তৃতীয় অধ্যায় পরিমাণগত রসায়ন Stoichiometric Chemistry

ভূমিকা (Introduction)

রাসায়নিক বিক্রিয়ার বিক্রিয়ক ও উৎপাদের মোলভিত্তিক গণনাকে পরিমাণগত রসায়ন বা Stoichiometric Chemistry বলা হয়। বিক্রিয়ক ও উৎপাদ গ্যাস হলে মোলার আয়তন ও ভর এককে এবং তরল ও কঠিন হলে মোলার ভর এককে গণনা করা হয়। এসিড ক্ষার বিক্রিয়া ও রিডক্স বিক্রিয়া সব শিল্প উৎপাদনে জড়িত। এসব ক্ষেত্রে ব্যবহৃত দ্রবণের ঘনমাত্রাকে মোলারিটি এককে হিসাব করা হয়। কোনো শিল্পে 100% উৎপাদ পাওয়া সম্ভব হয় না। তাই শতকরা পরিমাণে উৎপাদের হিসাব করা হয়। আবার বায়ুর দৃষণ, পানি ও খাদ্যে দৃষণ মাত্রাকে বোঝাবার জন্য মিশ্রিত থাকা সৃক্ষ কণার পরিমাণকে ppm (parts per million) এককেও প্রকাশ করা হয়। আমরা এ অধ্যায়ে ঘনমাত্রাভিত্তিক রাসায়নিক গণনার ধারা ও বিভিন্ন ঘনমাত্রার মধ্যে সম্পর্ক জেনে বিভিন্ন বিক্রিয়াভিত্তিক রাসায়নিক গণনা করতে পারবো।

 $H^{+}(aq) + X^{-}(aq) + M^{+}(aq) + OH^{-}(aq) \longrightarrow H_{2}O(l) + M^{+}(aq) + X^{-}(aq)$

অধ্যায়ের প্রধান শব্দসমূহ (Key words) : মোলার আয়তন, লিমিটিং বিক্রিয়ক, মোলারিটি, প্রাইমারি ও সেকেভারি স্ট্যাভার্ড পদার্থ, ppm, মোল-ভগ্নাংশ, প্রশমন বিক্রিয়া, প্রশমন বিক্র্, রিডক্স বিক্রিয়া, দর্শক আয়ন, নির্দেশক, টাইট্রেশন, ক্রোমাটো-গ্রাফি।

শিখনফল: এ অধ্যায় পাঠশেষে শিক্ষার্থীরা—

- ১। রাসায়নিক গণনায় গ্যাসের মোলার আয়তন ব্যবহার করতে পারবে।
- ২। রাসায়নিক সমীকরণ থেকে উৎপাদ গ্যাসের আয়তন নির্ণয় করতে পারবে।
- ৩। বিক্রিয়কের পরিমাণ থেকে গ্যাসীয় উৎপাদের পরিমাণ (ভর ও <u>আয়তন) হিসাব করতে পারবে।</u>
- 8। ব্যবহারিক: সুলভ উপকরণ ব্যবহার করে বিক্রিয়ায় উৎপাদ গ্যাসের আয়তন নির্ণয় -করতে পারবে।
- ৫। ব্যবহারিক: কঠিন ও তরল পদার্থ পরিমাপ করে নির্দিষ্ট মোলার ঘনমাত্রার দ্রবণ প্রস্তুত করতে পারবে।
- ৬। দ্রবণের মোলারিটিকে শতকরা ও পিপিএম (ppm). এককে প্রকাশ করতে পারবে।
- 9। ব্যবহারিক: নির্দিষ্ট ঘনমাত্রার দ্রবণ থেকে অন্য ঘনমাত্রার দ্রবণ প্রস্তুত করতে পারবে।
- ৮। এসিড-ক্ষার প্রশমন বিক্রিয়া ও প্রশমন বিন্দু ব্যাখ্যা করতে পারবে।
- ৯। জারণ-বিজারণ বিক্রিয়া ব্যাখ্যা করতে পারবে।
- ১০। জারণ-বিজারণ অর্ধবিক্রিয়ায় ইলেকট্রন স্থানান্তর হিসাব করে বিক্রিয়ার সমতা করতে পারবে।
- ১১। বিক্রিয়ার সমাপ্তি বিন্দু নির্ণয়ে নির্দেশকের ভূমিকা ব্যাখ্যা করতে পারবে।
- ১২। ব্যবহারিক : রঙিন উদ্ভিদ ব্যবহার করে এসিড-ক্ষার বিক্রিয়ার প্রশমন বিন্দু নির্ণয় করতে পারবে।
- ১৩। ব্যবহারিক: অস্ত্র-ক্ষার টাইট্রেশনের মাধ্যমে অজানা দ্রবণে এসিড/ক্ষারের পরিমাণ নির্ণয় করতে পারবে।
- ১৪। ব্যবহারিক: জারণ-বিজারণ টাইট্রেশনের মাধ্যমে দ্রবণে বিদ্যমান ধাতব আয়নের পরিমাণ নির্ণয় করতে পারবে।
- ১৫। বিয়ার ল্যাম্বার্ট সূত্র ব্যবহার করে সরবরাহকৃত ডাটা থেকে দ্রবণের ঘনমাত্রা নির্ণয় করতে পারবে।
- ১৬। Atomic absorption, UV-Visible spectroscopy, HPLC ও GC-এর পরিমাণগত বিশ্লেষণের মূলনীতি ব্যাখ্যা করতে পারবে।

তৃতীয় অধ্যায় পরিমাণগত রসায়ন

Stoichiometric Chemistry

ভূমিকা (Introduction)

রাসায়নিক বিক্রিয়ার বিক্রিয়ক ও উৎপাদের মোলভিত্তিক গণনাকে পরিমাণগত রসায়ন বা Stoichiometric Chemistry বলা হয়। বিক্রিয়ক ও উৎপাদ গ্যাস হলে মোলার আয়তন ও ভর এককে এবং তরল ও কঠিন হলে মোলার ভর এককে গণনা করা হয়। এসিড ক্ষার বিক্রিয়া ও রিডক্স বিক্রিয়া সব শিল্প উৎপাদনে জড়িত। এসব ক্ষেত্রে ব্যবহৃত দ্রবণের ঘনমাত্রাকে মোলারিটি এককে হিসাব করা হয়। কোনো শিল্পে 100% উৎপাদ পাওয়া সম্ভব হয় না। তাই শতকরা পরিমাণে উৎপাদের হিসাব করা হয়। আবার বায়ুর দৃষণ, পানি ও খাদ্যে দৃষণ মাত্রাকে বোঝাবার জন্য মিশ্রিত থাকা সৃক্ষ কণার পরিমাণকে ppm (parts per million) এককেও প্রকাশ করা হয়। আমরা এ অধ্যায়ে ঘনমাত্রাভিত্তিক রাসায়নিক গণনার ধারা ও বিভিন্ন ঘনমাত্রার মধ্যে সম্পর্ক জেনে বিভিন্ন বিক্রিয়াভিত্তিক রাসায়নিক গণনা করতে পারবো।

 $H^+(aq) + X^-(aq) + M^+(aq) + OH^-(aq) \longrightarrow H_2O(l) + M^+(aq) + X^-(aq)$

অধ্যায়ের প্রধান শব্দসমূহ (Key words) : মোলার আয়তন, লিমিটিং বিক্রিয়ক, মোলারিটি, প্রাইমারি ও সেকেভারি স্ট্যাভার্ড পদার্থ, ppm, মোল-ভগ্নাংশ, প্রশমন বিক্রিয়া, প্রশমন বিক্র্যা, দর্শক আয়ন, নির্দেশক, টাইট্রেশন, ক্রোমাটো-গ্রাফি।

শিখনফল: এ অধ্যায় পাঠশেষে শিক্ষার্থীরা—

- ১। রাসায়নিক গণনায় গ্যাসের মোলার আয়তন ব্যবহার করতে পারবে।
- ২। রাসায়নিক সমীকরণ থেকে উৎপাদ গ্যাসের আয়তন নির্ণয় করতে পারবে।
- ৩। বিক্রিয়কের পরিমাণ থেকে গ্যাসীয় উৎপাদের পরিমাণ (ভর ও <u>আয়তন) হিসাব করতে পারবে।</u>
- 8। ব্যবহারিক: সুলভ উপকরণ ব্যবহার করে বিক্রিয়ায় উৎপাদ গ্যাসের আয়তন নির্ণয় -করতে পারবে।
- ব্যবহারিক : কঠিন ও তরল পদার্থ পরিমাপ করে নির্দিষ্ট মোলার ঘনমাত্রার দ্রবণ প্রস্তুত করতে পারবে।
- ৬। দ্রবণের মোলারিটিকে শতকরা ও পিপিএম (ppm). এককে প্রকাশ করতে পারবে।
- 9। ব্যবহারিক: নির্দিষ্ট ঘনমাত্রার দ্রবণ থেকে অন্য ঘনমাত্রার দ্রবণ প্রস্তুত করতে পারবে।
- ৮। এসিড-ক্ষার প্রশমন বিক্রিয়া ও প্রশমন বিন্দু ব্যাখ্যা করতে পারবে।
- ৯। জারণ-বিজারণ বিক্রিয়া ব্যাখ্যা করতে পারবে।
- ১০। জারণ-বিজারণ অর্ধবিক্রিয়ায় ইলেকট্রন স্থানান্তর হিসাব করে বিক্রিয়ার সমতা করতে পারবে।
- ১১। বিক্রিয়ার সমাপ্তি বিন্দু নির্ণয়ে নির্দেশকের ভূমিকা ব্যাখ্যা করতে পারবে।
- ১২। ব্যবহারিক : রঙিন উদ্ভিদ ব্যবহার করে এসিড-ক্ষার বিক্রিয়ার প্রশমন বিন্দু নির্ণয় করতে পারবে।
- ১৩। ব্যবহারিক: অস্ত্র-ক্ষার টাইট্রেশনের মাধ্যমে অজানা দ্রবণে এসিড/ক্ষারের পরিমাণ নির্ণয় করতে পারবে।
- ১৪। ব্যবহারিক: জারণ-বিজারণ টাইট্রেশনের মাধ্যমে দ্রবণে বিদ্যমান ধাতব আয়নের পরিমাণ নির্ণয় করতে পারবে।
- ১৫। বিয়ার ল্যাম্বার্ট সূত্র ব্যবহার করে সরবরাহকৃত ডাটা থেকে দ্রবণের ঘনমাত্রা নির্ণয় করতে পারবে।
- ১৬। Atomic absorption, UV-Visible spectroscopy, HPLC ও GC-এর পরিমাণগত বিশ্লেষণের মূলনীতি ব্যাখ্যা করতে পারবে।

৩.১ রাসায়নিক গণনা ও গ্যাসের মোলার আয়তন

Chemical Calculation and Gaseous Molar Volume

রসায়নবিদ্যায় যেকোনো রাসায়নিক গণনা করতে রাসায়নিক পদার্থের পরিমাণ প্রকাশক একক যেমন 'মোল' (mole), গ্যাসের **আয়তন প্রকাশক** একক যেমন 'মোলার আয়তন' (molar volume) এবং ঐ পদার্থের নির্দিষ্ট পরিমাণে থাকা কণার সংখ্যা (যেমন অণু, পরমাণু, আয়ন ইত্যাদির সংখ্যা) প্রকাশক 'অ্যাভোগাডো সংখ্যা' (Avogadro number) সম্বন্ধে জ্ঞান থাকা দরকার। তাই পদার্থের মোল, মোলার আয়তন ও ঐ পদার্থে থাকা অ্যাভোগ্যাডো সংখ্যার সমান কণার সংখ্যা সম্বন্ধে প্রথমে আলোচনা করা হলো:

গ্রাম-আণবিক ভর বা মোল (Gram molecular Mass or Mole)

সংজ্ঞা : কোনো যৌগের আণবিক ভরকে গ্রামে প্রকাশ করলে যে পরিমাণ পাওয়া যায় , যৌগটির সে পরিমাণকে তার এক <u>মোল বলা হয় ।</u> উদাহরণম্বরূপ পানির আণবিক ভর = 18.02 । সুতরাং 18.02 g পানি হচ্ছে এক মোল (mole বা সংক্ষেপে mol) পানি ।

অপরদিকে কোনো মৌলের পারমাণবিক ভরকে গ্রামে প্রকাশ করলে যে পরিমাণ পাওয়া যায় ঐ পরিমাণকে সে মৌলের এক গ্রাম-পারমাণবিক ভর বা এক মোল প্রমাণু বলা হয়। যেমন কার্বনের পারমাণবিক ভর 12। সূতরাং 12 g কার্বন =1g পারমাণবিক ভর কার্বন বা 1 মোল পরমাণু কার্বন।

প্রসঙ্গত উল্লেখযোগ্য যে, পূর্বে মোল শব্দটি শুধুমাত্র যৌগের ক্ষেত্রে ব্যবহৃত হতো, কিছু বর্তমানে তা যৌগ, মৌল, আয়ন এমনকি ইলেকট্রন প্রভৃতির ক্ষেত্রে ব্যবহৃত হয়। যৌগ ও মৌল উভয় ক্ষেত্রে মোল একক ব্যবহৃত হওয়ার কারণে অনেক সময় অসাবধানতাবশত ছাত্রদের কিছু ভূল হওয়ার সভাবনা আছে।

্যেমন অক্সিজেন একটি মৌল, যার পারমাণবিক ভর = 16। অপরদিকে অক্সিজেন সাধারণভাবে দ্বি-পরমাণুক অণু হিসেবে থাকে; সূতরাং এর আণবিক ভর = $16 \times 2 = 32$ । অতএব এক্ষেত্রে 16.00 g অক্সিজেন = 1 গ্রাম-পারমাণবিক ভর অক্সিজেন = 1 মোল পরমাণু অক্সিজেন এবং 32 গ্রাম অক্সিজেন = 1 মোল অণু অক্সিজেন। 12-12

একইভাবে $1.008~\mathrm{g}$ হাইড্রোজেন $= 1~\mathrm{g}$ পারমাণবিক ভর হাইড্রোজেন $= 1~\mathrm{xn}$ ল পরমাণু হাইড্রোজেন $0.008~\mathrm{g}$ হাইড্রোজেন $0.008~\mathrm{g}$ হাইড্রোজেন $0.008~\mathrm{g}$ হাইড্রোজেন $0.008~\mathrm{g}$ হাইড্রোজেন $0.008~\mathrm{g}$

এখানে উল্লেখ্য যে, আয়নিক যৌগে ক্যাটায়ন ও অ্যানায়নসমূহ পরস্পরের সংস্পর্শে থাকে, সেখানে কোনো অণু নেই। তাই এক্ষেত্রে 'আণবিক ভর' বলা সঠিক নয়। তাই আয়নিক যৌগের ক্ষেত্রে তার পরিবর্তে ফর্মুলা ভর ব্যবহৃত হয়। যেমন, NaCl এর ফর্মুলা ভর হচ্ছে 58.5।

মোল-এর ধারণার উৎপত্তি (Origin of Mole Concept)

