিন দিয়ে গঠিত; এ ছাড়া কিছু ক্যালসিয়াম এবং ম্যাগনেসিয়াম ধাতু আছে। কতগুলো নিউক্লিওটাইডের সমন্বয়ে একটি DNA অণু গঠিত।

নিউক্লিয়ার রেটিকুলামের কাজ: (i) বংশগতির বৈশিষ্ট্যের ধারক ও বাহক হিসেবে কাজ করা, (ii) মিউটেশন, প্রকরণ সৃষ্টি ইত্যাদি কাজে মুখ্য ভূমিকা পালন করা।

কাজ: পোস্টার পেপারে বড়ো করে একটি নিউক্লিয়াসের চিত্র আঁকতে হবে এবং বিভিন্ন অংশ চিহ্নিত করতে হবে। এবার নিউক্লিয়াস ও নিউক্লিওলাসের মধ্যকার পার্থক্য একটি ছকে উপস্থাপন করতে হবে।

উপকরণ: পোস্টার-পেপার, পেন্সিল, রং পেন্সিল, ক্ষেল ইত্যাদি।

কোষছ নির্জীব বস্কুসমূহ (Ergastic substances) : কোষীয় বিপাক ক্রিয়ায় সৃষ্ট বহু নির্জীব বস্তু কোষের সাইটোপ্লাজমে এবং কোষ গহ্বরে জমা হয়। নির্জীব বস্তুগুলো দ্রবীভূত অবস্থায়, ক্রিস্টাল হিসেবে, ফোঁটা বা দানাদার বস্তু হিসেবে অবস্থান করতে পারে। নির্জীব বস্তুগুলোকে প্রধানত তিন শ্রেণিতে ভাগ করা যায় : (ক) সঞ্চিত পদার্থ, (খ) নিঃসৃত পদার্থ এবং (গ) বর্জ্য পদার্থ।

- (প্রাটিন) এবং চর্বি (লিপিড)। দ্রবণীয় শর্করার মধ্যে থাকে গ্রুকোজ, চিনি, ইনুলিন। অদুবণীয় শর্করার মধ্যে থাকে গ্রুকোজ, চিনি, ইনুলিন। অদুবণীয় শর্করার মধ্যে থাকে স্টার্চগ্রেইন (প্রতসার দানা), সেলুলোজ এবং গ্রাইকোজেন। তৈল এবং চর্বি সাধারণত ফোটা ফোটা হিসেবে সাইটোপ্লাজমে বিরাজ করে। আমিষ তথা নাইট্রোজেনঘটিত সঞ্চিত পদার্থগুলো তরল এবং নিরেট উভয় অবস্থায় বিরাজ করে। সঞ্চিত পদার্থের অধিকাংশই সঞ্চিত খাদ্য হিসেবে বিরাজ করে।
- (খ) নিঃসৃত পদার্থ (Secretory products) : প্রধান প্রধান নিঃসৃত পদার্থ হলো পিগমেন্ট, এনজাইম, হরমোন এবং নেকটার। ক্রোরোফিল, এনথোসায়ানিন, ক্যারোটিনয়েড ইত্যাদি উল্লেখযোগ্য পিগমেন্ট। কোষের বিপাকের ফলে এসব পদার্থ প্রোটোপ্রাজমে থেকে নিঃসৃত হয়।
- (গ) বর্জ্য পদার্থ (Excretory or waste products): বর্জ্য পদার্থসমূহ অধিকাংশই প্রোটোপ্লাজমের মেটাবলিক কার্য প্রক্রিয়ায় উপজাত হিসেবে উৎপন্ন হয়। উদ্ভিদে বর্জ্য পদার্থ নির্গমনের পৃথক তন্ত্র না থাকায় এরা কোষে জমা হয়। উল্লেখযোগ্য বর্জ্য পদার্থসমূহ হলো রেজিন, ট্যানিন, গাম, ল্যাটেক্স, অ্যালকালয়েড, অর্গানিক অ্যাসিড, উদ্বায়ী তেল এবং খনিজ ক্রিস্টাল। প্রধান খনিজ ক্রিস্টাল হলো ক্যালসিয়াম অক্সালেট। কখনো এরা স্ট্রের মতো আকারে অবস্থান করে। তখন একে বলা হয় রাক্ষাইড, আঙ্গুরের থোকার মতো ক্যালসিয়াম কার্বনেটের ক্রিস্টালকে বলা হয় সিস্টোলিখ (cystolith)।

কাজ: চার্ট তৈরি-সাইটোপ্লাজমের অঙ্গাণুগুলোর নাম, গঠন ও কাজ। উপকরণ: পোস্টার পেপার, রংপেন্সিল, ইরেজার ইত্যাদি। একটি বড়ো পোস্টার পেপারে একটি ছক কেটে বামপাশে অঙ্গাণুগুলোর নাম ও সংক্ষিপ্ত চিত্র, মাঝখানের ঘরে এদের গঠন এবং ডানপাশের ঘরে এদের কাজ লিখে একটি ছক তৈরি করতে হবে। ছকটি পাঠকক্ষে বা শ্রেণিকক্ষে ঝুলাতে হবে।

জীবের বিভিন্ন কার্যক্রমে কোমের অবদান : জীবের গঠন ও কার্যের একক হলো কোষ। জীবদেহের সকল কার্যক্রম কোষভিত্তিক। গ্লাইকোলাইসিস, শ্বসন, ফটোসিনথেসিস, কোষ বিভাজন ও বৃদ্ধি, প্রোটিন সিনথেসিস, এনজাইম তৈরি ইত্যাদি প্রক্রিয়ার রাসায়নিক বিক্রিয়াসমূহ সবই কোষের সাইটোপ্লাজম বা অঙ্গাণুগুলোতে সংঘটিত হয়। জীবের সকল কার্যক্রমের আধার হলো কোষ।

অঙ্গাণুর নাম	আবরণী	প্রধান কাজ
নিউক্লিয়াস	সছিদ্র ডাবল আবরণী	DNA সংরক্ষণ ও নিয়ন্ত্রণ করে, রাইবোসোম সাব ইউনিট তৈরি করে।
রাইবোসোম	আবরণীবিথিন	প্রোটিন সংশ্লেয করে।
গলগি বডি	দ্বিস্তরী আবরণী	নতুন পলিপেপ্টাইড চেইন পরিবর্তন করে, প্রোটিন ও লিপিড বহন করে।
লাইসোসোম	এক আবরণী	অন্তঃকোষীয় ডাইজেশন সম্পন্ন করে।
এন্ডোপ্লাজমিক রেটিকুলাম	দ্বিস্তরী আবরণী	নতুন পলিপেপ্টাইড চেইন পরিবর্তন করে, বহন করে; লিপিড সংশ্লেষ করে।
মাইটোকন্ড্রিয়া	দ্বিস্তরী আবরণী	ATP তৈরি করে এবং অন্যান্য অণু তৈরি করে।
ক্লোরোপ্লাস্ট	দ্বিস্তরী আবরণী	আলো , CO2 এবং পানি সহযোগে চিনি তৈরি করে।
সেন্ট্রিওল	আবরণীবিহীন	সাইটোক্ষেলিটনের জন্য মাইক্রোটিউবিউল তৈরি করে; কোষ বিভাজনে
		অংশগ্রহণ করে।
সাইটোক্ষেলিটন	এর কোনো আবরণী	কোষের কাঠামো ঠিক রাখে, কোষ বিভাজনে মাকুতন্ত্র গঠন করে
	নেই	ক্রোমোসোম বহন করে।
পারঅক্সিসোম	এক আবরণী	টক্সিন অকার্যকর করে। $ m H_2O_2$ ভেঙ্গে $ m H_2O$ এবং $ m O_2$ উৎপন্ন করে।
গ্রাইঅক্সিসোম	এক আবরণী	চর্বি বিপাক নিয়ন্ত্রণ করে, শ্বসন বস্তু জারিত করে।
কোষগহার	এক আবরণী	বর্জ্য জমা করে, উদ্ভিদের কোষের আকার ও আকৃতি ঠিক রাখে।
ভেসিকল	এক আবরণী	কোমের অভ্যন্তরে প্রয়োজনীয় বস্তু ট্রাঙ্গপোর্ট করে এবং/অথবা কোষ থেবে
		বের করে দেয়।

অঙ্গাণু (Organelle): অঙ্গাণু অর্থ ক্ষুদ্র অঙ্গ। সব ক্ষুদ্র অঙ্গই অঙ্গাণু নয়। কেবলমাত্র কোষের অভ্যন্তরে অবস্থিত বিশেষ কার্যসম্পাদনকারী সজীব গঠনকেই অঙ্গাণু বলা হয়। সাধারণত কোষের সাইটোপ্লাজমে অবস্থিত বিশেষ কার্যসম্পাদনকারী ক্ষুদ্র অঙ্গসমূহকেই সাইটোপ্লাজমীয় অঙ্গাণু বলা হয়ে থাকে। যেমন- রাইবোসোম, মাইটোকন্দ্রিয়া, ক্লোরোপ্লাস্ট, গলগি বিডি ইত্যাদি।

কোষাভ্যন্তরে অবস্থিত নিউক্লিয়াসও অঙ্গাণু, তবে সাইটোপ্লাজমীয় অঙ্গাণু নয়, এটি কোষীয় অঙ্গাণু। ক্রোমোসোমের অবস্থান নিউক্লিয়াসের অভ্যন্তরে অর্থাৎ একটি অঙ্গাণুর অভ্যন্তরে, তাই একে সাধারণত অঙ্গাণু বলা হয় না। একে নিউক্লিওপ্লাজমীয় অঙ্গাণু বলা যেতে পারে।

এভোমেমব্রেন সিস্টেম (Endomembrane System) : নিউক্লিয়াস ও প্লাজমামেমব্রেনের মধ্যে এক গুচ্ছ পরম্পর ক্রিয়াশীল অঙ্গাণু হলো এভোমেমব্রেন সিস্টেম। এদের কাজ হলো প্লাজমামেমব্রেন হতে লিপিড, এনজাইম এবং অন্যান্য প্রোটিনের ক্ষরণ অথবা অনুপ্রবেশ ঘটানো। এতে অংশগ্রহণ করে নিউক্লিয়াস (DNA), এভোপ্লাজমিক রেটিকুলাম, গলগি বডি, কতক ভেসিকল, লাইসোসোম এবং শেষ পর্যন্ত প্লাজমামেমব্রেন।

অঙ্গাণুসমূহের আবরণী ঝিল্লি: এ ঝিল্লি অঙ্গাণুর ভেতরকার পরিবেশ এমন পর্যায়ে রাখে যে অঙ্গাণুটি তার কাজ সুচারুরূপে সম্পন্ন করতে পারে। এছাড়া আবরণী ঝিল্লি অঙ্গাণুর ভেতরে প্রবেশ করা বা ভেতর থেকে বের হওয়া বিভিন্ন প্রয়োজনীয় দ্রব্যাদির পরিমাণ এবং প্রকৃতি নিয়ন্ত্রণ করে। এটি অঙ্গাণুকে রক্ষাকারী ও নিয়ন্ত্রণকারী ঝিল্লি।

কোষীয় অঙ্গাণুসমূহের কর্মপ্রক্রিয়াতে স্মন্বয় সাধন

একটি কোষের অঙ্গাণুসমূহ গঠন ও কাজে পরস্পরের ওপর ক্রিয়াশীল ও একটি আরেকটির পরিপূরক। কতক অঙ্গাণু, যেমন- পারঅক্সিসোম, কোষগহরর ইত্যাদি। পারঅক্সিসোম কোষের টক্সিনসমূহকে অকার্যকর করে দেয়, কোষগহরর কোষের বর্জ্য পদার্থ ও অন্যান্য দ্রব্য সঞ্চয় করে থাকে। এসব কারণে কোষীয় পরিবেশ সবসময় অঙ্গাণুসমূহের স্বাভাবিক কর্ম পরিচালনার উপযোগী থাকে। অঙ্গাণুসমূহ সাইটোপ্লাজমের মধ্যদিয়ে প্রয়োজনীয় দ্রব্যাদি ট্রাঙ্গপোর্ট করে এবং কোষীয় তরলের ভারসাম্য রক্ষা করে।

কোষের অঙ্গাণুসমূহ কি সর্বদা নির্দিষ্ট ছানে ছির অবছায় থাকে?

না সব অঙ্গাণু থাকে না। প্রয়োজন হলে কোষীয় সাইটোক্ষেলিটন কোষের গঠনকে (এমন কি সম্পূর্ণ কোষকে) শক্তিশালী করে সুবিন্যন্ত করে এবং আন্দোলিত বা পরিচালিত করে থাকে।

[JAT: 16-17]

ক্রোমোম (Chromosome)

ক্রোমোসোম নিউক্লিয়াসের অন্যতম বস্তু। প্রত্যেক নিউক্লিয়াসে প্রজাতির বৈশিষ্ট্য অনুসারে সাধারণত একটি নির্দিষ্ট সংখ্যক ক্রোমোসোম থাকে। সাধারণত একই প্রজাতির বিভিন্ন নমুনায় ক্রোমোসোম সংখ্যা একই থাকে। আদিকোষে কোনো সুগঠিত নিউক্লিয়াস না থাকাতে তাতে কোনো সুগঠিত ক্রোমোসোম থাকে না। তবে ক্রোমোসোমর প্রধান উপাদান DNA (কতক ভাইরাসে RNA) বিদ্যমান থাকে। এদেরকে আদিক্রোমোসোম (prochromosome) বলা হয়। আলোক অণুবীক্ষণ যদ্রে বিভাজনরত কোষে ক্রোমোসোম দেখা যায়। এ জন্য সাধারণত বিশেষ রঞ্জক দ্রব্য ব্যবহার করা হয়।

কোষছ নিউক্লিয়াসের মধ্যে অব**ন্থিত অনুলিপন ক্ষমতাসম্পান্ন, রং ধারণকারী এবং নিউক্লিপ্তপ্রোটিন দ্বারা গঠিত ফেসব** সূত্রাকৃতির ক্ষুদ্রাঙ্গ বংশগতীয় উপাদান, মিউটেশন, প্রকরণ প্রভৃতি কাজে ভূমিকা পালন করে তাদেরকে ক্রোমোসোম বলে। ক্রোমোসোম কখনো কখনো নিউক্লিয়াসের বাইরে সাইটোপ্লাজমেও থাক্তে পারে।

আবিষ্কার : Karl Nageli (1842) সর্বপ্রথম উদ্ভিদকোষের নিউক্লিয়াসে ক্রোমোসোম প্রত্যক্ষ করেন। E. Strasburger (1875) কোষ বিভাজনের সময় সূতার মতো কিছু গঠন লক্ষ্য করেন। Walter Flemming (1888) এসব সূতার মতো গঠনগুলোকে ক্রোমাটিন (chromatin) নামকরণ করেন। বর্ণধারণ ক্ষমতার জন্য W. Waldeyer (1888) এদের ক্রোমোসোম নামকরণ করেন। প্রিক Chroma অর্থ colour (বর্ণ) এবং soma অর্থ body (দেহ)। কাজেই ক্রোমোসোম অর্থ হলো 'রঞ্জিত দেহ' বা 'রং ধারণকারী দেহ'। কারণ এরা কতগুলো বেসিক রং ধারণ করতে পারে। Sutton ও Boveri (1902) ক্রোমোসোমকে বংশগতীয় বৈশিষ্ট্যের বাহক ও ধারক হিসেবে বর্ণনা করেন। Theophilus Painter (1921) সর্বপ্রথম মানুষের ক্রোমোসোম সংখ্যা প্রকাশ করেন।

সংখ্যা : প্রজাতির বৈশিষ্ট্যভেদে এর সংখ্যা ২ হতে ১৬০০ পর্যন্ত হতে পারে। ফার্নবর্গীয় উদ্ভিদে সর্বোচ্চ সংখ্যক ক্রোমোসোম পাওয়া গিয়েছে Ophioglossum reticulatum, ১২০০। পুষ্পক উদ্ভিদে সর্বনিম সংখ্যক ক্রোমোসোম পাওয়া গিয়েছে Haplopappus gracilis, 2n = 4 এবং সর্বাধিক সংখ্যক Poa littarosa, 2n = 506 - 530। প্রাণীতে সর্বনিম 2n = 2 (গোলক্মি = Ascaris megalocephalus sub. sp. univalens) এবং সর্বাধিক 2n = 1600 (রেডিওলারিয়া জাতীয় প্রোটোজোয়া = Aulacantha sp. এ)। মানুষের 2n ক্রোমোসোম সংখ্যা ২৩ জোড়া অর্থাৎ ৪৬টি। এর মধ্যে ২টি সেক্স ক্রোমোসোম ও ৪৪টি অটোমোম। এখানে উল্লেখযোগ্য যে, এখনো সমন্ত জীবজগতের ১০ ভাগও ক্রোমোসোম গণনা করা হয়নি। উচ্চতের জীবে সাধারণত প্রতি দেহকোষে ক্রোমোসোম সংখ্যা ২ হতে ৮০-এর মধ্যে থাকে।

নিচে কয়েকটি উদ্ভিদ এবং প্রাণীর বৈজ্ঞানিক নামসহ ডিপ্লয়েড (2n) ক্রোমোসোম সংখ্যা উল্লেখ করা হলো :

উ দ্ভিদে র নাম	বৈজ্ঞানিক নাম	কোমোসোম সংখ্যা (2n)	প্রাণীর নাম	বৈজ্ঞানিক নাম	কোমোসোম সংখ্যা (2n)
ধান	Oryza sativa	24	মানুষ	Homo sapiens	46
গ্য	Triticum aestivum	42	গরু	Boss indica	60
ভূটা	Zea mays	20	<u>হাগণ</u>	Capra hircus	60
পিঁয়াজ	Allium cepa	16	কবৃত্যর	Columba livia	80
শসা	Cucumis sativus	14	সোনাব্যাঙ	Rana pipiens	26
গোল আলু	Solanum tuberosum	48	খরশেশ	Oryctolagus cuniculus	44
ৰ্টমেটো	Lycopersicon esculentum	24	গরিশা	Gorilla gorilla	48
তামাক	Nicotiana tabacum	28	গিনিপিগ	Cavia porcellus	64
পেঁপে	Carica papaya	18	গৃহমাছি 💮	Musca domestica	12
বাঁধাকপি	Brassica oleracea	18	ফলের মাছি	Drosophila melanogaster	08
পাট	Corchorus capsularis	14	কিউলেক্স মশা	Culex pipiens	06
মূলা	Raphanus sativus	18	গোলকৃমি	Ascaris megalocephalus	2
চীনাবাদাম	Arachis hypogaea	40	রেশ্ম পোকা	Bombyx mori	46
যব	Hordeum vulgare	14	ইঁদুর	Mus musculus	40
কলা	Musa paradisiaca	44	হাইট্রা	Hydra vulgaris	32

একটি সিলিয়েটেড -প্রোটোজোয়া Oxytricha trifallax-তে : 2n = 16,000 + ক্রোমোসোম আছে (Biology for the IB Diploma by M. Broderick from Cambridge University Press)

আয়তন ও আকৃতি: সাধারণত প্রতিটি প্রজাতির জীবে ক্রোমোসোমের একটি সুনির্দিষ্ট আয়তন থাকে। প্রজাতি অনুসারে ক্রোমোসোমের দৈর্ঘ্য সাধারণত ৩.৫–৩০ মাইক্রোমিটার এবং ব্যাস ০.২–২.০ মাইক্রোমিটার হয়ে থাকে। মানবদেহের ক্রোমোসোমের গড় দৈর্ঘ্য ৪–৬ মাইক্রোমিটার। Drosophila মাছির ৩ মাইক্রোমিটার ও ভূটার ৮–১২ মাইক্রোমিটার। অবস্থান: নিউক্রিয়াসে।

ক্রোমোসোমের ভৌত গঠন

কোষে স্বাভাবিক অবস্থায় ক্রোমোসোম পৃথকভাবে দৃষ্টিগোচর হয় না। কোষ বিভাজনের মেটাফেজ দশায় এগুলো অত্যন্ত সুগঠিত থাকে এবং পৃথকভাবে দৃষ্টিগোচর হয়। যৌগিক অণুবীক্ষণযন্ত্রের সাহায্যে ক্রোমোসোমের নিম্নলিখিত অংশগুলো লক্ষ্য করা যায়।

১। ক্রোমাটিন (Chromatin) : ক্রোমোসোমের মূল উপাদান হলো ক্রোমাটিন (রঞ্জিত সূত্রাকার দেহ) যা প্রকৃতপক্ষে DNA-প্রোটিন যৌগ। প্রাথমিকভাবে নিউক্লিওপ্রোটিন যৌগের সূত্রটি 11 nm পুরু যা ক্রমান্বয়ে কুঞ্জী পাকিয়ে 30 nm, 300 nm এবং শেষ পর্যায়ে 700 nm পুরু ক্রোমাটিনে পরিণত হয় (মানুষের একটি ক্রোমোসোমে DNA ১০,০০০ গুণ খাটো হতে দেখা যায়।)। হিস্টোন প্রোটিনের সাথে সংযুক্ত অবস্থায় DNA-কে বলা হয় নিউক্লিওসোম। Heitz (1928) ক্রোমাটিন তম্ভকে দুভাগে ভাগ করেন। রঞ্জক ধারণের ভিত্তিতে ক্রোমাটিন পদার্থকে দুভাগে ভাগ করা হয়েছে; যথা— হেটেরাক্রোমাটিন ও ইউক্রোমাটিন।

ইন্টারফেজ ও প্রোফেজ পর্যায়ে ক্রোমাটিনের যে অংশ অধিক কুণ্ডলিত ও নিষ্ক্রির DNA ধারণ করে থাকে তাকে হেটেরোক্রোমাটিন বলে। এরা mRNA সংশ্লেষণে অংশগ্রহণ করে না। ক্রোমাটিনের যে অংশ কম কুণ্ডলিত ও সক্রিয় DNA ধারণ করে তাকে ইউক্রোমাটিন বলে। এটি ক্রোমোসোমের বিস্তৃত অংশ এবং mRNA সংশ্লেষণে অংশগ্রহণ করে।

২। ক্রোমাটিড (Chromatid): মাইটোসিস কোষ বিভাজনের প্রোফেজ পর্যায়ে ক্রোমোসোম প্রথম দৃষ্টিগোচর হয় এবং মেটাফেজ পর্যায়ে ক্রোমোসোমকে লম্বালম্বিভাবে দুটি অংশে বিভক্ত দেখা যায় যার প্রতিটির নাম ক্রোমাটিড। প্রতিটি ক্রোমোসোমে সমান ও সমান্তরাল এক জোড়া ক্রোমাটিড থাকে। এরা সাধারণত সিস্টার ক্রোমাটিড নামে পরিচিত। আধুনিক ধারণা অনুযায়ী ক্রোমাটিড একটি একক DNA অণু দ্বারা গঠিত। বিজ্ঞানী Vejdovsky (1921) এদের ক্রোমোনেমাটা (একবচন-ক্রোমোনেমা) নামে অভিহিত করেছেন। অ্যানাফেজ পর্যায়ে দুটি ক্রোমাটিড দুটি ক্রোমোসোমে পরিণত হয়।

ও। সেন্ট্রোমিয়ার (Centromere) : প্রতিটি ক্রোমোসোমে একটি অরঞ্জিত অঞ্চল থাকে। ক্রোমাটিডের এ অরঞ্জিত অঞ্চলকে বলা হয় সেন্ট্রোমিয়ার। দুটি সিস্টারক্রোমাটিড সেন্ট্রোমিয়ার অঞ্চলে অত্যন্ত দৃঢ়ভাবে

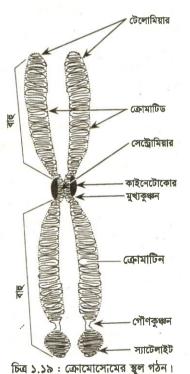
DNA ডবল হেলির II nm নিউক্লিওসোম 30 nm ক্রোমাটিন ফাইবার লুপুড DNA অংশ 700 nm হেটেরোক্রোমাটিন ইউক্রোমাটিন 1400 nm

ক্রোমোলোম (দুটি ক্রোমাটিড) চিত্র ১.১৮ : ক্রোমোসোমের বিস্তারিত গঠন।

সংযুক্ত থাকে। সেন্ট্রোমিয়ারের অবস্থানটি ক্রোমোসোমে একটি খাঁজ-এর সৃষ্টি করে<u>। এ খাঁজকে বলা হয় মুখ্যকৃঞ্চন বা</u> মুখ্য<mark>বাঁজ (Primary constriction)।</mark> আদর্শ ক্রোমোসোমে একটিমাত্র সেন্ট্রোমিয়ার থাকে। অস্বাভাবিক অবস্থায় একটি ক্রোমোসোমে ২টি বা অধিক সেন্ট্রোমিয়ার থাকতে পারে, আবার একটিও না থাকতে পারে। সেন্ট্রোমিয়ারে সাধারণত অনেক লম্ম একই DNA সজ্জার পুনরাবৃত্তি থাকে। মানুষের X-ক্রোমোসোমে ৪৫০০০০ বেস পেয়ার সজ্জা আছে।

- 8। বাছ (Arm): সেন্ট্রোমিয়ার-এর দু'পাশের ক্রোমোসোমাল অংশকে বাহু বলা হয়। প্রতিটি ক্রোমোসোমের দুটি বাহু থাকে। বাহু দুটি সমান দৈর্ঘ্যবিশিষ্ট বা অসম দৈর্ঘ্যবিশিষ্ট হতে পারে। ক্রোমোসোমে সেন্ট্রোমিয়ারের অবস্থান অনুযায়ী বাহু দুটির দৈর্ঘ্য নির্দিষ্ট হয়।
- ৫ । কাইনেটোকোর (Kinetochore) : প্রতিটি সেন্ট্রোমিয়ারে একটি ছোটো গাঠনিক অবকাঠামো থাকে যাকে কাইনেটোকোর বলে। কাইনেটোকোর-এ মাইক্রেটিউবিউল সংযুক্ত হয়।
- ৬। <u>ক্রোমোমিয়ার (Chromomere)</u>: মায়োটিক প্রোফেজ-এর সূচনালগ্নে ক্রোমোসোমের দেহে যেসব ক্ষুদ্র ক্ষুদ্র গুটিকা দেখা যায় সেগুলো ক্রোমোমিয়ার নামে পরিচিত। মায়োসিসের প্রথম প্রোফেজের প্যাকাইটিন উপদশায় ক্রোমোমিয়ারের সংখ্যা ও অবস্থান স্পষ্ট দেখা যায়। অন্য নাম idiomere.
- ৭। <u>গৌণকৃষ্ণন বা গৌণ খাঁজ</u> (Secondary constriction): সেন্ট্রোমিয়ার নামক মুখ্যকৃষ্ণন ছাড়াও কোনো কোনো কোনো কোনোসোমের বাহুতে এক বা একাধিক গৌণকৃষ্ণন থাকতে পারে। <u>গৌণকৃষ্ণনকে 'নিউক্লিঙ্গাস পুনর্গঠন অঞ্চর্গ (Nucleolar Organizer Region–NOR) নামেও অভিহিত করা হয়। মানুষের ক্ষেত্রে পাঁচ জোড়া NOR (১৩, ১৪, ১৫, ২১, ২২ নম্বর ক্রোমোসোম) থাকে।</u>

৮। স্যাটেলাইট (Satellite) : কোনো কোনো ক্রোমোসোমের এক বাহুর প্রান্তে ক্রোমাটিন সূত্র দ্বারা সংযুক্ত প্রায় গোলাকৃতির একটি অংশ দেখা যায়। ক্রোমোসোমের প্রান্তের দিকের এ গোলাকৃতি অঞ্চলকে স্যাটেলাইট এবং এ ধরনের


ক্রোমোসোমকে 'স্যাট ক্রোমোসোম' (sat chromosome) বলে। অন্যভাবে নিউক্লিওলাস বহনকারী ক্রোমোসোমকে SAT ক্রোমোসোম বলে। তুলা, পাট, ছোলা ইত্যাদি উদ্ভিদে কোনো কোনো ক্রোমোসোম স্যাটেলাইট আছে। ছোলার ১নং ক্রোমোসোমে স্যাটেলাইট থাকে। SAT নামক সেকেভারি কুঞ্চন নিউক্লিওলাস গঠনে সাহায্য করে। Sine Acido Thymonucleinico থেকে SAT কথাটি এসেছে। অর্থাৎ Thymonucleic acid ছাড়া DNA।

৯। টেলোমিয়ার (Telomere): বিজ্ঞানী এইচ. জে. মুলার (H.J. Muller)-এর মতে ক্রোমোসোমের উভয় প্রান্তের বিশেষ বৈশিষ্ট্যপূর্ণ অঞ্চলকে টেলোমিয়ার বলে। অধিক বয়সে মানুষের জরা রোধে টেলোমিয়ার বিশেষ ভূমিকা রাখে বলে ধারণা করা হয়। টেলোমারেজ এনজাইম মানুষের জরা রোধে কাজ করে।

ক্রোমোসোমের মাথায় DNA-এর repeated sequence হলো টেলোমিয়ার। কোষ বিভাজনে DNA-এর কোডিং অঞ্চলকে ধ্বংসপ্রাপ্ত হতে রক্ষা করা এর কাজ। একটি কোষ কতবার বিভক্ত হবে টেলোমিয়ার তা নির্ধারণ করে। প্রতি বিভাজনে টেলোমিয়ারের দৈর্ঘ্য কমতে থাকে, তাই এর দৈর্ঘ্য পরিমাপ করে বলা যায় ঐ কোষটি আর কতবার বিভক্ত হবে এবং জীবটি (মানুষটি) আর কতকাল বাঁচবে। এক হিসেবে দেখা যায় জন্মকালে টেলোমিয়ারের দৈর্ঘ্য ৮০০০ bp, ৩৫ বছর বয়সে ৩০০০ bp, ৬৫ বছর বয়সে ১৫০০ bp।

১০। ম্যাদ্রিক্স (Matrix) : ক্রোমাটিন সূত্রের চারদিকে পেলিকল দ্বারা আবৃত প্রথমির স্থানির অবুবীক্ষণযন্ত্রে ম্যাদ্রিক্স এর অন্তিত্ব প্রমাণিত হয়নি।

১১। পেলিকল (Pelicle): ম্যাট্রিক্সসহ ক্রোমোসোমের বাইরে একটি পাতলা আবরণী কল্পনা করা হয়। একে পেলিকল বলে। আধুনিক গবেষণায় ইলেক্ট্রেন অণুবীক্ষণযন্ত্রে পেলিকলের অন্তিত্ব প্রমাণিত হয়নি। তবে ম্যাক ক্লিনটন, সোয়ানসন প্রমুখ কোষ বিজ্ঞানী ক্রোমোসোমে পেলিকলের কথা উল্লেখ করেন। কিন্তু ডার্লিংটন, নভিকফ, রিস প্রমুখ বিজ্ঞানী পেলিকলের অন্তিত্ব অখীকার করেন।

সেন্ট্রোমিয়ার ও ক্রোমোমিয়ার-এর মধ্যে পার্থক্য

সেন্ট্রোমিয়ার	ক্রোমোমিয়ার		
১। সব ধরনের প্রকৃত ক্রোমোসোমেই দেখা যায়।	 সাধারণত প্রকৃত কোষের মাইটোসিস ক্রোমোসোমে দেখা যায় না, মায়োসিস প্রোফেজ-১ পর্যায়ে (লেন্টোটিন) দেখা যায়। 		
২। রঞ্জিত ক্রোমোসোমে অরঞ্জিত খাঁজবিশেষ।	২। এরা ক্রোমোসোমে ডার্ক ব্যান্ড হিসেবে অবস্থিত।		
৩। প্রতিটি ক্রোমোসোমে সাধারণত একটি থাকে।	৩। প্রতিটি ক্রোমোসোমে লম্বালম্বিভাবে অবস্থিত এবং অসংখ্য থাকে।		
8। DNA অল্প,কুণ্ডলিত থাকে।	8। DNA অধিক কুণ্ডলিত থাকে, ফলে দানার মতো দেখায়।		
৫। সেন্ট্রোমিয়ারে সাধারণত কোনো জিন থাকে না।	৫। প্রতিটি ক্রোমোমিয়ারে এক বা একাধিক জিন থাকে।		

সেন্ট্রোসোম ও সেন্ট্রোমিয়ারের মধ্যে পার্থক্য

পার্থক্যের বিষয়	সেন্ট্রোসোম	সেন্ট্রোমিয়ার
১। অবছান	প্রধানত প্রাণিকোষে থাকে।	উদ্ভিদ ও প্রাণিকোষের ক্রোমোসোমের দুই বাহুর সংযোগস্থলে থাকে।
২। অঙ্গাণু	এটি একটি সাইটোপ্লাজমীয় অঙ্গাণু।	এটি একটি নিউক্লিও ব্স্থু।
৩। মাকুত্তমূ	মাকৃতন্তু গঠনে সহায়তা করে।	মাকৃতন্তুর সাথে ক্রোমোসোমকে সংযুক্ত রাখে।
৪। গঠন	RNA ও প্রোটিন দিয়ে এটি গঠিত।	DNA ও প্রোটিন দিয়ে এটি গঠিত।
৫। সেট্রিঙ্গ	সেন্ট্রিওল থাকে।	সেন্ট্রিওল অনুপস্থিত।

ক্রোমোসোমের মুখ্য খাঁজ এবং গৌণ খাঁজের মধ্যে পার্থক্য

মুখ্য খাঁজ	গৌণ খাঁজ
১। এটি প্রধান খাঁজ, সেন্ট্রোমিয়ার সংলগ্ন।	১। মুখ্য খাঁজ ছাড়া অন্য কোনো খাঁজ।
২। মুখ্য খাঁজের মধ্যখানে সেন্ট্রোমিয়ার থাকে।	২। গৌণ খাঁজে নিউক্লিওলার অর্গানাইজার থাকে।
৩। মুখ্য খাঁজের সাথে কাইনেটোকোর থাকে।	৩। গৌণ খাঁজে কাইনেটোকোর থাকে না।
৪। প্রধান কাজ ক্রোমোসোমকে স্পিভলতম্ভর সাথে যুক্ত করা।	৪। প্রধান কাজ নিউক্লিওলাস উৎপন্ন করা।

ক্রোমাটিড ও ক্রোমাটিনের মধ্যে পার্থক্য

ক্রোমাটিড	ক্রোমাটিন		
 ১। ক্রোমোসোমের দৈর্ঘ্য বরাবর সমান দু'ভাগে বিভক্তির একটি অংশ বা সূত্র। 	 ১। কোষ বিভাজনের প্রথম দিকে লক্ষ্যণীয় অত্যন্ত সরু সূত্রময় ক্রোমোসোমের গঠন উপাদান। 		
২। মেটাফেজ পর্যায়ে অণুবীক্ষণযন্ত্রের সাহায্যে দেখা যায়।	২। ইন্টারফেজ ও প্রোফেজের ভরুতে অণুবীক্ষণযন্ত্রের সাহায্যে দেখা যায়।		
৩। ক্রোমাটিড পরবর্তীতে শ্বতম্ব ক্রোমোসোমে পরিণত হয়।	৩। ক্রোমোসোমেই লীন হয়ে যায়।		

ক্রোমোসোম ও ক্রোমাটিডের মধ্যে পার্থক্য

	ক্রোমোসোম	ক্রোমাটিড		
_		১। অনুদৈর্ঘ্যে দু'ভাগে বিভক্ত ক্রোমোসোমের এক অর্ধাংশ।		
	কোষ বিভাজনের সকল পর্যায়ে (মেটাফেজ-এ ক্রোমাটিডে বিভক্ত অবস্থায়) দৃশ্যমান হয়।	২। মেটাফেজ পর্যায়ে দেখা যায়।		
91	নিউক্লীয় রেটিকুলাম থেকে উৎপন্ন।	৩। ক্রোমোসোমের বিভক্তির মাধ্যমে সৃষ্টি হয়।		

ক্রোমোসোমের প্রকারভেদ (Types of Chromosome)

- (ক) সেন্ট্রোমিয়ারের সংখ্যা অনুযায়ী ক্রোমোসোম নিমূলিখিত পাঁচ প্রকার; যথা—
- □ মনোসেন্ট্রিক (Monocentric) : এক সেন্ট্রোমিয়ার বিশিষ্ট ক্রোমোসোমকে মনোসেন্ট্রিক ক্রোমোসোম বলে। অধিকাংশ উদ্ভিদ প্রজাতিতে মনোসেন্ট্রিক ক্রোমোসোম দেখা যায়। স্বাভাবিক ক্রোমোসোমে একটি সেন্ট্রোমিয়ার থাকে।

- 🗅 <mark>ডাইসেন্ট্রিক (</mark>Dicentric) : দুই সেন্ট্রোমিয়ার বিশিষ্ট ক্রোমোসোমকে ডাইসেন্ট্রিক ক্রোমোসোম বলে। <u>গমের</u> কয়েকটি প্রজাতিতে ডাইসেন্ট্রিক ক্রোমোসোম দেখা যায়। অনেক ক্ষেত্রেই মেটাফেজ ক্রোমোসোম ভেঙ্গে গিয়ে উল্টোভাবে জোড়া লাগার মাধ্যমে ডাইসেন্ট্রিক ক্রোমাসোম সৃষ্টি হয়।
- 🗅 প্র**পিসেন্ট্রিক (Polycentric)** : দু' এর অধিক সেন্ট্রোমিয়ার বিশিষ্ট ক্রোমোসোমকে পলিসেক্সিক ক্রোমোসোম বলে। কলা গাছের (Musa sp) কয়েকটি প্রজাতিতে পলিসেন্ট্রিক ক্রোমোসোম দেখা যায়।
- ি ভিষিউজ্ব (Diffused) : ক্রোমোসোমের সুনির্দিষ্ট ছানে সুস্পষ্টভাবে কোনো সেন্ট্রোমিয়ার থাকে না।
- ্র অ্যাসেন্ট্রিক (Acentric) : এক্ষেত্রে ক্রোমোসোমের কোনো সেন্ট্রোমিয়ার থাকে না তখন তাকে অ্যাসেন্ট্রিক ক্রোমোসোম বলে। কোষ বিভাজনে এরা অংশগ্রহণ করে না। ভেঙ্গে গিয়ে কোনো ক্রোমোসোমের অংশবিশেষ অ্যাসেন্ট্রিক হয়। এরা

চিত্র ১.২০ : সেন্ট্রোমিয়ারের সংখ্যা অনুযায়ী বিভিন্ন রকমের ক্রোমোসোম

ম্পিডল তদ্ভতে যুক্ত হতে পারে না তাই এতে অবস্থানরত জিনসহই একসময় নষ্ট হয়ে যায়।

(খ) সেন্ট্রোমিয়ারের অবস্থান অনুযায়ী ক্রোমোসোম নিম্নলিখিত চার আকৃতির হয়; যথা—

(i) মধ্যকেন্দ্রিক বা মেটাসেন্ট্রিক ক্রোমোসোম (Metacentric) : যে ক্রোমোসোমের সেন্ট্রোমিয়ারটি একেবারে মাঝখানে অবন্থিত তাকে মধ্যকেন্দ্রিক বা মেটাসেন্ট্রিক ক্রোমোসোম বলে। মধ্যকেন্দ্রিক ক্রোমোসোমের দুই বাহু সমদৈর্ঘ্যবিশিষ্ট হয় এবং <u>অ্যানাফেজ পর্যায়ে এর আকৃতি ইংরেজি 'V' অক্ষরের মতো দেখায়। Solanum nigrum এর সবকটি ক্রোমোসোমই</u> মধ্যকেন্দ্রিক। মধ্যকেন্দ্রিক আদি বৈশিষ্ট্য। মানুষের X ক্রোমোসোম এবং ১, ৩, ৬, ৭, ৮, ১১, ১৬, ১৯ এবং ২০ নম্বর ক্রোমোসোম মেটাসেন্ট্রিক।

(ii) উপ-মধ্যকেন্দ্রিক বা সাব-মেটাসেন্ট্রিক ক্রোমোসোম (Submetacentric) : যে ক্রোমোসোমের সেন্ট্রোমিয়ারটি মধ্যখান থেকে একটু এক পাশে অবন্থিত তাকে উপ-মধ্যকেন্দ্রিক বা সাব-মেটাসেন্দ্রিক ক্রোমোসোম বলে। উপ-মধ্যকেন্দ্রিক ক্রোমোসোমের দুই বাহু সামান্য অসম দৈর্ঘ্যবিশিষ্ট হয় এবং অ্যানাফেজ পর্যায়ে এর আকৃতি অনেকটা ইংরেজি 'L' অক্ষরের মতো দেখায়। মানুষের ২, ৪, ৫, ৯, ১০, ১২, ১৭ এবং ১৮ নম্বর ক্রোমোসোম সাব-মেটাসেন্ট্রিক।

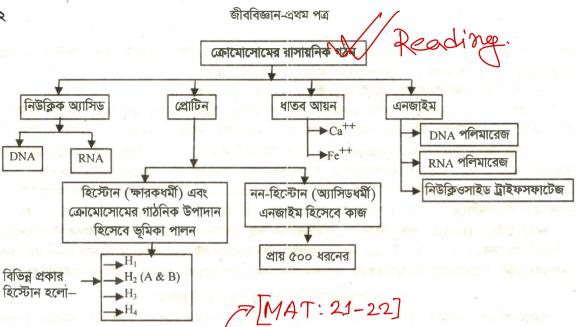
চিত্র ১.২১ : সেন্ট্রোমিয়ারের অবস্থান অনুযায়ী বিভিন্ন আকৃতির ক্রোমোসোম।

- (iii) উপ-প্রান্তকেন্দ্রিক বা স্যাক্রোসেন্ট্রিক ক্রোমোসোম (Acrocentric) : যে ক্রোমোসোমের সেন্ট্রোমিয়ারটি কোনো এক প্রান্তের কাছাকাছি অবস্থিত তাকে উপ-প্রান্তকেন্দ্রিক বা অ্যাক্রোসেন্ট্রিক ক্রোমোসোম বলে। উপ-প্রান্তকেন্দ্রিক ক্রোমোসোমের এক বাহু অনেক লম্বা এবং অপর বাহু বেশ খাটো থাকে। <u>অ্যানাফেজ পর্যায়ে এর আকৃতি</u> অনেকটা ইংরেজি 'J' অক্ষরের মতো দেখায়। একই উদ্ভিদ প্রজাতিতে একাধিক প্রকার ক্রোমোসোম থাকতে পারে; যেমন—Typhonium trilobatum (ঘেটকচু) এর গাঢ় পার্পল প্রকরণে ১১টি মধ্যকেন্ত্রিক, ৪টি উপ-মধ্যকেন্ত্রিক এবং ২টি উপ-প্রান্তকেন্ত্রিক। এটি একটি মনোসোমিক উদ্ভিদ (এটি আমাদের নিজৰ গবেষণায় প্রাপ্ত)। মানুষের ১৩, ১৪, ১৫, ২১, ২২ এবং Y ক্রোমোসোম আক্রোসেট্রিক।
- (iv) প্রান্তকেন্দ্রিক বা টেলোসেন্ট্রিক ক্রোমোসোম (Telocentric) : যে ক্রোমোসোমের সেন্ট্রোমিয়ারটি একেবারে প্রান্তভাগে অবস্থিত তাকে প্রান্তকেন্দ্রিক বা টেলোসেন্ট্রিক ক্রোমোসোম বলে। প্রান্তকেন্দ্রিক ক্রোমোসোমকে এক বাহুবিশিষ্ট মনে

হয়। অ্যানাফেজ পর্যায়ে এর আকৃতি অনেকটা ইংরেজি 'I' অক্ষরের মতো বা একটি দণ্ডের মতো দেখায়। উদ্ভিদে সাধারণত প্রান্তকেন্দ্রিক ক্রোমোসোম থাকে না। মানুষের টেলোসেন্ট্রিক ক্রোমোসোম নেই।

- (গ) দেহ গঠন ও পিঙ্গ নির্ধারণের বৈশিষ্ট্য অনুযায়ী ক্রোমোসোম দু'ধরনের হয়; যথা—
- ১। অটোসোম (Autosome): যেসব ক্রোমোসোম দৈহিক বৈশিষ্ট্য নিয়ন্ত্রণকারী জিন বহন করে তাদেরকে অটোসোম বলে। অটোসোমের সেটকে A চিহ্ন দ্বারা প্রকাশ করা হয়। মানুষে ২৩ জোড়া ক্রোমোসোমের মধ্যে ২২ জোড়া অটোসোম।
- ২। সেক্স ক্রোমোসোম (Sex chromosome): সেক্স ক্রোমোসোম জীবের লিঙ্গ নির্ধারণ করে। সেক্স ক্রোমোসোম দু'প্রকার; যথা— X ও Y। মানুষের একজোড়া সেক্স ক্রোমোসোম থাকে। দ্রীদেহে দুটি সেক্স ক্রেমোসোম এক প্রকার (XX) এবং পুরুষ দেহে সেক্স ক্রোমোসোম দুটি ভিন্ন ধরনের (XY) হয়। সেক্স ক্রোমোসোম লিঙ্গ নির্ধারণ ছাড়া কখনো কখনো বর্ণান্ধতা বা হিমোফিলিয়ার মতো বিভিন্ন সমস্যার বাহক হতে পারে। এ সমস্যাকে Sex Linked Inheritance বলা হয়।
- ১৮৯১ খ্রিষ্টাব্দে Henking শক্ষ্য করেন যে, নিউক্লিয়াসের কিছু উপাদান পতক্লের শুক্রাণু উৎপাদনের সাথে সম্পৃক্ত। তিনি এর নাম দেন (X-body; X for unknown)। পরবর্তীতে শিঙ্গ নির্ধারণে এটি X-ক্রোমোসোম হিসেবে দ্বীকৃত হয়। পরে পুরুষে আরেকটি সেক্স ক্রোমোসোম আবিষ্কৃত হয়। যার নাম দেওয়া হয় Y-ক্রোমোসোম (যেহেতু X-এর পরে আবিষ্কৃত হয়)।

ক্রোমোসোমের রাসায়নিক গঠন বা উপাদান


ক্রোমোসোমের রাসায়নিক গঠন বেশ জটিল। <u>ক্রোমোসোমের প্রধান রাসায়নিক উপাদান হলো</u> : (১) নিউক্লিক অ্যাসিড ও (২) প্রোটিন।

- (১) নিউক্লিক স্যাসিড : ক্রোমোসোমে দু'ধরনের নিউক্লিক স্যাসিড পাওয়া যায়; যথা— (i) DNA ও (ii) RNA।
- (i) DNA : DNA এর পুরো নাম Deoxyribo Nucleic Acid । DNA হলো প্রকৃত ক্রোমোসোমের ছায়ী উপাদান । ক্রোমোসোমের বিভিন্ন উপাদানের মধ্যে DNA এর পরিমাণ হচ্ছে শতকরা প্রায় ৪৫ ভাগ । এটি দ্বিসূত্রবিশিষ্ট পলি নিউক্লিওটাইডের সর্পিলাকার গঠন । একটি সূত্র অন্যটির পরিপূরক । এতে পাঁচ কার্বনবিশিষ্ট পেন্টোজ শর্করা, অজৈব ফসফেট, নাইট্রোজেনঘটিত ক্ষারক (অ্যাডিনিন, গুয়ানিন, থাইমিন ও সাইটোসিন) থাকে । বিজ্ঞানী সুইফট (১৯৬৪) এবং বোনার (১৯৬৮)-এর মতে ক্রোমোসোমে DNA ও হিস্টোন প্রোটিনের অনুপাত হচ্ছে ১ ঃ ১ । জীবের প্রায় ৯০ ভাগ DNA ক্রোমোসোমে থাকে ।
- (ii) RNA: RNA এর পুরো নাম Ribo Nucleic Acid। ক্রোমোসোমে RNA এর পরিমাণ হচ্ছে শতকরা ০.২—১.৪ ভাগ। RNA ক্রোমোসোমের ছায়ী উপাদান নয়। প্রতিটি RNA অণু সাধারণত একসূত্রবিশিষ্ট। এটি পাঁচ কার্বনবিশিষ্ট রাইবোজ শর্করা, অজৈব ফসফেট, অ্যাডিনিন, গুয়ানিন, ইউরাসিল ও সাইটোসিন দ্বারা গঠিত। অনেক ভাইরাস কোষে DNA এর পরিবর্তে RNA থাকে।
- (২) প্রোটিন প্রোটিন ক্রোমোসোমের মূল কাঠামো গঠনকারী রাসায়নিক উপাদান। এ কাঠামোতে নিউক্লিক অ্যাসিড বিন্যন্ত থাকে। ক্রোমোসোমে প্রোটিনের পরিমাণ শতকরা ৫৫ ভাগ। ক্রোমোসোমে দু'ধরনের প্রোটিন পাওয়া যায়। যথা : (i) নিম্ন আণবিক গুরুত্বসম্পন্ন প্রোটিন ও (ii) উচ্চ আণবিক গুরুত্বসম্পন্ন অম্লীয় প্রোটিন।
- (i) নিম আণবিক গুরুত্বসম্পন প্রোটিন : ক্রোমোসোমে প্রোটামিন অথবা হিস্টোন হিসেবে এ দুটি ক্ষারীয় প্রোটিনের মধ্যে যেকোনো একটিকে পাওয়া যায়। তবে বেশির ভাগ ক্রোমোসোমে হিস্টোন প্রোটিন থাকে। প্রোটামিন পাওয়া যায় শুধু শুক্রাণুর ক্রোমোসোমে। ক্রোমোসোমে হিস্টোনের পরিমাণ, DNA এর পরিমাণের কাছাকাছি থাকে।

কতক প্রোটিন DNA অণুর সাথে সরাসরি সংযুক্ত থাকে। এসব প্রোটিনের আর্জিনিন, লাইসিন, হিস্টিডিন ইত্যাদির ধনাত্মক (Positively charged) সাইড গ্রুপের সাথে DNA অণুর ঋণাত্মক (negatively charged) ফসফেট গ্রুপের বস্ত তৈরি করে। অন্যান্য প্রোটিন DNA-এর বাউন্ড প্রোটিনের সাথে সংযুক্ত থাকে।

(ii) উচ্চ আণবিক শুরুতুসম্পন্ন প্রোটিন : ক্রোমোসোমে বেশ কয়েক ধরনের অপ্লীয় প্রোটিন থাকে। উল্লেখযোগ্য হলো DNA পলিমারেজ ও RNA পলিমারেজ।

উল্লিখিত উপাদান ছাড়াও ক্রোমোসোমে ম্যাগনেসিয়াম, ক্যালসিয়াম, লিপিড, এনজাইম, আয়রন এবং অন্যান্য রাসায়নিক পদার্থ খুব অল্প পরিমাণে থাকে।

কোমোসোমের কাজ: (১) <u>কোমোসোম বংশগতির ধারক ও বাহক</u>; তাই বংশপরম্পরায় জীবের বৈশিষ্ট্য ধারণ করে, বহন করে এবং স্থানান্তর করে। (২) বিভক্তির মাধ্যমে ক্রোমোসোম কোষ বিভাজনে প্রত্যক্ষ ভূমিকা পালন করে। (৩) DNA বা জিন অণু ধারণ করে। (৪) DNA-এর ছাঁচ অনুযায়ী তৈরি mRNA এর মাধ্যমে প্রোটিন সংশ্লেষণ করা। (৫) সেক্স ক্রোমোসোম জীবের লিঙ্গ নির্ধারণে বিশেষ ভূমিকা রাখে। (৬) বংশগতির বাহক জিন জীবের জীবনের বু প্রিন্ট হিসেবে কাজ করে। (৭) ক্রোমোসোমের সংখ্যা ও গঠনের পরিবর্তন অভিব্যক্তির মূল উপাদান হিসেবে ব্যবহৃত হয়।

B-ক্রোমোসোম: সাধারণ কেরিওটাইপ-এর অতিরিক্ত ক্রোমোসোম হিসেবে উদ্ভিদ, প্রাণী ও ছ্ত্রাকের কোনো কোনো প্রজাতিতে B-ক্রোমোসোম থাকে। B-ক্রোমোসোম ক্ষুদ্র ও নন-ভাইটাল ক্রোমোসোম, এরা হেটেরোক্রোমাটিনসম্পন্ন এবং অল্প জিন বহনকারী। বংশগতিতে এরা মেন্ডেলিয়ান সূত্র অনুসরণ করে না। এরা কতকটা আত্মকেন্দ্রিক (selfish) বংশগতীয় পদার্থ। ভূট্টাতে B-ক্রোমোসোম আছে বলে জানা যায়। আমাদের নিজম্ব গবেষণায় বাংলাদেশি উলট চন্তাল উদ্ভিদে B-ক্রোমোসোমের উপস্থিতি প্রমাণিত হয়। উলট চন্তাল উদ্ভিদ কলসিসিন অ্যালকালয়েড উৎপন্ন করে থাকে যা গেঁটে বাতের উত্তম ঔষধ হিসেবে প্রচলিত।

কোষ বিভাজনে ক্রোমোসোমের ভূমিকা (The role of chromosome in the cell division)

জীবদেহের বৃদ্ধি ও জনন উভয় কাজের জন্যই কোষ বিভাজন জরুরি। কোষ বিভাজনের মুখ্য বস্তু ক্রোমোসোম। ক্রোমোসোমকে বাদ দিয়ে কোষ বিভাজন সম্ভব নয়। কোষ বিভাজনের শুরু এবং শেষ উভয়ই ক্রোমোসোম নির্ভর। ক্রোমোসোম অবন্থিত DNA প্রতিলিপনের মাধ্যমে কোষ বিভাজনের প্রস্তুতি সম্পন্ন হয়; অর্থাৎ ক্রোমোসোমসূ DNA প্রতিলিপিত না হলে কোষ বিভাজন শুরু হবে না। কাজেই দেখা যায়, কোষ বিভাজনে ক্রোমোসোমের ভূমিকা মুখ্য। কোষ বিভাজন প্রক্রিয়ায় কোষস্থ ক্রোমোসোমের প্রতিলিপন, দ্বিত্বন, বিভাজন ও মেরুকরণ সবই আবশ্যকীয় বিষয়। আবার ক্রোমোসোমবিহীন কোষ তার অন্তিত্বও রক্ষা করতে পারে না, এমনকি কোষ বিভাজনকালে ক্রোমোসোমের বন্টন নীতিমালা বহির্ভূত হলে কোষের বৈশিষ্ট্য ও অন্তিত্বে বিরূপ প্রভাব পড়বে। কাজেই বলা যায়, কোষ বিভাজন প্রক্রিয়ায় ক্রোমোসোমের প্রত্যক্ষ ভূমিকা রয়েছে। ক্রোমোসোম কতবার বিভক্ত হবে তার ওপর নির্ভর করে কোষ বিভাজনের ধরন, মাইটোসিস না মায়োসিস।

বংশগতীয় বন্ধ (Genetic material)

মাতা-পিতার বৈশিষ্ট্য সন্তান-সন্তুতি পেয়ে থাকে। পৃথিবীর দব জীবের ক্ষেত্রেই এ প্রাকৃতিক নিয়ম প্রযোজ্য। তাই আমরা আমের বীজ থেকে আম গাছ, কাঁঠালের বীজ থেকে কাঁঠাল গাছ, ধানের বীজ থেকে ধান গাছ, পাটের বীজ থেকে পাট গাছ হতে দেখি। এভাবেই বংশানুক্রমে প্রজাতির বৈশিষ্ট্য বজায় থাকে। ইংরেজি প্রবাদ 'Like father like son' অর্থাৎ 'যেমন পিতা তেমন পুত্র'। এ বিষয় নিয়ে গ্রেষণার প্রথম পর্যায়ে বিজ্ঞানীরা ধারণা পান যে, মাতা-পিতার মিলনে প্রায় একই

বৈশিষ্ট্যের সম্ভান-সম্ভতির জন্ম হয়। <u>মাতা-পিতা হতে তাদের বৈশিষ্ট্যগুলো সম্ভান-সম্ভতিতে আসার প্রক্রিয়াকে বংশগতি</u> (heredity) বলে। একে জেনেটিক ট্রান্সমিশন (genetic transmission)ও বলা হয়। জেনেটিক ট্রান্সমিশন হলো বংশগতির সমনাম। জীববিজ্ঞানের যে শাখায় বংশগতি নিয়ে বিশদ আলোচনা ও গবেষণা করা হয় তাকে বংশগতিবিদ্যা (genetics) বলে।

যেসব বস্তুর মাধ্যমে মাতা-পিতার বৈশিষ্ট্য তাদের সন্তান-সন্তুতিতে বাহিত হয় তাদেরকে একত্রে বংশগতীয় বস্তু (genetic material) বলা হয়। বংশগতীয় বস্তুর প্রধান উপাদান হচ্ছে ক্রোমোসোম। ক্রোমোসোমে রয়েছে DNA, যেখানে জিনগুলো সুসজ্জিত থাকে। জিনই হচ্ছে জীবের সকল চারিত্রিক বৈশিষ্ট্যের ধারক যা পর্যায়ক্রমে mRNA ও প্রোটিন সৃষ্টির মাধ্যমে বাহ্যিক চরিত্রসমূহ ফুটিয়ে তোলে। নিচে এগুলো সম্বন্ধে সংক্ষিপ্ত বর্ণনা করা হলো।

নিউক্লিক অ্যাসিড (Nucleic Acid)

১৮৬৯ সালে সুইস চিকিৎসক ও রসায়নবিদ Friedrich Miescher (মিশার) ক্ষতস্থানের পুঁজের শ্বেতরক্তকণিকার নিউক্লিয়াস থেকে একটি নতুন রাসায়নিক পদার্থ পৃথক করেন এবং নামকরণ করেন নিউক্লিন (nuclein)। নিউক্লিন শর্করা, আমিষ ও শ্বেহজাতীয় পদার্থ থেকে ভিন্নধর্মী। ১৮৮৯ সা<u>লে অল্টম্যান (Altman) নিউক্লিনে অ্যাসিডের ধর্ম দেখতে</u> পান এবং <u>তিনি এর নামকরণ করেন নিউক্লিক অ্যাসিড।</u> ১৮৯৪ সালে বিজ্ঞানী Albrecht Kossel নিউক্লিক অ্যাসিডের দুংধরনের নাইট্রোজেন বেস—পিউরিন ও পাইরিমিডিন এবং শুগার ও ফসফোরিক অ্যাসিড শনাক্ত করেন। এজন্য তাঁকে ১৯১০ সালে রসায়নে নোবেল পুরন্ধার প্রদান করা হয়। বিজ্ঞানী Lavine ১৯২১ সালে DNA ও RNA নামে দুংধরনের নিউক্লিক অ্যাসিড আবিষ্কার করেন।

নিউক্লিক অ্যাসিড কার্বন, হাইড্রোজেন, অক্সিজেন, নাইট্রোজেন এবং ফসফরাস মৌল নিয়ে গঠিত । নিউক্লিক অ্যাসিডে নাইট্রোজেনের পরিমাণ ১৫% এবং ফসফরাসের পরিমাণ ১০%।

জীবকোষে দু'প্রকার নিউক্লিক অ্যাসিড থাকে। এদের একটি DNA এবং অপরটি হলো RNA। DNA সাধারণত নিউক্লিয়াসের ক্রোমাটিনে থাকে। RNA-এর শতকরা ৯০ ভাগ পাওয়া যায় সাইটোপ্লাজমে এবং বাকি ১০ ভাগ পাওয়া যায় নিউক্লিওলাসে।

নিউক্লিক অ্যাসিড কী? নিউক্লিক অ্যাসিডকে নিউক্লিয়েজ এনজাইম বা মৃদু ক্ষার দিয়ে আর্দ্রবিশ্রেষণ করলে পাওয়া যায় অসংখ্য নিউক্লিওটাইড। কাজেই বলা যায়, নিউক্লিওটাইডগুলোর পলিমার সৃষ্টির মাধ্যমে গঠিত অ্যাসিডের নাম হলো নিউক্লিক অ্যাসিড। আবার নিউক্লিওটাইডকে মৃদু অ্যাসিড দিয়ে আর্দ্রবিশ্রেষণ করলে উৎপন্ন হয় নাইট্রোজেন ক্ষারক, পেন্টোজ ভ্যগার এবং ফসফোরিক অ্যাসিড। তাই এভাবেও বলা যায়, নিউক্লিক অ্যাসিড হলো নাইট্রোজেনঘটিত ক্ষারক, পেন্টোজ ভ্যগার এবং ফসফোরিক অ্যাসিডের সমন্বয়ে গঠিত অ্যাসিড যা জীবের বংশগতির ধারাসহ সকল কার্যক্রম নিয়ন্ত্রণ করে। DNA এক প্রকার নিউক্লিক অ্যাসিড। এগুলো কোষের সবচেয়ে বড়ো রাসায়নিক অণু। নিউক্লিক অ্যাসিড বংশগতির সকল বৈশিষ্ট্য বহন করে বলে এদের মাস্টার মালকিউল (master molecule) বলে।

নিউক্লিক অ্যাসিডের মূল উপাদান: নিউক্লিক অ্যাসিডকে হাইড্রোলাইসিসের পর নিম্নলিখিত উপাদানসমূহ পাওয়া যায়।

১। পেন্টোজ শুগার, ২। নাইট্রোজেনঘটিত ক্ষারক এবং ৩। ফসফোরিক অ্যাসিড।

১। পেন্টোজ স্ত্যুগার (Pentose sugar) : পাঁচ ⁵ CH₂OH কার্বনবিশিষ্ট স্ত্যুগার (চিনি)-কে বলা হয় পেন্টোজ ধুবে দ্রুগার। নিউক্লিক অ্যাসিডে দু'ধরনের পেন্টোজ স্ত্যুগার থাকে। এর একটি রাইবোজ স্ত্যুগার এবং অন্যটি ডিঅক্সিরাইবোজ স্ত্যুগার। RNA-তে রাইবোজ স্ত্যুগার এবং DNA-তে ডিঅক্সিরাইবোজ স্ত্যুগার থাকে। পেন্টোজ স্ত্যুগার ফসফোরিক অ্যাসিডের সাথে অ্যাস্টার গঠনে

চিত্র ১.২২ : পেন্টোজ শ্যুগার।

সক্ষম। রিং স্ট্রাকচারবিশিষ্ট B-D রাইবোজ অথবা B-D ডিঅক্সিরাইবোজ নিউক্লিক অ্যাসিড গঠন করে।

- (ক) **রাইবোজ ভ্যগার** (Ribose sugar) : নিউক্লিক অ্যাসিডে রাইবোজ ভ্যগার থাকলে তাকে রাইবোনিউক্লিক অ্যাসিড বা RNA বলে।
- (খ) ডিঅক্সিরাইবোজ ভ্যগার (Deoxyribose sugar) : নিউক্লিক অ্যাসিডে ডিঅক্সিরাইবোজ ভ্যগার থাকলে তাকে ডিঅক্সিরাইবো নিউক্লিক অ্যাসিড বা DNA বলে।

রাইবোজ এবং ডিঅক্সিরাইবোজ ভ্যুগার প্রায় একই রকম গঠনবিশিষ্ট, পার্থক্য শুধু এই যে, **ডিঅক্সিরাইবোজ শুগারের**

<mark>২নং কার্বনে অক্সিজেন অনুপছিত</mark> (ডিঅক্সি = অক্সিজেন ছাড়া)।

২। নাইট্রোজেনঘটিত ক্ষারক (Nitrogenous base) :
নিউক্লিক অ্যাসিডে দু প্রকার নাইট্রোজেন ক্ষারক থাকে।
নাইট্রোজেন, কার্বন, হাইড্রোজেন ও অক্সিজেন দিয়ে এ
ক্ষারকসমূহ গঠিত। ক্ষারকগুলো এক রিং বিশিষ্ট বা দু রিং
বিশিষ্ট হতে পারে। এ রিং এর সংখ্যার ওপর ভিত্তি করে ক্ষারক
দু প্রকার; যথা— (i) পিউরিন এবং (ii) পাইরিমিডিন।

(i) পিউরিন (Purine) : দু রিংবিশিষ্ট ক্ষারককে বলা হয় পিউরিন। এর সাধারণ সংকেত হলো $C_5H_4N_4$ । নিউক্লিক আ্যাসিডে দু'প্রকার পিউরিন ক্ষারক থাকে; যথা— অ্যাডিনিন (Adenine = A) এবং শুয়ানিন (Guanine = G)।