মোল (Mole) এর আধুনিক সংজ্ঞা : কার্বন-ক্ষেল অনুসারে, $12~\mathrm{g}$ কার্বনে 6.022×10^{23} টি কার্বন পরমাণু থাকে। কোনো পদার্থের যত গ্রাম ভরে ঐ সমসংখ্যক অণু বা পরমাণু বা আয়ন থাকে, তত গ্রাম ভরকে ঐ পদার্থের এক মোল বলা হয়। 'মোল'কে গ্রাম-আণবিক ভর বা গ্রাম-অণু, গ্রাম-পরমাণু ও গ্রাম-আয়ন বলা হয়। উদাহরণস্বরূপ,

(১) 1 মোল H-পরমাণু হলো $1.008~{
m g}$ সংক্ষেপে $1.0~{
m g}$ পরমাণু হাইড্রোজেন; এতে $6.022\times 10^{23}~{
m lb}$ H-পরমাণু থাকে। তদ্ধপ 1 মোল H_2 অণু হলো $2.016~{
m g}$ সংক্ষেপে $2~{
m g}$ অণু হাইড্রোজেন; এতে $6.022\times 10^{23}~{
m lb}$ হাইড্রোজেন অণু থাকে।

(২) 1 মোল পানি (H_2O) বলতে 18.0154~g সংক্ষেপে 18~g পানিকে বোঝায়; এবং 1 মোল পানি বা 18~g পানিতে 6.022×10^{23} টি পানি অণু থাকে ।

মোলের শুরুত্ব ও তাৎপর্য: যেকোনো রাসায়নিক বিক্রিয়ার প্রয়োজনীয় পদার্থ মোল এককে হিসাব ও ওজন করা হয়। 1 মোল পরমাণু, 1 মোল অণু ছাড়াও বর্তমানে আয়ন, ইলেকট্রন, ফোটন (Photon) এবং অন্যান্য কণার ক্ষেত্রেও মোলের প্রয়োগ দেখা যায়। 1 মাল ইলেকট্রন বলতে 1 মালত করতে 1 মালত হিলেকট্রন বোঝায়। আমরা জানি, একটি সিলভার আয়নকে 1 সিলভার পরমাণুতে পরিণত করতে একটি ইলেকট্রন প্রয়োজন হয়। সুতরাং 1 mol সিলভার আয়নকে সিলভার পরমাণুতে পরিণত করতে 1 মালত সিলভার প্রয়োজন হবে। আবার 1 mol সিলভার আয়নকে

সিলভার পরমাণুতে পরিণত করতে এক ফ্যারাডে (Faraday) বিদ্যুতের প্রয়োজন। সুতরাং $\frac{1}{1}$ mol ইলেকট্রন মানে এক ফ্যারাডে বিদ্যুৎ। অণুর অন্তর্গত রাসায়নিক বন্ধন (Chemical bond)-এর ক্ষেত্রেও মোল ব্যবহৃত হয়। আবার 1 mol বন্ধন বলতে 6.022×10^{23} টি বন্ধন বোঝায়।

মোল-সংখ্যা (Mole number)

সংজ্ঞা : কোনো নির্দিষ্ট পরিমাণ মৌলিক ও যৌগিক পদার্থের পরিমাণকে যথাক্রমে গ্রাম-পারমাণবিক ভর বা গ্রাম আণবিক ভর দ্বারা ভাগ করে প্রাপ্ত সংখ্যাকে ঐ পদার্থের মোল সংখ্যা বলে। মোল সংখ্যাকে 'n' দ্বারা প্রকাশ করা হয়।

(১) 36 g কার্বনের মোল সংখ্যা, $n = \frac{36 \text{ g}}{12 \text{ g mol}^{-1}} = 3 \text{ mol}$ কার্বন।

(২) 36 g পানির মোল সংখ্যা , $n = \frac{36 \text{ g}}{18 \text{ g mol}^{-1}} = 2 \text{ mol}$ পানি ।

MCQ-3.1: এক মোল পানি বলতে কী বোঝায়? (ক) 18.02 (খ) 18.02 g পানি (গ) 18.02 g (ঘ) 18 g পানি

পদার্থের মোলার আয়তন ও গ্যাসের মোলার আয়তন (Molar volume of a substance & of a Gas)

পদার্থের মোলার আয়তন : এক মোল পদার্থের আয়তনকে সে পদার্থের মোলার আয়তন বলা হয়। এ <u>আয়তন পদার্থের অবস্থা, তাপমাত্রা ও চাপের ওপর নির্ভরশীল।</u> যেমন 1 মোল পানি হচ্ছে 18 g পানি। তরল অবস্থায় এর আয়তন প্রায় 18~mL। সুতরাং তরল অবস্থায় পানির মোলার আয়তন হচ্ছে 18~mL। অপরদিকে গ্যাসীয় অবস্থায় 100°C তাপমাত্রা ও 1~atm চাপে একই পরিমাণ পানি প্রায় 30.6~L আয়তন দখল করে। সুতরাং সে অবস্থায় পানির মোলার আয়তন হচ্ছে 30.6~L। রাসায়নিক গণনায় গ্যাসীয় অবস্থায় মোলার আয়তন শুকুতুপূর্ণ।

(১) গ্যাসের মোলার আয়তন : নির্দিষ্ট তাপমাত্রা ও চাপে এক মোল গ্যাসের আয়তনকে গ্যাসের মোলার আয়তন বলে। আ্যাভোগ্যাড্রো সূত্রের অন্যতম শুরুত্বপূর্ণ অনুসিদ্ধান্ত হলো-একই তাপমাত্রা ও চাপে সব গ্যাসের মোলার আয়তন পরস্পর সমান এবং প্রমাণ তাপমাত্রা ও চাপে অর্থাৎ 0°C বা , 273 K এবং 1 atm চাপে বা STP তে তা 22.4 L হয়। আবার 25°C ও 1 atm চাপে গ্যাসের মোলার আয়তন 24.789 L হয়।

আভোগ্যাড্রো সংখ্যা বা আভোগ্যাড্রো ধ্রুবক (Avogadro number or constant)

সংজ্ঞা : কোনো বছুর 1 মোলে যত সংখ্যক অণু থাকে, সেই সংখ্যাকে অ্যাভোগ্যাড্রো সংখ্যা বা অ্যাভোগ্যাড্রো ধ্রুবক বলা হয়। উল্লেখ্য যে, কোনো মৌলের এক গ্রাম-পরমাণুতে সমসংখ্যক $(6.022\times 10^{23}\ {\rm fb})$ পরমাণু এবং কোনো আয়নের এক গ্রাম-আয়নে সমসংখ্যক আয়ন থাকে। একে N_A দ্বারা সূচিত করা হয়। বিজ্ঞানী অ্যামাদিও অ্যাভোগ্যাড্রোর নামানুসারে অ্যাভোগ্যাড্রো ধ্রুবক নামকরণ হয়েছে। বিভিন্ন পদ্ধতি অবলম্বনে এ অ্যাভোগ্যাড্রো সংখ্যা নির্ণয় করা সম্ভব হয়েছে এবং এ সংখ্যা $N_A = 6.022\times 10^{23}$ বলে ধরা হয়।

বর্তমান অ্যাভোগ্যাড্রো সংখ্যা বা অ্যাভোগ্যাড্রো ধ্রুবক আরো সঠিকভাবে নির্ণয় করা সম্ভব হয়েছে। এখন $N_A = 6.0221367 \times 10^{23}$ নির্ণীত হয়েছে।

উদাহরণ : এক গ্রাম (1~g) পরমাণু হাইড্রোজেনে 6.022×10^{23} টি হাইড্রোজেন পরমাণু থাকে । 1 মোল হাইড্রোজেন অণুতে 6.022×10^{23} টি হাইড্রোজেন অণু থাকে । আবার 1 মোল হাইড্রোজেন আয়ন বলতে 6.022×10^{23} টি হাইড্রোজেন আয়ন (H^+) বোঝায় । তদ্রুপ, 1 মোল পানি (H_2O) বা, $18~g~H_2O$ এর মধ্যে 6.022×10^{23} টি H_2O এর অণু থাকে বোঝায় ।

প্রতীক n, N ও N_A এর তাৎপর্য ও সম্পর্ক : উল্লেখ্য কোনো পদার্থের মোল সংখ্যাকে n দ্বারা এবং কোনো নমুনায় উপস্থিত অণুর সংখ্যাকে N দ্বারা প্রকাশ করা হয়। আবার অ্যাভোগ্যাড্রো সংখ্যাকে N_A দ্বারা চিহ্নিত করা হয়। $1 \, \, {
m mol}$ পদার্থের মধ্যে উপস্থিত অণুর সংখ্যা স্থির এবং এর মান $N_A = 6.022 imes 10^{23}$ হওয়ায় N_A -কে অ্যাভোগ্যাড্রো ধ্রুবকও বলা হয়। বিভিন্ন পরিমাণ একই পদার্থের মধ্যে অণুর সংখ্যা ভিন্ন ভিন্ন হয় অর্থাৎ সেক্ষেত্রে N এর মান ভিন্ন ভিন্ন হয়। অর্থাৎ মোল সংখ্যা (n) এর ওপর অণুর সংখ্যা N এর মান নির্ভর করে। তাই N ও N_A এর মধ্যে সম্পর্ক হলো $N=n imes N_A$ ।

অ্যাভোগ্যাড্রো সংখ্যা ও মোলার আয়তনের গুরুত্ব

Importance of Avogadro number & Molar volume

অ্যাভোগ্যাড্রো সংখ্যা ও গ্যাসের মোলার আয়তন থেকে নিমোক্ত গাণিতিক সম্পর্ক পাওয়া যায়। যেমন

্বিস্পূর্ব মোল অণু = এক গ্রাম-আণবিক ভর =
$$6.022 \times 10^{23}$$
 টি অণু । = $22.4 \mathrm{L}$ গ্যাস (STP-তে)

(২) পদার্থের একটি অণুর ভর =
$$\frac{$$
গ্রাম আণবিক ভর}{6.022 $\times 10^{23}$ গ্রাম।

্রে এক গ্রাম পদার্থে অণুর সংখ্যা =
$$\frac{6.022 \times 10^{23}}{9$$
দার্থের গ্রাম-আণবিক ভর টি

(৪) এক গ্রাম গ্যাসের আয়তন (STP-তে) =
$$\frac{22.4 \text{ L}}{}$$
গ্যাসের গ্রাম-আ : ভর

$$\sqrt{a}$$
 গ্যাসের একটি অণুর দখলকৃত আয়তন (STP-তে) = $\frac{22.4 \text{ L}}{6.022 \times 10^{23}}$

(৬) প্রমাণ অবছায়
$$1L$$
 গ্যাসে অণুর সংখ্যা $=\frac{6.022 \times 10^{23}}{22.4}$ টি

উপরিউক্ত সম্পর্ক ব্যবহার করে নিমোক্ত রাসায়নিক গণনাসমূহ করা যায়।

জেনে নাও : অ্যাভোগ্যাড্রো সংখ্যা , $N_A=6.022 imes 10^{23}$ হলো এক অবিশ্বাস্য খুবই বড়ো সংখ্যা । কিছু তুলনা থেকে এ সংখ্যার বিশালত্ব বোঝা যাবে। যেমন, পৃথিবীর বয়স 13.7 বিলিয়ন বা শত কোটি $(10 imes 10^9)$ বছর।

পৃথিবীর সমুদ্রসমূহের পৃথিবীর $= 1.3 \times 10^{21} L$ সমুদ্রের পানি ুপৃথিবীর বয়স $= 4.32 \times 10^{17} s$ (ছান নির্দেশক সংখ্যা) অ্যাভোগ্যাডো পৃথিবীর জনসংখ্যা = 7.5 × 109 সংখ্যা, $N_A = 6.022 \times 10^{23} = 602,200,000,000,000,000,000,000$ (বিংশ শতাব্দীতে) সূর্যের দূরত্ব $= 1.5 \times 10^{11} \text{m}$ পৃথিবী থেকে সূর্যের দূরত্ব মিটারে

পরমাণুর ভরের ক্ষুদ্রতম একক (Atomic mass unit, amu) : 1 amu = 1.660539 × 10⁻²⁴ g ইলেকট্রনের ভর, $e_m = 9.10938 \times 10^{-28} g = 5.485799 \times 10^{-4} amu$

ফসফরাস (P) পরমাণুর বেশায় প্রযোজ্য চিহ্নসমূহ : ভর সংখ্যা $ightarrow 31 P 3- \leftarrow$ চার্জ সংখ্যা পা: সংখ্যা $ightarrow 15 P 4 \leftarrow$ পরমাণু সংখ্যা

মোল, মোলার আয়তন ও অ্যাভোগ্যাডো সংখ্যাভিত্তিক গণনা :

সমাধানকৃত সমস্যা-৩.১. একটি সোডিয়াম পরমাণুর ভর কত? (Na = 23)

সমাধান: সোডিয়ামের পারমাণবিক ভর = 23

 $\therefore 1 \text{ g}$ পরমাণু সোডিয়াম = 23 g সোডিয়াম। এতে N_A সংখ্যক পরমাণু বিদ্যমান।

MCQ-3.2: পরমাণুর ভরের ক্ষুদ্রতম

(ঘ) p

একক কী?

(季) mole

(গ) 1 amu

 N_A সংখ্যক সোডিয়াম প্রমাণুর ভর = $23~\mathrm{g}$ এখানে N_A = অ্যাভোগ্যাড্রো সংখ্যা ।

$$\therefore$$
 1টি সোডিয়াম পরমাণুর ভর = $\frac{23}{N_A}$ g = $\frac{23}{6.022 \times 10^{23}}$ g = 3.82×10^{-23} g (প্রায়) (উত্তর)।

সমাধানকৃত সমস্যা-৩.২ : একটি পানির অণুর ভর কত?

সমাধান: পানির আণবিক ভর = 18.016।

সুতরাং 1 mol পানি = 18.016 g পানি।

 $1 \text{ mol পানিতে } 6.022 \times 10^{23}$ টি অণু থাকে।

সুতরাং 6.022×10^{23} টি অণুর ভর = 18.016 g

$$\therefore$$
 1টি পানির অণুর ভর = $\frac{18.016 \text{ g}}{6.022 \times 10^{23}} = 2.991697 \times 10^{-23} \text{ g (প্রায়) (উত্তর)}$

সমাধানকৃত সমস্যা ২০.৩ 1 g হাইড্রোজেনে কয়টি পরমাণু আছে?

সমাধান : 1 g পরমাণু হাইড্রোজেন = 1.008 g হাইড্রোজেন। অ্যাভোগ্যাড্রো সংখ্যা মতে 1 g পরমাণু বা 1 mol পরমাণুতে 6.022×10^{23} টি পরমাণু থাকে।

$$\therefore 1 \text{ g.}$$
 হাইড্রোজেনে থাকে = $\frac{6.022 \times 10^{23}}{1.008} = 5.974206349 \times 10^{23}$ টি হাইড্রোজেন পরমাণু আছে। (উত্তর)

সমাধানকৃত সমস্যা-৩.8 : 500টি স্বাক্ষর দিতে গ্রাফাইট পেলিলের 55.6 mg খরচ হয়। প্রতিটি স্বাক্ষরে কতটি কার্বন পরমাণু খরচ হয়?

সমাধান : গ্রাফাইট কার্বনের 1 মোল = $12 g = 12 \times 1000 mg$ কার্বন

∴ 12 × 1000 mg কার্বন = 1 মোল কার্বন

$$\therefore 55.6 \text{ mg কার্বন} = \frac{1 \times 55.6}{12 \times 1000}$$
 মোল কার্বন।

আবার 1 মোল কার্বনে পরমাণু থাকে $= 6.022 \times 10^{23}$ টি

$$\therefore \frac{1 \times 55.6}{12 \times 1000}$$
 মোল কার্বনে পরমাণু থাকে = $\frac{6.022 \times 10^{23} \times 1 \times 55.6}{12 \times 1000}$

প্রশ্নমতে, 500টি স্বাক্ষর দিতে খরচ হয় $\frac{6.022 \times 10^{23} \times 55.6}{12 \times 1000}$ টি কার্বন প্রমাণু।

$$\therefore$$
 1টি স্বাক্ষর দিতে খরচ হয় $\dfrac{6.022 \times 10^{23} \times 1 \times 55.6}{12 \times 1000 \times 500}$ টি কার্বন প্রমাণু।

 $= 5.580386 \times 10^{18}$ টি কার্বন প্রমাণু (**উত্তর**)।

সমাধানকৃত সমস্যা-তিক : 11 g কার্বন ডাইঅক্সাইডে কয়টি অণু থাকে?

MAT (12-13)

সমাধান : কার্বন ডাইঅক্সাইড (CO_2) এর গ্রাম-আণবিক ভর হলো 44~g। অর্থাৎ 44~g কার্বন ডাইঅক্সাইডে অণুর সংখ্যা, $N_A=6.022\times 10^{23}\,$ টি

∴ 11 g কার্বন ডাইঅক্সাইডে অণুর সংখ্যা,
$$N = \frac{6.022 \times 10^{23} \times 11 \, \text{ট}}{44} = 1.5055 \times 10^{23} \, \text{ট}$$
 (উত্তর) ।

সমাধানকৃত সমস্যা–৩.৬ : প্রমাণ তাপমাত্রা ও চাপে 1 m L অক্সিজেন গ্যাসে অক্সিজেনের কয়টি অণু বিদ্যমান?

সমাধান : আমরা জানি, প্রমাণ তাপমাত্রা ও চাপে $22.4 \perp$ বা , $22.4 \times 10^3 \; \mathrm{mL}$ গ্যাসে এক মোল পদার্থ বিদ্যমান । আবার $1~{
m mol}$ পদার্থে $6.022 imes 10^{23}$ টি অণু বিদ্যমান।

প্রমাণ তাপমাত্রা ও চাপে $22.4 imes 10^3 \, \mathrm{mL}$ গ্যাসে অণুর সংখ্যা $= 6.022 imes 10^{23} \, \mathrm{টি}$ ।

$$\therefore$$
 " 1 mL গ্যাসে অণুর সংখ্যা = $\frac{6.022 \times 10^{23}}{22.4 \times 10^3} = 2.6875 \times 10^{19}$ টি। (উত্তর)

বি: দ্র: (ক) এ হিসাব শুধু অক্সিজেন নয়, বরং সব গ্যাসের জন্য প্রযোজ্য।

(খ) যদি এ প্রশ্নে পরমাণুর সংখ্যা চাওয়া হতো, তবে উপরোক্ত সংখ্যাকে ২ দ্বারা গুণ করতে হবে; কেননা প্রতিটি অক্সিজেন অণুতে ২টি অক্সিজেন প্রমূণু বিদ্যমান। অন্যান্য দ্বিপরমাণুক গ্যাসের ক্ষেত্রেও একথা প্রযোজ্য।

সমাধানকৃত সমস্যা ত প : 16 g পরিমাণ O2 গ্যাসে কয়টি অণু থাকে হিসাব করো। MAT (12-13)
সমাধান : অক্সিজেন গ্যাস (O2) এর গ্রাম-আণবিক ভর হলো 32 g,

অতএব , $32~\mathrm{g}$ বা $1~\mathrm{mol}$ অক্সিজেনে অণুর সংখ্যা , $N_\mathrm{A} = 6.022 \times 10^{23}$ টি

$$\therefore$$
 16 g অক্সিজেনে অণুর সংখ্যা, $N = \frac{6.022 \times 10^{23} \times 16 \, \text{lb}}{32} = 3.011 \times 10^{23} \, \text{b}$ (উত্তর) ।

সমাধানকৃত সমস্যা—৩.৮ : কার্বন ডাইঅক্সাইডের একটি অণুর ভর গ্রাম এককে গণনা করো।

সমাধান $: CO_2$ এর আপেক্ষিক আণবিক ভর হলো 44। সুতরাং $44~{
m g}$ CO_2 হলো এক মোল CO_2 । আমরা জানি, এক মোল যেকোনো পদার্থে অণু থাকে $6.022 \times 10^{23}\,$ টি

সুতরাং 6.022×10^{23} টি $\mathrm{CO_2}$ এর অণুর ভর = 44 g বা, 1 অণু CO_2 এর ভর হবে = $\frac{44}{6.022 \times 10^{23}}$ g $= 7.3065426 \times 10^{-23} \,\mathrm{g}$

MCQ-3.3: 1.008 g হাইড্রোজেনে কয়টি পরমাণু থাকে? (*) 6.01×10^{22} (*) 6.02×10^{23} (*) 6.022×10^{23} (*) 6.022×10^{23}

উন্তর : CO_2 এর একটি অণুর ভর হলো $7.3065426 imes 10^{-23}\,\mathrm{g}$ । সমাধানকৃত সমস্যা—৩.৯। প্রমাণ অবছায় 1.7 g অ্যামোনিয়া গ্যাসের আয়তন কত?

সমাধান : অ্যামোনিয়া (NH_3) গ্যাসের আপেক্ষিক আণবিক ভর 17। সুতরাং এক মোল অ্যামোনিয়ার ভর হলো $17~{
m g}$ । প্রমাণ অবস্থায়,

 $17~{
m g}$ অ্যামোনিয়া গ্যাসের আয়তন = $22.4~{
m L}$ $\therefore 1~{
m g}$ অ্যামোনিয়ার আয়তন হলো = $\frac{22.4}{17}~{
m L}$

$$\therefore 1.7 \text{ g}$$
 অ্যামোনিয়ার আয়তন হলো = $\frac{22.4 \times 1.7}{17} = 2.24 \text{ L (উত্তর)}$ ।

সমাধানকৃত সমস্যা-৩.১০ : 72 g পানিতে কত মোল পানি ও কয়টি পানি অণু আছে?

সমাধান : পানি (H_2O) এর মোলার ভর, $M = (1 \times 2 + 16) \text{ g mol}^{-1} = 18 \text{ g mol}^{-1}$

∴ 72 g পানিতে এর মোল সংখ্যা, $n = \frac{72 \text{ g}}{18 \text{ g mol}^{-1}} = 4 \text{ mol}$

আবার 1 mol পানিতে অণুর সংখ্যা , $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

∴ 4 mol পানিতে অণুর সংখ্যা , $N=6.022\times 10^{23}~\text{mol}^{-1}\times 4~\text{mol}=24.088\times 10^{23}~\text{টি}$ ।

```
শিক্ষার্থী নিজে করো-৩.১: অ্যাভোগ্যান্ডো সংখ্যা ও মোলার আয়তনভিত্তিক সমস্যা:
                            (i) N_A = 6.022 \times 10^{23}; (ii) STP-TT V_m = 22.414 L
   সমস্যা-৩.১ (ক): 90 g পানিতে কত মোল পানি ও কয়টি পানি অণু আছে? টি: 5 mol; 3.011 × 10<sup>24</sup>টি অণু
   সমস্যা-৩.১ (খ) : 5 g পানিতে H ও O পরমাণুর সংখ্যা হিসাব করো। [H = 1.008]
                                          Te: H = 3.342584368 \times 10^{23} Te; O = 1.671292184 \times 10^{23} Te]
                                                                                       ডি: 3.76375 × 10<sup>22</sup>1
   সমস্যা-৩.১ (গ): 1 g আক্সিজেনে কয়টি পরমাণু থাকে হিসাব করো।
   সমস্যা-৩.১ (ম) : 16 \text{ g} পরিমাণ O_2 গ্যাসে কয়টি অণু থাকে হিসাব করো। টি: 3.011 \times 10^{23} টি অণু
                                                                                      ডি: 6.8431 × 10<sup>22</sup> টি]
   সমস্যা-৩.১ (৩): 5 g CO2 গ্যাসে এর কয়টি অণু আছে?
                                                                                                 ডি: 1.12 L]
   সমস্যা-৩.১(চ) : প্রমাণ অবস্থায় 2.2 g CO2 গ্যাসের আয়তন কত হবে?
   সমস্যা-৩.১(ছ) : প্রমাণ চাপে ও তাপমাত্রায় 2 g মিথেন গ্যাসে এর কয়টি অণু থাকে? ডি: 7.5275 \times 10^{22} টি
   সমস্যা-৩.১ (জ) : 10 \text{ g CaCO}_3 থেকে 2 \times 10^{20} অণু সরিয়ে নিলে কী পরিমাণ \text{CaCO}_3 অবশিষ্ট থাকবে?
                                                                               টি: 9.967 g] [সি. বো. ২০১৫]
                                                                                        ডি: 7.589 × 10<sup>-3</sup> g]
   সমস্যা-৩.২(ক) : প্রমাণ অবস্থায় 10 mL অ্যামোনিয়া গ্যাসের ভর কত?
   সমস্যা-৩.২(খ): প্রমাণ তাপমাত্রায় ও চাপে 1 mL নাইট্রোজেনে কয়টি অণু থাকে? ডি: 2.6883928 × 10<sup>19</sup> টি
   সমস্যা-৩.২(গ) : প্রমাণ তাপমাত্রা ও চাপে 2 L মিথেন গ্যাসে অণুর সংখ্যা হিসাব করো । ডি: 5.37678 \times 10^{22} টি
                                                                                  ডি: 5.3767857 × 10<sup>21</sup> টি]
   সমস্যা-৩.২(ঘ) : S.T.P-তে 200 mL CO2 গ্যাসে কতটি অণু থাকে?
   সমস্যা-৩.২(৪): 27°C তাপমাত্রায় ও 750 mm(Hg) চাপে 10 mL আয়তনের CO2 গ্যাসে কয়টি অণু থাকে?
                                                                                 ডি: 2.41542475 × 10<sup>20</sup> টি
   সমস্যা-৩.২(চ): 27°C তাপমাত্রায় ও 740 mm (Hg) চাপে 1.0 L SO2 গ্যাসে কয়টি অণু থাকে?
                                                                                 ডি: 2.3820574 × 10<sup>22</sup> অণু]
   সমস্যা-৩.২(ছ) : 27^{\circ}C তাপমাত্রায় ও 95.66 \times 10^3 \text{ Nm}^{-2} চাপে 0.0011 \text{m}^3 হাইড্রোজেন গ্যাসে কয়টি অণু
                                                                               ডি: 2.523096 × 10<sup>22</sup> টি অণু
আছে?
   সমস্যা-৩.২(জ): 27°C তাপমাত্রায় ও 0.987 atm চাপে 1 mL হাইড্রোজেন গ্যাসে কয়টি অণু আছে?
                                                                           ডি: 2.4146338 × 10<sup>19</sup> টি (প্রায়)]
   সমস্যা-৩.২(ঝ): 30°C তাপমাত্রায় 740 mm (Hg) চাপে 25 mL কোন গ্যাসে কতটি অণু আছে?
                                                                                  ডি: 5.8962 × 10<sup>20</sup> টি অণু]
   সমস্যা-৩.২(ঞ): 20° C এ 0.54 g কোনো গ্যাসের 780 mm (Hg) চাপে 300 mL আয়তনে অণুর সংখ্যা
                                                                       টে: 7.7124 × 10<sup>21</sup>টি] ঢা. বো. ২০১৯]
কত?
   সমস্যা-৩.২(ট): 25° C এ 10 kg CH4 গ্যাস 12.0 L সিলিভারে আছে। ঐ সিলিভারে গ্যাস অণুর সংখ্যা কত?
                                                                      ্ডি: 3.76375 × 10<sup>26</sup>] [মাদ্রাসা বো. ২০১৯]
   সমস্যা-৩.৩ (ক) : 300টি স্বাক্ষর দিতে গ্রাফাইট পেন্সিলের 30 mg খরচ হয়। প্রতিটি স্বাক্ষরে কতটি কার্বন পরমাণু
                                                                                       ডি: 5.0183 × 10<sup>18</sup> টি
খরচ হয় তা নির্ণয় করো।
   সমস্যা-৩.৩(খ): 500টি স্বাক্ষর দিতে গ্রাফাইট পেন্সিলের 55.6 mg খরচ হয়। প্রতিটি স্বাক্ষরে কতটি কার্বন পরমাণু
                                                                                   ডি: 5.580386 × 10<sup>18</sup> টি
খরচ হয় তা নির্ণয় করো।
   সমস্যা-৩.৩(গ): এক গ্রাম কার্বনে কয়টি পরমাণু আছে?
                                                                                     ডি: 5.01833 × 10<sup>22</sup> টি
  সমস্যা-৩.8 (ক) এক বিকার পানি থেকে সাধারণ তাপমাত্রায় ও চাপে যদি প্রতি ঘণ্টায় 1 mg পানি বাষ্পীভূত হয়।
                                                                            ডি: 3.3455555 × 10<sup>19</sup> টি অণ্
তবে ঐ প্রক্রিয়ায় প্রতি ঘণ্টায় কতটি জলীয়বাম্পের অণু উৎপন্ন হবে?
  সমস্যা-৩.8 (খ) : বাষ্পীভবনের কারণে একটি পাত্রের পানি যদি প্রতি ঘণ্টায় 10 mg ওজন হারায়, তবে প্রতি
                                                                                     ডি: 9.29321 × 10<sup>16</sup> টি]
সেকেন্ডে ঐ প্রক্রিয়ায় জলীয়বাষ্পের কতটি অণু উৎপন্ন হবে?
```

৩.১.১ রাসায়নিক সমীকরণভিত্তিক গ্যাসের মোলার আয়তন গণনা

Calculation of Molar Volume of Gases from Chemical Equation

রাসায়নিক সমীকরণভিত্তিক যেকোনো গণনায় প্রথমে (i) রাসায়নিক সমীকরণ কী; (ii) রাসায়নিক সমীকরণ কীরূপে শুদ্ধভাবে ও সমতাযুক্ত করে লিখতে হয় তা জানা শিক্ষার্থীর প্রথম কর্তব্য। তাই এক্ষেত্রে এসব আলোচনা করা হলো। বাসায়নিক সমীকরণ (Chemical Equation)

কোনো রাসায়নিক বিক্রিয়ায় সমগ্র রাসায়নিক পরিবর্তনকে বিক্রিয়ক ও উৎপাদসমূহের প্রতীক ও সংকেত এবং কিছু বীজগণিতীয় চিহ্নের যেমন, যোগ চিহ্ন (+), তীর চিহ্ন (\to) এর সাহায্যে প্রকাশ করার পদ্ধতিকে **রাসায়নিক সমীকরণ** বলে। অর্থাৎ রাসায়নিক সমীকরণ হলো কোনো রাসায়নিক বিক্রিয়ার <mark>অর্থা</mark>বোধক সংক্ষেপে লেখার পদ্ধতি |