(ii) **পাইরিমিডিন (Pyrimidine) :** এক রিংবিশিট ক্ষারককে বলা হয় পাইরিমিডিন। এর সাধারণ সংকেত হলো $C_4H_4N_2$ । নিউক্লিক অ্যাসিডে তিন প্রকার পাইরিমিডিন ক্ষারক চিত্র ১.২৩ : পিউরিন (জ্যাডিনিন ও গুয়ানিন) এরং পাইরিমিডিন (থাইমিন, সাইটোসিন ও ইউরাসিল)।

থাকে; যথা- থাইমিন (Thymine = T), সাইটোসিন (Cytosine = C) এবং ইউরাসিল (Uracil = U)। ইউরাসিল কেবল রাইবোনিউক্লিক অ্যাসিডে তথা RNA-তে থাকে। থাইমিন কেবল ডিঅক্লিরাইবো-নিউক্লিক অ্যাসিডে তথা DNA-তে থাকে। (মনে রাখতে হবে, নাম বড়ো যার গঠন ছোটো তার।)

DNA-তে সাধারণত **অ্যাডিনিন** (A), **গুয়ানিন** (G), **থাইমিন** (T) ও সাইটোসিন (C) থাকে। RNA-তে **থাইমিনের** পরিবর্তে **ইউরাসিন** (U) থাকে।

ক্ষারকসমূহের নামকরণ : অ্যাডিনিন এবং থাইমিন-এর নামকরণ করা হয়েছে **থাইমাস** (Thymus) থেকে। থাইমাস গ্র্যান্ড থেকে এদেরকে প্রথম পৃথক করা হয়েছিল। এডিনো অর্থ হলো গ্রান্ড (gland)। সাইটোসিন-এর নাম এসেছে সাইটো (cyto) থেকে; সাইটো অর্থ হলো সেল (cell)। শুয়ানিন-এর নাম এসেছে শুয়ানো (guano) থেকে। শুয়ানো অর্থ হলো বাদুর বা সীবার্ড এর পড়ন্ত মল (fecal dropping)। OH OT Nধারণত ক্ষারকগুলো ইংরেজি বর্ণমালা 'A G T C U' দ্বারাই পরিচিত। HO — P = O → HO — P = O

৩। ফসফোরিক অ্যাসিড (Phosphoric acid) : নিউক্লিক অ্যাসিডের একটি অন্যতম উপাদান হলো ফসফোরিক অ্যাসিড। এর আণবিক সংকেত H_3PO_4 । এতে তিনটি একযোজী হাইড্রক্সিল গ্রুপ (-OH) এবং একটি দ্বিযোজী অক্সিজেন প্রমাণু রয়েছে, যেগুলো পাঁচযোজী ফসফরাস প্রমাণুর সাথে সংযুক্ত।

নিউক্লিওসাইড (Nucleoside) গঠন : এক অণু নাইট্রোজেনঘটিত ক্ষারক ও এক অণু পেন্টোজ শুগার যুক্ত হয়ে গঠিত গ্লাইকোসাইড যৌগকে বলা হয় নিউক্লিওসাইড। ক্ষারক পাইরিমিডিন হলে তাকে বলা হয় পাইরিমিডিন নিউক্লিওসাইড। কাইরিমিডিন নিউক্লিওসাইডে ক্ষারকের (T/C/U) ১নং নাইট্রোজেন, পেন্টোজ শুগোরের ১নং কার্বনের হাইদ্রক্সিল মূলকের সাথে গ্লাইকোসাইডিক বন্ধনে যুক্ত থাকে। কিন্তু পিউরিন নিউক্লিওসাইডে ক্ষারকের

(A/G) ৯নং নাইট্রোজেন (১নং নয়) পেন্টোজ শ্যুগারের ১নং কার্বনের চ্বি ১.২৪: নিউক্লিওসাইড (খ্যাভিনোসিনের গঠন)। হাইদ্ধক্রিল মূলকের সাথে গ্রাইকোসাইডিক বন্ধনে যুক্ত থাকে। যেমন- অ্যাভিনোসিন একটি নিউক্লিওসাইড। নিউক্লিওটাইড তৈরি করাই এর কাজ।

বিভিন্ন প্রকার নিউক্লিওসাইড:

পেন্টোজ স্ত্যগার	অ্যাডিনিন (A)	গুয়ানিন (G)	ইউরাসিল (U)	সাইটোসিন (C)	· থাইমিন (T)
রাইবোজ	অ্যাডিনোসিন	গুয়ানোসিন	ইউরিডিন	সাইটিডিন	A 表 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图
ডিঅ <mark>ক্সিরাইবো</mark> জ	ডিঅক্সি অ্যাডিনোসিন	ডিঅক্সি গুয়ানোসিন		ডিঅক্সি সাইটিডিন	ডিঅক্সি থাইমিডিন

নিউক্লিওটাইড (Nucleotide) গঠন : এক অণু
নিউক্লিওসাইড-এর সাথে এক অণু ফসফেট যুক্ত হয়ে
গঠিত যৌগকে নিউক্লিওটাইড বলে। অন্যভাবে বলা
যায়, নিউক্লিয়োসাইডের ফসফেট এস্টার হলো
নিউক্লিওটাইড। নিউক্লিওটাইড হলো নিউক্লিক
অ্যাসিডের (DNA বা RNA অণুর) গাঠনিক একক।
এক অণু নাইটোজেনঘটিত ক্ষারক, এক অণু পেন্টোজ
ভ্যগার এবং এক অণু ফসফেট যুক্ত হয়ে যে যৌগ গঠিত
হয় তাকে বলে নিউক্লিওটাইড। পেন্টোজ ভ্যগার-এর
তনং ও নেং কার্বনের সাথে ফসফেট যুক্ত হয়।

dAMP (ডিঅক্সি অ্যাডিনোসিন মনোকসকেট) dCMP (ডিঅক্সি সাইটিডিন মনোকসকেট)

চিত্র ১.২৫ : দুটি নিউক্লিওটাইড : dAMP ও dCMP।

বিভিন্ন প্রকার নিউক্লিওটাইড

ভ্যগার রাইবোজ হলে:

অ্যাডিনোসিন মনোফসফেট = AMP = অ্যাডিনিন নিউক্লিওটাইড (অ্যাডিনিলিক অ্যাসিড)

গুয়ানোসিন মনোফসফেট = GMP = গুয়ানিন নিউক্লিওটাইড (গুয়ানিলিক অ্যাসিড)

সাইটিডিন মনোফসফেট = CMP = সাইটোসিন নিউক্লিওটাইড (সাইটিডিলিক অ্যাসিড)

ইউরিডিন মনোফসফেট = UMP = ইউরাসিল নিউক্লিওটাইড (ইউরিডিলিক অ্যাসিড)

শ্যুগার ডিঅক্সিরাইবোজ হলে:

ডিঅক্সি অ্যাডিনোসিন মনোফসফেট = dAMP = অ্যাডিনিন ডিঅক্সিনিউক্লিগুটাইড (ডিঅক্সি অ্যাডিনিলিক অ্যাসিড)

ডিঅক্সি শুয়ানোসিন মনোফসফেট = dGMP = শুয়ানিন ডিঅক্সিনিউক্লিওটাইড (ডিঅক্সি শুয়ানিলিক অ্যাসিড)

ডিঅক্সি সাইটিডিন মনোফসফেট = dCMP = সাইটোসিন ডিঅক্সিনিউক্লিওটাইড (ডিঅক্সি সাইটিডিলিক অ্যাসিড)

ডিঅক্সি থাইমিডিন মনোফসফেট = dTMP = থাইমিন ডিঅক্সিনিউক্লিওটাইড (ডিঅক্সি থাইমিডিলিক অ্যাসিড)

অর্থাৎ ক্ষারকের (বা নিউক্লিয়োসাইডের) নামানুসারে নিউক্লিওটাইডের নামকরণ করা হয়।

একটি নিউক্লিওটাইডে একটি ফসফেট যুক্ত থাকে। এর সাথে আরও এক বা একাধিক ফসফেট যুক্ত হতে পারে। এভাবে ফসফেট সংযুক্তির মাধ্যমে AMP (অ্যাডিনোসিন মনোফসফেট) থেকে ADP (অ্যাডিনোসিন ডাইফসফেট), আবার ADP থেকে ATP (অ্যাডিনোসিন ট্রাইফসফেট) সৃষ্টি হয়।

AMP (অ্যাডিনোসিন মনোফসফেট) + P = ADP;

ADP + P = ATP

GMP (গুয়ানোসিন মনোফসফেট)

+ P = GDP;

GDP + P = GTP

CMP (সাইটিডিন মনোফসফেট)

+ P = CDP

CDP + P = CTP

UMP (ইউরিডিন মনোফসফেট)

+ P = UDP:

UDP + P = UTP

কাজ : নিউক্লিওটাইডগুলো DNA ও RNA তৈরির মূল কাঠামো গঠন করে। এছাড়া মধ্যবর্তী বিপাকে (NAD † এবং NADP †), প্রোটিন সংশ্লেষণে (GTP), শ্বসনে (ATP), ফসফোলিপিড সংশ্লেষণে (CTP) বিশেষ ভূমিকা পালন করে।

ডাইনিউক্লিওটাইড (Dinucleiotide) : একটি নিউক্লিওটাইড যখন আরেকটি নিউক্লিওটাইডের সাথে ফসফো-ডাইএস্টার বন্ধনীর সাহায্যে যুক্ত হয় তখন তাকে **ডাইনিউক্লিওটাইড** বলে। ১ম নিউক্লিওটাইডের পেন্টোজ শ্যুগারের ৫নং কার্বনের সাথে এবং ২য় নিউক্লিওটাইডের পেন্টোজ শ্যুগারের ৩নং কার্বন ফসফেট ডাই-এস্টার বন্ধন দ্বারা যুক্ত হয়; ফলে একটি ডাইনিউক্লিওটাইড গঠিত হয়।

পশিনিউক্লিউটাইড (Polynucleiotide): অনেকগুলো নিউক্লিউটাইড ৫→৩ অনুমুখী হয়ে পরস্পর ফসফো-ডাইএস্টার বন্ধনীর সাহায্যে যুক্ত হয়ে একটি লম্বা রৈখিক শৃঙ্খলের সৃষ্টি করে, তখন তাকে পলিনিউক্লিওটাইড বলে। পলিনিউক্লিওটাইড একটি চেইন-এর মতো গঠন সৃষ্টি করে। এ চেইন-এ ফসফেট অণু একদিকে পেন্টোজ শ্যুগার (রাইবোজ অথবা ডি-অক্সিরাইবোজ) -এর ৫নং কার্বনের সাথে যুক্ত থাকে এবং অপরদিকে পাশের পেন্টোজ শুগার-এর ৩নং কার্বনের সাথে যুক্ত থাকে। DNA অণুর প্রতিটি একক হেলিক্স একটি পশিনিউক্লিওটাইড চেইন।

নিউক্লিক অ্যাসিডের প্রকার

নিউক্লিক অ্যাসিডে বিদ্যমান শুগারটি রাইবোজ, না ডিঅক্সিরাইবোজ তার ওপর ভিত্তি করে নিউক্লিক অ্যাসিডকে দু'ভাগে ভাগ করা হয়েছে; যথা- ডিঅক্সিরাইবোনিউক্লিক অ্যাসিড বা DNA এবং রাইবোনিউক্লিক অ্যাসিড বা RNA। নিচে এ সম্বন্ধে সংক্ষিপ্ত বিবরণ দেওয়া হলো।

ডিঅক্সিরাইবোনিউক্লিক স্যাসিড (DNA = Deoxyribonucleic Acid)

DNA হলো Deoxyribonucleic acid-এর অ্যাক্রোনিম (acronym) বা সংক্ষিপ্ত রূপ। DNA হলো জীবের বংশগত বৈশিষ্ট্যের ধারক ও বাহক। DNA-এর গঠন একক হলো নিউক্লিওটাইড এবং লক্ষ লক্ষ নিউক্লিওটাইড-এর দীর্ঘ পলিমার হলো একটি DNA অণু। DNA হলো একটি বৃহদাণুর জৈব অ্যাসিড যা জীবনের আণবিক ভিত্তি (molecular core of life) হিসেবে স্বীকৃত। DNA—এর গঠন উপাদান হলো পাঁচ কার্বনবিশিষ্ট ডিঅক্সিরাইবোজ ভ্যগার (S); অ্যাডিনিন (A), গুয়ানিন (G), সাইটোসিন (C) ও থাইমিন (T) নামক চার ধরনের নাইট্রোজিনাস ক্ষারক এবং ফসফোরিক অ্যাসিড (P)। কোনো নির্দিষ্ট জীবের (যেমন মানুষ) প্রতিটি কোষেই সমপরিমাণ DNA থাকে। সজীব কোষে অবছিত ম্বপ্রজননশীল, পরিব্যক্তিক্ষম, যাবতীয় জৈবিক কাজের নিয়ন্ত্রক এবং বংশগত বৈশিষ্ট্যের ধারক ও বাহক যে নিউক্লিক অ্যাসিড তাকে DNA বলে।

প্রকৃতকোষের ক্রোমোসোমের মূল উপাদান হলো DNA। কতক ভাইরাসে DNA থাকে। DNA সূত্রাকার কিন্তু আদিকোষ, মাইটোকন্ত্রিয়া ও ক্লোরোপ্লাস্টে বৃত্তাকার DNA থাকে। কোষে DNA-এর পরিমাণ পিকেছাম (১ পিকো গ্রাম = ১০-১২ গ্রাম) এককে প্রকাশ করা হয়। মানুষের ডিপ্লয়েড কোষে ৫-৬ পিকো গ্রাম DNA থাকে। একজন প্রাপ্তবয়ঙ্ক মানুষের দেহে ১০০ গ্রাম DNA-থাকে।

DNA-এর ভৌত গঠন (Physical Structure of DNA)

১৮৬৯ সালে নিউক্লিক অ্যাসিড আবিষ্কৃত হবার পর থেকেই এর প্রকৃতি, গঠন উপাদান এবং ভৌত গঠন সম্বন্ধে জানার জন্য বিন্তর গবেষণা শুরু হয়। জার্মান রসায়নবিদ Robert Feulgen ১৯১৪ সালে DNA-এর যে রঞ্জন পদ্ধতি উদ্ভাবন করেন তা Feulgen staining নামে পরিচিতি লাভ করে। ১৯৫০ সালে Erwin Chargaff বিন্তর গবেষণার পর দেখাতে সক্ষম হন যে, কোনো জীবের DNA-তে A এবং T এর পরিমাণ সমান। আবার G এবং C এর পরিমাণও সমান। DNA অণুতে সমগরিমাণ A ও T এবং সমপরিমাণ C ও G থাকার এ নীতিমালাকে বলা হয় Chargaff's rule. নাইট্রোজিনাস ক্ষারকের অর্ধেক হবে পিউরিন (A, G) এবং অর্ধেক হবে পাইরিমিডিন (T, C)। একই সময়ে Maurice Wilkins এবং Rosalind Franklin DNA অণুর X-ray ক্রিস্টালোগ্রাফি করে এর ভৌত অবকাঠামোগত শুরুত্বপূর্ণ তথ্য উপস্থাপন করেন। এক্স-রে ক্রিস্টালোগ্রাফির মাধ্যমে তারা DNA গঠনকারী আন্তঃঅণুর দূরত্ব 2.0 nm, 0.34 nm এবং 3.4 nm বলে জানান। তাঁরা আরো বলেন যে, সম্ভবত DNA অণু ডাবল স্ট্র্যান্ড (একটি বা তিনটি নয়) এবং এরা বাঁকানো গঠনে বিদ্যমান, যার কারণে আন্তঃঅণুর বিভিন্ন দূরত্ব দেখা যায়। DNA অণুর প্রকৃত গঠন সম্পর্কে Watson & Crick (1953) একটি রূপরেখা বা মডেল প্রদান করেন। এটি DNA ডাবল হেলিক্স মডেল নামে সুপরিচিত।

Watson ও Crick-এর DNA মডেল

বিভিন্ন তথ্য উপাত্ত থেকে Watson এবং Crick ইতোমধ্যেই নিম্নলিখিত বিষয়গুলো অবগত হন :

- i. DNA হলো চার প্রকার নিউক্লিওটাইড দিয়ে গঠিত পলিমার।
- ii. জানা হয়ে যায় নিউক্লিওটাইডসমূহের রাসায়নিক গঠন।
- iii. যেহেতু DNA অশ্লীয়, কাজেই ফসফেট গ্রুপ অবশ্যই উন্মুক্ত (exposed) থাকবে।
- iv. Chargaff's data অনুযায়ী A-এর সংখ্যা T-এর সমান হবে এবং G-এর সংখ্যা C-এর সমান হবে।

v. Wilkins ও Franklin DNA অণুর X-ray ক্রিস্টালোগ্রাফি করে এর ভৌত অবকাঠামোগত গুরুত্বপূর্ণ তথ্য উপস্থাপন করেন যথা এর আণবিক দূরত্ব মাপ 2.0 nm, 0.34 nm, 3.4 nm এবং helix ধারণা।

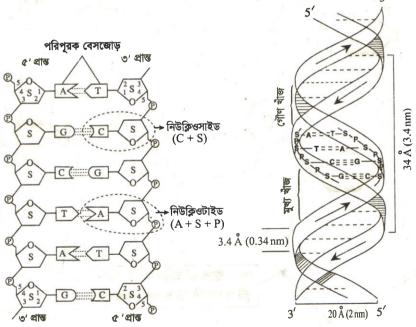
vi. দুটি পিউরিন বিপরীতমুখী হয়ে পাশাপাশি 2 nm দূরত্বে বসতে পারে না; আবার দুটি পাইরিমিডিন পাশাপাশি বসলে দূরত্ব 2 nm এর কম হবে। কাজেই একটি পিউরিন ও একটি পাইরিমিডিন ডাবল হেলিক্স-এ বিপরীতমুখী হয়ে বসতে হবে, তবেই দুই স্ট্র্যান্ড-এর দূরত্ব 2 nm সমান থাকবে।

vii. A ও T দুটি হাইড্রোজেন বন্ড দিয়ে যুক্ত হয় এবং G ও C তিনটি হাইড্রোজেন বন্ড দিয়ে যুক্ত হয়।

viii. দুটি স্ট্র্যান্ড একটি অপরটির সম্পূরক (Complementary), একইরূপ (identical) নয়।

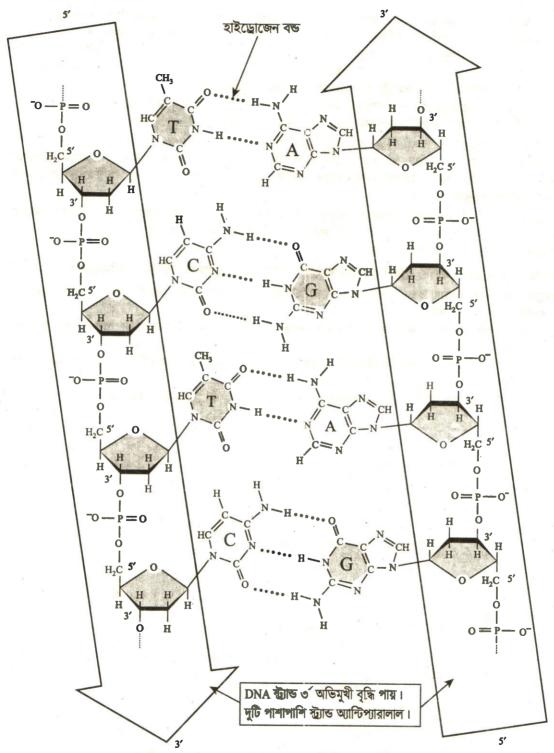
উপরিউক্ত তথ্যগুলোর ভিত্তিতে Watson ও Crick (J.D. Watson 1928— & Francis H.C. Crick, 1916—2004) ১৯৫৩ সালে DNA অণুর (তার, সিট, ক্কু, বল্টু ইত্যাদি দিয়ে তৈরি প্যাচানো সিঁড়ির ন্যায়) একটি ভৌত মডেল উপন্থাপন করেন যা পরবর্তীতে সঠিক মডেল হিসেবে সর্বত্র স্বীকৃত হয়েছে। এ মডেল উদ্ভাবনের কারণে উইলকিন্সসহ তাঁদেরকে ১৯৬২ সালে নোবেল পুরন্ধার প্রদান করা হয়।

Rosalind Franklin DNA গঠন আবিষ্কারে গুরুত্বপূর্ণ অবদান রাখলেও মাত্র ৩৭ বছর বয়সে মৃত্যুবরণ করেন, নোবেল প্রাইজ-এ তাঁর নাম অন্তর্ভুক্ত হয়নি, কারণ মৃত্যু পরবর্তী সময়ে কাউকে নোবেল প্রাইজ দেয়া হয় না। Franklin-ই বলেন যে, ফসফেট গ্রুপ DNA অণুর বাইরের দিকে থাকে।

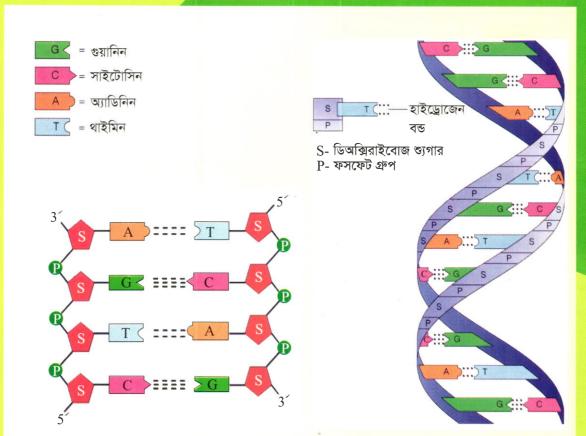

Walkon ও Crick প্রদত্ত ডাবল হেলিক্স মডেল অনুযায়ী DNA অণুর ভৌত গঠন নিমরূপ:

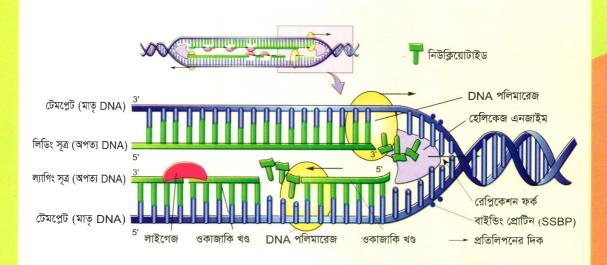
ক্ষেত্রিজ বিশ্ববিদ্যালয়ে কাজ করার সময় DNA ডাবল হেলিক্স গঠনের ওপর তাদের প্রস্তাবটি ব্রিটিশ জার্নাল Nature-এ ১ প্রস্ঠায় একটি প্রবন্ধে প্রকাশ করেন।

(৪) DNA অণু দ্বিসূত্রক, বিন্যাস ডান থেকে বাম দিকে ঘুরানো (প্যাচানো) সিঁড়ির মতো, যাকে বলা হয় ডাবল হেলিক্স (double helix)।


সূত্র দুটি সমদূরত্বে পরক্ষার বিপরীতমুখী (একটি 5'→ 3' কার্বনমুখী এবং অপরটি 3'→ 5' কার্বনমুখী) হয়ে স্ববন্থান করে।

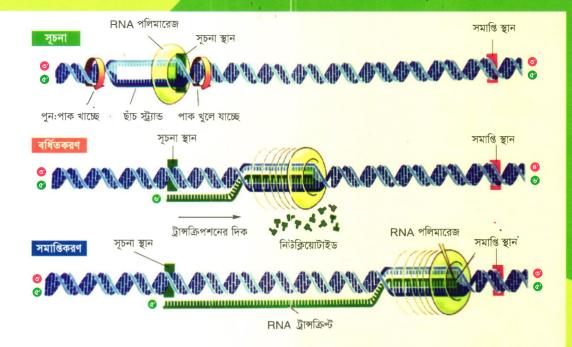
্রি সূত্র দুটি তৈরি হয় ডিঅক্সিরাইবোজ শুগার (S) ও ফসফেটের (P) পর্যায়ক্রমিক সংযুক্তির মাধ্যমে।

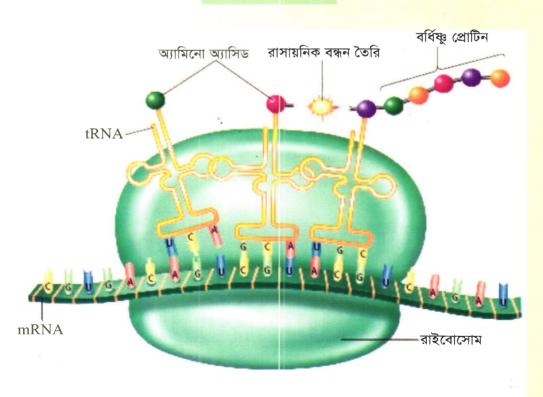



চিত্র ১.২৬ : DNA অণুর একাংশ (সরলীকৃত) । S-শুগার, P-ফসফেট , A, T, G, C= নাইট্রোজিনাস বেস , ... হাইড্রোজেন বন্ড ।

চিত্র ১.২৭: DNA ডাবল হেলিক্স (ওয়াটসন-ক্রিক মডেল)
P-ফসফেট, S-স্তাগার, A-স্যাডিনিন, T-থাইমিন,
G-শুয়ানিন, C-সাইটোসিন, = হাইড্রোজেন বন্ড।

চিত্র ১.২৮ : দুটি স্ট্রান্ডের মধ্যে হাইড্রোজেন বন্ডিং এবং অ্যান্টিপ্যারালাল অবছান। হাইড্রোজেন বন্ডিং হলো দুটি অপুর মধ্যকার আকর্ষণজ্ঞনিত আচ্চত্রপু (intermolecular) বন্ডিং।




চিত্র : DNA অণুর ডবল হেলিক্স

চিত্র : DNA অণুর বেসজোড়গুলোর সজ্জাক্রম

চিত্র : DNA প্রতিলিপন

চিত্র : ট্রান্সক্রিপশন

চিত্ৰ : ট্রান্সলেশন

- 🔏) সূত্র দুটির মাঝখানের প্রতিটি ধাপ তৈরি হয় একজোড়া নাইট্রোজেন বেস (A = T বা G ≡ C) দিয়ে।
- ক্ষ্যফেট যুক্ত থাকে ডিঅক্সিরাইবোজ শুগারের 3' ও 5' কার্বনের (৩য় ও ৫ম কার্বনের) সাথে এবং ক্ষারকগুলো যুক্ত থাকে ডিঅক্সিরাইবোজ শুগারের 1' কার্বনের (১ম কার্বনের) সাথে। কাজেই সূত্রকের বাইরের দিকে ফসফেট এবং ভেতরের দিকে নাইট্রোজেন ক্ষারক থাকে।
- প্রত) DNA অণুতে চার ধরনের নাইট্রোজেন ক্ষারক (অ্যাডিনিন, গুয়ানিন, থাইমিন এবং সাইটোসিন) থাকে। অ্যাডিনিন (A) এর সম্পূরক ক্ষারক থাইমিন (T) এবং গুয়ানিন (G) এর সম্পূরক ক্ষারক সাইটোসিন (C)।
- প্রকটি সূত্রের অ্যাডিনিন অপর সূত্রের থাইমিনের সাথে দুটি হাইড্রোজেন বন্ধনী দিয়ে (A = T / T = A) এবং একটি সূত্রের শুয়ানিন অপর সূত্রের সাইটোসিনের সাথে তিনটি হাইড্রোজেন বন্ধনী (G = C / C = G) দিয়ে যুক্ত হয়। কাজেই সিঁড়ির ধাপ হবে A = T অথবা G = C। বিভ তৈরি হয় পাশাপাশি অবস্থিত দুটি ক্ষারকের O-HN, NH-N এবং NH-O এর মধ্যে। C এবং G এর মধ্যে এই তিনটি অপশনই বিদ্যমান। A এবং C এর মধ্যে দুটি অপশন বিদ্যমান, C তে ০ থাকলেও পাশে C তে HN নাই।
- (৮) DNA অণুর সূত্র দুটির প্রতিটি পাঁচ বা ঘূর্ণনের দৈর্ঘ্য 34 Å (3.4 nm)। প্রতিটি পাঁচে নাইট্রোজিনাস বেস জোড়ের ১০টি ধাপ সমদূরত্বে অবস্থান করে। ফলে সিঁড়ির এক ধাপ থেকে অপর ধাপের দূরত্ব হয় 3.4 Å (0.34 nm)।
- 😭 প্রতিটি প্যাচে হেলিক্স দুটির ব্যাস 20 Å (2 nm)। তবে DNA অণুর দৈর্ঘ্য প্রজাতিভেদে বিভিন্ন।
- (১৯) হেলিক্সের প্রতিটি সম্পূর্ণ প্যাঁচ বা ঘূর্ণনে শৃঙ্খলের বাইরের দিকে একটি গভীর খাঁজ (major groove) ও একটি অগভীর খাঁজ (minor groove) সৃষ্টি হয়।
- (১১) প্রতিটি ঘূর্ণনে মনোনিউক্লিওটাইডের সংখ্যা 10 জোড়া।
- (১২) প্রতিটি প্যাচে হাইড্রোজেন বন্ড সংখ্যা 25 টি।
- (১৯৫) DNA-এর আণবিক ওজন 106–109 এর মধ্যে।

মোট কথা দু'টি ডিঅক্সিরাইবো পলিনিউক্লিওটাইডের সূত্র বিপরীতমুখীভাবে পরম্পর সংযুক্ত হয়ে একটি দ্বিসূত্রক DNA অণু গঠন করে। অণুটি প্যাচানো সিঁড়ির মতো বিন্যন্ত থাকে।

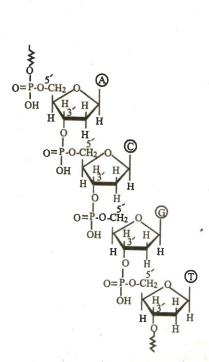
DNA-এর রাসায়নিক গঠন (Chemical Structure of DNA): যেসব রাসায়নিক পদার্থ নিয়ে DNA গঠিত সেসব রাসায়নিক পদার্থই হলো DNA-এর রাসায়নিক গঠন উপাদান। এক খণ্ড DNA-কে আর্দ্র-বিশ্লেষণ করলে পাওয়া যায় কতগুলো নিউক্লিওটাইড। নিউক্লিওটাইডকে আর্দ্র-বিশ্লেষণ করলে পাওয়া যায় ফসফোরিক অ্যাসিড ও নিউক্লিওসাইড। নিউক্লিওসাইডকে বিশ্লেষণ করলে পাওয়া যায় নাইট্রোজেনঘটিত ক্ষারক এবং ডিঅক্সিরাইবোজ ভ্যগার। নাইট্রোজেনঘটিত ক্ষারকসমূহকে বিশ্লেষণ করলে পাওয়া যায় অ্যাডিনিন, গুয়ানিন, থাইমিন ও সাইটোসিন নামক ক্ষারক (নাইট্রোজিনাস বেস)।

কাজেই DNA-এর রাসায়নিক গঠন উপাদান হলো— (১) <u>পাঁচ কার্বনবিশিষ্ট ডিঅক্সিরাইবোজ শুগার, (২) ফসফোরিক</u> অ্যাসিড এবং (৩) নাইট্রোজেনঘটিত ক্ষারক। ক্ষারকগুলো অ্যাডিনিন ও শুয়ানিন নামক পিউরিন এবং সাইটোসিন ও থাইমিন নামক পাইরিমিডিন।

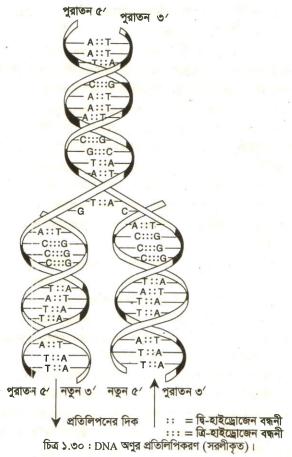
DNA-এর কাজ (Functions of the DNA) : নিচে DNA-এর কয়েকটি কাজ উল্লেখ করা হলো-

🔏 ক্রোমোসোমের গাঠনিক উপাদান হিসেবে কাজ করে।

- 🔀 বংশগতির আণবিক ভিত্তি হিমেবে কাজ করে।
- 🌶। জীবের সকল বৈশিষ্ট্য ধারণ করে এবং নিয়ন্ত্রণ করে।
- 🏿 🎉 জীবের বৈশিষ্ট্যসমূহ বংশপরম্পরায় অধঃস্তন প্রজন্মে স্থানান্তর করে।
- 🗹 জীবের যাবতীয় বৈশিষ্ট্যের প্রকাশ ঘটায়।
- ৬ জীবের সকল শারীরতাত্ত্বিক ও জৈবিক কাজ-কর্মের নিয়ন্ত্রক হিসেবে কাজ করে।
- প। জীবের পরিবৃত্তির (mutation) ভিত্তি হিসেবে কাজ করে।
- 😿। DNA এবং তার হেলিক্সের কোনো অংশে গোলযোগ দেখা দিলে তা মেরামত করে নিতে সক্ষম।
- 🔪 DNA-রেপ্লিকেশন বা প্রতিলিপন প্রক্রিয়া জীবের জাতিসত্ত্বা অটুট রাখে এবং প্রজাতি শনাক্তকরণে DNA ভূমিকা রাখে।
- ্ব্বির্বাজীবকোষের জৈবিক সংকেত প্রেরক হলো DNA।


DNA কীভাবে কাজ করে ?

DNA-র প্রধান কাজ হলো জীবের বৈশিষ্ট্য প্রকাশ করা। **'জিন'** এর মাধ্যমে জীবের বৈশিষ্ট্য প্রকাশ পায় এবং বংশ পরম্পরায় স্থানান্তরিত হয়।


DNA-এর রেপ্লিকেশন, ট্রাঙ্গক্রিপশন এবং ট্রাঙ্গলেশন প্রক্রিয়ার মাধ্যমে (৫৩, ৫৮ ও ৬২ পৃষ্ঠাসমূহ দ্রষ্টব্য) প্রয়োজনীয় কাজ সম্পন্ন করে থাকে।

DNA-এর জৈবিক তাৎপর্য বা শুরুত্ব (Biological significance of DNA): DNA বংশগতিবিষয়ক বৈশিষ্ট্যাবলির ধারক ও বাহক। অধিকাংশ জীবের বংশগতির একক অর্থাৎ জিন (gene) DNA ছাড়া অন্য কিছুই নয়। নিম্নলিখিত কারণগুলোর জন্যই DNA-কে বংশগতির ধারক ও বাহক বলা হয়।

- (i) কোষ বিভাজনের সময় DNA-এর এক নির্ভুল প্রতিলিণি সৃষ্টি হয়।
- (ii) DNA কোষের জন্য নির্দিষ্ট প্রকারের প্রোটিন সংশ্রেষ করে।
- (iii) DNA বংশগতির সব ধরনের **জৈবিক সংকেত বহন** করার ক্ষমতা রাখে।
- (iv) DNA-এর গঠন <u>অত্যন্ত ছায়ী এবং মিউটেশন ছাড়া এর কোনো পরিবর্তন হয়</u> না।
- (v) জীবকোষের **জৈবিক সংকেত প্রেরক হচ্ছে** DNA।
- (vi) কোনো কারণে DNA অণুর গঠনে কোনো পরিবর্তন হলে পরিবৃত্তির উদ্ভব হয়। আর পরিবৃত্ত হলো বিবর্তনের মূল উপাদান।

চিত্র ১.২৯ : DNA অণুর একটি শিকলের একাংশ।

পরিশেষে বলা যায়, DNA-অণু জীবকোষের সকল রাসায়নিক বিক্রিয়া নিয়ন্ত্রিত করে, তাই DNA-ই হলো 'মাস্টার মলিকিউল' (master molecule)।

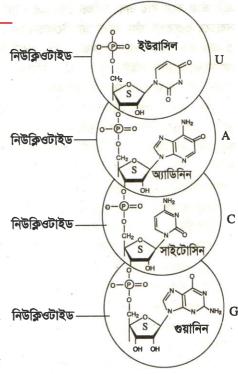
রাইবোনিউক্লিক অ্যাসিড (RNA = Ribonucleic Acid)

RNA হলো Ribonucleic acid এর অ্যাক্রোনিম বা সংক্ষিপ্ত রূপ।
যে নিউক্লিক অ্যাসিডের পলিনিউক্লিপ্টাইডের মনোমার এককগুলোতে
গাঠনিক উপাদানরূপে রাইবোজ শ্যুগার এবং অন্যতম বেস (ক্ষারক)
হিসেবে ইউরাসিল (DNA-তে যেখানে থাইমিন) থাকে তাকে
রাইবোনিউক্লিক অ্যাসিড বা RNA বলে।

জবন্থান বা বিশ্বৃতি: সকল জীব কোষে RNA থাকে। একটি কোষে বিরাজমান RNA এর শতকরা ৯০ ভাগ থাকে সাইটোপ্লাজমে, বাকি ১০ ভাগ নিউক্লিয়াসে। সাইটোপ্লাজম, রাইবোসোম, নিউক্লিয়াস, ক্রোমোসোম, মাইটোকদ্রিয়া এবং প্লাস্টিডেও RNA পাওয়া যায়। নিউক্লিওটাইড নিউক্লিয়াসের নিউক্লিওলাসে এবং DNA-এর সহযোগী হিসেবে ক্রোমোসোমে RNA থাকে। ব্যাকটেরিয়া কোষেও RNA পাওয়া যায়। এছাড়া কিছু ভাইরাসেও RNA উপস্থিত থাকে।

RNA অণুর ভৌত গঠন : RNA অণু একসূত্রক চেইন-এর মতো। চার ধরনের নিউক্লিওটাইড যুক্ত হয়ে একসূত্রকবিশিষ্ট RNA অণু গঠন করে। প্রতিটি নিউক্লিওটাইড রাইবোজ শুগার, নাইট্রোজেন বেস ও ফসফেট নিয়ে গঠিত। নিউক্লিওটাইডগুলো 3-5 ফসফোডাইএস্টার বন্ধন দ্বারা পরস্পর যুক্ত থাকে। এটি ছানে ছানে কুণ্ডলিত অবছায় থাকতে পারে। কোনো কোনো RNA অণুর গঠনে একাধিক U-আকৃতির ফাঁস (hairpin loop) বা শুপ থাকে।

RNA-এর রাসায়নিক গঠন : নিমূলিখিত রাসায়নিক পদার্থ নিয়ে RNA গঠিত।


প্রাচ কার্বনবিশিষ্ট রাইবোজ শুগার (পেন্টোজ শুগার)।

🙀 নাইট্রোজিনাস বেস (ক্ষারক)-অ্যাডিনিন, গুয়ানিন, ইউরাসিল এবং সাইটোসিন।

(iii) ফসফেট (ফসফোরিক অ্যাসিড)।

RNA-এর শ্রেণিবিভাগ: গঠন ও কাজের ভিত্তিতে RNA-কে নিম্নলিখিত সংযুক্তি স্থান পাঁচ ভাগে ভাগ করা হয়েছে।

(i) ট্রান্সফার RNA বা tRNA (Transfer RNA) : যেসব RNA জেনেটিক কোড অনুযায়ী একেকটি অ্যামিনো অ্যাসিডকে mRNA অণুতে ছানান্তর করে প্রোটিন সংশ্রেষে সাহায্য করে সেগুলোকে ট্রান্সফার RNA বলে। প্রতিটি কোষে প্রায় ৩১-৪২ ধরনের tRNA থাকে। নিউক্লিয়াসের ভেতরে tRNA সৃষ্টি হয়। প্রতিটি tRNA-তে মোটামুটি ৭৫ থেকে ৯০টি নিউক্লিওটাইড অণু থাকে। কোষের প্রায় ১৫ ভাগ RNA-ই tRNA। এটি সবচেয়ে ক্ষুদ্রাকার RNA এবং ওজন প্রায় ২৫০০০ ডাল্টন। বিজ্ঞানী R. Holley এবং তার সহকর্মারা tRNA-এর গঠনের ক্লোভার লিফ (Clover leaf) মডেল প্রণয়ন করেন। এ মডেল অনুযায়ী tRNA-তে পাঁচটি বাহু ও চারটি ফাঁস থাকে। বাহুগুলো হলো-অ্যামিনো অ্যাসিড বাহু, T বাহু, অ্যান্টিকোডন

চিত্র ১.৩১ : RNA অণুর একাংশ।

চিত্র ১.৩২ : tRNA-এর ক্লোভার লিফ মডেল।

বাহু, D বাহু এবং অতিরিক্ত বাহু। প্রাথমিকভাবে প্রতিটি tRNA এক সূত্রক এবং লম্বা চেইনের মতো থাকে কিন্তু পরবর্তীতে এটি ভাঁজ হয়ে যায় এবং বিভিন্ন বেস-এর মধ্যে জোড়ার সৃষ্টি হয়ে প্রতিটি tRNA-তে একাধিক ফাঁস (loop) সৃষ্টি হয়। সবচেয়ে শুরুতুপূর্ণ ফাঁস হলো জ্যান্টিকোডন ফাঁস যা mRNA-এর কোডন-এর সাথে মুখে মুখে বসে যেতে পারে। tRNA- ও প্রান্ত এবং সবসময়ই ACC ধারায় বেস সজ্জিত থাকে। এখানে অ্যামিনো অ্যাসিড সংযুক্ত হয়। একে বলা হয় জ্যামিনো জ্যাসিড সাইট। ফাঁস অবস্থায় সবসময়ই অ্যান্টিকোডন ফাঁস ও অ্যামিনো অ্যাসিড সাইট বিপরীত অবস্থানে থাকে। তিনটি বেস নিয়ে অ্যান্টিকোডন সৃষ্টি হয়।

সব tRNA অণুর বেস সিকুয়েন্স একই রকম নয়। বেস সিকুয়েন্সের এ পার্থক্য এর রাসায়নিক গুণাগুণে পার্থক্য সৃষ্টি করে। এর ওপর ভিত্তি করে সঠিক tRNA অ্যাকটিভেটিং এনজাইম সঠিক অ্যামিনো অ্যাসিড নির্ণয় করে থাকে। বিশটি অ্যামিনো অ্যাসিডের জন্য বিশটি পৃথক পৃথক tRNA অ্যাকটিভেটিং এনজাইম আছে। tRNA অ্যাকটিভেটিং এনজাইম সঠিক tRNA শনাক্ত করে থাকে tRNA-এর সুনির্দিষ্ট আকৃতি ও রাসায়নিক ধর্ম দ্বারা। এটি এনজাইম-সাবস্ট্রেট স্পেসিপিসিটির অতি সুন্দর উদাহরণ। tRNA-র সাম্থে অ্যামিনো অ্যাসিডের সংযুক্তি এবং বর্ধিষ্ণু পলিপেন্টাইডের সাথে অ্যামিনো অ্যাসিডের সংযুক্তি প্রয়োজনীয় শক্তি সরবরাহ করে থাকে ATP।

উৎপত্তি: DNA থেকে tRNA-এর সৃষ্টি হয়।

কাজ : প্রোটিন সংশ্রেষণের সময় জেনেটিক কোড অনুযায়ী অ্যামিনো অ্যাসিডকে mRNA অণুতে স্থানান্তর করা।

(ii) বার্তাবহ RNA বা mRNA (Messenger RNA) : যেসব RNA জিনের সংকেত অনুযায়ী প্রোটিন সংশ্লেষের ছাঁচ হিসেবে কার্যকর হয়ে নির্দিষ্ট অ্যামিনো অ্যাসিড অনুক্রম বাছাই করে, সেগুলোকে মেসেঞ্জার RNA বা বার্তাবহ RNA বলে। DNA থেকে ট্রাঙ্গক্রিপশনের মাধ্যমে mRNA সৃষ্টি হয়। mRNA লম্বা চেইনের মতো। mRNA-এর ৫ প্রান্তের কয়েকটি বেস কোডনবিহীন, এ প্রান্তকে ৫-শিডার (5-leader) বলে। আবার ৩ প্রান্তের কয়েকটি বেস কোডনবিহীন, এ প্রান্তকে ৩-ট্রইলার (3-trailer) বলা হয়। মাঝখানের অংশকে কোডিং অংশ (coding region) বলে। পরপর তিনটি বেস মিলে একটি কোডন হয়। mRNA নির্দিষ্ট প্রোটিন সংশ্লেষণের বার্তা বহন করে। কোষের মোট RNA-এর ৫-১০ ভাগ mRNA। এরা অত্যন্ত ক্ষণস্থায়ী। mRNA অণুর আণবিক ওজন ৫

কাজ : নির্দিষ্ট প্রোটিন সংশ্রেষণের বার্তা ৫² লিডার নিউক্লিয়াস থেকে সাইটোপ্লাজমে বহন করে এবং রাইবোসোম ও tRNA-র সাহায্যে নির্দিষ্ট অ্যামিনো অ্যাসিড অনুক্রমের শৃঙ্খল তৈরি করে।

চিত্র ১.৩৩ : mRNA-এর গঠন।

কোডিং অঞ্চল

৩- ট্রেইলার

MRNA ও tRNA এর মধ্যে পার্থক্য

mRNA	tRNA
১। একসূত্রক, সামান্য ভাঁজযুক্ত হলেও দ্বিসূত্রক অবস্থা গঠন	১। প্রাথমিকভাবে একসূত্রক, তবে ভাঁজযুক্ত হয়ে এবং
করে না। এতে কোনো ফাঁস তৈরি হয় না। এর ৫' ও ৩'	পরিপ্রক বেসগুলো যুক্ত হয়ে কোনো কোনো অংশ
প্রান্ত দুই দিকে অবস্থান করে।	গৌণভাবে দ্বিসূত্রক হয়। এতে একাধিক ফাঁস থাকে।
	এদের ৫' ও ৩' প্রান্ত কাছাকাছি অবস্থান করে।
২। এরা নিউক্লিয়াসে সৃষ্টি হয়ে নিউক্লিয়াস ও সাইটোপ্লাজমে	২। এরা নিউক্লিয়াসে সৃষ্টি হয়ে সাইটোপ্লাজমে অবস্থান
অবস্থান করে।	করে।
৩। আকারে অপেক্ষাকৃত বড়ো।	. ৩। আকারে বেশ ছোটো।
৪। এর কোডিং অঞ্চলে কোডন থাকে।	৪। এতে কোডন থাকে না বরং একটি অ্যান্টিকোডন
* '	থাকে।

(iii) **রাইবোসোমাল RNA বা rRNA (Ribosomal RNA)** : যেসব RNA রাইবোসোমের প্রধান গাঠনিক উপাদান হিসেবে কাজ করে, তাকে **রাইবোসোমাল RNA** বলে। কোষের সমন্ত RNA-এর শতকরা ৮০-৯০ ভাগই rRNA। কোষের রাইবোসোমে এদের অবস্থান। সর্বাপেক্ষা স্থায়ী এবং অদ্রবণীয় RNA। প্রোটিনের সাথে যুক্ত হয়ে রাইবোনিউক্লিও-প্রোটিন কণা গঠন করে।

কাজ: <u>রাইৰোসোম নাম</u>ক কোষ-অঙ্গাণু সৃষ্টিতে অবদান রাখে যার মাধ্যমে কোষে প্রোটিন সংশ্রেষিত হয়।

(iv) ক্রশগতীয় RNA বা gRNA (Genetic RNA) : যেসব RNA কিছু ভাইরাসদেহে (যেমন—TMV) বংশগতি উপাদান হিসেবে কাজ করে তাকে বংশগতীয় RNA বলে। এসব ক্ষেত্রে জীবদেহে DNA অনুপস্থিত থাকে। (যেমন-TMV)

কাজ : প্রধান কাজ প্রোটিন তৈরি। কিছু ভাইরাস দেহে বংশগতির উপাদান হিসেবে কাজ করে। (যেমন- TMV)

চিত্ৰ ১.৩8 : একটি rRNA।

(v) মাইনর RNA বা miRNA (Minor RNA) : সাইটোপ্লাজমীয় RNA ও নিউক্লীয়
RNA নামে কিছু ক্ষুদ্র RNA রয়েছে যারা কোষে বিভিন্ন প্রোটিনের সাথে মিশে এনজাইমের কাঠামো দান করে। এরা মাইনর
RNA হিসেবে পরিচিত। এর অপর নাম- নিউক্লীয় RNA/Guide RNA/রাইবোজাইম।

কাজ: বিভিন্ন ধরনের এনজাইমের কাঠামো দান করা এবং এনজাইম হিসেবে কাজ করা।

RNA-এর কাজ (Functions of RNA) :

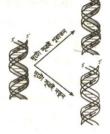
- (ঠ) RNA-এর প্রধান কাজ প্রোটিন সংশ্লেষ।
- (२) tRNA-অ্যামিনো অ্যাসিডকে mRNA তে স্থানান্তর করে।
- (अ) rRNA-রাইবোনিউক্লিও-প্রোটিন গঠন করে।
- (৪) mRNA, DNA হতে বার্তা বহন করে রাইবোসোমে বসে tRNA-এর সহযোগিতায় প্রোটিন তৈরি করে।

pha ও RNA এর মধ্যে পার্থক্য 🎠 RNA বৈশিষ্ট্য একসত্রক, শিকলের ন্যায়। দ্বিসূত্রক, প্যাচানো বা ঘুরানো সিঁড়ির মতো। ১। ভৌত গঠন (i) এতে থাকে ডিঅক্সিরাইবোজ শুগার এবং (i) এতে থাকে রাইবোজ ভ্যগার এবং ২। রাসায়নিক গঠন (ii) RNA-এর পাইরিমিডিনে ইউরাসিল ও (ii) DNA-এর পাইরিমিডিনে থাইমিন ও সাইটোসিন বেস থাকে। সাইটোসিন বেস থাকে। কার্যগত দিক হতে RNA পাঁচ প্রকার। যথা-DNA-অণুর কোনো প্রকারভেদ নেই। কার্যগত ৩। প্রকার দিক হতে DNA-একই রকম হয়। tRNA, rRNA, mRNA, gRNA, মাইনর RNA। নতুনভাবে RNA সৃষ্টি হয়। কোনো প্রতিলিপন হয় না। প্রতিলিপনের মাধ্যমে নতুন DNA সৃষ্টি হয়। ৪। উৎপত্তি ক্রোমোসোম, সাইটোপ্লাজম, রাইবোসোম ও প্রধানত ক্রোমোসোমে থাকে। সামান্য পরিমাণ ৫। অবস্থান নিউক্লিওলাসে থাকে। মাইটোকন্দ্রিয়া এবং ক্রোরোপ্রাস্টেও থাকে। প্রোটিন সংশ্রেষ করা। বংশগতির ধারক, বাহক ও নিয়ন্ত্রক হিসেবে কাজ ৬। প্রধান কাজ করা। ভাইরাল RNA ছাড়া বংশগত চরিত্র ঘহন করে DNA বংশগত চরিত্র বহন করে। ৭। বংশগতি এতে নিউক্লিওটাইডের সংখ্যা অনেক কম। এতে নিউক্রিওটাইডের সংখ্যা অনেক বেশি। ৮। সংখ্যা তুলনামূলকভাবে কম অতিবেগুনি রশ্মি শোষিত হয়। অধিক পরিমাণে অতিবেগুনি রশ্যি শোষণ করে। ৯ । অতিবেগুনি রশ্যি এদের আণবিক ওজন কয়েক লক্ষের বেশি হয় না। এদের আণবিক ওজন দশ লক্ষ হতে বহু কোটি ১০। আণবিক ওজন ডাল্টন পর্যন্ত হয়।

DNA অণুর রেপ্লিকেশন (Replication of DNA) বা প্রতিলিপন *

DNA-এর প্রতিলিপন হয় তা অনেক আগে থেকেই জানা ছিল কিন্তু সঠিক প্রতিলিপন পদ্ধতি সম্বন্ধে জানা যায় অনেক পরে। প্রাথমিকভাবে DNA অণুর রেপ্লিকেশন তথা প্রতিলিপনের জন্য বিজ্ঞানী লেভিয়েগ্র্ছাল ও ক্রেন তিনটি অনুকল্প প্রস্তাব করেন (১৯৫৬); এগুলো হলো—

- (১) সংরক্ষণশীল অনুকল্প, (২) অর্ধ-সংরক্ষণশীল অনুকল্প এবং (৩) বিচ্ছুরণশীল অনুকল্প। নিমে প্রক্রিয়াগুলোর সংক্ষিপ্ত বর্ণনা দেওয়া হলো—
- (১) সংরক্ষণশীল অনুকল্প (Conservative hypothesis) : এ প্রক্রিয়ায় মাতৃ DNA থেকে যে দুটি নতুন DNA সূত্র সৃষ্টি হয় তার একটিতে ২টি অণু সূত্রই আসে মাতৃ DNA থেকে এবং অপরটিতে ২টি অণুসূত্রই থাকে নতুনভাবে সৃষ্ট। অনুকল্পটি সঠিক বিবেচিত হয়নি।
- (২) **অর্থ-সংরক্ষণশীল অনুকল্প (Semiconservative hypothesis)** : এ প্রক্রিয়ায় একটি মাতৃ DNA অণু থেকে দুটি নতুন DNA অণু সৃষ্টি হয়। নতুন সৃষ্ট DNA অণু দুটোর প্রত্যেকটিতে একটি মাতৃস্ত্র এবং অন্যটি নতুন সূত্র থাকে। এজন্য একে অর্ধ-সংরক্ষণশীল অনুকল্প বা পদ্ধতি বলে। **অনুকল্পটি পরে সঠিক বলে প্রমাণিত হয়**।
- (৩) বিচ্ছুরণশীল অনুকল্প (Dispersive hypothesis) : এ প্রক্রিয়ায় মাতৃ DNA অণুর সূত্রদ্বয় বিশ্রিষ্ট বা খণ্ডিত হয়ে প্রতিলিপি সৃষ্টি করে। এরপর বিভিন্ন পরিমাণের নতুন ও পুরাতন (মাতৃ) খণ্ডকের সংযুক্তির মাধ্যমে দুটো DNA অণু গঠিত হয়। অনুকল্পটি সঠিক বিবেচিত হয়নি।


১৯৫৭—১৯৫৮ সালে প্রমাণিত হয় যে, DNA রেপ্লিকেশন হয় অর্ধ-সংরক্ষণশীল পদ্ধতিতে। স্টেন্ট (১৯৫৭) 'অর্ধ-সংরক্ষণশীল' শব্দটি প্রথম প্রয়োগ করেন। মেসেশসন-স্টাহ্শ (Messelson-Stahl, 1958) পরীক্ষার মাধ্যমে E. coli ব্যাকটেরিয়াতে অর্ধ-সংরক্ষণশীল অনুকল্পটি প্রমাণ করেন। ১৯৬০ সালে সুয়েকা মানব হেলা কোষে এবং সাইমন ১৯৬১ সালে Chlamydomonas শৈবালে অর্ধ-সংরক্ষণশীল পদ্ধতি প্রমাণ করেন।

Meselson-Stahl-এর পরীক্ষা

Meselson and Stahl $E.\ coli$ ব্যাকটেরিয়াকে ^{15}N (^{14}N এর একটি ভারী আইসোটোপ) সমৃদ্ধ মিডিয়ামে জন্মানোর ব্যবছা করেন। বেশ কিছু জেনারেশন পর $E.\ coli$ ব্যাকটেরিয়াসমূহের DNA ^{15}N দ্বারা চিহ্নিত হয়। এরপর তারা ঐ ^{15}N সমৃদ্ধ ব্যাকটেরিয়াকে পুনরায় ^{14}N মিডিয়ামে ছানান্তর করেন। পরবর্তী জেনারেশনে দেখা গেল নতুন সৃষ্ট ব্যাকটেরিয়াগুলোর DNA ডবল স্ট্র্যান্ডের একটি স্ট্র্যান্ড ^{15}N এবং অপর স্ট্র্যান্ড ^{14}N বিশিষ্ট। এতেই প্রমাণিত হয় DNA রেপ্লিকেশন হয় অর্ধ-সংরক্ষণশীল পদ্ধতিতে।

অর্ধ-সংরক্ষণশীল প্রক্রিয়ায় DNA অণুর রেণ্লিকেশন বা প্রতিলিপন

জীবকোষের সবচেয়ে গুরুত্বপূর্ণ বস্তু হলো তার DNA। বহুকোষী জীবের দেহ গঠনের জন্য জাইগোট কোষকে বারবার বিভাজিত হতে হয়। এককোষী জীবের প্রজনন তথা সংখ্যাবৃদ্ধির জন্যও কোষ বিভাজিত হয়। একটি কোষ বিভাজিত হয়ে দুটি কোষে পরিণত হওয়ার আগেই মাতৃকোষের DNA ডাবল হেলিক্সটিকে দুটি ডাবল হেলিক্স-এ পরিণত হতে হয়। কোষ বিভাজন শুরু হওয়ার আগে ইন্টারফেজ পর্যায়ে একটি DNA ডাবল হেলিক্স থেকে দুটি ডাবল হেলিক্স তৈরি হয়। এটিই হলো DNA অণুর রেপ্লিকেশন বা প্রতিলিপন। যে প্রক্রিয়ায় একটি মাতৃ DNA থেকে তার প্রতিরূপ দুটি DNA উৎপন্ন হয় তাকে DNA রেপ্লিকেশন বলে। কোষ চক্রের S ধাপে DNA-এর রেপ্লিকেশন সম্পন্ন হয়। DNA অণুর রেপ্লিকেশন হয়ে থাকে অর্থ-সংরক্ষণশীল পদ্ধতিতে (Semi-conservative method) অর্থাৎ নতুন সৃষ্ট ডাবল হেলিক্স-এর একটি হেলিক্স থাকবে পুরাতন এবং একটি হেলিক্স হবে নতুনভাবে সৃষ্ট। Mathew Messelson ও Franklin Stahl ১৯৫৮ সালে এটি প্রতিষ্ঠিত করেন।

^{*} কেউ কেউ প্রতিলিপনের পরিবর্তে অনুলিপন ব্যবহার করতে চান। অনুলিপন হলো কোনো লেখা বা পাণ্ডুলিপির নকল অর্থাৎ কোনো বস্তুর নকল। এ নকল সঠিক অর্থে হুবহু নাও হতে পারে। যেমন- বই থেকে একটি লেখা আমি ঠিক ঠিক মতো আমার খাতায় লিখে নিলাম। এটি অনুলিপন কিন্তু যথার্থ হুবহু নকল নয়। ফটোকপি করলে হুবহু নকল হুতে পারে। কাজেই DNA রেপ্লিকেশনের সঠিক অর্থ হলো রেপ্লিকা তৈরি অর্থাৎ একটি DNA ডাবল স্ট্র্যান্ড থেকে হুবহু আরেকটি DNA ডাবল স্ট্র্যান্ড তৈরি। কাজেই DNA **প্রতিলিপনই,** replication of DNA-এর যথার্থ বংলা প্রতিশব্দ হয়।

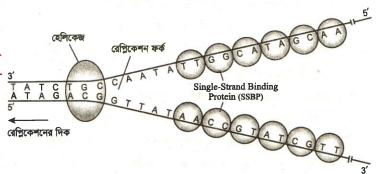
আদি কোষের DNA বৃত্তাকার, এতে কোনো প্রান্ত বা মাঝ নেই, তাই যেকোনো এক জায়গায় রেপ্লিকেশন শুরু হয় এবং রেপ্লিকেশন ফর্ক দু দিকে সরে গিয়ে মাঝামাঝি ছানে মিলিত হয়ে দ্রুত রেপ্লিকেশন শেষ হয়। ব্যাকটেরিয়ার বৃত্তাকার DNA রেপ্লিকেশনে প্রতি মিনিটে দশ লক্ষ পর্যন্ত বেপেয়ার যুক্ত হতে পারে। প্রকৃতকোষের DNA লম্বা সূত্রাকার। এর দুটি প্রান্ত থাকে। তাছাড়া প্রকৃতকোষের DNA-এর রেপ্লিকেশন গতি কম, মিনিটে ৫০০—৫০০০ পর্যন্ত বেসপেয়ার যুক্ত হতে পারে। এ কারণে প্রকৃতকোষের লম্বা সূত্রাকার DNA-এর কোনো প্রান্তেই রেপ্লিকেশন শুরু হয় না, রেপ্লিকেশন শুরু হয় সূত্রের মাঝে মাঝে একই সাথে বহু জায়গায় (ড্রাফেলাতে ৫০০০০ জায়গায়)।

DNA অণ্র রেপ্রিকেশনের জন্য প্রয়োজনীয় উপকরণ : (i) একটি ছাঁচ, (ii) অসংখ্য নিউক্লিওটাইড ট্রাইফসফেট (dATP, dGTP, dTTP এবং dCTP; d = deoxyribose), (iii) নিউক্লিওটাইডের মধ্যে বন্ড সৃষ্টির জন্য প্রচুর শক্তি, যা ট্রাইফসফেট থেকে আসে; (iv) শুরুত্পূর্ণ কিছু এনজাইম ও সহযোগী প্রোটিন যাদেরকে একত্রে বলা হয় রেপ্লিকেশন কুমপ্রেক্স বা রেপ্লিসোম (Replication complex or replisome). রেপ্রিসোমের প্রধান এনজাইম হলো DNA পলিমারেজ। এ ছাড়াও আছে থেলিকেজ, প্রাইমেজ, সিঙ্গেল স্ট্রান্ড বাইন্ডিং প্রোটিন (SSBP), গাইরেজ, টপোআইসোমারেজ ইত্যাদি।

DNA অণুর রেপ্লিকেশনের ধাপসমূহ: প্রকৃত কোষে DNA রেপ্লিকেশন একটি জটিল প্রক্রিয়া। অর্ধ-সংরক্ষণশীল প্রক্রিয়ায় DNA রেপ্লিকেশনের ধাপসমূহ নিমূর্য়প:

ধাপ-১ : ডাবল হেলিক্স-এর দুটি স্ট্র্যান্ডকে একক স্ট্র্যান্ড-এ পৃথকীকরণ

রেপ্লিকেশন শুরু হওয়ার জন্য DNA অণুর দুটো স্ট্র্যান্ডকে অবশ্যই একটি থেকে অপরটি পৃথক হতে হবে। DNA অণুর **স্নির্দিষ্ট নিউক্লিওটাইড সিকোয়েন্স** (Sequence) রেপ্লিকেশনের সূচনা অঞ্চল হিসেবে কাজ করে। রেপ্লিকেশন সূচনার এ সুনির্দিষ্ট সিকোয়েন্স অঞ্চলকে Origin of replication বা Replication origin সংক্ষেপে **Ori** (অরি) বলা হয়।


(i) প্র<mark>খমে হেলিকেজ</mark> (helicase) নামক একটি রেপ্লিকেশন এনজাইম **অরি-তে সংযুক্ত হয়ে** ডাবল হেলিক্স-এর পাঁচাচ খুলতে শুরু করে এবং কমপ্লিমেন্টারি বেসপেয়ারের হাইড্রোজেন বন্ড ভেঙ্গে DNA অণুর স্ট্র্যান্ড দুটিকে পাঁচমুক্ত ও

পৃথক করে দেয়। দুটি স্ট্র্যান্ড
পৃথক হয়ে যাওয়ার স্থানে <u>Y-</u>
আকৃতির একটি গঠন তৈরি হয়

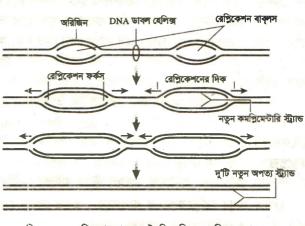
যাকে রেপ্লিকেশন ফর্ক

(replication fork) বলা হয়।
হেলিকেজ ATP থেকে শক্তি
নিয়ে হাইড্রোজেন বভ ভাঙার
কাজটি করে থাকে।

(ii) সদ্য প্যাচ খোলার পর পূর্বের টান বা আকর্ষণজনিত কারণে পৃথককৃত স্ট্র্যান্ড দুটি পুনরায়