যেমন, হাইড্রোজেন গ্যাস ও অক্সিজেন গ্যাস রাসায়নিক বিক্রিয়ার ফলে তরল পানি উৎপন্ন করে। এ পরিবর্তনকে বিক্রিয়ক ও উৎপাদের সংকেত ও অর্থবোধক কিছু চিহ্নের সাহায্যে নিমুরূপ সমীকরণে প্রকাশ করা হয়।

 $2H_2(g) + O_2(g) \longrightarrow 2H_2O(l)$

কোনো বিক্রিয়ার সুষম বা সমতাযুক্ত রাসায়নিক সমীকরণ বিক্রিয়াটি সম্বন্ধে অনেক তথ্য প্রকাশ করে থাকে। তাই শুদ্ধ ও সুষম রাসায়নিক সমীকরণ লেখার পদ্ধতি জানা দরকার।

৩.১.২ সুষম রাসায়নিক সমীকরণ লেখার পদ্ধতি Writing a Balanced Chemical Equation

MCQ-3.4: $16 ext{ g } O_2$ গ্যাসে কয়টি অণু থাকে? (ক) 3.011×10^{23} টি (খ) 3.011×10^{-23} টি (গ) 2.03×10^{-23} টি (ঘ) 2.03×10^{-23} টি

নিমোক্ত কয়েকটি ধাপে রাসায়নিক সমীকরণকে শুদ্ধভাবে ও সমতাযুক্ত করে লেখা যায়।

ধাপ-১। সংশ্রিষ্ট বিক্রিয়ার সব বিক্রিয়ক ও উৎপাদের নাম এবং এদের সংকেত (সব ধাতুরও কঠিন অধাতুর বেলায় প্রতীক) জানা প্রয়োজন। সমীকরণের বামদিকে বিক্রিয়ক ও ডানদিকে উৎপাদের সংকেত (বা প্রতীক) লিখে মাঝখানে তীর চিহ্ন (→) দিতে হয়। এটাকে কঙ্কাল সমীকরণ (Skeleton equation) বলে। যেমন,

$$Zn$$
 + HCl \longrightarrow $ZnCl_2$ + H_2 জিঙ্ক ফ্রোরেক এসিড জিঙ্ক ক্রোরাইড হাইড্রোজেন

ধাপ-২। এবার বাম ও ডানদিকে বিক্রিয়ক ও উৎপাদের অণুতে প্রতিটি মৌলের পরমাণুর সংখ্যা সমান করার জন্য বিক্রিয়ক ও উৎপাদের সংকেত (বা প্রতীক) এর বামদিকে উপযুক্ত পূর্ণসংখ্যা (এ সংখ্যাকে সহগ বলে) বসাতে হবে। তখন সমীকরণটিকে সুষম বা সমতাযুক্ত সমীকরণ (Balanced equation) বলে। যেমন, উপরের সমীকরণে দেখা যায় ডানদিকে দুটি Cl পরমাণু আছে। তাই বামদিকে HCl এর সহগরূপে 2 বসালে উভয় দিকে Cl পরমাণুর সমতা হয়। তখন সমীকরণিটি সমতাযুক্ত হবে। যেমন, $Zn + 2HCl \longrightarrow ZnCl_2 + H_2$

নিচে কয়েকটি উদাহরণের সাহায্যে বিভিন্ন বিক্রিয়ার শুদ্ধ ও সমতাযুক্ত সমীকরণ লেখার ধারণা সুস্পষ্ট করা হলো।

উদাহরণ-১। হেবার সংশ্লেষণ পদ্ধতিতে নাইট্রোজেন ও হাইড্রোজেন গ্যাস থেকে অ্যামোনিয়া উৎপাদন করা হয়। এ বিক্রিয়ার সমতাযুক্ত সমীকরণ নিমুরূপে লেখা যায়।

১ম ধাপ : এক্ষেত্রে বিক্রিয়ক হলো নাইট্রোজেন ও হাইড্রোজেন; এরা দ্বিপরমাণুক মৌলিক গ্যাস। তাই এদের সংকেত যথাক্রমে N_2 ও H_2 । অপরদিকে অ্যামোনিয়ার সংকেত হলো NH_3 । সুতরাং বিক্রিয়াটির কঙ্কাল সমীকরণ হবে নিমুরূপ :

$$N_2 + H_2 \longrightarrow NH_3$$

২য় ধাপ : এ সমীকরণের বাম ও ডানদিকে লক্ষ্য করলে দেখা যায়, ডানদিকে NH_3 এর আগে সহগরপে 2 বসালে N-পরমাণুর সংখ্যা উভয়দিকে সমান হয়। তখন ডানদিকে H-পরমাণুর সংখ্যা 6 হয়। তাই বামদিকে H_2 এর সহগরপে 3 বসালে উভয়দিকে প্রতিটি মৌলের পরমাণুর সংখ্যা সমান হয়। তখন সমতাযুক্ত শুদ্ধ সমীকরণটি নিমুরূপ হয় :

$$N_2 + 3H_2 \longrightarrow 2NH_3$$

উদাহরণ-২। অসওয়াল্ড পদ্ধতিতে নাইট্রিক এসিড উৎপাদনের প্রথম ধাপে অ্যামোনিয়া গ্যাসকে বায়ুর অক্সিজেন দারা জারিত করে নাইট্রিক অক্সাইড ও পানি তৈরি করা হয়। এ বিক্রিয়ার সমতাযুক্ত সমীকরণ নিমুরূপে লেখা যায়।

১ম ধাপ : এক্ষেত্রে বিক্রিয়ক হলো অ্যামোনিয়া ও অক্সিজেন এবং তাদের সংকেত যথাক্রমে NH_3 ও O_2 । অপরদিকে উৎপাদ নাইট্রিক অক্সাইড ও পানির সংকেত যথাক্রমে NO ও $\mathrm{H}_2\mathrm{O}$ । সুতরাং বিক্রিয়াটির কঙ্কাল সমীকরণ হবে নিমুরূপ :

$$NH_3 + O_2 \longrightarrow NO + H_2O$$

২য় ধাপ : এ সমীকরণের বাম ও ডানদিকে লক্ষ্য করলে দেখা যায়, উভয়দিকে N প্রমাণুর সংখ্যা ও O-প্রমাণুর সংখ্যা সমান; কিছু H-প্রমাণুর সংখ্যা অসমান। এখন NH_3 এর আগে 2 ও NO এর আগে 2 এবং H_2O এর আগে 3 বসালে N-প্রমাণু ও H-প্রমাণুর সংখ্যা উভয়দিকে সমান হয়ে যায়। যেমন,

$$2NH_3 + O_2 \longrightarrow 2NO + 3H_2O$$

এবার ডানদিকে দেখা যায় O-পরমাণুর মোট সংখ্যা হলো 5। তাই বামদিকে O_2 এর আগে $\frac{5}{2}$ বসালে 5টি O-পরমাণু হবে। এখন সমতাযুক্ত সমীকরণটি হবে নিমুরূপ :

$$2NH_3 + \frac{5}{2}O_2 \longrightarrow 2NO + 3H_2O$$

কিছু অণুর সহগ পূর্ণসংখ্যায় দেখাতে হয়; তাই সমতাযুক্ত এ সমীকরণটিকে 2 দ্বারা গুণ করলে শুদ্ধ সমতাযুক্ত সমীকরণ নিমুরূপ হবে : $4NH_3 + 5O_2 \longrightarrow 4NO + 6H_2O$

বর্তমানে বিক্রিয়ক ও উৎপাদের ভৌত অবস্থাসহকারে সমীকরণ লেখার নিয়ম রয়েছে। তাই পদার্থের আণবিক সংকেতের পরে প্রথম বন্ধনী () এর মধ্যে ভৌত অবস্থার প্রকাশক প্রতীক চিহ্ন লেখা হয়; যেমন কঠিন অবস্থার জন্য (s), তরল অবস্থার জন্য (I), গ্যাসীয় অবস্থার জন্য (I), জলীয় দ্রবণের জন্য (I) এবং বাম্পের জন্য (I) এখন উপরের সমতাযুক্ত সমীকরণটিকে বিক্রিয়ক ও উৎপাদের ভৌত অবস্থা সহযোগে নিমুরূপে লেখা হয় :

$$4NH_3(g) + 5O_2(g) \longrightarrow 4NO(g) + 6H_2O(l)$$

৩.১.৩ আয়নিক সমীকরণ

Ionic Equation

তোমরা নবম ও দশম শ্রেণিতে রসায়ন পরীক্ষাগারে ক্লোরাইড আয়নের শনাক্তকরণ করতে গিয়ে N_aCl এর দ্রবণে সিলভার নাইট্রেট $(AgNO_3)$ দ্রবণ যোগ করলে সাদা অধ্যক্ষেপ সৃষ্টি হতে দেখেছো। এ সাদা অধ্যক্ষেপটির নাম হলো সিলভার ক্লোরাইড (AgCl)। এ রাসায়নিক পরিবর্তনকে সমীকরণ দ্বারা নিম্মরূপে প্রকাশ করা যায়। যেমন ,

$$NaCl(aq) + AgNO_3(aq) \longrightarrow AgCl(s) + NaNO_3(aq)$$

এরপ বিক্রিয়াকে দ্বি-বিয়োজন বিক্রিয়া বলা হয়। উল্লেখ্য এক্ষেত্রে বিক্রিয়ক ও উৎপাদ উভয়কে অণু হিসেবে সমীকরণে দেখানো হয়েছে বলে এরপ সমীকরণকে আণবিক সমীকরণ বলা হয়। কিছু আমরা জানি, NaCl ও $AgNO_3$ হলো আয়নিক যৌগ এবং জলীয় দ্রবণে এরা সংশ্রিষ্ট আয়নরূপে থাকে। অর্থাৎ দ্রবণে NaCl থাকে Na^+ আয়ন ও Cl^- আয়নরূপে এবং $AgNO_3$ থাকে Ag^+ আয়ন ও NO_3^- আয়নরূপে। এদের মিশ্রিত দ্রবণে Ag^+ আয়ন ও Cl^- আয়নের সহযোগে অদ্রবণীয় AgCl (s) উৎপন্ন হয়ে সাদা অধ্যংক্ষেপ সৃষ্টি করে; কিছু অপর দুটি আয়ন যেমন Na^+ আয়ন NO_3^- আয়ন দ্রবণে আয়নরূপে থেকে যায়। এ রাসায়নিক পরিবর্তনের সমীকরণটি আয়ন সহযোগে নিমুরূপে দেখানো যায়:

$$Na^{+}(aq) + Cl^{-}(aq) + Ag^{+}(aq) + NO_{3}^{-}(aq) \longrightarrow AgCl(s) + Na^{+}(aq) + NO_{3}^{-}(aq)$$

উপরের সমীকরণে দেখা যায়, $Na^{\dagger}(aq)$ ও $NO_3^{-}(aq)$ আয়ন উভয় দিকে আলাদা আলাদা আছে; এরা বিক্রিয়ায় অংশগ্রহণ করেনি। যেসব আয়ন বিক্রিয়ায় সরাসরি অংশগ্রহণ না করে দ্রবণে অপরিবর্তিত থাকে, সেগুলোকে 'দর্শক আয়ন'

(spectator ions) বলা হয়। এ বিক্রিয়ায় Na^+ (aq) ও NO_3^- (aq) আয়ন হলো দর্শক আয়ন। তাই দর্শক আয়ন বাদ দিয়ে উপরিউক্ত বিক্রিয়ার নিট আয়নিক সমীকরণ হবে নিমুরূপ:

$$Ag^{+}(aq) + Cl^{-}(aq) \longrightarrow AgCl(s)$$

তবে রাসায়নিক গণনার জন্য প্রয়োজনবোধে **আণবিক সমীকরণ** ব্যবহার করতে হয়। কারণ কী পরিমাণ বিক্রিয়ক পদার্থ নিতে হবে তা যৌগের সংকেত ভর বা 'ফর্মুলা ভর' ব্যবহার করে হিসাব করতে হয়।

আয়নিক বিক্রিয়া সম্বন্ধে স্বচ্ছ ধারণা লাভের জন্য আরো কয়েকটি আয়নিক সমীকরণ নিমে দেয়া হলো। এসব ক্ষেত্রে এসিড দ্রবণে H^+ আয়ন ও ক্ষার দ্রবণে OH^- আয়ন বুঝতে হবে। যেমন,

(১) এসিডের সাথে ক্ষার, ক্ষারক, ধাতু ও কার্বনেটের বিক্রিয়া

(ক) যেকোনো এসিড ও ক্ষার দ্রবণের মধ্যে প্রশমন বিক্রিয়া:

$$H^{+}(aq) + OH^{-}(aq) \longrightarrow H_{2}O(l)$$

(খ) অ্যালুমিনিয়াম হাইড্রক্সাইড ও হাইড্রোক্লোরিক এসিড দ্রবণের মধ্যে বিক্রিয়া :

$$Al(OH)_3$$
 (s) + $3H^+$ (aq) \longrightarrow Al^{3+} (aq) + $3H_2O(l)$

(গ) জিঙ্ক ধাতু ও লঘু সালফিউরিক এসিড দ্রবণের মধ্যে বিক্রিয়া :

$$Zn(s) + 2H^{+}(aq) \longrightarrow Zn^{2+}(aq) + H_{2}(g)$$

(ঘ) ক্যালসিয়াম কার্বনেট ও হাইড্রোক্লোরিক এসিড দ্রবণের মধ্যে বিক্রিয়া :

$$CaCO_3(s) + 2H^+(aq) \longrightarrow Ca^{2+}(aq) + CO_2(g) + H_2O(l)$$

(২) বিভিন্ন জারক ও বিজারকের বিক্রিয়া

পটাসিয়াম আয়োভাইডের দ্রবণে ক্লোরিন গ্যাস চালনা করলে সংঘটিত বিক্রিয়া :

$$Cl_2(g)$$
 + $2\Gamma(aq)$ \longrightarrow $2C\Gamma(aq)$ + $I_2(s)$

(খ) স্ট্যানাস আয়ন (Sn^{2+}) ও ফেরিক আয়ন (Fe^{3+}) এর মধ্যে বিক্রিয়া :

$$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2\operatorname{Fe}^{3+}(\operatorname{aq}) \longrightarrow \operatorname{Sn}^{4+}(\operatorname{aq}) + 2\operatorname{Fe}^{2+}(\operatorname{aq})$$

(গ) ফেরিক আয়ন ও সালফাইড (S^{2-}) আয়নের মধ্যে বিক্রিয়া :

$$2Fe^{3+}(aq) + S^{2-}(aq) \longrightarrow 2Fe^{2+}(aq) + S(s)$$

৩.১.৪ সমীকরণভিত্তিক গে-লুসাকের সূত্র প্রয়োগ

Use of Gay Lussac's Law in Chemical Equation

গ্যাসের মোলার আয়তনভিত্তিক রাসায়নিক সমীকরণ থেকে গণনায় বিক্রিয়ক ও উৎপাদ সব গ্যাসীয় হয়। এক্ষেত্রে বিক্রিয়াটি গ্যাসীয় সমসত্ত্বীয় অবস্থায় থাকে। বিজ্ঞানী গে-লুসাকের গ্যাস আয়তন সূত্র প্রযোজ্য হয়। রাসায়নিক গ্যাসীয় বিক্রিয়ার সমতাযুক্ত সমীকরণ মতে, বিক্রিয়ক ও উৎপাদের মোল আনুপাতিক সম্পর্ক থেকে প্রমাণ তাপমাত্রা ও চাপে বিক্রিয়ক ও উৎপাদের মোলার আয়তন গণনা করা যায়। এ ক্ষেত্রে নিম্নোক্ত তিন স্তরভিত্তিক মোলার আয়তন গণনা করা সম্ভব হবে (দ্বির তাপমাত্রা ও চাপে)।

- ১. নির্দিষ্ট মোল সংখ্যক বিক্রিয়ক থেকে উৎপাদের মোল সংখ্যা ও মোলার আয়তন গণনা।
- ২. নির্দিষ্ট মোলার আয়তনের উৎপাদ পাওয়ার জন্য কত মোলার আয়তন বিক্রিয়ক গ্যাস দরকার।
- ৩. বিক্রিয়ার ফলে উৎপাদ গ্যাসের মোল সংখ্যার হ্রাস বা বৃদ্ধি ঘটে কীনা তা গণনায় নিতে হবে।

সমাধানকৃত সমস্যা—৩.১১ : সমীকরণ মতে, গ্যাসের মোলার আয়তনভিত্তিক গুণনা : ১ ১ বা বাল চার্ল চার্ল হ

আমোনিয়াকে বায়ুর অক্সিজেন দারা জারিত করে নাইট্রিক অক্সাইড গ্যাস উৎপন্ন করা হয় । STP-তে 100 L NO গ্যাস প্রস্তুত করতে কত লিটার NH_3 এবং কত লিটার O_2 গ্যাস প্রয়োজন হবে?