চিত্র ১.৩৫ : হেলিকেজ এনজাইম দিয়ে ডাবল স্ট্র্যান্ড DNA এর পাাঁচ খোলা এবং SSBP

প্যাঁচ পাকাতে ও জড়ো হতে চায়। **টপোআইসোমারেজ** (topoisomerase) এনজাইম পৃথক স্ট্র্যান্ড দুটিকে পুনরায় একসাথে প্যাঁচ তৈরি করতে ও জড়ো হতে দেয় না। (এ এনজাইম DNA স্ট্র্যান্ডকে রেপ্লিকেশন ফর্ক-এর কাছাকাছি কেটে দেয় তাই স্ট্র্যান্ডের প্যাঁচ তৈরি করার ও জড়ো হওয়ার আকর্ষণজনিত টান ও প্রবণতা নষ্ট হয়ে যায়। এ এনজাইম কাটা স্থান আবার সংযুক্ত করে দেয়।) আদি কোষে এ কাজটি গাইরেজ এনজাইম করে থাকে। অবশ্য গাইরেজ এনজাইম, টপোআইসোমারেজ এনজাইমের দলভুক্ত।

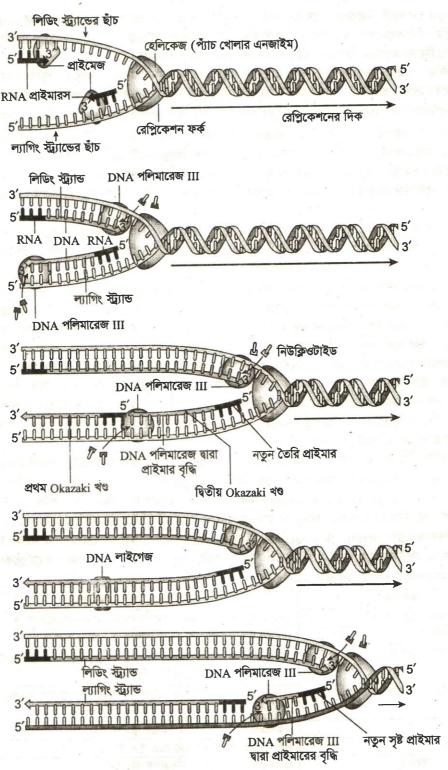

(iii) দুটি স্ট্র্যান্ড যেহেতু একটি অপরটির পরিপূরক, তাই এরা পুনরায় হাইড্রোজেন বন্ড তৈরি করে সংযুক্ত হতে চায়।

Single-Strand Binding Protein (SSBP) পৃথককৃত স্ট্র্যান্ড দুটিতে সংযুক্ত হয়ে যায় এবং এদের মাঝে পুনরায়

হাইড্রোজেন বন্ড তৈরি হতে দেয় না।

(iv) রেপ্লিকেশনের জন্য পৃথক হওয়া প্রতিটি স্ট্র্যান্ড নতুন স্ট্র্যান্ড তৈরির ছাঁচ (template) হিসেবে ব্যবহৃত হয়।

রেপ্লিকেশন অরিজিন থেকে হেলিকেজ এনজাইম DNA সূত্রের উভয় দিকে দুটি স্ট্র্যান্ডকে পৃথক করে থাকে। রেপ্লিকেশন ফর্ক দুটি বিপরীত দিকে অগ্রসর হয় এবং মাঝখানের ফাঁকা ছান নতুনভাবে প্রতিলিপিত DNA দ্বারা পূর্ণ হয়, যাকে রেপ্লিকেশন বাবৃশ (Replication bubble) বলা হয়। একটি DNA স্ট্র্যান্ড-এ একই সাথে অনেকগুলো বাবৃশ তৈরি হয়। বাবৃশগুলো লম্বা হতে থাকে এবং এক সময় সব বাবৃশ একত্র হয়ে দুটি পৃথক স্ট্র্যান্ড তৈরি সমাপ্ত করে। একটি ori দিয়ে মানুষের পুরো জিনোম প্রতিলিপন হতে একমাস


চিত্র ১.৩৬ : রেপ্লিকেশন বাবৃশস : তৈরি, বৃদ্ধি ও একত্রিত হওয়া।

সময় লাগার কথা কিন্তু অনেকগুলো রেপ্রিকেশন অরিজিনের কারণে সময় লাগে মাত্র এক ঘণ্টা।

ধাপ-২ : সম্পুরক স্ট্র্যান্ড তৈরি

- (i) DNA Polymerases (একগুছে এনজাইম) প্রতিটি ছাঁচ (template) স্ট্র্যান্ডের কমপ্লিমেন্টারি (পরিপূরক) নতুন স্ট্র্যান্ড তৈরি করে রেপ্লিকেশনের কাজ করে থাকে কিন্তু এ এনজাইম কেবলমাত্র পূর্ব থেকে বিরাজমান স্ট্র্যান্ডের ৩'-প্রান্তে নিউক্লিওটাইড যুক্ত করতে পারে। তাই নতুন স্ট্র্যান্ড সর্বদা ৫'-৩' অভিমুখী হয়ে বৃদ্ধিপ্রাপ্ত হয়।
- (ii) রোপ্লকেশনের জন্য রোপ্লকেশন ফর্ক তৈরি হলে সেখানে কেবলমাত্র দুটি পুরাতন স্ট্র্যান্ড থাকে যা নতুন স্ট্র্যান্ড তৈরির ছাঁচ হিসেবে ব্যবহৃত হয় কিন্তু সেখানে পূর্ব থেকে বিরাজমান অন্যকোনো স্ট্র্যান্ড বা তার অংশ থাকে না। অথচ নতুন করে নিউক্লিওটাইড সংযুক্তির মাধ্যমে ছাঁচের কমপ্লিমেন্টারি স্ট্র্যান্ড তৈরির জন্য সেখানে অন্তত একটি ক্ষুদ্র স্ট্র্যান্ডের উপস্থিতি প্রয়োজন।
- (iii) RNA Primase : এটি একটি রেপ্লিকেশন এনজাইম যা RNA প্রাইমার তৈরি করে থাকে। এ এনজাইম পুরাতন একটি স্ট্র্যান্ডকে ছাঁচ হিসেবে ব্যবহার করে রেপ্লিকেশন ফর্কের কাছে একটি ক্ষুদ্র কমপ্লিমেন্টারি RNA সূত্র তৈরি করে দেয়। এ ক্ষুদ্র RNA স্ট্র্যান্ডকে (১০–৬০ নিউক্লিওটাইডবিশিষ্ট) বলা হয় RNA Primer। প্রাইমারের ৩'-প্রান্তে মুক্ত –OH গ্রুপ থাকে। RNA প্রাইমার তৈরি হওয়ার পর DNA পলিমারেজ এনজাইম এ প্রাইমারকে ভিত্তি করে নিউক্লিওটাইড সংযুক্তির কাজ শুরু করতে পারে।
- (iv) DNA Polymerase-III : এ এনজাইম ছাঁচের একটি কমপ্লিমেন্টারি (A = T. G ≡ C) নিউক্লিওটাইড এনে RNA প্রাইমারের ৩'-প্রান্তে সংযুক্ত করে নতুন DNA স্ট্র্যান্ড তৈরির সূচনা করে এবং রেপ্লিকেশন কাজটি শেষ না হওয়া পর্যন্ত একটির পর একটি নিউক্লিওটাইড সংযুক্তি চলতে থাকে। শেষ পর্যন্ত নতুন সৃষ্ট DNA স্ট্র্যান্ত থেকে প্রাইমার অংশ সরিয়ে দেওয়া হয় (কারণ প্রাইমার RNA)। যেহেতু DNA পলিমারেজ-III এনজাইম নতুন স্ট্র্যান্ডকে কেবলমাত্র ৫'→৩', মুখী করে তৈরি করতে পারে সেহেতু নতুন দুটি স্ট্র্যান্ড বিপরীতমুখীভাবে বৃদ্ধি পেতে থাকে।

DNA ডাবল হেলিক্স-এর স্ট্র্যান্ড দুটি একটি অপরটির সাথে উল্টোভাবে (একটি ৫'-৩', অপরটি ৩'-৫') অবস্থিত থাকে। তাই লিডিং স্ট্র্যান্ড এবং ল্যাগিং স্ট্র্যান্ড সৃষ্টিও বিপরীতমুখী হয়।

চিত্র ১.৩৭ : DNA প্রতিলিপন প্রক্রিয়া।

- (v) নতুন যে সূত্রটি নিরবচ্ছিন্নভাবে ফর্ক-এর দিকে বৃদ্ধি পেতে থাকে তাকে বলা হয় **পিডিং সূত্র** (leading strand)। আর যে সূত্রটি রেপ্লিকেশন ফর্ক-এর বিপরীত দিকে বৃদ্ধি পেতে থাকে তাকে বলা হয় **প্যাণিং সূত্র**। **প্যাণিং সূত্র** খণ্ড খণ্ডভাবে সৃষ্টি হয় (তীর চিহ্নের মাধ্যমে প্রতিরূপ সৃষ্টির অগ্রসরমান দিক দেখানো হয়েছে)।
- (vi) লিডিং সূত্র নিরবচ্ছিন্নভাবে তার প্রতিরূপ সৃষ্টি করে অগ্রসর ইওয়ার কারণে ল্যাগিং সূত্রে জোড়াবিহীন নিউক্লিওটাইডের সারি একটু লম্বা হলে প্রাইমেজ এনজাইম কার্যকরী হয় এবং একটি প্রাইমার তৈরি করে অর্থাৎ মুক্ত ৩'-OH প্রান্ত সৃষ্টি করে দেয় ফলে অনুলিপন কাজ শুরু হয়। লিডিং সূত্রের মতো এখানে অনুলিপন নিরবচ্ছিন্ন হয় না— খণ্ড খণ্ডভাবে হয়। প্রতিটি খণ্ডের জন্য একটি প্রাইমার ব্যবহৃত হয়। DNA পলিমারেজ-1, প্রাইমারকে DNA দ্বারা প্রতিন্থাপন করে দেয়, ফলে এখানে একটি ছোটো গ্যাপ থেকে যায়।
- (vii) DNA অণুর রেপ্লিকেশনে ল্যাগিং সূত্রের খণ্ড খণ্ড বিচ্ছিন্ন অংশকে Okazaki খণ্ড বলে (আবিষ্কারকের নামানুসারে)। **লাইগেজ** এনজাইম Okazaki খণ্ডণ্ডলোর মধ্যকার গ্যাপকে সংযুক্ত করে নতুনভাবে সৃষ্ট অংশকে নিরবচ্ছিন্নতা দান করে।
- (viii) একই সাথে DNA ডাবল হেলিক্স-এর বিভিন্ন স্থানে রেপ্লিকেশন কার্য শুরু হওয়াতে অল্প সময়ের মধ্যেই পরিপূর্ণ ডাবল হেলিক্সটিই রেপ্লিকেটেড হয়ে দুটি ডাবল হেলিক্স-এ পরিণত হয় অর্থাৎ প্রতিলিপন সমাপ্ত হয়। রেপ্লিকেশন সমাপ্ত হলে রেপ্লিসোম (এনজাইম কমপ্লেক্স) বিচ্ছিন্ন হয়ে সরে যায়।

ধাপ-৩: DNA প্রকৃষ্ণ রিডিং ও মেরামত: নতুন স্ট্র্যান্ত তৈরিকালে ভুল নিউক্লিওটাইড সংযুক্ত হয়ে যেতে পারে। DNA রেপ্লিকেশনের সময় মানুষের প্রতি ১০০০ জিন এর মধ্যে একটি ভুল হতে পারে। যেমন A = T এর স্থলে A = C হয়ে যেতে পারে। DNA-এর নিজম্ব নিয়ন্ত্রণে ভুল ধরার জন্য প্রুফ্ রিডিং ব্যবস্থা আছে। এ ধরনের ভুলকে বলা হয় মিসম্যাচ (Mismatch)। ভুল ধরা পড়লে তা মেরামত করে নেয়ারও ব্যবস্থা আছে। যেমন A এর সাথে C যুক্ত হয়ে থাকলে, মেরামতের মাধ্যমে C-কে সরিয়ে দিয়ে T অন্তর্ভুক্ত করে দেওয়া হয়। মিসম্যাচ থাকলে DNA পলিমারেজ III সামনে অগ্রসর হতে পারে না, তাই মিসম্যাচ সংশোধন করেই সামনে অগ্রসর হয়। পূর্ণাঙ্গ রেপ্লিকেশনের পরও কিছু কিছু মিসম্যাচ থেকে যেতে পারে, দশ লক্ষ বেসপেয়ারের মধ্যে একটা ভুল থেকে যেতে পারে। DNA পলিমারেজ I, DNA পলিমারেজ II এবং কিছু প্রোটিন দিয়ে গঠিত রিপেয়ার কমপ্রেক্স (repair complexes) নতুন গঠিত স্ট্র্যান্ড ধরে অগ্রসর হতে থাকে এবং কোথাও কোনো ভুল ধরা পড়লে তা সংশোধন করে দেয়।

এছাড়া পরিবেশীয় বিভিন্ন উপাদানের কারণে (UV রশ্মি, বিষাক্ত মৌল, কারসিনোজেনিক পদার্থ ইত্যাদি) DNA-এর ক্ষত (damage) হতে পারে। এটিও মেরামতের ব্যবস্থা আছে। Mismatch-এর কারণে মানুষের এক ধরনের কোলন ক্যান্সার হয়ে থাকে। মানুষের Xeroderma Pigmentosum নামক এক প্রকার চর্মরোগ হয়ে থাকে। সাধারণত UV রশ্মি দ্বারা DNA এর যে ক্ষত হয় তা মেরামতের ব্যবস্থা কোনো ব্যক্তিতে না থাকলে রৌদ্রতাপে তার **ছিন ক্যান্যার** হতে পারে।

রেপ্লিকেশন কমপ্লেক্স (Replication complex): DNA রেপ্লিকেশনের সময় সৃষ্ট রেপ্লিকেশন ফর্কের নিকট গুরুত্বপূর্ণ কিছু এনজাইম ও প্রোটিন সমন্বিত হয়ে একটি জটিল আণবিক যান্ত্রিক গঠন সৃষ্টি করে, একে বলা হয় রেপ্লিকেশন কমপ্লেক্স বা রেপ্লিকোস। এর প্রধান উপাদানগুলো হলো—

উপাদান	DNA রেপ্লিকেশনের কাঞ্জ
i. টপোআইসোমারেজ	DNA অণুকে অতিমাত্রায় প্যাঁচানো অবস্থা থেকে মুক্ত করে থাকে।
ii. DNA হেলিকেজ	রেপ্লিকেশন ফর্কে DNA ডাবল হেলিক্স প্যাচগুলো খুলে দেয়।
iii. DNA পলিমারেজ III	নিউক্লিণ্ডটাইড অণু যুক্ত করে 5' প্রান্ত ও 3' প্রান্ত নির্দেশিত পরিপূরক স্ট্র্যান্ড গঠন করে থাকে। IDNA প্রুফ রিডিং করে।
iv. সিঙ্গেল স্ট্র্যান্ড বাইন্ডিং প্রোটিন (SSBP)	DNA অণুর একক স্ট্র্যান্ডে সংযুক্ত হয় যাতে এরা পুনরায় দ্বি-তন্ত্রী অবস্থায় ফিরে না আসে।
v. লাইগেজ	ওকাজাকি খণ্ডকে পরিপূরক স্ট্র্যান্ডে যুক্ত করে।
vi. প্রাইমেজ	RNA প্রাইমারকে স্ট্র্যান্ডের প্রান্তে যুক্ত করে।
vii. DNA পলিমারেজ I	প্রাইমারকে DNA দ্বারা প্রতিস্থাপন করে দেয়।

জীবজ্ঞগতে DNA রেপ্লিকেশনের শুরুত্ব অপরিসীম। কোষ বিভাজন এবং গ্যামিট সৃষ্টির জন্য DNA রেপ্লিকেশন অত্যাবশ্যক। অর্থাৎ দেহের বৃদ্ধি ও জনন এবং এর মাধ্যমে বৈশিষ্ট্য পূর্ব পুরুষ থেকে উত্তর পুরুষে স্থানান্তর ইত্যাদির জন্য DNA রেপ্লিকেশন বাধ্যতামূলক। DNA-এর গঠন স্থায়ী, যা রেপ্লিকেশনের মাধ্যমেও পরিবর্তন ঘটে না। DNA হতে সকল প্রকার RNA উৎপন্ন হয়। মিউটেশন ছাড়া DNA-তে কোনো পরিবর্তন ঘটে না।

DNA থেকে প্রোটিন

যেকোনো জীবের প্রকাশিত বৈশিষ্ট্য নিয়ন্ত্রণ করে থাকে জিন (Gene)। জিন DNA-এরই একটি অংশবিশেষ যা সুনির্দিষ্ট বেস সিকোয়েস দিয়ে গঠিত। কিন্তু কেবল জিন-এর বেস সিকোয়েস জীবের কোনো বৈশিষ্ট্য প্রকাশ করতে পারে না। জিন-এর কাজ হলো কোনো বিশেষ পলিপেন্টাইড-এর অ্যামিনো অ্যাসিড সিকোয়েস সুনির্দিষ্টভাবে উল্লেখ করে দেওয়া। আর প্রোটিন হলো ঐ বস্তু যা প্রত্যক্ষভাবে বা পরোক্ষভাবে নির্ণয় করে থাকে জীবের লক্ষ্যণীয় প্রকাশিত বৈশিষ্ট্য। জিনের বেস সিকোয়েস ব্যবহার করে সুনির্দিষ্ট পলিপেন্টাইড তথা প্রোটিন উৎপন্ন করতে দুটি বিশেষ প্রক্রিয়া অনুসরণ করতে হয়। এর প্রথমটি হলো ট্রাক্টাক্টপশন এবং দ্বিতীয়টি হলো ট্রাক্টাক্শেশন।

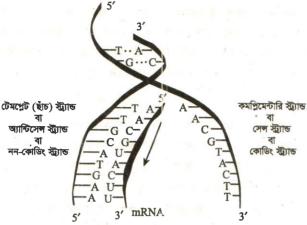
ট্রান্সক্রিপশন (Transcription)*

ট্রাঙ্গক্রিপশন হলো DNA নির্দেশিত পথে RNA সংশ্লেষণ। একটু বাড়িয়ে বললে বলা যায়, "RNA পদিমারেজ এনজাইম দ্বারা DNA বেস সিকোয়েন্দ কপি করে mRNA সংশ্লেষণ প্রক্রিয়া হলো ট্রাঙ্গক্রিপশন।" সহজ কথায়, DNA থেকে mRNA তৈরি প্রক্রিয়া হলো ট্রাঙ্গক্রিপশন। ট্রাঙ্গক্রিপশনের মাধ্যমে DNA কোড, RNA কোড হিসেবে রাসায়নিকভাবে পুনঃলিখিত হয়।

DNA হলো ডাবল স্ট্র্যান্ড কিন্তু RNA হলো একক স্ট্র্যান্ডবিশিষ্ট। তাই ট্রান্সক্রিপশন হবে ডাবল স্ট্র্যান্ডের পরিবর্তে একক স্ট্র্যান্ড। যে স্ট্র্যান্ডকে ছাঁচ (template) হিসেবে ব্যবহার করে ট্রান্সক্রাইব করা হবে সেই স্ট্র্যান্ডকে বলা হয় template strand, antisense strand বা non-coding strand। অপর স্ট্র্যান্ডটিকে (যে স্ট্র্যান্ড থেকে ট্রান্সক্রাইব হবে না) বলা হয় কমপ্রিমেন্টারি স্ট্র্যান্ড, sense strand বা coding strand, কারণ DNA অণুর এ স্ট্র্যান্ডের বেস সিকোয়েন্স আর নতুনভাবে সৃষ্ট mRNA অণুর বেস সিকোয়েন্স হবে হুবহু একই রকম, কেবল T এর ছলে U হবে। ট্রান্সক্রিপশনের মাধ্যমে জিন-এর যে অংশটুকু mRNA অণুতে রূপান্তরিত হবে ঐ অংশটুকুই হলো ট্রান্সক্রিপশন ইউনিট। বর্ণনার সুবিধার্থে ট্রান্সক্রিপশন প্রক্রিয়াকে তিনটি ধাপে বিভক্ত করা হয়ে থাকে; যথা— (i) সূচনা ধাপ, (ii) বর্ধিতকরণ ধাপ এবং (iii) সমাপ্তিকরণ ধাপ।

ট্রান্সক্রিপশন প্রক্রিয়ার জন্য যা প্রয়োজন—

(i) DNA ছাঁচ (template)


্র্রা) RNA-পলিমারেজ এনজাইম যা তিন প্রকার হতে পারে।

্র্রো) মুক্ত রাইবোনিউক্লিওটাইড ট্রাইফসফেট (ATP, GTP, CTP এবং UTP).

রাসায়নিক শক্তি, ট্রাইফসফেট ভেঙ্গে নিউক্লিওটাইড এবং পাইরোফসফেট সৃষ্টিকালে মুক্ত হয়। পাইরোফসফেট ভেঙ্গে দুই আয়ন ফসফেট তৈরিকালেও কিছু অতিরিক্ত শক্তি পাওয়া যায়।

🕼 কিছু সহযোগী প্রোটিন।

^{*} জানা যায় কেউ কেউ ট্রাঙ্গক্রিপশনের বাংলা প্রতিশব্দ করেছেন প্রতিলিপি যা অগ্রহণীয়, কারণ এতে এর বৈজ্ঞানিক মর্মটাই বিকৃত হয়ে যায়। বাংলা একাডেমির সংক্ষিপ্ত বাংলা অভিধান অনুযায়ী প্রতিলিপি হলো কোনো লেখা বা ছবি প্রভৃতির হুবহু নকল। বিষয়টি এমন দাঁড়ায় যেকোনো বস্তুর অবিকল নকল হলো প্রতিলিপি। ট্রাঙ্গক্রিপশন প্রক্রিয়াতে DNA ভাবল হেলিক্স থেকে কখনও আর একটি ভাবল হেলিক্স সৃষ্টি হয় না। এ প্রক্রিয়াতে সৃষ্টি হয় RNA যা এক স্ট্র্যাভবিশিষ্ট। এছাড়া DNA স্ট্র্যাভ-এর বেস সিকোয়েঙ্গ-এ T থাকলে, সৃষ্ট RNA স্ট্র্যাভ-এ T এর পরিবর্তে U থাকবে। কাজেই ট্রাঙ্গক্রিপশন-এর বাংলা প্রতিশব্দ কখনই প্রতিলিপন বা অনুলিপন হবে না। এটি ট্রাঙ্গক্রিপশন থাকাটাই যথার্থ।

চিত্র ১.৩৮ : ট্রাঙ্গক্রিপশন প্রক্রিয়া : নন-কোডিং স্ট্র্যান্ড (ছাঁচ DNA) (বামে); কোডিং স্ট্র্যান্ড (ডানে) এবং সৃষ্ট mRNA (মাঝখানে)

- (i) **ট্রান্সক্রিপশনের সূচনা (Initiation)** : ট্রান্সক্রিপশনের প্রধান এনজাইম হলো RNA পিলমারেজ (RNA Polymerase)। DNA অণুর একটি স্ট্র্যান্ডের জিন অংশের প্রথমাংশে অবস্থিত প্রোমোটারে (Promoter) RNA পিলমারেজ এনজাইম সংযুক্ত হয়ে DNA অণুর ডাবল হেলিক্স-এর প্রাচ খুলে দেওয়ার (সাধারণত প্রথমে ২০টি বেসপেয়ার খুলে যায়) মাধ্যমে ট্রান্সক্রিপশন প্রক্রিয়ার সূচনা হয়। প্রকৃত কোষের প্রোমোটারের মূলবদ্ভ হলো TATA Box, এ অংশে উচ্চহারে থাইমিন-অ্যাডিনিন বেস থাকে। আদি কোষে TATA Box-এর পরিবর্কে TATAAT থাকে। ট্রান্সক্রিপশনের জন্য কোনো প্রাইমার লাগে না।
- (ii) mRNA য়ৢয়াভ বর্ধিতকরণ (Elongation): RNA পলিমারেজ এনজাইম বেসপেয়ারিং রীতি অনুযায়ী ছাঁচ DNA য়ৢয়াভের কমপ্রিমেন্টারি নিউক্লিওটাইড (AMP, GMP, CMP এবং UMP) একটির পর একটি যুক্ত করে mRNA সূত্রটি বৃদ্ধি করতে করতে DNA য়ৢয়াভের সামনের দিকে জগ্বসর হতে থাকে। ৩'→ ৫' মুখী ছাঁচ-DNA য়ৢয়াভ ব্যবহার করে, ৫'→ ৩' মুখী mRNA তৈরি হয়। য়ৢৢাসক্রাইব করা mRNA এর শুরু হলো ৫' প্রান্ত এবং শেষ হলো ৩' প্রান্ত (চিত্র-১.৩৮)। অর্থাৎ ছাঁচ-৩'-৫' মুখী হলে mRNA য়ৢয়ৢয়ভ হবে ৫'-৩' মুখী, কারণ নতুনভাবে সৃষ্ট য়ৢয়ৢয়ভিটি অবশ্যই ছাঁচ-DNA এর অ্যান্টিপ্যারালাল অর্থাৎ কমপ্রিমেন্টারি হবে। নতুন সৃষ্ট mRNA অ্পুটি সাময়িকভাবে ছাঁচ-DNA য়ৢয়য়ভের সাথে আটকানো খেকে একটি হাইব্রিড DNA-RNA ডাবল হেলিক্স-এ পরিণত হয়। mRNA য়ৢয়য়ভের পেছনের অংশ অবশ্য খুলে পৃথক হয়ে যায়।

DNA স্ট্র্যান্ডের খোলা অংশের ট্রান্সক্রিপশন সমাপ্ত হলে RNA পলিমারেজ পুনরায় সামনের দিকে DNA ডাবল স্ট্র্যান্ডের আরেকটি অংশ খুলে দেয়। RNA পলিমারেজ সামনের দিকে চলে গেলে পেছনের DNA অংশ পুনরায় ডাবল হেলিক্স হয়ে যায়।

িপোমোটারে জায়গা থাকলে প্রথম RNA পলিমারেজ ট্রান্সক্রাইব করে সামনে অগ্রসর হলে পেছনে আরেকটি RNA পলিমারেজ বসে একই অংশ পুনরায় ট্রান্সক্রাইব করে আরেকটি mRNA তৈরি শুরু করতে পারে। এভাবে বেশ কিছু mRNA সৃষ্টি হয়ে থাকে। কোনো জীবদেহে কোনো বিশেষ প্রোটিনের অধিক প্রয়োজন হলে একটি জিন থেকে হাজার হাজার বা মিলিয়ন কপি mRNA তৈরি হতে পারে। মানবদেহের একটি RBC-তে ৩৭৫ মিলিয়ন হিমোগ্রোবিন অণু থাকে। ১টি mRNA থেকে তা উৎপাদন করা সম্ভব নয়।

(iii) সমাপ্তিকরণ (Termination): DNA-এর ছাঁচ স্ট্র্যান্ডে ট্রান্সক্রিপশন সমাপ্তি ছান নির্দিষ্ট করা থাকে। RNA পলিমারেজ mRNA স্ট্র্যান্ড তৈরি করে ছাঁচ ধরে সামনের দিকে অগ্রসর হতে হতে DNA স্ট্র্যান্ডের টার্মিনেশন বেস সিকোয়েন্স-এ পৌছে গেলে ট্রান্সক্রিপশন সমাপ্ত হয়।

আদিকোষে একটি বিশেষ প্রোটিন mRNA-এর সাথে সংযুক্ত হয়ে ট্রাঙ্গক্রিপশন বন্ধ করে দেয় অথবা mRNA একটি লুপ সৃষ্টি করে ট্রাঙ্গক্রিপশন বন্ধ করে দেয়। প্রকৃত কোষে টার্মিনেশন সিকোয়েঙ্গ হলো একসারি **অ্যাডিনিন** যা mRNA-তে ট্রাঙ্গক্রাইব করে একসারি **ইউরাসিল**। নিউক্লিয়ার প্রোটিন ঐ পলিইউরাসিল অংশে সংযুক্ত হয় এবং ট্রাঙ্গক্রিপশন বন্ধ হয়ে যায়।

(iv) প্রি mRNA থেকে চুড়ান্ত mRNA সৃষ্টি

সদ্য তৈরিকৃত প্রি-mRNA নিউক্লিয়াসের বাইরের এনজাইম ও পরিবেশ কর্তৃক ক্ষতিগ্রন্থ হওয়ার সম্ভাবনা থাকে, অর্থাৎ ঐ পরিবেশের জন্য প্রি-mRNA উপযুক্ত নয়। তাই এতে কিছুটা পরিমার্জন করতে হয়।

পরিমার্জন-১: ৫০—১৫০টি অ্যাডিনিন নিউক্লিওটাইডের একটি চেইন প্রি-mRNA-এর ৩-প্রান্তে সংযুক্ত করা হয়। এটি করে থাকে পিল-ম পিলমারেজ এনজাইম। অ্যাডিনিন নিউক্লিওটাইডের এ চেইনকে বলা হয় পিল-ম টেইল। সাইটোসোলের বিভিন্ন এনজাইমের ক্ষতিকর অবস্থা থেকে এ চেইন mRNA-কে রক্ষা করে এবং ট্রান্সলেট করতে সহায়তা করে। এ প্রক্রিয়াকে বলা হয় টেইলিং।

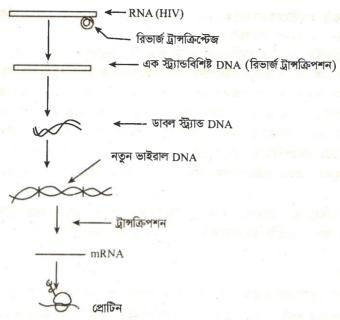
চিত্র ১.৩৯ : ট্রাঙ্গক্রিপশন প্রক্রিয়া : স্প্রাইসিং এবং জিন থেকে চূড়ান্ত mRNA তৈরি।

পরিমার্জন-২: সাতটি G (গুয়ানোসিন নিউক্লিওটাইড) প্রি-mRNA-এর প্রথমে সংযুক্ত করা হয়। একে বলা হয় ৫'-ক্যাপ। এ কাজটি করে থাকে ভিন্ন ধরনের একটি এনজাইম কমপ্রেক্স। এ প্রক্রিয়াকে বলা হয় ক্যাপিছ। এ দুই পরিমার্জনের পরও mRNA নিউক্লিয়াস থেকে বের হওয়ার উপযোগী হয় না। প্রকৃতকোষী জিন কোডিং অঞ্চল (exon = expressed sequence) এবং নন-কোডিং অঞ্চল (intron = intervening sequence) নিয়ে গঠিত থাকে। জিন থেকে এ উভয় অঞ্চলই ট্রান্সক্রাইব হয়ে Pre-mRNA তৈরি হয়। নন-কোডিং অঞ্চল তথা introns প্রোটিনের কোনো অংশ কোড করে না, তাই সকল introns অংশ Pre-mRNA থেকে বাদ দিতে হয়। এখানে উল্লেখযোগ্য যে অধিকাংশ প্রকৃতকোষী জিন কমপক্ষে ১টি intron, কতক জিন ৬০টি পর্যন্ত introns বহন করে।

পরিমার্জন-৩: mRNA Splicing: নিউক্লিয়াসে Pre-mRNA কে স্প্রাইসিং করা হয়। mRNA Splicing হলো intron তথা নন-কোডিং অঞ্চল অংশ কেটে বাদ দেওয়া এবং সমন্ত exon অংশ একসাথে নিয়ে এসে সংযুক্ত করে দেওয়া। একে জ্বিন splicing-ও বলা হয়ে থাকে। Splicing করা হয়ে থাকে Spliceosome-এ। Pre-mRNA এবং কতগুলো Small ribonucleoproteins (SnRNPs) মিলিত কমপ্লেক্সকে বলা হয় Spliceosome। Splicing কাজটি এতোটা নিপুণভাবে হয়ে থাকে যে intron এর একটি বেসও চূড়ান্ত mRNA তে থাকে না, আবার exons এর একটি বেসও চূড়ান্ত mRNA থেকে বাদ পড়ে না।

অন্টারনেটিভ স্প্রাইসিং (Alternative splicing): Pre-mRNA-তে স্প্রাইসিং-এর পর exon গুলো বিভিন্ন কম্বিনেশনে পুনঃসংযোজিত হয়ে একই জিন-DNA সিকোয়েঙ্গ থেকে বিভিন্ন mRNA তৈরি করতে পারে। এ প্রক্রিয়াকে বলা হয় অন্টারনেটিভ স্প্রাইসিং। অন্টারনেটিভ স্প্রাইসিং-এর ফলে একই জিন থেকে বিভিন্ন প্রকার ও বৈচিত্র্যময় প্রোটিন তৈরি হয়ে থাকে।