দক্ষতা (Strategy): (১) প্রথমে বিক্রিয়াটির শুদ্ধ সমতাকৃত সমীকরণ লিখতে হবে। (২) এরপর বিক্রিয়ক ও উৎপাদের সংকেতের নিচে মোল সংখ্যা লিখতে হবে। (৩) শেষে গে-লুসাকের সূত্র মতে মোলার আয়তন সম্পর্ক ব্যবহার করতে হবে।

সমাধান (Solution): সংশ্রিষ্ট বিক্রিয়ার সমীকরণটি নিমুরূপ:

সমীকরণ: $4NH_3(g) + 5O_2(g) \longrightarrow 4NO(g) + 6H_2O(g)$

মো**ল সম্পর্ক :** 4 mol 5 mol 4 mol

STP-তে আয়তন : '4 × 22.4 L 5 × 22.4 L 4 × 22.4 L

বিক্রিয়ক NH3 এর আয়তন গণনা:

সমীকরণ মতে, 4×22.4 L NO গ্যাস প্রস্তুতির জন্য NH_3 গ্যাস প্রয়োজন $= 4 \times 22.4$ L

∴ 100 L NO গ্যাস প্রস্তৃতির জন্য NH $_3$ গ্যাস প্রয়োজন = $\frac{4 \times 22.4 \times 100 \text{ L}}{4 \times 22.4}$ =100 L

বিক্রিয়ক 🔾 এর আয়তন গণনা :

সমীকরণ মতে, 4×22.4 L NO গ্যাস প্রস্তুতির জন্য O_2 গ্যাস প্রয়োজন $= 5 \times 22.4$ L

 $\therefore 100 \text{ L NO}$ গ্যাস প্রস্তুতির জন্য O_2 গ্যাস প্রয়োজন = $\frac{5 \times 22.4 \times 100 \text{ L}}{4 \times 22.4} = 125 \text{ L } O_2$ গ্যাস ।

সমাধানকৃত সমস্যা-৩.১২ : STP-তে $60.0~L~N_2$ গ্যাস ও $200.0~L~H_2$ গ্যাসকে মিশ্রিত করে প্রয়োজনীয় রাসায়নিক বিক্রিয়ার শর্তে NH_3 গ্যাস উৎপন্ন করা হলো। উৎপন্ন NH_3 এর আয়তন STP-তে কত হবে? বিক্রিয়া শেষে উৎপন্ন গ্যাসের আয়তন প্রকৃতপক্ষে কত হবে তা ব্যাখ্যা করো।

দক্ষতা (Strategy): (১) বিক্রিয়াটির সমতাযুক্ত সমীকরণ থেকে NH3 এর আয়তন বের করতে হবে।

(২) বিক্রিয়ক মিশ্রণে সমীকরণ মতে যে বিক্রিয়ক বেশি থাকে তা উৎপাদ গ্যাসের সাথে যোগ হয়ে মোট আয়তন হবে। সমাধান (Solution): সংশ্রিষ্ট বিক্রিয়ার সমীকরণটি হলো নিমুরূপ:

সমীকরণ : $N_2(g)$ + $3H_2(g)$ \rightarrow $2NH_3(g)$

আয়তন সম্পর্ক : 1 আয়তন 3 আয়তন 2 আয়তন

বিক্রিয়ক N₂ মতে : 60 L 3 × 60 L 2 × 60 L

সুতরাং গে-লুসাকের গ্যাস আয়তন সূত্র মতে,

STP-তে $60~L~N_2$ গ্যাস $3\times60~L~$ বা , $180~L~H_2$ গ্যাসসহ বিক্রিয়ায় $2\times60~L~$ বা , $120~L~NH_3~$ উৎপন্ন করে। সুতরাং উৎপাদ $NH_3~$ গ্যাসের আয়তন (STP-তে) 120~L~হবে। আবার বিক্রিয়া শেষে অব্যবহৃত $H_2~$ গ্যাস থাকবে (200-180)~L=20~L। তাই বিক্রিয়া শেষে উৎপন্ন $120~L~NH_3~$ গ্যাসের সাথে অতিরিক্ত $20~L~H_2~$ গ্যাস যোগ হয়ে মোট আয়তন হবে =(120+20)~L=140~L~ (উত্তর)।

সমাধানকৃত সমস্যা—৩.১৩: SATP-তে 200 mL H_2 গ্যাস ও 160 mL Cl_2 গ্যাস মিশ্রণকে স্থালোকে রাখা হলো। বিক্রিয়া শেষে গ্যাস মিশ্রণের আয়তন অপরিবর্তিত থাকে। কিছু মিশ্রণটিকে পানিতে ঝাঁকালে আয়তন হ্রাস পেয়ে 40 mL হয়; এটি H_2 এর আয়তন। দেখাও যে, এসব ফলাফল গে-লুসাকের গ্যাস আয়তন সূত্রকে সমর্থন করে।

দক্ষতা (Strategy) : বিক্রিয়াটির সমীকরণ সমতাযুক্তভাবে লিখতে হবে।

সমাধান (Solution) : সংশ্লিষ্ট বিক্রিয়ার সমীকরণটি হলো নিমুরূপ :

সমীকরণ : $H_2(g)$ + $Cl_2(g)$ $\xrightarrow{\gamma}$ ্যালোক 2HCl(g)

আয়তন সম্পর্ক : 1 আয়তন 1 আয়তন 2 আয়

প্রশ্নমতে, 200 mL H_2 ও 160 mL Cl_2 ; বিক্রিয়ার পূর্বে মিশ্রণের মোট আয়তন = (200+160)=360 mL যেহেতু বিক্রিয়া শেষে গ্যাস মিশ্রণের আয়তন অপরিবর্তিত আছে; তাই বিক্রিয়া শেষে মোট আয়তন হলো 360 mL । আবার বিক্রিয়া শেষে গ্যাস মিশ্রণিটকে পানিতে ঝাঁকালে HCl গ্যাস পানিতে দ্রবীভূত হয়ে 40 mL H_2 গ্যাস অবশিষ্ট থাকে। সুতরাং বিক্রিয়ায় ব্যয়িত H_2 গ্যাসের আয়তন হলো = (200-40) mL = 160 mL এবং উৎপন্ন HCl গ্যাসের আয়তন হলো = (360-40) mL = 320 mL। সমীকরণ মতে,

$$H_2(g)$$
 + $Cl_2(g)$ \longrightarrow 2 $HCl(g)$
 160 mL $2 \times 160 \text{ mL} = 320 \text{ mL}$

∴ গ্যান্সের আয়তনের অনুপাত, H₂ : Cl₂ : HCl = 160 : 160 : 2 × 160

বা, 1 ঃ 1 ঃ 2 । এটি একটি সরল অনুপাত। বিক্রিয়ক ও উৎপাদ গ্যাসসমূহের আয়তন পরস্পরের সাথে সরল অনুপাতে থাকায় উপরোক্ত ফলাফল গে-লুসাকের গ্যাস আয়তন সূত্রকে সমর্থন করে।

শিক্ষার্থী নিজে করো-৩.২ : মোল ও মোলার আয়তনভিত্তিক :

সমস্যা-৩.৫ : STP-তে 1.0×10^5 L মিথেন গ্যাস স্টোরেজ ট্যাংকে আছে। এতে কত মোল মিথেন আছে?

ডি: 4.463 × 10³ mol]

সমস্যা-৩.৬: STP-তে 1500 L N₂ হতে NH₃ প্রভূত করতে কত লিটার H₂ প্রয়োজন হবে? [উ: 4500 L] সমস্যা-৩.৭: 25°C ও 1 atm চাপে 20 L ইথিলিন গ্যাস ও 80 L অক্সিজেন গ্যাসের মিশ্রণ দহনের পর একই অবস্থায় গ্যাস মিশ্রণটির আয়তন কত হবে?

[দুষ্টব্য : 25°C-এ উৎপাদ H2O (1) তরল হওয়ায় এটির আয়তন নগণ্য হবে।]

৩.২ রাসায়নিক সমীকরণ থেকে উৎপাদ গ্যাসের আয়তন নির্ণয়

Calculation of Volume of Gaseous product from Equation

কোনো রাসায়নিক বিক্রিয়ায় উৎপাদ গ্যাস হলে সমতাকৃত সমীকরণ মতে উৎপাদের মোল সংখ্যা থেকে উৎপাদের আয়তন গণনা করা যায়। সমীকরণভিত্তিক সব রাসায়নিক গণনায় নিচের সাধারণ ধাপগুলো অনুসরণ করতে হয় :

- ১. সংশ্রিষ্ট বিক্রিয়ার সমতাকৃত সমীকরণ লেখ।
- ২. বিক্রিয়কের ভর থেকে মোল সংখ্যা গণনা করো।
- ৩. সমীকরণ মতে বিক্রিয়ক ও উৎপাদের মোল সংখ্যার সম্পর্ক ব্যবহার করো।
- 8. প্রশ্নমতে উৎপাদের মোল সংখ্যা থেকে ভর অথবা আয়তন বের করো।

RMDAC

৫. মোলার আয়তন গণনায় ব্যবহার করবে, $V = \frac{nRT}{P}$

৬. STP-তে গ্যাসের আয়তন বের করতে বয়েল ও চার্লসের সমন্বয় সূত্র, $\frac{P_oV_o}{T_o} = \frac{PV}{T}$ ব্যবহার করতে হবে।

অথবা, STP-এর বেলায় , মোলার আয়তন = 22.4 L mol⁻¹
20°C-এর বেলায় মোলার আয়তন = 24.04 L mol⁻¹
SATP-এর বেলায় মোলার আয়তন = 24.789 L mol⁻¹

MCQ-3.5: 25°C এ 12.395 L O₂ গ্যাসে অণুর সংখ্যা কত? (ক) 3.11 × 10²³ (খ) 3.02 × 10²² (গ) 3.01 × 10²³ (ঘ) 3.21 × 10²³

সমাধানকৃত সমস্যা—৩.১৪ : সমীকরণ মতে উৎপাদ-গ্যাসের আয়তন গণনা :

সোডিয়াম অ্যাজাইড (NaN_3) বিয়োজিত হয়ে N_2 গ্যাস উৎপন্ন হয়। $45.0~{
m g}$ NaN_3 বিযোজনে $30^{\circ}{
m C}$ ও $1.15~{
m atm}$ চাপে কত লিটার N_2 গ্যাস উৎপন্ন হবে?

দক্ষতা (Strategy) : প্রথমে সমতাকৃত সমীকরণ লিখে প্রত্যেক বিক্রিয়ক ও উৎপাদ গ্যাসের মোল সংখ্যা মতে STP-তে মোলার আয়তন লিখতে হবে। পরে বিক্রিয়কের ভর থেকে মোল সংখ্যা বের করে উৎপাদ গ্যাসের মোল সংখ্যা গণনা করতে হবে। সবশেষে প্রদত্ত অবস্থায় আদর্শ গ্যাস সমীকরণ PV = nRT ব্যবহার করতে হবে।

সমাধান (Solution): সংশ্রিষ্ট বিযোজন বিক্রিয়ার সমীকরণ নিমুরূপ:

সমীকরণ : $2NaN_3(s) \longrightarrow 2Na(s) + 3N_2(g)$

মোল সংখ্যা : 2 mol

3 mol

NaN3-এর মোলার ভর = 65.0 g/mol

ব্যবহৃত NaN₃ -এর মোল সংখ্যা = $(45.0 \text{ g NaN}_3) \times \frac{1 \text{ mol NaN}_3}{65.0 \text{ g NaN}_3} = 0.692 \text{ mol NaN}_3$

সমীকরণ মতে, 2 mol NaN3 থেকে 3 mol N2 গ্যাস উৎপন্ন হয়।

 $\therefore 0.692 \text{ mol NaN}_3$ থেকে উৎপন্ন N $_2$ গ্যাস্থের মোল সংখ্যা = $(0.692 \text{ mol NaN}_3) \times \frac{3 \text{ mol N}_2 \text{ গ্যাস}}{2 \text{ mol NaN}_3}$ = 1.04 mol N₂ গ্যাস।

এখন 30° C বা, (30+273) K = 303 K তাপমাত্রা ও 1.15 atm চাপে 1.04 mol N_2 গ্যাসের আয়তন হবে, $V = \frac{nRT}{P} = \frac{1.04 \text{ mol} \times 0.08206 \text{ L. atm.K}^{-1} \text{mol}^{-1} \times 303 \text{ K}}{1.15 \text{ atm}} = 22.5 \text{ L (GGA)}$

সমাধানকৃত সমস্যা-৩,১৫ : প্রমাণ তাপমাত্রা ও চাপে 15 L কার্বন ডাইঅক্সাইড গ্যাস প্রভূত করতে কী পরিমাণ ক্যালসিয়াম কার্বনেটকে উত্তপ্ত করতে হবে?

সমাধান : রাসায়নিক পদার্থের আণবিক ভর ও গ্যাসের আয়তন উল্লেখ করে বিক্রিয়ার সমীকরণটি নিমুরূপ হয় :

পারমাণবিক ভর এককে:

CaCO₃ (s)
$$\xrightarrow{\Delta}$$
 CaO (s) $(40 + 12 + 16 \times 3) = 100$ $\xrightarrow{(40 + 16)}$

(40 + 16) = 56

 $+ CO_2(g)$ $(12 + 16 \times 2) = 44$

গ্রাম হিসাবে

100 g

(গ্যাসের কৈত্রে আয়তন)

(কঠিন বস্তু)

(কঠিন ব্ছু)

(গ্যাস, 1 mol, STP-তে 22.4 L)

প্রদত্ত উদাহরণে CaO এর ভর অপ্রয়োজনীয়। এ সমীকরণ হতে দেখা যায় যে

প্রমাণ তাপমাত্রা ও চাপে 22.4 L CO2 পাওয়া যায় 100 g CaCO3 হতে

"
$$15 \text{ L CO}_2$$
 পাওয়া যায় $=\frac{100 \times 15}{22.4} \text{ g} = 66.96 \text{ g CaCO}_3$ হতে (উন্তর)।

সমাধানকৃত সমস্যা-৩.১৬ : 5 গ্রাম KClO3 সম্পূর্ণরূপে বিযোজিত হলে প্রমাণ তাপমাত্রায় ও চাপে কত mL অক্সিজেন পাওয়া যাবে? [K = 39, Cl = 35.5]

সমাধান : KClO3 এর বিযোজন বিক্রিয়ার সমীকরণ নিমুরূপ :

 $2KClO_3 \xrightarrow{\Delta} 2KCl + 3O_2$

 $2 \times (39 + 35.5 + 16 \times 3) g$ $3 \times 32 g$

245 g

বা, 3 × 22.4 L (STP-তে)

MCQ-3.6 : SATP-তে গ্যানের মোলার আয়তন কত? (학) 22.4 L (학) 22.04 L (গ) 24.7 L (되) 24.789 L

বিক্রিয়ার সমীকরণ মতে

 $245~{
m g~KClO_3}$ এর বিযোজনে STP-তে অক্সিজেন উৎপন্ন হয় $=3 \times 22.4~{
m L} = 3 \times 22.4 \times 1000~{
m mL}$

$$\therefore$$
 5 g KClO₃ এর বিযোজনে " = $\frac{3 \times 22.4 \times 1000 \times 5}{245}$ mL = 1371.5 mL (উত্তর)

রসায়ন-২য় (হাসান) -২৭(ক)

সমাধানকৃত সমস্যা-৩.১৭ : 210 g মারকিউরিক অক্সাইড (HgO) হতে যে পরিমাণ অক্সিজেন উৎপন্ন করা যায়; ঐ পরিমাণ অক্সিজেন উৎপন্ন করতে কী পরিমাণ পটাসিয়াম ক্রোরেট (KClO₃)-কে তীব্র তাপে উত্তপ্ত করা প্রয়োজন? [Hg = 200, K = 39.1]

সমাধান: মারকিউরিক অক্সাইড হতে অক্সিজেন প্রস্তৃতির সমীকরণ নিমুরূপ:

2HgO
$$\xrightarrow{\Delta}$$
 2Hg + O₂ (g)
2(200 + 16) g = 432 g 16 × 2 g = 32 g

সুতরাং 432 g HgO হতে পাওয়া যায় 32 g অক্সিজেন।

∴ 210 g HgO হতে " " =
$$\frac{32 \times 210 \text{ g}}{432}$$
 = 15.56 g অক্সিজেন।

আবার পটাসিয়াম ক্লোরেট হতে অক্সিজেন প্রভূতির সমীকরণ নিমুরূপ :

MCQ-3.7: 1.0 g বিশুদ্ধ CaCO₃ থেকে STP-তে কত পিটার CO₂ গ্যাস পাওয়া যায়?
(ক) 22.4 L
(গ) 0.224 L
(ঘ) 2.42 L

∴ 15.56 g অক্সিজেন প্রস্তুত করা যায় =
$$\frac{245.2 \times 15.56}{96}$$
 g = 39.74 g KClO₃ হতে

∴ 39.74 g KClO₃ প্রয়োজন। (উত্তর)

সমাধানকৃত সমস্যা—৩.১৮ : 184 g CaCO3 ও MgCO3 এর মিশ্রণকে উত্তপ্ত করলে 96 g অবশেষ পাওয়া যায়।
মিশ্রণটিতে CaCO3 ও MgCO3 এর শতকরা পরিমাণ বের করো।

সমাধান : মনে করি, মিশ্রণটিতে $CaCO_3$ আছে = x g; \therefore মিশ্রণটিতে $MgCO_3$ এর পরিমাণ = (184 - x) g সংশ্লিষ্ট বিক্রিয়ার সমীকরণ নিমুরূপ :

$$CaCO_3$$
 $\xrightarrow{\Delta}$ CaO $+ CO_2(g);$ $MgCO_3$ $\xrightarrow{\Delta}$ MgO $+ CO_2(g)$ $(40 + 12 + 48) g$ $(24 + 12 + 48) g$ $(24 + 16) g$ $= 100 g$ $= 56 g$ $= 84 g$ $= 40 g$ সমীকরণ মতে, $100 g CaCO_3$ থেকে অবশেষ থাকে $= 56 g CaO$ $\therefore x g CaCO_3$ থেকে অবশেষ থাকে $= \frac{56 \times x}{100} g CaO$

আবার 84 g MgCO3 থেকে অবশেষ থাকে = 40 g MgO

∴ (184 – x) g MgCO₃ থেকে অবশেষ থাকে
$$=\frac{40 \times (184 - x)}{84}$$
 g MgO

প্রমতে,
$$\frac{56 \times x}{100} + \frac{40 \times (184 - x)}{84} = 96$$

বা,
$$\frac{7x}{100} + \frac{5(184 - x)}{84} = 12$$
 (৪ দ্বারা ভাগ করে)

বা,
$$84 \times 7x + 100 \times 5$$
 ($184 - x$) = $12 \times 100 \times 84$ (বিজ্বণন করে)

অতএব, 184 g মিশ্রণে CaCO3 আছে = 100 g

∴ 100 g মিশ্রণে CaCO₃ আছে =
$$\frac{100 \times 100}{184}$$
 = 54.3478 g

সুতরাং মিশ্রণটিতে MgCO₃ এর শতকরা পরিমাণ = (100 – 54.3478) = 45.6522 g

উত্তর : মিশ্রণটিতে CaCO3 আছে = 54.3478% এবং MgCO3 আছে = 45.6522%

সমাধানকৃত সমস্যা-৩.১৯: CaCO3 ও MgCO3 এর 7.85 g মিশ্রণকে অধিক পরিমাণ HCl এসিডে দ্রবীভূত করে প্রমাণ অবছার 1.84 L CO2 গ্যাস পাওয়া যায়। মিশ্রণটিকে CaCO3 ও MgCO3 এর পরিমাণ নির্ণয় করো।

সমাধান : মনে করি, মিশ্রণটিতে $x \in CaCO_3$ আছে। সুতরাং মিশ্রণে $MgCO_3$ আছে = $(7.85-x) \in CO_3$

সমীকরণ মতে, 100 g CaCO3 থেকে উৎপন্ন হয় 22.4 L CO2 (STP-তে)

$$\therefore$$
 x g CaCO₃ থেকে উৎপন্ন হয় = $\frac{22.4 \times x}{100}$ L CO₂ (STP-তে)

আবার
$$MgCO_3$$
 + 2HCl \longrightarrow $MgCl_2$ + CO_2 + H_2O (24.3 + 12 + 16 × 3) g = 84.3 g 1 mol = 22.4 L (S.T.P-তে)

সমীকরণ মতে, 84.3 g MgCO₃ থেকে উৎপন্ন হয় 22.4 L CO₂ (STP-তে)

∴
$$(7.85 - x)$$
 g MgCO₃ থেকে উৎপন্ন হয় = $\frac{22.4 \times (7.85 - x) L}{84.3}$ CO₂ (STP-তে)

প্রমাতে,
$$\frac{22.4 \times x}{100} + \frac{22.4 \times (7.85 - x)}{84.3} = 1.84$$

বা,
$$22.4x \times 84.3 + 22.4 \times (7.85 - x) \times 100 = 1.84 \times 100 \times 84.3$$

 $\overline{1}$, 1888.32x + 17584 - 2240x = 15511.2

বা,
$$351.68x = 2072.8$$
; বা, $x = \frac{2072.8}{351.68} = 5.894$ g (প্রায়)

∴ মিশ্রণে CaCO₃ আছে বিশুদ্ধ = 5.894 g এবং MgCO₃ আছে = (7.85 – 5.894) g = 1.956 g (উত্তর)

সমাধানকৃত সমস্যা-৩.২০ : চুনাপাথরে 95% CaCO3 আছে। লঘু হাইড্রোক্রোরিক এসিডে 160 g ঐ চুনাপাথর দ্রবীভূত করে আদর্শ উষ্ণতা ও চাপে কত mL কার্বন ডাইঅক্সাইড পাওয়া যাবে?

সমাধান: 100 g চুনাপাথরে আছে বিশুদ্ধ 95 g CaCO3

∴ 160 g চুনাপাথরে
$$CaCO_3$$
 আছে = $\frac{95 \times 160}{100}$ = 152 g $CaCO_3$

সংশ্রিষ্ট বিক্রিয়ার সমীকরণ নিমুরপ:

$$CaCO_3(s) + 2HCl(aq) \longrightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$$
100 g
44 g = 22.4 L (প্রমাণ অবস্থায়)

 $100~{
m g~CaCO_3}$ হতে আদর্শ উষ্ণতা ও চাপে ${
m CO_2}$ উৎপন্ন হয় $22.4~{
m L}$ ।

∴ 152 g CaCO₃ হতে " " =
$$\frac{22.4 \times 152}{100}$$
 L = 34.048 L |

আবার 34.048 L = 34.048 × 1000 mL = 34048 mL (উত্তর)

অনেক সময় প্রমাণ তাপমাত্রা ও চাপের পরিবর্তে অন্য তাপমাত্রা ও চাপ উল্লিখিত থাকে। সেক্ষেত্রে প্রয়োজনানুসারে আদর্শ গ্যাস সমীকরণ বা বয়েল ও চার্লসের সূত্র ব্যবহার করে প্রমাণ অবস্থায় গ্যাসের আয়তন বের করে নিতে হয়।

সমাধানকৃত সমস্যা—৩.২১ : 12.5 g চুনাপাথর ও হাইড্রোক্লোরিক এসিডের বিক্রিয়ার ফলে 37°C তাপমাত্রায় ও 750 mm (Hg) চাপে 2.53 L CO2 পাওয়া গেল। ঐ চুনাপাথরে ক্যালসিয়াম কার্বনেটের পরিমাণ কত?

সমাধান : প্রথমে প্রদত্ত অবস্থায় CO₂ এর আয়তনকে প্রমাণ অবস্থায় (STP-তে) রূপান্তর করি। বয়েল ও চার্লসের সূত্র মতে

$$rac{P_1 V_1}{T_1} = rac{P_2 V_2}{T_2}$$
 প্রদন্ত অবস্থায় গ্যাসের চাপ, $P_1 = 750$ mm (Hg) CO $_2$ গ্যাসের আয়তন, $V_1 = 2.53$ L at, $V_2 = rac{P_1 V_1}{T_1} \cdot rac{T_2}{P_2}$ প্রাসের তাপমাত্রা, $T_1 = (273 + 37) = 310$ K প্রমাণ অবস্থায় চাপ, $P_2 = 760$ mm (Hg) গ্যাসের আয়তন, $V_2 = ?$ গ্যাসের তাপমাত্রা, $T_2 = 273$ K

CaCO3 এর সাথে HCl এর বিক্রিয়ার সমীকরণ নিমুরূপ:

সমীকরণ মতে, প্রমাণ অবস্থায় 22.4 L CO2 পাওয়া যায় 100 g CaCO3 হতে।

∴ " " 1 L CO₂ " " =
$$\frac{100}{22.4}$$
 g CaCO₃ হতে।
∴ " 2.2L CO₂ " " = $\frac{100 \times 2.2}{22.4}$ g = 9.82 g CaCO₃ হতে।

∴ 12.5 g চুনাপাথরে 9.82 g CaCO3 আছে। (উত্তর)

সমাধানকৃত সমস্যা—৩.২২ : 250°C তাপমাত্রায় ও 1 atm চাপে 10 g অ্যামোনিয়াম নাইট্রেট নিম্নোক্ত সমীকরণ মতে বিস্ফোরিত হলে কত লিটার গ্যাস উৎপন্ন হবে?

সমাধান : প্রদত্ত বিক্রিয়ার সমীকরণটি হলো—

সমীকরণ :
$$2NH_4NO_3$$
 (s) $\xrightarrow{\Delta}$ $2N_2$ (g) + $4H_2O$ (g) + O_2 (g) মোল সম্পর্ক : 2 mol 2 mol 4 mol 1 mol আয়তন সম্পর্ক : $2(14+4+14+48)$ g 2×22.4 L 4×22.4 L $= 160$ g (STP-তে) (STP-তে)

অর্থাৎ STP-তে 160 g NH4NO3 বিয়োজন উৎপন্ন গ্যাসের মোট আয়তন = (2 × 22.4 + 4 × 22.4 + 22.4) L = 7 × 22.4 L = 156.8 L

আবার STP-তে 156.8~L গ্যাস মিশ্রণের আয়তন প্রদন্ত বিক্রিয়া পরিবেশ যেমন $250^{\circ}C$ বা , (250~+273)~K=523~K তাপমাত্রা ও 1~atm চাপে যদি V আয়তন হয় , তবে বয়েল ও চার্লসের সমন্বয় সমীকরণ মতে পাই , $\frac{PV}{T}=\frac{P_{o}V_{o}}{T_{o}}$

ৰা,
$$\frac{1 \text{ atm} \times \text{V}}{523 \text{ K}} = \frac{1 \text{ atm} \times 156.8 \text{ L}}{273 \text{ K}}$$
 $\therefore \text{V} = \frac{523 \times 156.8 \text{ L}}{273} = 300.39 \text{ L}$

523 K ও 1 atm চাপে 160 g NH₄NO₃ থেকে উৎপন্ন গ্যাসের আয়তন = 300.39 L

$$\therefore$$
 523 K ও 1 atm চাপে $10 \text{ g NH}_4\text{NO}_3$ থেকে উৎপন্ন গ্যাসের আয়তন = $\frac{300.39 \times 10 \text{ L}}{160} = 18.7 \text{ L}$ (উত্তর)

সমাধানকৃত সমস্যা-৩.২৩ : ক্যালসিয়াম কার্বাইড (CaC_2) পানির সাথে বিক্রিয়া করে অ্যাসিটিলিন গ্যাস (C_2H_2) উৎপন্ন করে । 32 g CaC_2 ও পানির বিক্রিয়ায় 27° C ও 1 atm চাপে কত লিটার অ্যাসিটিলিন গ্যাস উৎপন্ন হবে?