যতদূর জানা যায় মানবদেহের মোট Pre-mRNA-এর প্রায় চারভাগের তিনভাগে অল্টারনেটিভ স্প্রাইসিং হয়ে থাকে। এ থেকে অনুমান করা যাচেছ কীভাবে মাত্র ২০,০০০ জিন থেকে প্রায় ১,০০০০০ (এক লক্ষ) প্রকার প্রোটিন মানবদেহে তৈরি হয়ে থাকে।


চূড়ান্ত mRNA-র নিউক্লিয়াস ত্যাগ: ক্যাপিং, টেইলিং এবং স্প্রাইসিং—এ তিনটি প্রক্রিয়া শেষে প্রি-mRNA, চূড়ান্ত mRNA-তে পরিণত হয়। চূড়ান্ত mRNA সাইটোপ্লাজমীয় পরিবেশের জন্য উপযুক্ত, তাই নিউক্লিয়াসের ছিদ্রপথে সাইটোপ্লাজমে চলে আসে এবং রাইবোসোমে বসে ট্রাঙ্গালেট হয়ে প্রোটিন তৈরি করে।

আদিকোষ ও প্রকৃতকোষে ট্রাগক্রিপশনের মধ্যে পার্থক্য

বৈশিষ্ট্য	আদিকো ষ	প্রকৃতকোষ
১। স্থান	সমগ্র কোষ।	নিউক্লিয়াস।
২। এনজাইম	এক প্রকার : RNA পলিমারেজ III	তিন প্রকার : RNA পলিমারেজ II, I এবং III
৩। বর্ধিতকরণ গতি	দ্রুতগতি : প্রতি সেকেন্ডে ১৫–২০টি	ধীরগতি। প্রতি সেকেন্ডে ৫—৮টি নিউক্লিওটাইড
	নিউক্লিওটাইড সংযুক্ত হয়।	সংযুক্ত হয়।
৪। প্রোমোটার	সরল প্রকৃতির।	জটিল প্রকৃতির। কোডিং জিনের পূর্বে অবস্থিত।
৫। সমাপ্তিকরণ	বিশেষ প্রোটিন mRNA-তে সংযুক্ত হয়ে	নিউক্লিয়ার প্রোটিন পলিইউরাসিল অংশে সংযুক্ত
	অথবা mRNA নিজেই লুপ সৃষ্টি করে	হয়ে ট্রান্সক্রিপশন সমাপ্ত করে।
	পৃথক হয়ে যায়।	
৬। ইনট্রোন-এক্সোন	কোনো ইনট্রোন থাকে না।	ইনট্রোন এবং এক্সোন দুটোই থাকে।
৭।প্রি-mRNA উৎপন্ন	কোনো প্রি-mRNA তৈরি হয় না,	প্রি-mRNA থেকে ক্যাপিং, টেইলিং এবং স্প্রাইসিং-
দ্রব্য	সরাসরি চূড়ান্ত mRNA তৈরির পর পরই	এর মাধ্যমে চূড়ান্ত mRNA তৈরি হয়। চূড়ান্ত
	প্রোটিন তৈরিতে অংশ নেয়।	mRNA নিউক্লিয়াস ত্যাগ করে সাইটোসোলে এসে
	The second second second second	প্রোটিন তৈরিতে অংশ নেয়।

রিভার্জ ট্রান্সক্রিপশন (Reverse Transcription) \ DAT: 19-20]

যেসব ভাইরাসে বংশগতীয় বস্তু হিসেবে এক-স্ট্র্যান্ডবিশিষ্ট RNA থাকে তাদের জিনোম ভিন্ন পথ অবলম্বন করে রেপ্রিকেট করে থাকে। ভাইরাল RNA জিনোম রিভার্জ ট্রান্সক্রিক্টেজ (reverse transcriptase) এনজাইমের জন্য কোড করতে পারে। যে ভাইরাস এ এনজাইম ব্যবহার করে থাকে তাদেরকে বলা হয় রিট্রোভাইরাস (ritroviruses)। রিভার্জ ট্রান্সক্রিক্টেজ এনজাইম ব্যবহার করে ভাইরাল RNA কে ছাঁচ (template) হিসেবে ধরে নিয়ে কমপ্রিমেন্টারি DNA তৈরি করাকে বলা হয় রিভার্জ ট্রান্সক্রিপশনে মাধ্যমে DNA তৈরি করে তার PCR করা হয় এবং রোগ শনাক্ত (+/-) করা হয়।

চিত্র ১.৪০ : RNA থেকে DNA তৈরি (রিভার্জ ট্রান্সক্রিপশন) এবং পরবর্তী ধাপসমূহ

HIV যখন মানবদেহকে আক্রমণ করে তখন কোষের মধ্যে RNA এর সাথে রিভার্জ ট্রাঙ্গক্রিস্টেজ এনজাইম ঢুকিয়ে দেয়। আক্রান্ত কোষে তখন রিভার্জ ট্রাঙ্গক্রিস্টেজ ব্যবহার করে ভাইরাস RNA কপি করে এক স্ট্র্যান্ডবিশিষ্ট কমপ্লিমেন্টারি DNA তৈরি করে। তখন রিভার্জ-ট্রাঙ্গক্রিস্টেজ DNA এক স্ট্র্যান্ডের কমপ্লিমেন্টারি দ্বিতীয় স্ট্র্যান্ড তৈরি করে। Intrigrase এনজাইম (RNA-র সাথে কোষে প্রবেশকৃত) পোষক কোষে রিভার্জ ট্রাঙ্গক্রিপশনের মাধ্যমে তৈরি ডাবল স্ট্র্যান্ড DNA কে পোষকের জিনোমে প্রবেশ করিয়ে দেয়। এ ভাইরাল DNA তখন ট্রাঙ্গক্রাইব করে ভাইরাল RNA।

ট্রাঙ্গক্রিপশন প্রক্রিয়াটি অত্যন্ত দ্রুত সম্পন্ন হয়। E. coli ব্যাকটেরিয়ার একটি জিন থেকে একটি ১০০০ নিউক্লিওটাইড বিশিষ্ট mRNA ট্রাঙ্গক্রিস্ট করতে মাত্র সময় লাগে এক সেকেন্ড। জিনোমের (DNA-এর) যতটুকু অংশ নিরবচ্ছিন্নভাবে একটি RNA অণু ট্রাঙ্গক্রাইব করে তাকে ট্রাঙ্গক্রিপশন একক বলা হয়। একটি ট্রাঙ্গক্রিপশন এককে প্রোমোটার, শুকুর বিন্দু এবং শেষবিন্দু— এ তিনটি অংশ থাকে। DNA-অণুর যে অংশবিশেষ একটি পলিপেপটাইড চেইন-এর সকল তথ্য সংরক্ষণ করে তাকে জিন বা সিসট্রন (cistron) বলে।

প্রকৃতকোষে এক জিন হতে সাধারণত একটি mRNA ট্রান্সক্রাইব হয় এবং তা থেকে একটি প্রোটিন ট্রান্সলেট হয়। একে বলা হয় Monocistronic ট্রান্সক্রিন্ট। আদিকোষে একটি রিসেপি (recipe) ট্রান্সক্রাইব করে তা থেকে একাধিক প্রোটিন ট্রান্সলেট হতে পারে। একে বলা হয় Polycistronic ট্রান্সক্রিন্ট।

ট্রান্সলেশন (Translation)

নিউক্লিক অ্যাসিড থেকে পলিপেন্টাইড (তথা প্রোটিন) তৈরি করা হলো ট্রান্সলেশন। জিন-DNA থেকে প্রোটিন তৈরির গোপন কোডসমূহ এনকোড করে তৈরি হয় mRNA। mRNA, রাইবোসোম ও tRNA-এর সহায়তায় জিন-DNA থেকে এনকোডেড সিকোয়েন্স অনুযায়ী একটির পর একটি অ্যামিনো অ্যাসিড শৃঙ্খালিত করে পলিপেন্টাইড (যা পরে কার্যকরী প্রোটিনে পরিবর্তিত হয়) তৈরি করার প্রক্রিয়া হলো ট্রান্সলেশন।

ট্রান্সলেশন প্রক্রিয়ায় প্রয়োজনীয় উপাদানসমূহ :

mRNA যা DNA থেকে জেনেটিক কোড কপি করে নিয়ে আসে। এটি প্রোটিন সংশ্লেষণের ছাঁচরূপে ব্যবহৃত হয়।

্রেস্স tRNA যা সুনির্দিষ্ট অ্যামিনো অ্যাসিড বহন করে আনে। প্রতিটি অ্যামিনো অ্যাসিডের জন্য কমপক্ষে একটি tRNA থাকে। tRNA অণু খুবই ছোটো। এতে ৭৫—৮০টি নিউক্লিণ্ডটাইড থাকে। tRNA-এর ও প্রান্তে অ্যামিনো অ্যাসিড সংযুক্তির জন্য কোডন থাকে এবং মাঝামাঝি অবস্থায় বিপরীত দিকে mRNA-এর সাথে সংযুক্তির জন্য

৩ বেস-এর একটি **অ্যান্টিকোডন** থাকে। mRNA-এর কোডন এবং tRNA-এর অ্যান্টিকোডনের নিউক্লিওটাইড সম্পরক; যেমন— AUG-এর সম্পূরক UAC।

্র্যার্শ সূচনা কোডন সুনির্দিষ্ট , <u>AUG যা মেথিওনিন অ্যামিনো অ্যাসিড নির্দেশক ।</u> সকল পলিপেপ্টাইড সংশ্লেষণের প্রথমে মেথিওনিন বসে <u>। যে tRNA প্রথমে মেথিওনিন নিয়ে রাইবোসোমে আসে তাকে বলা হয় ইনিশিয়েটর tRNA ।</u>

🙀 অ্যামিনো অ্যাসিড সাধারণত বিশ প্রকার। বিশ প্রকার অ্যামিনো অ্যাসিডের জন্য ৬১ প্রকার কোডন থাকে।

রাইবোসোম হলো mRNA ও tRNA বসার মঞ্চ। প্রতিটি রাইবোসোমে tRNA বসার জন্য ৩টি সাইট থাকে, যথা- A-সাইট (= অ্যাটাচমেন্ট সাইট, অ্যারাইভাল সাইট বা অ্যামিনো-অ্যাসাইল সাইট); P-সাইট (= পেন্টিভাইল সাইট; পলিপেন্টাইড তৈরি সাইট); E-সাইট (= Exit সাইট অর্থাৎ রাইবোসোম থেকে tRNA বের হয়ে যাওয়ার স্থান)। একটি রাইবোসোম যেকোনো mRNA-র সাথে এবং সকল tRNA-র সাথে সংযুক্ত হতে পারে।

(vi) **অ্যাকটিভেটিং এনজাইম :** <u>এদেরকে সাধারণত **অ্যামিনো-অ্যাসিল tRNA সিহেটেজেজ** (Aminoacyl-tRNA Synthetases) বলে। প্রতিটি অ্যাকটিভেটিং এনজাইম একটি অ্যামিনো অ্যাসিড ও একটি tRNA-এর জন্য নির্দিষ্ট।</u>

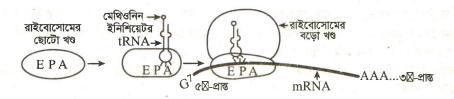
ট্রাঙ্গলেশন প্রক্রিয়া

ট্রাঙ্গলেশন প্রক্রিয়া কোষের সাইটোপ্লাজমে সংঘটিত হয়। এ প্রক্রিয়াকে তিনটি পর্যায়ে বিভক্ত করে আলোচনা করা হয়ে থাকে; যথা— ১। ট্রাঙ্গলেশনের সূচনা (initiation), ২। পলিপেন্টাইড চেইন-এর বৃদ্ধিকরণ (elongation) এবং ৩। সমাপ্তিকরণ (termination)।

১। সূচনা পর্ব : (i) ইনিশিয়েটর tRNA, মেথিওনিন অ্যামিনো অ্যাসিড সংযুক্ত করে রাইবোসোমের ছোটো খণ্ডের সাথে একটি যৌগ গঠন করে।

(ii) এ যৌগ (কমপ্লেক্স) mRNA এর ৫' প্রান্তের ক্যাপ অংশের সাথে আবদ্ধ হলে রাইবোসোম mRNA ধরে ৩' প্রান্তের দিকে চলতে থাকে (যাকে বলা হয় **স্ক্যানিং**) যতক্ষণ না স্টার্ট কোডন AUG পেয়ে যায়। AUG কোডনের সাথে tRNA-এর UAC অ্যান্টিকোডন হাইড্রোজেন বন্ড দ্বারা আবদ্ধ হয়।

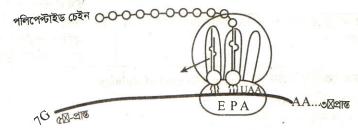
(iii) এরপর রাইবোসোমের বড়ো খণ্ডটি এসে ছোটো খণ্ডের সাথে যুক্ত হয়। বড়ো খণ্ডে tRNA বসার জন্য তিনটি (A, P ও E সাইট) হালকা গর্ত থাকে। বড়ো খণ্ডটি ছোটো খণ্ডের সাথে সংযুক্ত হওয়ার সাথে সাথে ট্রাঙ্গলেশনের সূচনা-পর্ব সমাপ্ত হলো। এ অবস্থায় মেথিওনিন-tRNA P-সাইট-এ থাকে, A এবং E সাইট খালি থাকে।


২। বৃদ্ধিকরণ পর্ব : বর্ধিতকরণ হলো প্রথমে আনা মেখিওনিন অ্যামিনো অ্যাসিডের সাথে কোডের নির্দেশ অনুযায়ী একটির পর একটি অ্যামিনো অ্যাসিড এনে যুক্ত করা। সঠিক ইনিশিয়েটর tRNA-ই পরবর্তী কোডনগুলো সঠিকভাবে শনাক্তের পথ সৃষ্টি করে থাকে। বর্ধিতকরণে রাইবোসোমের A, P এবং E সাইট কার্যকরী হয়।

(i) পূর্ণাঙ্গ রাইবোসোম mRNA স্ক্যান করে ৩'-প্রান্তের দিকে অগ্রসর হয় এবং দ্বিতীয় tRNA সঠিক অ্যামিনো অ্যাসিড নিয়ে A-সাইটে উপস্থিত হয়। এসব কাজের জন্য প্রয়োজনীয় শক্তি GTP হাইড্রোলাইসিস-এর মাধ্যমে সরবরাহ করা হয়।

(ii) P-সাইটে মেথিওনিন tRNA থেকে পৃথক হয়ে গিয়ে A-সাইটস্থ tRNA এর অ্যামিনো অ্যাসিডের সাথে পেপটাইড বস্ত তৈরি করে। পেন্টাইড বস্ত তৈরিতে রাইবোসোমাল এনজাইম পেন্টিডাইল ট্রালফারেজ সহযোগিতা করে।

(iii) রাইবোসোম ক্রমান্বয়ে একটির পর একটি mRNA কোডন স্ক্যান করে ৩'-প্রান্তের স্টপ কোডনের দিকে অগ্রসর হয়। এর ফলে কোডন অনুযায়ী নির্দিষ্ট অ্যামিনো অ্যাসিড নিয়ে একটি tRNA রাইবোসোমের A-সাইটে আসে, পূর্বের A-সাইটের tRNA চলে যায় P-সাইটে এবং P-সাইটের tRNA চলে যায় E-সাইটে। স্টপ কোডন না আসা পর্যন্ত এ প্রক্রিয়া চলমান থাকে এবং পলিপেন্টাইড চেইন লম্বা হতে থাকে। E-সাইটের tRNA-তে কখনও কোনো অ্যামিনো অ্যাসিড স্থায়ী থাকে না।


(iv) E-সাইট থেকে খালি tRNA সাইটোপ্লাজমে চলে আসে। এখানে উল্লেখযোগ্য যে, রাইবোসোমের A, P ও E এ তিনটি সাইট কখনও একই সময়ে tRNA দ্বারা পূর্ণ থাকে না, একই সময়ে যেকোনো দুটি সাইট (PA অথবা PE) পূর্ণ থাকে।

চিত্র : ট্রান্সলেশন : সূচনা-পর্ব

চিত্র : ট্রান্সলেশন: বর্ধিতকরণ পর্ব

চিত্র: ট্রান্সলেশন: সমাপ্তি পর্ব

চিত্র ১.৪১ : ট্রান্সলেশন প্রক্রিয়া।

৩। সমাপ্তিকরণ পর্ব : রাইবোসোমের সাইট-A-তে কোনো স্টপ কোডন (UAA, UAG বা UGA) পৌছালে ট্রাঙ্গলেশনের সমাপ্তি ঘটে। স্টপ কোডন রাইবোসোমের সাইট-A তে যুক্ত হলে অ্যামিনো অ্যাসাইল—tRNA-এর পরিবর্তে একটি প্রোটিন রিলিজ ফ্যাব্টর (Protein release factor) সাইট-A তে সংযুক্ত হয়। এর ফলে পলিপেন্টাইড চেইন সাইট-P থেকে মুক্ত হয়ে যায় এবং একই সাথে রাইবোসোমের দুটি অংশও পৃথক হয়ে যায়। খালি tRNA এবং রিলিজ ফ্যাব্টরও পৃথক হয়ে যায়।

পশিসোম (Polysome) : কোনো অতিপ্রয়োজনীয় প্রোটিন অধিক পরিমাণে উৎপাদন করার প্রয়োজন হলে একই mRNA-তে পর্যায়ক্রমে একাধিক রাইবোসোম বসে ট্রান্সলেশন করে থাকে। mRNA-তে একাধিক রাইবোসোম যুক্ত থাকাকে পশিসোম বলে।

বিভিন্ন অ্যান্টিবায়োটিক ওষুধ ব্যাকটেরিয়্যাল ট সম্ভিকারী ব্যাকটেরিয়ার প্রোটিন সংশেষণের বিভিন্ন প	ট্রান্সলেশন প্রক্রিয়া (প্রোটিন সংশ্লেষণ) ক্ষতিগ্রন্ত করতে পারে। মানবদেহে রোগ র্যায়ে বিত্ন সৃষ্টি করে কতিপয় অ্যান্টিবায়োটিক ওষুধ ব্যাকটেরিয়াকে ধ্বংস করে এবং	
মানবদেহকে রোগ থেকে মুক্তি দেয়।		
অ্যান্টিবায়োটিক	বিদ্ন সৃষ্টিকারী পর্যায়	
ক্লোরোমাইসিন	পেপটাইড বন্ধনী সৃষ্টিতে	
ইরিশ্রোমাইসিন	রাইবোসোমে mRNA-এর চলনে	
নিওমাইসিন	mRNA ও tRNA-এর মধ্যে আস্কঃবিক্রিয়াতে	

ট্রান্সলেশনের স্চনা লগ্নে

রাইবোসোমের tRNA-এর সংযুক্তি পর্যায়ে।

স্ট্রেপ্টোমাইসিন

টেট্রাসাইক্লিন

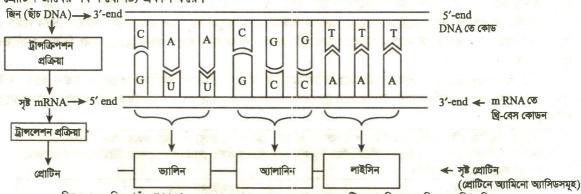
এখানে উল্লেখযোগ্য যে mRNA দ্বারা সরাসরি নির্ধারিত হয় প্রোটিন অণুর অ্যামিনো অ্যাসিডের সংখ্যা ও অনুক্রম। আর mRNA হচ্ছে DNA অণুর একটি অংশের হুবহু প্রতিচ্ছবি। তাহলে বোঝা যায় প্রোটিন অণুতে অ্যামিনো অ্যাসিডের সংখ্যা ও অনুক্রম পরোক্ষভাবে DNA দ্বারাই নিয়ন্ত্রিত হয়।

আদিকোমে নিউক্লিয়াস না থাকায় একই সাথে এক প্রান্তে mRNA-র ট্রাঙ্গক্রিপশন চলতে থাকে এবং অপর প্রান্তে ট্রাঙ্গলেশন ঘটতে পারে।

প্রোটিন বড়ো অণুর জৈব রাসায়নিক পদার্থ, তবে মাত্র ২০ প্রকার অ্যামিনো অ্যাসিড বিভিন্ন অনুক্রমে সজ্জিত হয়ে বড়ো বড়ো প্রোটিন অণু গঠন করে। দুটি অ্যামিনো অ্যাসিড পেপটাইড বন্ধনী দ্বারা সংযুক্ত থাকে।

ি শিলাক্তম্বন র শিল্পেন্ন ব্য গরে মারক্য 🗡 মুন্						
ট্রান্সক্রিপশন	ট্রান্সলেশন					
১। DNA অণুতে গ্রথিত রাসায়নিক তথ্যগুলোকে RNA (mRNA) অণুতে কপি করার প্রক্রিয়াকে বলা হয় ট্রাঙ্গক্রিপশন।	১। mRNA থেকে প্রোটিন তৈরির প্রক্রিয়াকে বলা হয় ট্রান্সলেশন।					
২। এক্ষেত্রে ATP, GTP, CTP ও UTP উপকরণগুলো ব্যবহৃত হয়।	২। এক্ষেত্রে সাধারণত 20টি অ্যামিনো অ্যাসিড ব্যবহৃত হয়।					
৩। এ প্রক্রিয়াটি কোষের নিউক্লিয়াসের মধ্যে সংঘটিত হয়ে থাকে।	৩। এ প্রক্রিয়াটি সাইটোপ্লাজমে সংঘটিত হয়।					
৪। <u>ট্রোঙ্গক্রিপশন প্রক্রিয়াটি রাইবোসোমের সাথে সম্পর্কিত নয়।</u> [MAT: 18-19]	8। ট্রান্সলেশন প্রক্রিয়াটি কোষের রাইবোসোমের সাথে সংশ্রিষ্ট।					
৫। এ প্রক্রিয়ায় RNA পলিমারেজ এনজাইম গুরুত্বপূর্ণ ভূমিকা রাখে।	 ৫। এ প্রক্রিয়য় অয়ৢয়					
৬। প্রোমোটারে সংযুক্ত হওয়ার পর RNA পলিমারেজ প্রথমে DNA এর পাক খুলে নেয়।	৬। এনজাইমে tRNA এর সাথে নির্দিষ্ট অ্যামিনো অ্যাসিড সংযুক্তির পর বের হয়ে যায় এবং AMP পারে এনজাইমে মুক্ত হয়।					

জীববিজ্ঞানের কেন্দ্রীয় প্রত্যয় বা Central Dogma of Biology :


W DNA থেকে সৃষ্টি হয় RNA

(ii) RNA থেকে সৃষ্টি হয় প্রোটিন

(ভ্রাটন হলো সর্ববৃহৎ কর্মী অণু (worker molecule)

্রেস কোষের সবকিছু নিয়ন্ত্রণ ও প্রকাশ করে প্রোটিন।

কাজেই দেখা যায়, বংশগতির তথ্যসমূহ প্রবাহিত হয় DNA থেকে RNA-তে এবং RNA থেকে প্রোটিনে, আর প্রোটিন জীবের সকল বৈশিষ্ট্য প্রকাশ করে।

চিত্র ১.৪২ : জিন (ছাঁচ DNA)-তে কোড; mRNA-তে কোডন এবং প্রোটিনে অ্যামিনো অ্যাসিড সংযুক্তি : জিন থেকে ট্রান্সক্রিপশনে mRNA এবং mRNA থেকে ট্রান্সলেশনে প্রোটিন : সেন্ট্রাল্ ডগমা

জীবসমূহের কার্যকলাপ বোঝতে হলে DNA থেকে RNA এবং RNA থেকে প্রোটিনে বংশগতীয় তথ্য প্রবাহ ছানান্তর প্রক্রিয়া জানা অতি জরুরি, তাই এ তথ্যপ্রবাহ প্রক্রিয়াকে Central dogma বলা হয়।

[&]quot;A dogma is a core belief or set of ideas".

সেন্ট্রাল ডগমাটি নিমুরূপ:

Central dogma হলো আণবিক জীববিজ্ঞানের (molecular biology) মৌলিক নীতি। Francis Crick ১৯৫৬ সালে Central dogma নামটি প্রদান করেন। বর্তমানে একে বলা হয় আণবিক বংশগতিবিদ্যার (molecular genetics) মৌলিক নীতি (fundamental principle)।

- * Central dogma-র কোনো ব্যতিক্রম আছে কি? সকল জিন কি mRNA তৈরি করে? সব RNA থেকে প্রোটিন তৈরি হয় কি? tRNA, rRNA, RNAi (interfering RNA) এদের থেকে কখনো প্রোটিন তৈরি হয় না।
 - (i) রেপ্লিকেশনের মাধ্যমে তথ্য DNA এর এক অণু থেকে অন্য অণুতে যায়।
 - (ii) DNA থেকে তথ্য mRNA তে প্রবাহিত হয় (ট্রান্সক্রিপশন)
 - (iii) mRNA থেকে তথ্য প্রোটিনে যায় (ট্রান্সলেশন)

এটা হলো তথ্য প্রবাহের স্বাভাবিক পথ।

রিভার্জ ট্রাঙ্গক্রিপশনের RNA থেকে তথ্য DNA-তে আসে, পুনরায় mRNA-তে যায় এবং শেষ পর্যন্ত প্রোটিনে যায়। এসব কতক ভাইরাসে দেখা যায়, ভাইরাস কোষী নয়। কাজেই কেন্দ্রীয় প্রত্যয় RNA ভাইরাসের জন্য ভিন্নতর।

জিন (Gene)

ছেলেটি তার বাবার বুদ্ধিমত্তা প্রেছে বা মেয়েটি তার মায়ের চুল ও চোখ পেয়েছে, এমন কথা আমরা বলতে শুনি, বাস্তবে এমনটি দেখেও থাকি। কিন্তু কেমন করে কার মাধ্যমে বাবা বা মা থেকে তাদের ছেলে-মেয়েতে বৈশিষ্ট্যগুলো ছানান্তরিত হলো? একটি নিষিক্ত ডিম্বাণু থেকেই ঐ ছেলেটি বা মেয়েটির জীবন শুরু হয়েছে। ঐ নিষিক্ত ডিম্বাণুতে না ছিল বাবার বুদ্ধিমত্তা, না ছিল মায়ের চোখ বা চুল কিন্তু এমন কিছু ছিল যা পরবর্তীতে মায়ের চোখের গড়ন, চুলের বৈশিষ্ট্য বা বাবার বুদ্ধিমত্তার বিকাশ ঘটিয়েছে। যার মাধ্যমে মা-বাবা থেকে ছেলে-মেয়েতে ঐ বৈশিষ্ট্যগুলো এসেছে তার নামই জিন। বুশেগতির মূল একক জিন। অর্থাৎ জীবের চারিত্রিক বৈশিষ্ট্য নিয়ন্ত্রণকারী শ্বুদ্রতম একককে জিন বলা হয়।

প্রাণর যোহান মেন্ডেল (Gregor Johann Mendel, 1822–1884) মটরশুঁটি নিয়ে গবেষণা করা কালে (১৮৬০ এর দশকে) উদ্ভিদের বৈশিষ্ট্যের বাহককে কণা বা ফ্যাক্টর বলে উল্লেখ করেছিলেন। পরবর্তীতে যোহানসেন (Johannsen) ১৯০৯ সালে সর্বপ্রথম ঐ কণা বা ফ্যাক্টরকেই জিন (gene) হিসেবে অভিহিত করেন। ১৯১২ সালে T. H. Morgan প্রমাণ করেন যে, জিন কোষের ক্রোমোসোমে অবস্থিত। ভারতীয় বিজ্ঞানী Har Gobinda Khorana কৃত্রিম জিন সংশ্রেষণ করে ১৯৬৯ সালে নোবেল পুরন্ধার পান।

ক্রোমোসোমের যে স্থানে একটি জিন অবস্থান করে ঐ স্থানকে লোকাস (locus) বলে । কিন্তু জিন কী?

বীডল এবং ট্যাটাম (George Beadle and Edward L. Tatum- 1941) Neurospora crassa নামক ছত্রাক নিয়ে দীর্ঘ গবেষণার পর বলেন যে, নির্দিষ্ট জিন নির্দিষ্ট এনজাইম তৈরির জন্য দায়ী। এর মাধ্য<u>মেই বিজ্ঞানী Garrool সর্বপ্রথম এক</u> জিন এক এনজাইম মতবাদ চালু করেন। এর আগে থেকেই জানা ছিল এনজাইম মানেই প্রোটিন, তাই পরবর্তীতে উক্ত মতবাদ পরিমার্জন করে বলা হয় এক জিন এক প্রসাপেটাইড চেইন । অর্থাৎ এনজাইম এবং প্রোটিন অণু জিন কর্তৃক সৃষ্ট।

সিক্ল সেল হিমোণ্লোবিন (৬০০ অ্যামিনো অ্যাসিড নিয়ে গঠিত) নিয়ে কাজ করে Vernon Ingram (১৯৫৯) দেখান যে, এ প্রোটিনে ৬০০ অ্যামিনো অ্যাসিড একটি নির্দিষ্ট সাজ (sequense) অনুযায়ী সজ্জিত। এ থেকেই প্রমাণিত হয় যে অ্যামিনো অ্যাসিডের ভিন্ন ভাল পদ্ধতির জন্যই বহু বৈচিত্র্যময় এনজাইম তৈরি হয় এবং এক একটি এনজাইম এক একটি সুনির্দিষ্ট জৈব রাসায়নিক বিক্রিয়ার জন্য দায়ী। তাই প্রোটিনকে বলা হলো জীবনের ভাষা (Language of life)।

ক্রোমোসোমে, বিশেষ করে সুগঠিত নিউক্লিয়াসের ক্রোমোসোমে প্রোটিন এবং DNA দু'টোই থাকে, এর কোনটি জিন ?