দক্ষতা : সংশ্রিষ্ট বিক্রিয়ার সমতাযুক্ত সমীকরণ থেকে STP-তে বিক্রিয়কের গ্রাম-আণবিক ভর ও উৎপন্ন গ্যাসের মোলার আয়তন সম্পর্ক ব্যবহৃত হবে।

সমাধান: সংশ্রিষ্ট বিক্রিয়ার সমীকরণটি হলো:

$$CaC_2(s) + 2H - OH(l) \longrightarrow Ca(OH)_2(s) + C_2H_2(g)$$

 1 mol

 $(40 + 24) g = 64 g$
 1 mol

 22.4 L (STP- CO)

অর্থাৎ STP-তে 64 g CaC2 ও পানির বিক্রিয়ায় 22.4 L অ্যাসিটিলিন উৎপন্ন হয়।

আবার STP-তে 22.4 L গ্যাসের আয়তন প্রদত্ত তাপমাত্রা 27° C বা, (27 + 273) K = 300 K ও 1 atm চাপে যদি V আয়তন হয়, তবে বয়েল ও চার্লসের সমনুয় সমীকরণ মতে পাই,

$$\frac{PV}{T} = \frac{P_0 \times V_0}{T_0}$$
; $\frac{1 \text{ atm} \times V}{300 \text{ K}} = \frac{1 \text{ atm} \times 22.4 \text{ L}}{273 \text{ K}}$; $\therefore V = \frac{300 \times 22.4 \text{ L}}{273} = 24.62 \text{ L}$

300 K ও 1 atm চাপে 64 g CaC₂ থেকে উৎপন্ন গ্যাসের আয়তন = 24.62 L

$$300 \text{ K}$$
 ও 1 atm চাপে 32 g CaC_2 থেকে উৎপন্ন গ্যাসের আয়তন $= \frac{24.62 \text{ L} \times 32}{64} = 12.31 \text{ L}$ (উত্তর)

শিক্ষার্থী নিজে করো-৩.৩ : উৎপাদ গ্যাসের আয়তনভিত্তিক :

সমস্যা-৩.৮(ক) : 250 g CaCO₃ এর তাপ বিযোজনে উৎপন্ন CO₂ গ্যাস 35°C ও 1.50 atm চাপে কত আয়তন হবে?

সমস্যা-৩.৮(খ) : প্রমাণ অবছায় 15 L CO₂ গ্যাস প্রভুত করতে কী পরিমাণ ক্যালসিয়াম কার্বনেটকে উত্তপ্ত করতে হবে?

সমস্যা-৩.৮(গ) : চুনাপাথরে 95% $CaCO_3$ আছে। 160~g ঐ চুনাপাথর ও HCl এসিডের বিক্রিয়ায় STP-তে কত লিটার CO_2 গ্যাস উৎপন্ন হবে?

সমস্যা-৩.৮(ম্ব): 95% CaCO3 বিশিষ্ট একটি চুনাপাথর নমুনার 200 g-কে তাপ প্রয়োগে সম্পূর্ণ বিয়োজিত করে SATP-তে কত লিটার CO2 গ্যাস পাওয়া যাবে?

সমস্যা-৩.৮(%) : 85% বিশুদ্ধ 20 g চুনাপাথর ও HCl এসিডের বিক্রিয়ায় STP-তে কত লিটার CO2 গ্যাস উৎপন্ন হবে? ডি: 3.8 Ll [দি. বো.২০১৫]

সমস্যা-৩.৮(চ) : চুনাপাথরের একটি নমুনায় 96% CaCO₃ আছে। ঐ চুনাপাথরের 150 g পরিমাণ ও HCl এসিডের বিক্রিয়ায় উৎপন্ন CO₂ গ্যাস 25°C ও 1.1 atm চাপে কত আয়তন হবে? [উ: 32.01 L]

সমস্যা-৩.৯(ক) : 840 g লোহিত তপ্ত লৌহ গুঁড়ার ওপর স্টিম চালনা করা হলো। উৎপন্ন H₂ গ্যাসের আয়তন SATP-তে কত হবে?

সমস্যা-৩.৯(খ) : 27°C তাপমাত্রায় ও 1 atm চাপে 100 L আয়তনের একটি বেলুনকে H_2 গ্যাস দ্বারা পূর্ণ করতে হবে। প্রয়োজনীয় আয়তনের (STP-তে) H_2 গ্যাস প্রভুত করতে কত গ্রাম উত্তপ্ত লৌহ ও স্টিমের মধ্যে বিক্রিয়া ঘটাতে হবে?

সমস্যা-৩.১০(ক) : পটাসিয়াম ক্লোরেট (KClO₃) এর তাপ বিযোজনে O₂ গ্যাস উৎপন্ন হয়। 200 g KClO₃ থেকে উৎপন্ন O₂ গ্যাস 27°C ও 1.5 atm চাপে কত আয়তন দখল করবে?

সমস্যা-৩.১০(খ): 200 g HgO-কে উত্তপ্ত করে ST)-তে যত লিটার অক্সিজেন পাওয়া যায়, সেই আয়তনের O₂ গ্যাস পেতে কী পরিমাণ KClO₃ কে উত্তপ্ত করতে হবে?

সমস্যা-৩.১১(ক) : দেশলাইয়ের একটি কাঠি জ্বালালে কাঠির মাথার P_4S_3 এর দহনের ফলে P_4O_{10} এর সাদা ধোঁয়া ও SO_2 গ্যাস উৎপন্ন হয়। $27^{\circ}C$ ও 1 atm চাপে 0.062 g P_4S_3 এর দহনের ফলে উৎপন্ন SO_2 গ্যাসের আয়তন কত হবে? [P=31,S=32] ডি: 0.0208 L]

সমস্যা-৩.১১(খ) : 22 g FeS ও অতিরিক্ত পরিমাণ লঘু H_2SO_4 এর বিক্রিয়ায় উৎপন্ন H_2S গ্যাসকে বাতাসে পোড়ালে যে পরিমাণ SO_2 গ্যাস উৎপন্ন হয় তার আয়তন $25^{\circ}C$ তাপমাত্রা ও $750~\mathrm{mm}$ (Hg) চাপে কত হবে?

[话: 6.20 L]

সমস্যা-৩.১২: 27°C তাপমাত্রায় ও 750 mm (Hg) চাপে 2.24 L NH3 গ্যাস উৎপন্ন করার জন্য কত গ্রাম নিশাদল (NH4Cl)-কে চুনের সাথে বিক্রিয়া ঘটাতে হবে?

সমস্যা-৩.১৩(ক) : 27°C তাপমাত্রায় ও 750 mm (Hg) চাপে 2 L N₂ গ্যাস উৎপন্ন করতে কী পরিমাণ NH₃ গ্যাস ও Cl₂ গ্যাসের মধ্যে বিক্রিয়া ঘটাতে হবে? ডি: NH₃ = 2.726g; Cl₂ = 17.078 g]

সমস্যা-৩.১৩(খ): 27°C তাপমাত্রায় ও 750 mm (Hg) চাপে 2 L Cl₂ গ্যাসকে KI এর জলীয় দ্রবণে চালনা করলে কত গ্রাম আয়োডিন উৎপন্ন হবে?

সমস্যা-৩.১৪ (ক) : 12.5 g চুনাপাথর ও হাইড্রোক্লোরিক এসিডের বিক্রিয়ার ফলে 37°C তাপমাত্রায় ও 750 mm(Hg) চাপে 2.53 L কার্বন ডাইঅক্সাইডে (CO₂) পাওয়া গেল। চুনাপাথরে ক্যালসিয়াম কার্বনেটের (CaCO₃) পরিমাণ কত?

সমস্যা-৩.১৪(খ) : 20 g CaCO₃ থেকে উৎপন্ন সমন্ত CO₂ গ্যাসকে Na₂CO₃ এ পরিণত করতে কী পরিমাণ কস্টিক সোড়া প্রয়োজন হবে?

সমস্যা-৩.১৪(গ) : চুনাপাথরের একটি নমুনায় 60% $CaCO_3$ আছে। এক লিটার মোলার কস্টিক সোডা দ্রবণের NaOH-কে সম্পূর্ণরূপে Na_2CO_3 এ পরিণত করতে যে পরিমাণ CO_2 প্রয়োজন তা উৎপন্ন করতে কী পরিমাণ ঐ চুনাপাথর প্রয়োজন হবে?

৩.৩ বিক্রিয়কের ভর থেকে উৎপাদ গ্যাসের ভর ও আয়তন গণনা Calculation of Mass & Volume of gaseous Product from Mass of Reactant

১. এক্ষেত্রে বিক্রিয়কের ভরকে মোল এককে পরিণত করতে হবে।

২. সংশ্রিষ্ট বিক্রিয়ার সমতাকৃত সমীকরণ মতে বিক্রিয়ক ও উৎপাদের মোল সম্পর্ক থেকে উৎপাদের মোলার ভর ও মোলার আয়তন গণনা করা যায়।

সমাধানকৃত সমস্যা–৩.২৪ : উৎপাদ-গ্যাসের ভর ও আয়তন গণনা :

কুপার পাইরাইটস (Cu_2S) থেকে কুপার ধাতু নিষ্কাশনকালে SO_2 গ্যাস উৎপন্ন হয়; যা H_2SO_4 এসিড উৎপাদনে ব্যবহার করা যায়। $100~{
m kg}~Cu_2S$ থেকে কত পরিমাণ SO_2 উৎপন্ন হবে তা ভর ও আয়তনে SATP তে বের করো।

দক্ষতা : রাসায়নিক সমীকরণভিত্তিক গণনার সাধারণ ধাণগুলো অনুসরণ করতে হবে।

সমাধান: সাধারণ ধাপগুলো হলো—

সমতাযুক্ত সমীকরণ: $2Cu_2S(s) + 3O_2(g) \rightarrow 2Cu_2O(s) + 2SO_2(g)$

2 mol

$$Cu_2S$$
 এর মোলার ভর = $(63.5 \times 2 + 32)$ g = 159 g/mol

$$159 \text{ g } \text{Cu}_2\text{S} = 1 \text{ mol } \text{Cu}_2\text{S}$$

100 kg বা,
$$1.0 \times 10^5$$
 g $\text{Cu}_2\text{S} = \frac{1.0 \times 10^5 \times 1 \text{ mol Cu}_2\text{S}}{159} = 628.93 \text{ mol Cu}_2\text{S}$

সমীকরণ মতে, $2 \text{ mol } \text{Cu}_2\text{S}$ থেকে $2 \text{ mol } \text{SO}_2$ গ্যাস উৎপন্ন হয়। \therefore SO $_2$ গ্যাসের মোল সংখ্যা = $628.93 \text{ mol } \text{SO}_2$ গ্যাস

SO2 এর মোলার ভর = 64 g/mol

∴ উৎপন্ন SO₂ গ্যাসের ভর = 64 g/mol × 628.93 mol SO₂ গ্যাস = 40,251.52 g SO₂ গ্যাস

আবার, SATP-তে SO_2 গ্যাসের মোলার আয়তন = $24.789 \text{ L. mol}^{-1}$

MCQ-3.8 : SATP বলতে গ্যাসের নিমোক্ত অবছাকে বোঝায়— (i) 298 K (ii)100 kPa (iii) 22.4 L mol⁻¹ কোনটি সঠিক? (ক) i ও ii (খ) ii ও iii (গ) i ও iii (ঘ) i, ii ও iii

 \therefore উৎপন্ন SO₂ এর আয়তন = 628.93 mol SO₂ × 24.789 L. mol⁻¹= 15590.55 L

সমাধানকৃত সমস্যা-৩.২৫: একজন হিমালয় পর্বত আরোহীর দৈহিক শক্তি অর্জনের জন্য প্রতি ঘণ্টায় 35~g গ্রুকোজ প্রয়োজন হয়। একদিনের (24~hours) যাত্রার জন্য প্রয়োজনীয় গ্রুকোজের দেহকোষে জারণকালে অক্সিজেন সিলিভার থেকে ব্যয়িত O_2 গ্যাস ও উৎপন্ন CO_2 এর পরিমাণ গ্রাম ও লিটার এককে প্রমাণ অবস্থায় গণনা করো।

দক্ষতা : রাসায়নিক সমীকরণভিত্তিক মোল ও আয়তনের সম্পর্ক মতে গণনা করতে হবে।

সমাধান : দেহকোষে গ্রুকোজের জারণের ফলে উৎপন্ন শক্তি থেকে পর্বত আরোহী দৈহিক শক্তি লাভ করে। গ্রুকোজের জারণ বিক্রিয়াটি হলো :

$$C_6H_{12}O_6(s) + 6O_2(g) \longrightarrow 6CO_2(g) + 6H_2O(l)$$
1 mol 6 mol 6 mol
180 g 6 × 32 g 6 × 44 g
6 × 22.4 L (STP) 6 × 22.4 L (STP)

একদিনে প্রয়োজনীয় গ্রুকোজের পরিমাণ = 35 g × 24 = 840 g

সমীকরণ মতে, 180 g গ্রুকোজের দহনে প্রয়োজনীয় অক্সিজেন = 6 mol O2

∴ 840 g গ্রুকোজের দহনে প্রয়োজনীয় অক্সিজেন =
$$\frac{6 \times 840}{180}$$
 = 28 mol O₂

আবার STP-তে 28 mol O₂ = 28 × 22.4 L = 627.2 L O₂ গ্যাস

আবার সমীকরণ মতে ব্যয়িত O_2 এর মোল সংখ্যা ও উৎপন্ন CO_2 এর মোল সংখ্যা সমান। তাই উৎপন্ন CO_2 এর আয়তন STP-তে 627.2 L হবে এবং CO_2 এর ভর হবে $=28\times44~g=1232~g$ CO_2

িউন্তর : O₂ = 627.2 L, 896 g ; CO₂ = 627.2 L, 1232 g]

সমাধানকৃত সমস্যা—৩.২৬ : চুনাপাথর ও HCl এসিডের বিক্রিয়ায় CO₂ গ্যাস উৎপন্ন হয়। 85% বিশুদ্ধ 20 g চুনাপাথর ও HCl এসিডের বিক্রিয়ায় STP-তে উৎপন্ন CO₂ গ্যাসের আয়তন ও ভর গণনা করো। [দি. বো. ২০১৫]

দক্ষতা : সংশ্লিষ্ট বিক্রিয়ার সমতাযুক্ত সমীকরণ থেকে মোল ও মোলার আয়তন ব্যবহৃত হয়।

সমাধান : প্রশ্নমতে চুনাপাথরে 85% CaCO3 আছে।

অর্থাৎ 100 g চুনাপাথরে বিশুদ্ধ CaCO3 আছে = 85 g CaCO3

 \therefore 20 g ছুনাপাথরে বিশুদ্ধ $CaCO_3$ আছে $=\frac{85 \times 20}{100}$ g $CaCO_3 = 17$ g $CaCO_3$

বিক্রিয়াটির সমতাযুক্ত সমীকরণ হলো নিমুরূপ:

 $CaCO_3 (s) + 2HCl (aq) \longrightarrow CaCl_2 (aq) + CO_2 (g) + H_2O (l)$ 100 g 44 g = 22.4 L (STP)

সমীকরণ মতে, 100 g CaCO3 থেকে CO2 উৎপন্ন হয় = 44 g CO2

∴ 17 g CaCO₃ থেকে CO₂ উৎপন্ন হয় = $\frac{44 \times 17 \text{ g}}{100}$ = 7.48 g CO₂

সমীকরণ মতে.