Pneumococci নিয়ে গবেষণা করে Frederick Griffith দেখেন যে, এর ভাইরুলেন্ট প্রকরণের ক্যাপসুল সৃষ্টিকারী বৈশিষ্ট্যটি ছানান্তরযোগ্য। পরে O.T. Avery প্রমাণ করেন যে, এ ব্যাকটেরিয়ার ক্যাপসুল (দেহের চারদিকে পুরু আবরণ) তৈরির বৈশিষ্ট্য ছানান্তরিত হয় DNA দিয়ে। কাজেই বোঝা গেল DNA-ই হচ্ছে জিন।

জিনের আধুনিক ধারণা : বিজ্ঞানী Avery, Macleod ও McCarty ১৯৪৪ সালে এবং Hershey ও Chasi ১৯৫২ সালের পরীক্ষা থেকে সুনিশ্চিতভাবে প্রমাণিত হয় যে, DNA হলো জিনগত বস্তু।

- [MAT: 16-17]

আধুনিক ধারণা মতে, **জ্বনকে বিভিন্ন এককরূপে প্রকাশ করা হয়**। যেমন- রেকন, মিউটন, রেপ্লিকন ও সিসট্রন।

<u>১। রেকন (Recon): এটি জিন রিকম্বিনেশন এর একক, DNA</u> অণুর যে ক্ষুদ্রতম একক জেনেটিক রিকম্বিনেশনে অংশ গ্রহণ করে তাকে রেকন বলে। রেকন এক অথবা দুই জোড়া নিউক্লিওটাইড দিয়ে গঠিত।

৩ । রেপ্লিকন (Replicon) : DNA-এর যে অংশ DNA-এর অনুলিপন নিয়ন্ত্রণ করে তাকে রেপ্লিকন বলে অর্থাৎ এটি রেপ্লিকেশন এর একক।

8 । সিসট্রন (Cistron): জিন কার্যের একক। DNA অণুর যে খণ্ডাংশ কোষীয় বস্তুর কার্যকলাপ নিয়ন্ত্রণ করে তাকে সিসট্রন বলে। Escherichia coli ব্যাকটেরিয়ার একটি সিসট্রনে প্রায় ১৫০০টি নিউক্লিপ্ডটাইড যুগল থাকে। প্রতিটি সিসট্রনে অনেক রেকন ও মিউটন থাকে। তাই রেকন ও মিউটন অপেকা সিসট্রনের দৈর্ঘ্য অনেক বেশি। অধিকাংশ ক্ষেত্রে জিন ও সিসট্রন প্রায় সমতুল্য (equivalent) অর্থ বহন করে। এজন্য DNA এর কার্যকরী একককে বলা হয় সিসট্রন।

জিন হলো ক্রোমোসোমের লোকাসে অবন্থিত DNA অণুর সুনির্দিষ্ট সিকোয়েল যা জীবের একটি নির্দিষ্ট 'কার্যকর সংকেত' আবদ্ধ (encode) করে এবং প্রোটিন হিসেবে আত্মপ্রকাশ করে বৈশিষ্ট্যের বিকাশ ঘটায়। অন্যভাবে বলা যায়, জিন ক্রোমোসোমন্থ DNA-এর একটি অংশ যা একটি কর্মক্ষম পলিপেপটাইড শিকল গঠনের উপযুক্ত বার্তা বহন করে। সহজ্ব কথায়, জিন হলো কোন ক্রোমোসোমের সুনির্দিষ্ট অবন্থানে DNA অণুর একটি অংশ যা একটি হেরিটেবল বৈশিষ্ট্য নিয়ন্ত্রণ করে।

জিনের বৈশিষ্ট্যাবলি

্য জিন নিউক্লিক অ্যাসিড দিয়ে গঠিত।

💢 এরা প্রকৃতকোষের ক্রোমোসোমে অবস্থান করে এবং আদিকোষের নিউক্লীয় বস্তু বা প্রাসমিডে অবস্থান করে।

্র্র্মা. এটি জীবের প্রকরণ (variety) এবং পরিব্যক্তিতে (mutation) মুখ্য ভূমিকা রাখে।

iv জিন জীবের বিশেষ কোনো বৈশিষ্ট্য বংশানুক্রমিকভাবে বহন করে।

🗸 জীবের এক একটি বৈশিষ্ট্যের জন্য এক বা একাধিক জিন দায়ী।

একটি ক্রোমোসোমে অসংখ্য জিন থাকে। জিন ক্রোমোসোমে রৈখিক সজ্জাক্রমে (linearly arranged) বিন্যন্ত থাকে।

বিভিন্ন ধরনের জিন 🔏

- **শিখাল জিন (Lethal gene):** যে জিনের বহিঃপ্রকাশের কারণে জীবের মৃত্যু হয় তাকে লিথাল জিন বলে।
- অঙ্কোজিন (Oncogene): যে জিনের কারণে ক্যান্সার রোগ সৃষ্টি হয় তাকে অঙ্কোজিন বলে।
- সেক্স-ক্রোমোসোমাল জিন (Sex-chromosomal gene): সেক্স (X, Y)-ক্রোমোসোম যেসব জিন বহন করে তাদের সেক্স- ক্রোমোসোমাল জিন বলে। যেমন্- হিমোফিলিয়া, বর্ণান্ধতা ইত্যাদি।
- ট্রাঙ্গ জিন (Trans gene) : যে জিন কোনো উদ্ভিদকোষ বা প্রাণিকোষ থেকে নিয়ে অন্য কোনো প্রজাতির উদ্ভিদ কোষ বা প্রাণিকোষে প্রতিছাপন করা হয় তাকে ট্রাঙ্গ জিন বলে।
 - খণ্ডিত জিন (Split gene): যে জিন ইন্ট্রন ও এক্সন সহযোগে গঠিত তাকে খণ্ডিত জিন বলে।
- সিউডো জিন (Pseudo gene) : DNA-এর যে অংশ নিদ্রিয় থাকে বা জিনের যে অংশ থেকে কোনো পলিপেপটাইড তৈরি হয় না তাকে সিউডো জিন বলে।
- অটোজোমাল জিন : অটোজোম যেসব জিন ধারণ করে তাদের অটোজোমাল জিন বলে। যেমন- মানুষের মাথার টাক (বল্ডনেস), অ্যালবিনিজম।
 - হোলান্ত্রিক জিন: Y-ক্রোমোসোম যেসব জিন বহন করে সেগুলো হোলান্ত্রিক জিন। যেমন- মানুষের কানের লোম।
- **শিংকড জিন** (Linked gene) : যখন দুটি জিন কোনো ক্রোমোসোমে একই সঙ্গে অবস্থান করে কিন্তু স্বাধীনভাবে সঞ্চারিত হয় না তখন তাদেরকে বলা হয় শিংকড জিন।

কোনো প্রজাতির কোষে বিদ্যমান সকল ধরনের এক সেট ক্রোমোসোমে বিদ্যমান সকল জিনের সমষ্টিকে জিনোম বলে। জার্মান উদ্ভিদ বিজ্ঞানী Hans Winkler ১৯২০ সালে সর্বপ্রথম জিনোম শব্দটি ব্যবহার করেন। মানব জিনোমে প্রায় ৩০০০ মিলিয়ন ক্ষারক-যুগল (base pairs) থাকে যা 24 (22A + 1X + 1Y) টি ক্রোমোসোমে বণ্টিত থাকে। সব মানুষের জিনোমের গঠন ৯৯.৯ ভাগ একই রকম। জিনের গঠনের ০.১ ভাগ ভিন্নতার কারণে বিশ্বে ভিন্ন ভিন্ন বৈশিষ্ট্যের মানুষ দেখা যায়। মানুষের ক্ষেত্রে X ক্রোমোসোমে সবচেয়ে বেশি (২৯৬৮টি) জিন থাকে এবং Y ক্রোমোসোমে সবচেয়ে কম (২৩১টি) জিন থাকে। মানব জিনোমে মাত্র ২ ভাগ জিন বিভিন্ন বৈশিষ্ট্য প্রকাশে অংশগ্রহণ করে। বাকি ৯৮ ভাগ জিনই নিট্রিয় থাকে। এদের জাঙ্ক DNA (junk DNA) বলে। মানুষের জিনোমের সাথে শিস্পাঞ্জির জিনোমের ৯৮ ভাগ এবং গরিলা জিনোমের ৯৭ ভাগ মিল রয়েছে।

জিনের প্রকৃতি : যেকোনো জিনেই মিউটেশন ঘটতে পারে যার মাধ্যমে একটি ছায়ী ও বংশপরস্পরায় ছানান্তরযোগ্য নতুন প্রকরণ সৃষ্টি হয়। কখনো কখনো একাধিক জিন মিলে একটি বৈশিষ্ট্য নিয়ন্ত্রণ করে। যেমন- মানুষের উচ্চতা। কখনো কখনো একটি জিন অন্য জিনের প্রকাশকে পরিবর্তন করে দিতে পারে, অনেক জিনের প্রকাশ পরিবেশ দ্বারা নিয়ন্ত্রিত হতে পারে।

প্রাকৃতিক বা কৃত্রিম নিয়ামক দ্বারা জিনের যেকোনো ধরনের পরিবর্তন ঘটতে পারে। জিনের বড়ো ধরনের পরিবর্তন জীবের বৈশিষ্ট্যে প্রকাশ পায়। প্রকৃতকোষী জীবের জিনে কোডিং ও নন-কোডিং অংশ থাকে। এদেরকে যথাক্রমে এক্সন (exon) ও ইনট্রন (intron) বলে। কেবল এক্সন প্রোটিন সংশ্লেষণে অংশগ্রহণ করে।

জিনের সংখ্যা : একটি ছন্যপায়ী প্রাণীর কোষে ৫০,০০০ এর অধিক জিন থাকতে পারে। প্রতিটি জিন একটি সুনির্দিষ্ট DNA অংশ নিয়ে গঠিত এবং এর নিউক্লিওটাইড সংখ্যা ও অনুক্রমও সুনির্দিষ্ট । সুনির্দিষ্ট ক্ষারক অনুক্রম সুনির্দিষ্ট তথ্য বা সংকেত নির্দেশ করে। Human Genome Project এর তথ্য অনুযায়ী (2007) একটি ডিপ্লয়েড মানবকোষে কার্যকরী জিনের সংখ্যা ৩০-৪০ হাজার। এ পর্যন্ত হিসাবকৃত ক্ষুদ্রতম জিনে ৭৫টি নিউক্লিওটাইড এবং বৃহত্তম জিনে ৪০,০০০টি নিউক্লিওটাইড রেকর্ড করা হয়েছে। মানুষের ক্ষেত্রে ক্রোমোসোম ১-এ সবচেয়ে বেশি (২৯৬৮টি) জিন এবং প্র ক্রোমোসোমে সবচেয়ে কম (২৩১টি) জিন থাকে।


প্রকৃতকোষী জীবের বিশেষ করে স্থন্যপায়ী, সরীসৃপ ও পাখির জিনের সংকেত বহনকারী exon-এর মাঝে মধ্যে সংকেতবিহীন **ইনট্রন** (intron) অংশ লক্ষ্য করা যায়। এমন ধরনের জিনকে **প্র্প্রিট জিন** (split gene) বলে। হিউম্যান জিনোম প্রোজেক্টের তথ্য অনুযায়ী ২০০৭ সালে মানুষের জিনোমে ২৯০০ মিলিয়ন নিউক্লিওটাইড এবং প্রায় ৩০,০০০ হাজার জিন এর উপস্থিতি রেকর্ড করা হয়েছে।

- ্রু ল্যাক্টোজ অপেরনের গাঠনিক জিন তিনটি আর ট্রপ্টোফ্যানের গাঠনিক জিন পাঁচটি।
- 🎢 সিকল সেল হিমোগ্রোবিন ৬০০টি অ্যামিনো অ্যাসিড নিয়ে গঠিত।
- 🍑 ড্রুসোফিলা নামক মাছির চোখের রং প্রায় ২০টি জিন দ্বারা নিয়ন্ত্রিত হয়।
- 🎺 অ্যালবিনো (Albino) মানুষের দেহের চামড়া , চুলের রং ইত্যাদি একটি মাত্র জিনের মিউটেশনের ফলে সৃষ্টি হয়।
- 🏏 কোনো কোনো ভাইরাসের জিন (যেমন- TMV ভাইরাস) RNA দিয়ে গঠিত।

আদিকোষে জিন প্রকাশ : জিন ক্রিয়ার নিয়ন্ত্রণ ব্যাখ্যার জন্য Jacob & Monad (1961) 'অপেরন মডেল' প্রস্তাব করেন। <u>আদিকোষে (eg. E. coli)</u> জিন প্রকাশের ইউনিটকে বলা হয় operon (অপেরন)। একটি গাঠনিক জিন, তার সাথে চালক জিন, নিয়ন্ত্রক জিন ও উদ্দীপক জিন নিয়ে সমিলিতভাবে কাজ করে। এ চার প্রকার জিনকে একত্রে অপেরন বলে। এটি আদিকোষে জিন প্রকাশের একটি ইউনিট। প্রতিটি আদিকোষী জীবে একাধিক অপেরন থাকে। চারটি অংশ নিয়ে অপেরন গঠিত হয়। অংশ চারটি হলো—

- ১। গাঠনিক জিন (Structural gene) : যা এনজাইম সংশ্লেষ করে।
- ২। প্রোমোটার বা উদ্দীপক জিন (Promoter gene) : যেখানে RNA-পলিমারেজ এনজাইম সংযুক্ত হয়।
- ৩। অপারেটর বা চালক জিন (Operator gene) : চালক জিন গাঠনিক জিনের প্রোটিন উৎপাদনকে নিয়ন্ত্রণ করে।
- 8। রেগুলেটর বা নিয়ন্ত্রক জিন (Regulator gene) : মা চালক জিনকে নিয়ন্ত্রণ করে।

প্রতিটি আদিকোষী জীবে একাধিক অপেরন থাকে, যেমন- ল্যাক্টোজ অপেরন, ট্রিপ্টোফ্যান অপেরন ইত্যাদি। ল্যাক্টোজ অপেরন ক্রিমাশীল হয় ল্যাক্টোজ-এর উপস্থিতিতে। আর ট্রিপ্টোফ্যান অপেরন কর্মশীল হয় ট্রিপ্টোফ্যান না থাকলে। ল্যাক্টোজ অপেরনের গাঠনিক জিন তিনটি, আর ট্রিপ্টোফ্যানের গাঠনিক জিন পাঁচটি। গাঠনিক জিনসমূহ এক সাথে পরপর থাকে এবং সবাই মিলে একই mrna ট্রাক্সক্রাইব করে। রেগুলেটর জিন অনেক সময় রিপ্রেসর প্রোটিন তৈরি করে যা ট্রাক্সক্রিপশনে বাধা প্রদান করে, তখন অপেরন কর্মশীল থাকে না।

চিত্র ১.৪৩ : অপেরন।

প্রকৃতকোষে জিন প্রকাশ: জীবদেহের সকল তথ্য জিন তথা DNA-তে সংরক্ষিত থাকে। প্রোটিন সংশ্লেষণের মাধ্যমে এসব তথ্যের বহিঃপ্রকাশ ঘটে। যে প্রক্রিয়ায় জিন প্রোটিন সংশ্লেষণে অংশগ্রহণ করে তাকে জিনের ক্রিয়া (action of gene) বলে। প্রকৃতকোষে জিন প্রকাশ ঘটে যথাক্রমে (i) ট্রান্সক্রিপশন, (ii) mRNA প্রসেসিং, (iii) ট্রান্সলেশন, (iv) ট্রান্সলেশন পরবর্তী প্রসেসিং এবং (v) ফিড ব্যাক (feed back) ইনহিবিশন প্রক্রিয়ার মাধ্যমে।

ব্যাকটেরিয়ার ক্রোমোসোমে 'অপেরন' এর জিন ক্রিয়া-কৌশল চিত্রে দেখানো হয়েছে। সুকেন্দ্রিক কোষের ক্রোমোসোমন্থ জিনের ক্রিয়া-কৌশল অপেক্ষাকৃত জটিল। ক্রোমোসোমের ইউক্রোমাটিন অংশের জিন ক্রিয়াশীল হয়, হেটারোক্রোমাটিন অংশের জিন ক্রিয়াশীল হয় না।

জিনের কাজ

- (i) জিন জীবদেহে যাবতীয় বাহ্যিক বৈশিষ্ট্যের (ফিনোটাইণ) প্রকাশকে নিয়ন্ত্রণ করে।
- (ii) জিন জীবের সাংগঠনিক ও বিপাকীয় বৈশিষ্ট্যকে প্রোটিন, এনজাইম অথবা হরমোন সংশ্রেষণের মাধ্যমে প্রকাশ করে।
- (iii) জিন তার অন্তর্নিহিত তথ্য ট্রাঙ্গক্রিপশন পদ্ধতির মাধ্যমে mRNA-তে প্রেরণ করে। mRNA এ তথ্য ট্রাঙ্গলেশনের মাধ্যমে পলিপেপটাইড ও প্রোটিন গঠন করে।
- (iv) কোষের সব ধরনের RNA ও প্রোটিন উৎপাদনে জিন মুখ্য ভূমিকা পালন করে।
- (iv) জিন প্রজাতির নির্দিষ্ট বৈশিষ্ট্যের সংরক্ষণকে নিশ্চিত করে।

আদিকোষ ও প্রকৃতকোষের জিনগত কিছু পার্থক্য নিমুরূপ:

- (i) আদিকোষে 'অপেরনের' মাধ্যমে নিকট সম্পর্কযুক্ত একাধিক জিন ট্রান্সক্রাইব হয়ে থাকে। কিন্তু প্রকৃতকোষে জিনসমূহ সাধারণত পৃথক পৃথকভাবে অবস্থিত থাকে। কাজেই প্রতিটি জিন-এ নিজন্ব নিয়ন্ত্রণব্যবন্থা থাকে। হরমোন-এ সাড়া দেয়া বিভিন্ন জিন-এ (পৃথক পৃথকভাবে দূরে দূরে অবস্থিত) তাদের প্রোমোটারের কাছে বিশেষ সিকোয়েন্স-এর হরমোন রেম্পন্স এলিমেন্ট (Hormone response element) থাকে।
- (ii) ব্যাকটেরিয়া তথা আদিকোষে এক প্রকার RNA পলিমারেজ এনজাইম থাকে কিন্তু প্রকৃতকোষে ভিন্ন তিন প্রকার RNA পলিমারেজ এনজাইম থাকে। বিভিন্ন ধরনের পলিমারেজ বিশেষ ধরনের বিশেষ বিশেষ জিনকে ট্রান্সক্রাইব করে।
- (iii) আদিকোষে একটি পেপটাইড সাবইউনিটের সহায়তায় RNA পলিমারেজ প্রোমোটারকে পুনঃক্রিয়াশীল করে থাকে, কিন্তু প্রকৃতকোষে ট্রাঙ্গক্রিপশনের সূচনা-পর্বে বহু প্রোটিন সম্পৃক্ত হয়।

জেনেটিক কোড (Genetic code)

আমরা এখন জানি যে, জীবের সকল বৈশিষ্ট্য নিয়ন্ত্রণ করে থাকে DNA অণুর বিশেষ বিশেষ অংশ যা জিন (gene) হিসেবে পরিচিত। জিন থেকে একটি নির্দেশনা (গোপন বার্তা) নিয়ে তৈরি হয় mRNA. mRNA তখন কোষীয় রাইবোসোমকে মঞ্চ বানিয়ে tRNA এর মাধ্যমে জিনের সেই বিশেষ নির্দেশনা অনুযায়ী সুনির্দিষ্ট অ্যামিনো অ্যাসিড এনে একটির পর একটি সাজিয়ে বিশেষ বৈশিষ্ট্যপূর্ণ প্রোটিন তৈরি করে। কোষে তৈরিকৃত সেই প্রোটিনসমূহই জীবের সকল বাহ্যিক ও অভ্যন্তরীণ বৈশিষ্ট্য প্রকাশ করে এবং কোষীয় সকল কার্যক্রম নিয়ন্ত্রণ করে।

(i) চারটি বেস (ATGC) এর বিভিন্ন কম্বিনেশনে তৈরি হলো DNA অণু। (ii) আবার চারটি বেস (AUGC) এর বিভিন্ন কম্বিনেশনে তৈরি হয় RNA অণু। (iii) অন্যদিকে ২০ প্রকার অ্যামিনো অ্যাসিডের বিভিন্ন কম্বিনেশনে তৈরি হয় বিভিন্ন প্রকার প্রোটিন। এমন প্রোটিনও আছে যাতে দশ হাজারের ওপর অ্যামিনো অ্যাসিড আছে। প্রোটিনে অ্যামিনো অ্যাসিডগুলো একটি সুনির্দিষ্ট নীতিমালায় একটির পর আর একটি সজ্জিত থাকে। এ সাজানো প্রক্রিয়ায় একটি ভুল অ্যামিন অ্যাসিড সংযোজন হলে বা বাদ পড়লে প্রোটিনের বৈশিষ্ট্য ও এর কাজ বিনষ্ট হবে অথবা জীবদেহের ক্ষতি হবে।

মানুষের ইনসুলিন একটি প্রোটিন। এতে সুনির্দিষ্ট সজ্জায় ৫১টি অ্যামিনো অ্যাসিড আছে। সুনির্দিষ্ট সজ্জাটি এমন : অ্যাসপারজিন + সেরিন + টাইরোসিন + প্রোলিন + গ্লাইসিন + প্রোলিন + সেরিন + টাইরোসিন + গ্লাইসিন + টাইরোসিন + আরজিনিন (৫১ নং); এ ক্রমসজ্জায় কোনো ভুল হলে মানবদেহে ইনসুলিন কোনো কাজ করবে না। মানুষের ইনসুলিন তৈরির জিন থাকে ১১ নং ক্রোমোসোমের খাটো বাহুর শীর্ষে।

যেকোনো প্রোটিনের (অ্যান্টিবডি, এনজাইম, হরমোন, গাঠনিক প্রোটিন ইত্যাদি) অ্যামিনো অ্যাসিডে সঠিক সজ্জাপদ্ধতি নির্ধারিত হয় জেনেটিক কোডের মাধ্যমে যার ভিত্তি হলো DNA অণুতে অবস্থিত জিন। জেনেটিক কোড হলো একটি 3-Letter (তিনটি নিউক্লিপ্রটাইড বা বেস) কোড যা DNA অণুতে পরপর একত্রে বিন্যন্ত থাকে। DNA অণুতে অবস্থিত 3-Letter কোড প্রথমে রূপান্তরিত হয়ে mRNA অণুতে 3-Letter কোডন হিসেবে সজ্জিত হয়। mRNA অণুর 3-Letter কোডন tRNA-এর মাধ্যমে সঠিক অ্যামিনো অ্যাসিডটি বেছে নিয়ে প্রোটিন অণুতে সংযুক্ত করে। কাজেই ধারাবাহিকভাবে সজ্জিত প্রতি তিনটি বেসগুচছ এবং এরা যে সঠিক অ্যামিনো অ্যাসিড নির্বাচন করে তার মধ্যে একটি সুনির্দিষ্ট কোডিং সম্পর্ক হলো জেনেটিক কোড। DNA বা RNA বেসসমূহের মাধ্যমে জেনেটিক কোড প্রকাশ করা যায়। (The specific coding relationship between bases and the amino-acids they specify is known as genetic code.)

সহজ কথায় জেনেটিক কোড হলো DNA অণুর নিউক্লিওটাইডের অনুক্রম (sequence) এবং প্রোটিনের অ্যামিনো অ্যাসিডের অনুক্রমের মধ্যে একটি যোগাযোগ পদ্ধতি। DNA অণুর নিউক্লিওটাইড বিন্যাসের সাথে প্রোটিনের অ্যামিনো অ্যাসিড বিন্যাসের মধ্যে এ ধরনের সামঞ্জস্য প্রাথমিকভাবে লক্ষ্য করেন Sarabhai ও তাঁর সহকর্মীগণ ১৯৬৪ সনে। Yanoklei ও তাঁর সহকর্মীগণ একই ধরনের সামঞ্জস্য লক্ষ্য করেছিলেন।

DNA এবং RNA-এর একটি সিকোয়েঙ্গ সেট যা কোনো জীবের প্রোটিন তৈরির জন্য অ্যামিনো অ্যাসিড সিকোয়েঙ্গ নির্ধারণ করে তাই জেনেটিক কোড। জেনেটিক কোড বংশগতির বায়োকেমিক্যাল ভিত্তি। একাধিক কোডন একই অ্যামিনো অ্যাসিড কোড করার প্রবণতাকে কোডের অধোগামিতা (redundancy) বলে।

কোডন (Codon) : mRNA অণুর ধারাবাহিক অনুক্রমের তিনটি বেসকে একত্রে একটি কোডন বলা হয়। একটি কোডন একটি অ্যামিনো অ্যাসিডকে কোড করে।

কোডনের সংখ্যা : (i) DNA বা RNA অণুতে বেস থাকে চার ধরনের (ATGC বা AUGC) কিন্তু প্রোটিন গঠনকারী অ্যামিনো অ্যাসিডের সংখ্যা ২০টি। একটি বেস একটি অ্যামিনো অ্যাসিডকে কোড করলে মাত্র ৪টি অ্যামিনো অ্যাসিড কোডেড হবে, ১৬টিই বাকি থেকে যাবে।

- (ii) দুটি বেসকে একসাথে শুচ্ছবদ্ধ করলে এদের মধ্যে কম্বিনেশন সংখ্যা দাঁড়াবে সর্বাধিক ১৬টি। ২০টি অ্যামিনো অ্যাসিড কোড করার জন্য ১৬টি কম্বিনেশন অপেক্ষাকৃত কম।
- (iii) প্রতি ৩টি বেসকে একসাথে শুচ্ছবদ্ধ করলে এদের কম্বিনেশন সংখ্যা দাঁড়ায় ৬৪টি যা সহজেই ২০টি অ্যামিনো অ্যাসিডকে কোড করতে পারবে। <u>কাজেই কোডন সংখ্যা ৬৪টি।</u> এর মধ্যে ৩টি (UAA, UAG, UGA) সমাপ্তি কোডন যারা কোনো অ্যামিনো অ্যাসিড কোড করে না। কাজেই অ্যামিনো অ্যাসিড কোড করার জন্য কার্যকরী কোডন সংখ্যা হলো ৬১টি। ১ কোডন (AUG) ট্রাঙ্গলেশন শুরু করার কোডন।

Nirenberg, Matthaei ও তাদের সহকর্মীগণ (১৯৬৪) ৬৪টি কোডনের প্রবক্তা।

দ্বিপ্লেট (Triplet) : <u>তিনটি বেস-এর গুচ্ছকে বলা হয় দ্বিপলেট।</u> DNA-এর কোডসমূহ triplet; mRNA-এর কোডনসমূহ ট্রিপলেট, এমনকি tRNA-এর অ্যান্টিকোডনও ট্রিপলেট। তিনটি বেস (নিউক্লিওটাইড) এর কার্যকরী গুচ্ছই triplet. **ট্রিপলেট সিকোয়েন্স ৫'-৩' মুখী**।

জেনেটিক কোঁত ট্রিপ্লেট। জেনেটিক কোড নিউক্লিওটাইডের ৬৪টি ট্রিপলেট নিয়ে গঠিত। প্রতিটি ট্রিপলেটকে কোডন বলা হয়। প্রতিটি কোডন ২০ প্রকার অ্যামিনো অ্যাসিডের যেকোনো একটিকে এনকোড করে। ৩টি বেস পেয়ারের কম্বিনেশনকে বলে ট্রিপলেট কোড এবং বিশেষ অ্যামিনো অ্যাসিড কোড করার ট্রিপলেট সিকোয়েন্স হলো কোডন।

জ্যান্টিকোডন (Anticodon) : tRNA অণুর তিনটি বেস যা mRNA-এর পরিপূরক কোডনের সাথে যুক্ত হতে সক্ষম সেই বেস ট্রিপলেটকে অ্যান্টিকোডন বলা হয়। tRNA-এর অ্যামিনো অ্যাসিড সাইটের উল্টোদিকে অ্যান্টিকোডনের অবস্থান। mRNA অণুর কোডন যদি 5'-AGU-3' হয়, তা হলে tRNA-তে অ্যান্টিকোডন হবে 3'-UCA-5'.

কোনো কোনো অ্যামিনো অ্যাসিডের জন্য একটি সুনির্দিষ্ট কোডন থাকলেও অনেক অ্যামিনো অ্যাসিড ২, ৩, ৪টি এমনকি ৬টি পর্যন্ত কোডন দিয়ে নির্ধারিত হয়। যেমন- লাইসিন-এর জন্য ২টি, ভ্যালিন-এর জন্য ৪টি, আবার আরজিনিন-এর জন্য ৬টি কোডন থাকে। ১৯৬৬ সালে জেনেটিক কোডের সম্পূর্ণ অর্থ জানা সম্ভব হয়। জেনেটিক কোডের পাঠোদ্ধারের জন্য নিরেনবার্গ ও হরগোবিন্দ খোরানা নোবেল পুরন্ধার লাভ করেন ১৯৬৯ সালে।

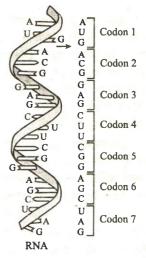
mRNA কোডনের স্বরূপ

কোডনের দ্বিতীয় অক্ষর (কোডনের মধ্যঅংশ)

	U	С	A	G	7
U	UUU	UСU UСС UСА UСА	UAU UAC DIECAIPA UAA CESA FICE	UGU UGC P विकित	U C A G
কোডনের প্রথম অক্ষর (কোডনের ৫ -প্রান্ত্র) V	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU (হিস্টিডিন (A C) (মি C A C) (মি টামিন	CGU CGC)	U C A G
কোডনের প্রথম V	AUU, AUC) জাইসো- AUA) লিউসিন AUG (মেথিপ্রনিন)	ACU ACC ACA ACG	A A U A A C আসপারাজিন A A A A A G লাইসিন	AGU AGC	U C A G
G	GUU GUC GUA GUG	G C U G C C G C A G C G	GAU জ্ঞাসপার্টিক GAC আসিড GAA গুটামিক GAG জ্ঞাসিড	GGU GGC)	U C A G

তিন দিক থেকে তিনটি অক্ষর মিলিতভাবে একটি কোডন তৈরি করে।

জুনেটিক কোডের বৈশিষ্ট্যাবলি (Characteristics of genetic code)


জেনেটিক কোড নিউক্লিওটাইডের ৬৪টি ট্রিপলেট নিয়ে গঠিত। এ ট্রিপলেটকে কোডন বলা হয়।

১০০০ একাধিক কোডন একটি অ্যামিনো অ্যাসিডকে কোড বা নির্দেশ করে (যেমন-লিউসিন)।

- ্রত একটি কোডন কখনো একাধিক অ্যামিনো অ্যাসিডকে কোড করে না।
- ১৪। কোডন তৈরিতে নিউক্লিওটাইড (এখানে letter বা অক্ষর) কখনো ওভারলেপ করে না (non-overlapping) বরং ক্রমসজ্জা (sequence) অনুসরণ করে।
- পার্কিনীন (universal) অর্থাৎ বিশ্বের সকল প্রজাতির জন্য সমানভাবে
 প্রযোজ্য এবং সেই আদিকাল থেকে শত বিবর্তন ধারা অতিক্রম করে এখনও একই
 রকম আছে।
- 🗤 🏏। জেনেটিক কোড বা কোডন সর্বদা তিন অক্ষরবিশিষ্ট বা ট্রিপলেট হয়।
- ্ব শুরু ও সমাপ্তি কোডন সুনির্দিষ্টি। কোডন AUG দিয়ে পলিপেন্টাইড-এর শুরু এবং কোডন UAA, UAG বা UGA দিয়ে এর সমাপ্তি ঘটে।
- ্রি। দুটি কোডনের মধ্যে অতিরিক্ত নিউক্লিওটাইড থাকে না। আবার সমাপ্তি কোডন না আসা পর্যন্ত অব্যাহতভাবে অ্যামিনো অ্যাসিড সংযুক্তি চলতে থাকে।

সামান্য ব্যতিক্রম

মাইটোকদ্রিয়া ও ক্লোরোপ্লাস্টে (এদের DNA আদিকোষ থেকে এসেছে বলে মনে করা হয়) এবং আদিকোষের কোডনের সাজানো পদ্ধতিতে কিছুটা পার্থক্য দেখা যায়। কতক প্রোটিস্ট-এ UAA এবং UAG ট্রাঙ্গলেশন বন্ধ করার নির্দেশ না দিয়ে বরং গ্রুটামিন কোড করে। এর ব্যাখ্যা এখনো জানা যায়নি, একে সার্বজনীন-এর সামান্য ব্যতিক্রমই ধরা হয়।

চিত্র ১.৪৪ : জেনেটিক কোড।

বংশগতি নির্ণয়ে DNA-এর ভূমিকা

আমরা জেনেছি **মাতা-পিতার চারিত্রিক বৈশিষ্ট্য বংশানুক্রমে তাদের সন্তান-সন্তুতিতে ছানান্তরিত হওয়াকে বলে বংশগতি**। বংশগতির ভিত্তি হলো বংশগতি বস্তু অর্থাৎ ক্রোমোসোম, DNA, RNA ইত্যাদি। কাজেই বংশগতি নির্ণয়ে এদের ভূমিকা সরাসরি।

DNA-এর ভূমিকা : এখন সর্বজন স্বীকৃত যে ক্রোমোসোমে অবস্থিত জিনই জীবের বৈশিষ্ট্য নিয়ন্ত্রণ করে। বিভিন্ন পরীক্ষা-নিরীক্ষার মাধ্যমে প্রমাণিত হয়েছে যে DNA-এর অংশবিশেষই জিন হিসেবে কাজ করে, অর্থাৎ DNA-ই জিন। ক্রোমোসোমের একমাত্র স্থায়ী রাসায়নিক পদার্থ DNA। কাজেই কেবলমাত্র DNA-ই বংশগতির বস্তু এবং বংশগতির রাসায়নিক ভিত্তি (chemical basis of heridity)। DNA-ই সরাসরি মাতা-পিতা হতে বৈশিষ্ট্য তার সম্ভান-সম্ভূতিতে বহন করে নিয়ে আসে।

মিউটেশন এবং DNA (Mutation & DNA)

জেনেটিক মিউটেশন হলো DNA সিকোয়েঙ্গে পরিবর্তন ঘটা। সিনথেটিক কেমিক্যাল, রেডিয়েশন, ভুল রেপ্লিকেশন এবং দৈবচয়নে (random) জিনোমের গঠন ও কাজে পরিবর্তন ঘটতে পারে।

পয়েন্ট মিউটেশন (Point mutation) : জিন-এর মধ্যে যেকোনো একটি নিউক্লিওটাইডের পরিবর্তন ঘটা হলো পয়েন্ট মিউটেশন। এটা ঘটতে পারে (i) DNA সিকোয়েন্সে একটি ক্ষারকজোড় (Base Pair) অন্য একটি ক্ষারকজোড়া দ্বারা স্থলাভিষিক্ত হয়। (ii) DNA সিকোয়েন্সের একটি ক্ষারকজোড় সংযুক্ত হয়। (iii) DNA সিকোয়েন্সে একটি ক্ষারকজোড় বাদ পড়ে। (iv) DNA সিকোয়েন্সে পাশাপাশি দুটি ক্ষারকজোড়ের স্থান পরিবর্তন হয়।

একটি মানবগোষ্ঠীর (Population) ব্যক্তিদের মধ্যে বৈশিষ্ট্যের যেসব পার্থক্য পরিলক্ষিত হয়, তা পয়েন্ট মিউটেশনের জন্যই হয়ে থাকে। একে বলা হয় Single Nucleotide Polymorphism বা SNPs ।

জিনের কোডিং সিকোয়েন্সে একটি অ্যামিনো অ্যাসিড পরিবর্তনের ফলে সৃষ্ট প্রোটিনের সিকোয়েন্স এবং গঠন ভিন্নতর হয় (Missense mutation)। Nonsense mutation-এ প্রকৃত স্টপ কোডন আসার আগেই একটি স্টপ কোডন চলে আসে। এর ফলে সৃষ্ট প্রোটিন দৈর্ঘ্যে খাটো হয় এবং কর্মক্ষম হয় না।

মানুষের ১৫ নম্বর ক্রোমোসোমের একটি অংশে মিউটেশন ঘটলে ব্যক্তির লাং ক্যান্সার সৃষ্টির প্রবণতা ৩০% থেকে ৮০% এ বেড়ে যায়।

Caenorhabditis elegans নামক ক্ষুদ্র গোলকৃমি সাধারণত ২—৩ সপ্তাহ বেঁচে থাকে। গবেষণায় দেখা গিয়েছে এদের daf-2 নামক সিঙ্গল জিন মিউটেশন ঘটলে এরা দ্বিগুণ সময় বাঁচে অর্থাৎ একটি সিঙ্গল জিন মিউটেশন কোন জীবের জীবনকাল বিশ্ময়করভাবে নিয়ন্ত্রণ করতে পারে।

মানুষের কোনো ক্রোমোসোমের DNA তে সিঙ্গল জিন মিউটেশন ঘটিয়ে কি কোনো ব্যক্তির জীবনকাল দ্বিগুণ করা যাবে?

জীব-১ম (হাসান)-১০

সার-সংক্ষেপ

কোষ: জীবদেহ গঠনকারী একক হলো কোষ। জীবদেহের সকল কাজের কেন্দ্রবিন্দুও কোষ। কাজেই জীবদেহের গঠন ও কাজের এককই কোষ হিসেবে পরিচিত। ব্রিটিশ বিজ্ঞানী রবার্ট হুক ১৬৬৫ সালে বোতলের কর্ক পরীক্ষাকালে তাতে অসংখ্য ক্ষুদ্রাকার প্রকোষ্ঠ দেখতে পান এবং ঐ প্রকোষ্ঠকেই নাম দেন Cell, যার বাংলা করা হয়েছে কোষ। যে কোষ জীবের দেহ গঠন করে তাকে বলা হয় দেহকোষ, আবার জননকাজের জন্য সৃষ্ট শুক্রাণু ও ডিম্বাণু কোষকে বলা হয় জননকোষ। ব্যাকটেরিয়া, সায়ানোব্যাকটেরিয়া ইত্যাদি জীবের কোষকে বলা হয় আদিকোষ, কারণ এদের কোষ আদি প্রকৃতির, সুগঠিত নিউক্লিয়াসবিহীন। পুষ্পক উদ্ভিদ, মানুষ ইত্যাদি জীবের কোষ হলো প্রকৃত কোষ, কারণ এদের কোষ উন্নত প্রকৃতির, সুগঠিত নিউক্লিয়াসবিশিষ্ট।

ক্রোমোসোম : ক্রোমোসোম হলো কোষন্থ সূত্রাকার অঙ্গাণু যা সাধারণত নিউক্লিয়াসের ভেতরে অবন্থিত। ক্রোমোসোমের মূল উপাদান হলো DNA, কাজেই ক্রোমোসোমই বংশগতির ধারক ও বাহক। ক্রোমোসোম আবিষ্কৃত হয় ১৮৭৫ সালে (কোষ আবিষ্কার হওয়ার অনেক পরে) এবং নামকরণ করা হয় ১৮৮৮ সালে। ক্রোমোসোম অর্থ হলো 'রঞ্জিত দেহ' কারণ এরা কতগুলো বেসিক রং ধারণ করতে পারে। প্রতিটি জীবপ্রজাতি একটি সুনির্দিষ্ট সংখ্যক ক্রোমোসোম বহন করে, যার সংখ্যা প্রজাতিভেদে 2n=2 থেকে 2n=5৬০০ পর্যন্ত জানা গেছে। প্রতিটি ক্রোমোসোমে কমপক্ষে একটি সেন্ট্রোমিয়ার থাকে এবং সেন্ট্রোমিয়ারের অবস্থানভেদে ক্রোমোসোম প্রধানত চার প্রকার; যথা– মধ্যকেন্দ্রিক, উপ-মধ্যকেন্দ্রিক, উপ-প্রান্তকেন্দ্রিক এবং প্রান্তকেন্দ্রিক। কোষ বিভাজনে ক্রোমোসোম প্রধ্যক্ষ ভূমিকা পালন করে।

DNA: ডিঅঞ্মিরাইবোনিউক্লিক অ্যাসিডকে সংক্ষেপে DNA বলা হয়। প্রকৃতকোষের ক্রোমোসোমে অবস্থিত DNA সূত্রাকার। আদিকোষ এবং ক্লোরোপ্লাস্ট, মাইটোকন্দ্রিয়া ইত্যাদি অঙ্গাণুর DNA বৃত্তাকার। প্রতিটি DNA অণু গঠিত হয় এক অণু পাঁচ কার্বনবিশিষ্ট ডিঅঞ্মিরাইবোজ শুগার, এক অণু ফসফোরিক অ্যাসিড এবং নাইট্রোজিনাস বেস দিয়ে। কোষ বিভাজনকালে ক্রোমোসোমের বিভক্তির আগে DNA সূত্রের দ্বিত্বন তথা প্রতিলিপন হয়। DNA অণুর প্রতিলিপন হয় অর্ধসংরক্ষণশীল উপায়ে। DNA-এর ভৌত গঠন ঘুরানো সিঁড়ির মতো, দ্বিসূত্রক যা ডাবল হেলিক্স হিসেবে পরিচিত।

RNA : রাইবোনিউক্লিক অ্যাসিডের সংক্ষিপ্ত নাম RNA. সকল জীবকোষেই RNA থাকে। রাসায়নিকভাবে রাইবোজ শুগার, নাইট্রোজিনাস বেস এবং ফসফেট নিয়ে RNA গঠিত। এটি সূত্রাকার এবং একসূত্রক। সাধারণত পাঁচ প্রকার RNA দেখতে পাওয়া যায়, যথা-tRNA, mRNA, rRNA, gRNA এবং মাইনর RNA। DNA-এর ছাঁচ থেকে mRNA ট্রাঙ্গক্রিন্ট হয় এবং প্রোটিন তৈরির ছাঁচ হিসেবে ব্যবহৃত হয়। tRNA অ্যামিনো অ্যাসিডকে বহন করে mRNA এর ছাঁচের সাথে যুক্ত করে প্রোটিন সংশ্লেষণে সহায়তা করে। কিছু কিছু ভাইরাসে বংশগতির বস্তু হিসেবে RNA কাজ করে।

জিন : জিন হলো ক্রোমোসোমের লোকাসে অবস্থিত DNA অণুর সুনির্দিষ্ট অংশ যা জীবের একটি নির্দিষ্ট সংকেত আবদ্ধ করে রাখে এবং প্রোটিন হিসেবে আত্মপ্রকাশ করে কোনো নির্দিষ্ট বৈশিষ্ট্যের বিকাশ ঘটায়। জীবের বিভিন্ন বৈশিষ্ট্য জিন কর্তৃক নিয়ন্ত্রিত এবং বংশপরম্পরায় স্থানান্তরিত হয়। প্রতিটি জিন-এ নিউক্লিওটাইড-এর সংখ্যা ও অনুক্রম সুনির্দিষ্ট। একটি জিনে ৭৫টি থেকে ৪০,০০০ পর্যন্ত নিউক্লিওটাইড থাকতে পারে।

ট্রান্সক্রিপশন: DNA থেকে RNA তৈরি হয়। DNA থেকে RNA তৈরি প্রক্রিয়াকে বলা হয় ট্রান্সক্রিপশন। সাধারণত প্রোটিন তৈরির জন্যই DNA তার অংশবিশেষকে ছাঁচ হিসেণে ব্যবহার করে RNA তৈরি করে। প্রোটিন তৈরির জন্য mRNA এবং tRNA জরুরি। tRNA অ্যামিনো অ্যাসিড বহন করে mRNA-কে প্রদান করে এবং DNA কর্তৃক প্রদন্ত নির্দিষ্ট বার্তা অনুযায়ী mRNA প্রোটিন তৈরি করে।

১। সেল (Cell): নামকরণ করেন Robert Hooke ১৯৬৫ সালে। পরবর্তীতে সেল এর বাংলা প্রতিশব্দ করা হয়েছে কোষ বা জীবকোষ।

🔨 📈 প্রথায়ে দক্ষতা অর্জন 🔑

- ২। Cell নামের উৎস হলো ল্যাটিন Cellula যার অর্থ হলো ক্ষুদ্র প্রকোষ্ঠ।
- ৩। কাঠের ছিপির পাতলা সেকশন অণুবীক্ষণযন্ত্রের মাধ্যমে পর্যবেক্ষণ করে রবার্ট হুক যে ক্ষুদ্র ক্ষুদ্র প্রকোষ্ঠ দেখতে পেয়েছিলেন সে ক্ষুদ্র প্রকোষ্ঠগুলোকেই সেল নাম দেন।
- 8। Micrographia থছে Robert Hooke তাঁর কোষসংক্রান্ত পর্যবেক্ষণ প্রকাশ করেন।
- ৫। কোষ হলো জীবের গঠনগত ও জৈবিক কার্যকলাপের মৌলিক একক যা অর্ধভেদ্য ঝিল্লি দ্বারা পরিবেষ্টিত থাকে এবং আত্মজননৈ সক্ষম।

- ৬। আদিকালে বায়ুমণ্ডলে বিরাজমান বিভিন্ন গ্যাসের মিলিত ক্রিয়াকলাপে প্রাকৃতিকভাবে প্রথম জৈব অণু সৃষ্টি হয়েছিল বলে বিজ্ঞানীদের ধারণা।
- ৭। আদি জীবন সম্ভবত সরল RNA সর্বম্ব ছিল যা থেকে পরে প্রোটিন তৈরি হতে পেরেছিল। এ ধারণাকে RNAworld হাইপোর্থেসিস বলা হয়।
- ৮। বর্তমান বিশ্বের সকল সরল এককোষী থেকে জটিল বহুকোষী জীবের জেনেটিক কোডন একই; কাজেই একটি উৎস থেকে সকল জীবের সৃষ্টি হয়েছে বলে দৃঢ়ভাবে বিশ্বাস করা হয়।
- ৯। প্রথম কোষ ছিল আদিকোষ; তা থেকে মুক্ত DNA কে ঝিল্লবদ্ধ করে, সৃষ্টি হয় প্রকৃতকোষ, প্রকৃতকোষে এন্ডোসিমবায়োটিক প্রক্রিয়ায় বায়বীয় ব্যাকটেরিয়া ঢুকে সৃষ্টি হয় প্রকৃত প্রাণিকোষ; প্রকৃত প্রাণিকোষে বায়বীয় ফটোসিল্লেটিক ব্যাকটেরিয়া ঢুকে সৃষ্টি হয় প্রকৃত উদ্ভিদকোষ।
- ১০। কোষবিদ্যার জনক Robert Hooke; কিন্তু আধুনিক কোষবিদ্যার জনক হলেন Carl P. Swanson।
- ১১। জীবের দেহ গঠনকারী কোষ হলো দেহকোষ। হ্যাপ্লয়েড জীবের দেহকোষ হ্যাপ্লয়েড (n) এবং ডিপ্লয়েড জীবের দেহকোষ ডিপ্লয়েড (2n)।
- ১২। জীবের যৌন প্রজননে অংশগ্রহণকারী ডিম্বাণু ও শুক্রাণু হলো জননকোষ। জননকোষ হ্যাপ্লয়েড। এরা গ্যামিট নামেও পরিচিত।
- ১৩। যে কোষে কোনো আবরণী বেষ্টিত অঙ্গাণু থাকে না, তা হলো আদিকোষ।
- ১৪। যে কোষে আবরণী বেষ্টিত অঙ্গাণু থাকে, তা হলো প্রকৃতকোষ।
- ১৫। একটি এককোষী জীব পারস্পরিক লাভের ভিত্তিতে অন্য একটি জীবের কোষভ্যন্তরে জীবনধারণ করার সম্পর্ককে বলা হয় এন্ডোসিমবায়োসিস।
- ১৬। আদিকোষে কোনো ক্রোমোসোম থাকে না , এর পরিবর্তে একটি বৃত্তাকার DNA থাকে। এ DNA এর সাথে কোনো হিস্টোন প্রোটিন থাকে না । এ বৃত্তাকার DNA সহ ঐ অঞ্চলকে বলা হয় নিউক্লিঅয়েড (নিউক্লিয়াস নয়।)
- ১৭। প্রকৃতকোষের DNA লম্বা সূত্রাকার (বৃত্তাকার নয়), হিস্টোন প্রোটিনের সাথে প্যাঁচিয়ে ক্রোমোসোম হিসেবে অবস্থান করে। ক্রোমোসোমবিশিষ্ট ঐ অঙ্গকে নিউক্লিয়াস বলে যা দুটি ঝিল্লি দ্বারা আবৃত থাকে।
- ১৮। যে বিশেষ ধরনের প্রোটিন অণুকে DNA স্ট্র্যান্ড আবৃত করে কুণ্ডলিত হয় তাকে **হিস্টোন প্রোটিন** বলে।
- ১৯। উদ্ভিদকোষ, ব্যাকটেরিয়া কোষ এবং ছত্রাক কোষে কোষঝিল্লির বাইরে জড় কোষপ্রাচীর থাকে। প্রাণিকোষে কোনো কোষ প্রাচীর থাকে না।
- ২০। কোষ অতি ক্ষুদ্র বলে সাধারণত এদের মাপের ক্ষেত্রে মাইক্রোমিটার (μm) তথা মাইক্রন (μ) এবং ন্যানোমিটার (nm) ব্যবহার করা হয়।
- ২১। সবচেয়ে ছোটো কোষ হলো মাইকোপ্লাজমা এবং সবচেয়ে বড়ো কোষ হলো উটপাখির ডিম।
- ২২। একটি আদর্শ উদ্ভিদকোষে থাকে কোষপ্রাচীর, কোষঝিল্লি, সাইটোপ্লাজম ও এর অঙ্গাণুসমূহ, নিউক্লিয়াস এবং কতক নির্জীব বস্তু।
- ২৩। দু'টি পাশাপাশি উদ্ভিদকোষের মাঝখানে থাকে মধ্যপর্দা, এর ভেতরের তলে থাকে প্রাথমিক প্রাচীর, কোনো কোনো কোষে প্রাথমিক প্রাচীরের ভেতরের তলে থাকে সেকেন্ডারি বা গৌণ প্রাচীর।
- ২৪। পাশাপাশি দু'টি কোষের প্রাচীরগাত্রের সৃক্ষ ছিদ্রের মাধ্যমে সাইটোপ্লাজমিক সংযোগ স্থাপিত হয় যাকে প্লাজমোডেসমাটা বলে।
- ২৫। সজীব কোষের অভ্যন্তরে অবস্থিত শ্বচ্ছ, আঠালো জেলির ন্যায়অর্ধতরল কলয়েডধর্মী সজীব পদার্থকে প্রোটোপ্লাজম বলে। প্রোটোপ্লাজম অর্থ আদি বস্তু।
- ২৬। প্রোটোপ্লাজমকে জীবনের ভৌত ভিত্তি বলা হয়।
- ২৭। কোষের সর্ববাইরে অবস্থিত সজীব ঝিল্লিই কোষঝিল্লি বা প্লাজমামেমব্রেন। বলা যায়, কোষের প্রোটোপ্লাজমকে ঘিরে রাখা সজীব ঝিল্লিই কোষঝিল্লি। উদ্ভিদকোষ, ব্যাকটেরিয়া কোষ ও ছত্রাক কোষে এর বাইরে একটি জড় প্রাচীর থাকে, যা কোষ প্রাচীর নামে পরিচিত।
- ২৮। ফসফোলিপিড বাইলেয়ার দিয়ে কোষঝিল্ল গঠিত।
- ২৯। কোষঝিল্লি দিয়ে পরিবেষ্টিত এবং কোষস্থ নিউক্লিয়াসের বাইরে অবস্থিত প্রোটোপ্রাজমই সাইটোপ্রাজম হিসেবে পরিচিত। সাইটোপ্রাজমে অনেক অঙ্গাণু থাকে।

- ৩০। কোষের সাইটোপ্লাজমীয় অঙ্গাণুসমূহের মধ্যে রাইবোসোম, সেন্ট্রিয়োল, সাইটোক্ষেলিটন— এদের কোনো আবরণী ঝিল্লি নেই। নিউক্লিয়াসের অভ্যন্তরে অবস্থিত নিউক্লিওলাস-এরও কোনো আবরণী ঝিল্লি নেই।
- ৩১। দুটি পৃথক সাবইউনিট নিয়ে একটি রাইবোসোম গঠিত। প্রোটিন সংশ্রেষণ করাই রাইবোসোমের প্রধান কাজ, তাই রাইবোসোমকে কোষের প্রোটিন ফ্যাক্টরি বলা হয়।
- ৩২। গলগি বডিকে কোষের ট্রাফিক পুলিশ বলা হয় কারণ কোষস্থ ঝিল্লিবদ্ধ বস্তুসমূহ কোষের কেন্দ্রীয় অংশ থেকে পরিধির দিকে, এমনকি বাইরে নিয়ে যায় গলগি বস্তু।
- ৩৩। যে সকল বস্তু লাইসোসোমের ঝিল্লিকে ছিতি দান করে অর্থাৎ বিদীর্ণ হতে দেয় না সে সকল বস্তুকে বলা হয় Stabilizer। আর যে সকল বস্তু এদের ঝিল্লিকে বিদীর্ণ হতে ভূমিকা রাখে তাদেরকে বলা হয় Labilizer।
- ৩৪। মাইটোকন্দ্রিয়াকে কোষের পাওয়ার হাউস বা শক্তিঘর বলা হয়।
- ৩৫। ক্লোরোপ্রাস্টকে কোষের রান্নাঘর, শর্করাজাতীয় খাদ্য উৎপাদনের কারখানা বা শক্তি রূপান্তরের অঙ্গাণু বলা হয়।
- ৩৬। কোষের অঙ্গাণুসমূহের মধ্যে কেবলমাত্র মাইটোকন্ত্রিয়া ও ক্লোরোপ্লাস্টের নিজম্ব বৃত্তাকার DNA ও 70S রাইবোসোম আছে।
- ৩৭। সেন্ট্রিওল জোড়ায় জোড়ায় অবস্থান করে।
- ৩৮। কেবলমাত্র নিউক্লিয়াসের আবরণী ঝিল্লিতে অসংখ্য রন্ধ্র থাকে যা নিউক্লিয়ার রন্ধ্র নামে পরিচিত।
- ৩৯। পারঅক্সিসোম এক আবরণী বেষ্টিত।
- ৪০। হিস্টোন প্রোটিনের সাথে সংযুক্ত অবস্থায় DNA-কে বলা হয় নিউক্লিওসোম।
- 8১। হেটেরোক্রোমাটিন mRNA সংশ্লেষণে অংশগ্রহণ করে না।
- 8২। ক্রোমোসোমের মাখায় (শেষ প্রান্তে) DNA-এর repeated sequence হলো টেলোমিয়ার। টেলোমিয়ারই নির্ধারণ করে কোষটি কতবার বিভক্ত হবে।
- ৪৩। পিউরিন বেস দুই রিংবিশিষ্ট কিন্তু পাইরিমিডিন বেস এক রিংবিশিষ্ট।
- 88। নিউক্লিক অ্যাসিডের গাঠনিক একক হলো নিউক্লিওটাইড।
- ৪৫। DNA অণুর পাশাপাশি দুটি স্ট্র্যান্ড অ্যান্টিপ্যারালাল অর্থাৎ একটি অপরটির সাথে উল্টোভাবে অবস্থান করে।
- ৪৬। DNA অণুর দুটি স্ট্র্যান্ড হাইড্রোজেন বন্তু দারা সংযুক্ত থাকে।
- 89। mRNA তে অবস্থিত পরপর সজ্জিত এমন তিনটি বেস যা মিলিতভাবে একটি নির্দিষ্ট অ্যামিনো অ্যাসিডকে নির্দেশ (কোড) করে সেই তিনটি বেস হলো একটি কোডন।
- ৪৮। DNA অণুতে বেসসমূহ এবং এদের দ্বারা নির্দেশিত অ্যামিনো অ্যাসিডের মধ্যকার সুনির্দিষ্ট কোডিং সম্পর্ক হলো জেনেটিক কোড।
- ৪৯। ডিঅক্সিরাইবোজ শুগারের ২নং কার্বনে কোনো অক্সিজেন (OH গ্রুপ) থাকে না।
- ৫০। DNA রেপ্লিকেশন হয় অর্ধসংরক্ষণশীল পদ্ধতিতে।
- ৫১। ট্রিপলেট অনুসজ্জা ৫' থেকে ৩' অভিমুখী হয়।
- ৫২। অ্যান্টিকোডন হলো tRNA লুপ-এ অবস্থিত একটি ৩ নিউক্লিওটাইড অংশ যা mRNA-এর কোডনের সাথে জোড়া বাঁধে।
- ৫৩। ৬৪টি জেনেটিক কোড-এ অ্যামিনো অ্যাসিড নির্দেশকারী কোডন হলো ৬১টি।
- ৫৪। প্রোমোটার : একটি নিউক্লিওটাইড অনুসজ্জা (sequence) যা একটি জিনের প্রথমে অবস্থিত এবং RNA পলিমারেজ সংযুক্তকারী।
- ৫৫। TATA BOX : প্রোমোটারের ঐ অংশ যা RNA পলিমারেজ সংযুক্ত করতে সক্ষম।
- ৫৬। কোডিং স্ট্র্যান্ড: DNA অণুর যে স্ট্র্যান্ডকে কপি করা হয় না এবং যেহেতু এর নিউক্লিওটাইড অনুসজ্জা নতুন সৃষ্ট mRNA এর নিউক্লিওটাইড অনুসজ্জার অনুরূপ (U-এর স্থলে A ব্যতীত)।
- ৫৭। কোডিং স্ট্র্যান্ডকে sense strand ও বলা হয়।
- ৫৮। mRNA সৃষ্টির জন্য DNA অণুর যে স্ট্র্যান্ডকে ছাঁচ (template) হিসেবে ব্যবহার করা হয় ঐ স্ট্র্যান্ডকে বলা হয় Anti-sense strand।
- ৫৯। Stop codon ৩টি; যথা— UAA, UAG এবং UGA, এরা nonsense codon বা termination codon নামেও পরিচিত।

- ৬০। Start codon একটি; যথা- AUG, এটি মেথিওনিন নির্দেশ করে।
- ৬১। মাত্র দুইটি অ্যামিনো অ্যাসিডের জন্য ১টি করে কোডন আছে; যথা— AUG (মেথিওনিন) UGG (ট্রিপ্টোফ্যান)।
- ৬২। লিউসিন আমিনো অ্যাসিড নির্দেশ করার জন্য ৬টি কোডন আছে। এটাই সর্বোচ্চ সংখ্যক কোডন যা একটি অ্যামিনো অ্যাসিডকে নির্দেশ করে। আর্জিনিনের জন্যও ৬টি কোডন আছে।
- ৬৩। কোডের ভাষা প্রকাশ একমুখী : DNA ightarrow mRNA ightarrow প্রোটিন।
- ৬৪। জিন হলো ক্রোমোসোমস্থ DNA-এর একটি অংশ যা একটি কর্মক্ষম পলিপেন্টাইড চেইন গঠনের উপযুক্ত বার্তা বহন করে।
- ৬৫। প্রোটিনকে বলা হয় জীবনের ভাষা (Language of life)।
- ৬৬। প্রকৃতকোষী DNA-এর জিন-এ (i) কোডিং অংশ (যে অংশকে বলা হয় exons) এবং (ii) নন্-কোডিং অংশ (যাদেরকে বলা হয় introns) থাকে।
- ৬৭। নতুন সৃষ্টি Pre-mRNA থেকে intron অংশসমূহ কেটে বাদ দিয়ে কেবল exon অংশসমূহ সংযুক্তির মাধ্যমে চূড়ান্ত mRNA তৈরি হয়।
- ৬৮। চূড়ান্ত mRNA নিউক্লিয়াস থেকে সাইটোপ্লাজমে চলে আসে এবং রাইবোসোমের সাথে সংযুক্তির মাধ্যমে বিশেষ প্রক্রিয়ায় প্রোটিন তৈরি করে।
- ৬৯। **অন্টারনেটিভ স্প্রাইসিং** প্রক্রিয়ায় একটি Pre-mRNA থেকে ভিন্ন প্রকৃতির চূড়ান্ত mRNA তৈরি করে থাকে। ফলে একটি জিন থেকে একাধিক পলিপেন্টাইড তৈরি হতে পারে। একারণেই মানুষের ২০,০০০ জিন প্রায় ১,০০,০০০ প্রকার প্রোটিন তৈরি করতে সক্ষম হয়।
- ৭০। বংশগতির রাসায়নিক ভিত্তি হলো DNA (DNA is the chemical basis of heridity)।
- ৭১। RNA থেকে DNA সৃষ্টি প্রক্রিয়া হলো রিভার্জ ট্রাঙ্গক্রিপশন।
- ৭২। মানুষের জিনোমের সাথে সবচেয়ে বেশি মিল শিম্পাঞ্জির (৯৮%)।
- ৭৩। মানুষের X-ক্রোমোসোমে সবচেয়ে বেশি জিন থাকে (২৯৬৮টি) এবং সবচেয়ে কম থাকে Y-ক্রোমোসোমে (২৩১টি)। অর্থাৎ পুরুষের জিন সংখ্যার চেয়ে মেয়েদের জিন সংখ্যা বেশি।

<u>जनूश</u>ननी

বহুনির্বাচনি প্রশ্ন (MCQ)

১। ডি-অক্সিরাইবোজের কয় নম্বর কার্বনে অক্সিজেন নেই?

(ক) ২ নং-এ

(খ) ৩ নং-এ

(গ) ৪ নং-এ

(ঘ) ৫ নং-এ

- ২। ক্লোরোপ্লাস্টের বৈশিষ্ট্য হলো——
 - (i) এরা সবুজ এবং খাদ্য তৈরি করতে পারে
- (ii) লিউকোপ্লাস্ট হতে সৃষ্টি হয়
- (iii) ফুলের পরাগায়নে সাহায্য করে

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ଓ iii

(গ) ii ও iii

(ঘ) i, ii ও iii

উদ্দীপকটি পড়ে ৩ ও ৪ নম্বর প্রশ্নের উত্তর দাও।

রহিমের দেহের সকল কোষে এমন একটি উপাদান আছে যা বংশগতির আণবিক ভিত্তি হিসেবে কাজ করে এবং জীবের বৈশিষ্ট্যসমূহ বংশপরস্পরায় অধঃশুন প্রজন্মে ছানান্তর করে।

- ৩। উদ্দীপকের উপাদানটির বৈশিষ্ট্য হলো—
 - (i) দ্বিসূত্রক (ii) নাইট্রোজেন বেসে ইউরাসিল থাকে
 - (iii) প্রতিলিপির মাধ্যমে সংখ্যা বৃদ্ধি হয়

নিচের কোনটি সঠিক?

(季) i ଓ ii

(뉙) i ଓ iii

(গ) ii ও iii

(ঘ) i. ii ও iii

৪। উদ্দীপকের উপাদানটিতে নাইট্রোজিনাস বেসগুলো কীভাবে সজ্জিত থাকে ?

 $(\overline{\Phi}) A = T$

(박) A = T

(গ) A = G

(되) C = T

 $G \equiv C$

C-G

C-T

A = G

বহুনির্বাচনি প্রশ্নাবলির উত্তরমালা:

১।(ক) ২।(ক) ৩।(খ) ৪।(ক)

मृजननीन थात्रुत (CQ) नमूना

১। উদ্দীপকটি পড়ো এবং নিচের প্রশ্নগুলোর উত্তর দাও।

উদ্ভিদ ও প্রাণিকোষে একটি অঙ্গাণু আছে যাকে শক্তি ঘর (Power house) বলা হয়। আবার শর্করাজাতীয় খাদ্য তৈরি করতে পারে এমন একটি অঙ্গাণু যা প্রাণিকোষে নেই কিন্তু সাধারণত সবুজ উদ্ভিদকোষে পাওয়া যায়।

- (ক) ম্ব-গ্রাস বা অটোগ্রাস কী?
- (খ) কোন অঙ্গাণুকে প্রোটিন তৈরির কারখানা বলে? এটি কয়টি অংশ নিয়ে গঠিত?
- (গ) উদ্দীপকের যে অঙ্গাণুটি শুধু উদ্ভিদ কোমে পাওয়া যায় তার গঠন লেখ।
- (ঘ) যে অঙ্গাণুটি উভয় কোষে পাওয়া যায় তার নাম লেখ এবং কেন তাকে শক্তি ঘর বলা হয় বিশ্রেষণ করো।
- ২। ডিনা ও কণা কোষের এমন একটি উপাদান নিয়ে আলোচনা করছিল যা উদ্ভিদকোষের অনন্য বৈশিষ্ট্য। আলোচনার এক পর্যায়ে ডিনা বললো, 'এটি তিনটি স্তর নিয়ে গঠিত যাতে এক বিশেষ ধরনের পলিস্যাকারাইড উপস্থিত থাকায় তা কোষকে বাইরের আঘাত থেকে সুরক্ষা করতে পারে।
 - (ক) গ্লাইকোক্যালিক্স কী?
 - (খ) প্রোটোপ্লাজমকে জীবনের ভৌত ভিত্তি বলা হয় কেন?
 - (গ) উদ্ভিদের ক্ষেত্রে উক্ত অঙ্গাণুটি গুরুত্বপূর্ণ কেন?
 - (ঘ) উল্লেখিত পলিস্যাকারাইডিট উক্ত অঙ্গাণুটির গঠনে কিরূপ ভূমিকা রাখে?—বিশ্লেষণ করো।
- ৩। ড. নিজাম তাঁর ছাত্র-ছাত্রীদের একটি সূত্রাকৃতির কোষীয় অঙ্গাণু দেখিয়ে বললেন, "প্রতিটি উন্নত জীবে এটি উপস্থিত এবং এই অঙ্গাণুটির মাধ্যমেই বংশগতির বৈশিষ্ট্যসমূহ পিতামাতা থেকে তার সন্তান-সন্ততিতে বাহিত হয়।"
 - (ক) জিন কী?
 - (খ) অপেরন (operon) বলতে কী বুঝ?
 - (গ) উক্ত অঙ্গাণুটির (শ্রেণিবিভাগ) প্রকারভেদ বর্ণনা করো।
 - (ঘ) উক্ত অঙ্গাণুটিকে কোষ বিভাজনের নিয়ামক বলা হয়—উিকটি ব্যাখ্যা করো।