1 mol বা, 44 g CO2 গ্যাস STP-তে 22.4 L আয়তন হয়

∴ 7.48 g CO₂ গ্যাস STP-তে আয়তন হয় = $\frac{22.4 \times 7.48 \text{ L}}{44}$ = 3.8 L

MCQ-3.9: 12 g কার্বন থেকে কত গ্রাম CO₂ প্রস্তুত করা যায়? (ক) 20 g (খ) 44 g (গ) 4.4 g (ঘ) 38 g

উত্তর: 3.8 L CO2; 7.48 g CO2।

শিক্ষার্থী নিজে করো-৩.৪: উৎপাদ গ্যাসের ভর ও আয়তনভিত্তিক:

সমস্যা-৩.১৫: সংস্পর্শ পদ্ধতিতে H_2SO_4 উৎপাদনের বেলায় সালফার বার্নারে সালফার দহনে SO_2 প্রস্তুত করা হয়। $300~{
m kg}$ বিশুদ্ধ সালফার থেকে কী পরিমাণ SO_2 উৎপন্ন হবে তা SATP-তে ভর ও আয়তনে বের করো।

ডি: 6.0×10^5 g; 232396.88 L]

সমস্যা-৩.১৬ : পরীক্ষাগারে জিন্ধ ও লঘু H_2SO_4 এসিডের বিক্রিয়ায় H_2 গ্যাস প্রস্তুত করা হয়। 200~g জিন্ধ থেকে কী পরিমাণ H_2 গ্যাস উৎপন্ন হবে তা 1~atm ও $20^{\circ}C$ এ ভর ও আয়তনে বের করো। উ: 6.165~g; 73.51~L]

সমস্যা-৩.১৭ : ক্যালসিয়াম কার্বাইড (CaC₂) ও পানির বিক্রিয়ায় পরীক্ষাগারে অ্যাসিটিলিন গ্যাস প্রস্তুত করা হয়। 500 g CaC₂ থেকে উৎপন্ন অ্যাসিটিলিনের ভর ও STP-তে আয়তন বের করো। ডি: 203.125 g ; 175 L]

সমস্যা - ৩.১৮(ক) : 5.0 g KClO₃-কে সম্পূর্ণরূপে বিয়োজিত করে উৎপন্ন O₂ গ্যাসের ভর ও STP-তে আয়তন বের করো। ডি: 1.959 g; 1371.5 mL

সমস্যা-৩.১৮(খ) : পটাসিয়াম ক্লোরেট $\stackrel{\triangle}{\longrightarrow}$ A (g) + KCl (s)। এক্ষেত্রে 5 g 'A' (g) উৎপন্ন করতে কত গ্রাম বিক্রিয়ক প্রয়োজন হবে?

সমস্যা-৩.১৯(ক) : পরীক্ষাগারে নিশাদল (NH4Cl) ও কুইক লাইম (CaO) এর বিক্রিয়ায় NH3 গ্যাস প্রস্তুত করা হয়। 25 g NH4Cl এর সাথে অধিক পরিমাণ CaO মিশিয়ে মিশ্রণটি উত্তপ্ত করলে উৎপন্ন গ্যাসের আয়তন ও ভর SATP-তে গণনা করো।

সমস্যা-৩.১৯(খ) : পরীক্ষাগারে পটাসিয়াম ক্লোরেট ($KCIO_3$) এর সাথে ম্যাঙ্গানিজ ডাইঅক্সাইড (MnO_2) মিশিয়ে ঐ মিশ্রণকে উত্তপ্ত করে O_2 গ্যাস প্রভূত করা হয়। $10~g~KCIO_3$ এর সাথে অল্প MnO_2 মিশিয়ে উত্তপ্ত করলে $20^{\circ}C$ ও 1~atm চাপে উৎপন্ন O_2 গ্যাসের আয়তন ও ভর গণনা করে।

উ: 2.94~L; 3.92~g

সমস্যা-৩.১৯(গ) : পরীক্ষাগারে গাঢ় HCl এসিড ও ${
m MnO_2}$ এর মিশ্রণকে উত্তপ্ত করে ${
m Cl_2}$ গ্যাস প্রস্তুত করা হয়। ${
m 10~g~MnO_2}$ এর সাথে গাঢ় HCl এসিডের বিক্রিয়ায় উৎপন্ন ${
m Cl_2}$ গ্যাসের আয়তন ও ভর SATP-তে গণনা করো।

[5: 2.85 L; 8.163 g]

সমস্যা-৩.১৯(ঘ) : পরীক্ষাগারে ক্যালসিয়াম কার্বনেট (CaCO₃) ও HCl এসিডের বিক্রিয়ায় CO₂ গ্যাস উৎপন্ন করা হয়। 15 g CaCO₃ এর সাথে গাঢ় HCl এসিডের বিক্রিয়ায় উৎপন্ন CO₂ এর আয়তন ও ভর 20°C তাপমাত্রায় ও 1 atm চাপে গণনা করো।

উ: 3.6 L; 6.6 g]

সমস্যা-৩.১৯(%) : ফেরাস সালফাইড (FeS) ও লঘু H_2SO_4 এসিডের বিক্রিয়ায় দুর্গন্ধযুক্ত, পরিবেশ দূষক ও বিষাক্ত হাইড্রোজেন সালফাইড (H_2S) গ্যাস উৎপন্ন হয়। 12~g~FeS এর সাথে লঘু H_2SO_4 এসিডের বিক্রিয়ায় উৎপন্ন H_2S গ্যাসের আয়তন ও ভর SATP-তে গণনা করো। $\colongrap{\colong}$ উ: 3.388~L; 4.67~g]

সমস্যা-৩.১৯ (চ) : পরীক্ষাগারে ক্যালসিয়াম কার্বাইড (CaC₂) ও পানির বিক্রিয়ায় ইথাইন বা অ্যাসিটিলিন গ্যাস প্রস্তুত করা হয়। 15 g CaC₂ ও পানির বিক্রিয়ায় উৎপন্ন ইথাইন গ্যাসের STP-তে আয়তন ও ভর গণনা করো।

ডি: 5.246 L; 6.09 g]

সীমিত-বিক্রিয়ক (Limiting Reactant) সহ গণনা:

বান্তবক্ষেত্রে রাসায়নিক বিক্রিয়ার সমীকরণ মতে দুটি বিক্রিয়কের ভরের পরিমাণ সঠিক অনুপাতে খুব কম ক্ষেত্রে ব্যবহৃত হয়। প্রায় ক্ষেত্রে কোনো একটি বিক্রিয়ক কম বা বেশি পরিমাণে মিশানো থাকে। বিক্রিয়া শেষে বেশি পরিমাণে মিশানো বিক্রিয়কটি অতিরিক্ত থেকে যায়। নিচের বিক্রিয়ার সমীকরণটি লক্ষ্য করো।

$$CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(g)$$

সমীকরণ মতে 1 mol CH_4 এর পূর্ণ দহনের জন্য 2 mol O_2 দরকার হয়; যদি 2 mol CH_4 এর সাথে 2 mol O_2 মিশানো হয়; তখন পরিমাণে বেশি মিশানো CH_4 বিক্রিয়া শেষে অবিকৃত অবস্থায় অতিরিক্ত থেকে যাবে। এক্ষেত্রে বিক্রিয়ায় উৎপাদ CO_2 এর পরিমাণ O_2 এর ওপর নির্ভরশীল হবে; তাই বিক্রিয়ক O_2 এর পরিমাণের ওপর নির্ভর করে উৎপন্ন CO_2 এর পরিমাণ গণনা করতে হবে।

এক্ষেত্রে CH_4 ও O_2 এর বিক্রিয়ায় সমীকরণভিত্তিক CH_4 ও O_2 এর মোল অনুপাত হলো 1 ៖ 2 । কিছু 2 mol CH_4 এর সাথে 2 mol O_2 মিশালে উভয় বিক্রিয়কের মোল আনুপাতিক হারে O_2 এর পরিমাণ কম থাকে এবং উৎপাদ CO_2 ঐ কম পরিমাণে ব্যবহৃত O_2 এর মোল পরিমাণের ওপর নির্ভর করে কম পরিমাণে উৎপন্ন হয় । তাই এ বিক্রিয়ায় O_2 হলো লিমিটিং রিঅ্যাক্টেন্ট বা সীমিত বিক্রিয়ক ।

সীমিত-বিক্রিয়কের সংজ্ঞা : দু বা ততোধিক বিক্রিয়কের বিক্রিয়ার সমীকরণ মতে, যে বিক্রিয়কটি প্রয়োজনীয় মোল অনুপাতের চেয়ে কম পরিমাণে ব্যবহৃত হওয়ায় উৎপাদের মোট পরিমাণ ঐ বিক্রিয়কটির পরিমাণের ওপর নির্ভর করে কম হয়, সে বিক্রিয়কটিকে ঐ বিক্রিয়ার সীমিত বিক্রিয়ক বা লিমিটিং রিজ্যাক্ট্যান্ট (Limiting reactant) বলে।

("In mathematical term, the limiting reactant is the one that yields the LOWER amount of product in a reaction.")

সমাধানকৃত সমস্যা-৩.২৭ : সীমিত-বিক্রিয়কভিত্তিক গণনা :

প্রাথমিক অবছায় রকেটে জ্বালানিরূপে তরল হাইদ্রোজিন (N_2H_4) ও তরল নাইট্রোজেন টেট্রাঅক্সাইড (N_2O_4) ব্যবহৃত হতো। উভয় তরলের সংস্পর্শে বিস্ফোরণসহ উৎপন্ন N_2 গ্যাস ও স্টিমের প্রবল চাপ সৃষ্টি করে। $1.0\times 10^2~{\rm g}$ N_2H_4 ও $2.0\times 10^2~{\rm g}$ N_2O_4 মিশালে উৎপন্ন N_2 গ্যাসের পরিমাণ $25^{\circ}{\rm C}$ তাপমাত্রায় ভর এককে ও আয়তনে বের করো।

দক্ষতা : এখানে দুটি বিক্রিয়কের পরিমাণ দেয়া আছে। তাই এটি সীমিত বিক্রিয়ক সমস্যা হবে। রাসায়নিক গণনার সাধারণ ধাপগুলো অনুসরণ করতে হবে প্রত্যেক বিক্রিয়কসহ। সবশেষে উভয় বিক্রিয়কের মোল থেকে উৎপন্ন N_2 এর পরিমাণ দেখে সীমিত বিক্রিয়ক নির্ভর N_2 এর পরিমাণ ভর ও আয়তনে গ্রহণযোগ্য হবে।

সমাধান: সাধারণ ধাপ অনুসরণ:

সমীকরণ: $2N_2H_4(l) + N_2O_4(l) \longrightarrow 3N_2(g) + 4H_2O(g)$ মোল সম্পর্ক: 2 mol 1 mol 3 mol

 N_2H_4 থেকে N_2 এর মোল সংখ্যা গণনা : N_2H_4 এর মোলার ভর = $32.05~\mathrm{g/mol}$

MCQ-3.10 : 11.5 g Na ধাতু ও পানির বিক্রিয়ায় SATP-তে কত লিটার H₂ উৎপন্ন হবে? (ক) 6.20 L (খ) 12.38 L (গ) 5.60 L (ঘ) 6.10 L

$$N_2H_4$$
 এর মোল সংখ্যা = $(1.0 \times 10^2~{\rm g~N_2H_4}) \times \frac{1~{\rm mol~N_2H_4}}{32.05~{\rm g~N_2H_4}} = 3.12~{\rm mol~N_2H_4}$

$$N_2$$
 এর মোল সংখ্যা = $(3.12 \text{ mol } N_2H_4) \times \frac{3 \text{ mol } N_2}{2 \text{ mol } N_2H_4} = 4.68 \text{ mol } N_2$

 N_2O_4 থেকে N_2 এর মোল সংখ্যা গণনা : N_2O_4 এর মোলার ভর = 92.02 g/mol

$$\therefore N_2O_4$$
 এর মোল সংখ্যা = $(2.0 \times 10^2 \, \text{g N}_2O_4) \times \frac{1 \, \text{mol N}_2O_4}{92.02 \, \text{gN}_2O_4} = 2.17 \, \text{mol N}_2O_4$

$$\therefore$$
 N₂ এর মোল সংখ্যা = $(2.17 \text{ mol N}_2\text{O}_4) \times \frac{3 \text{ mol N}_2}{1 \text{ mol N}_2\text{O}_4} = \boxed{6.51 \text{ mol N}_2}$

 $\therefore N_2H_4$ হলো সীমিত-বিক্রিয়ক, কারণ এর থেকে কম সংখ্যক মোল N_2 উৎপন্ন হয়েছে।

এখন N_2 এর মোল সংখ্যাকে ভর এককে রূপান্তর করে N_2 এর ভর হলো

=
$$(4.68 \text{ mol } N_2) \times \frac{28.02 \text{ g } N_2}{1 \text{ mol } N_2} = 131.13 \text{ g } N_2$$

আবার, N_2 এর মোল সংখ্যাকে 25°C তাপমাত্রায় লিটার এককে রূপান্তর করে পাই,

MCQ-3.11: 49 g KCIO₃ থেকে কত গ্রাম O₂ উৎপন্ন হবে?

(**क**) 20 g

(খ) 19 g

=
$$(4.68 \text{ mol } N_2) \times \frac{24.789 \text{ L } N_2}{1 \text{ mol } N_2} = 116.01 \text{ L } N_2$$

সমাধানকৃত সমস্যা-৩.২৮ : নাইট্রোজেন ও হাইড্রোজেন গ্যাস থেকে হেবার পদ্ধতিতে অ্যামোনিয়া উৎপাদন করা হয়। $500~{
m g~N_2}$ ও $100~{
m g~H_2}$ গ্যাসের মিশ্রণ থেকে কত গ্রাম ${
m NH_3}$ উৎপাদন করা সম্ভব হবে? এক্ষেত্রে কোনো শিমিটিং বিক্রিয়ক বা সীমিত বিক্রিয়ক আছে কীনা শনাক্ত করো।

দক্ষতা : বিক্রিয়কদ্বয়ের মোল সংখ্যা গণনা করতে হবে। বিক্রিয়ার সমীকরণ থেকে বিক্রিয়কদ্বয়ের মোল সম্পর্ক ব্যবহার করতে হবে।

সমাধান : প্রশ্নমতে,

$$N_2$$
 এর মোল সংখ্যা = $\frac{500 \text{ g}}{28 \text{ g mol}^{-1}} = 17.86 \text{ mol}$
 H_2 এর মোল সংখ্যা = $\frac{100 \text{ g}}{2 \text{ g mol}^{-1}} = 50 \text{ mol}$

(খ) 53 g

(ঘ) 5.3 g

সংশ্রিষ্ট বিক্রিয়ার সমীকরণ হলো নিমুরপ :

$$N_2(g)$$
 + $3H_2(g)$ \longrightarrow $2NH_3(g)$
1 mol 2 mol = 34 g

উপরের সমীকরণ মতে,

1 mol N₂ এর জন্য 3 mol H₂ দরকার হয়।

∴ 17.86 mol N2 এর জন্য 3 × 17.86 mol = 53.58 mol H2 দরকার

কিন্তু H_2 দেয়া আছে 50 mol 1 তাই এক্ষেত্রে মোল অনুপাতে H_2 এর পরিমাণ কম থাকায় H_2 হলো সীমিত বা লিমিটিং বিক্রিয়ক এবং N_2 হলো অতিরিক্ত বিক্রিয়ক 1

লিমিটিং বিক্রিয়ক H_2 এর পরিমাণের ওপর নির্ভর করে উৎপাদ NH_3 উৎপন্ন হয়ে থাকবে। সমীকরণ মতে, $3 \text{ mol } H_2$ থেকে $2 \text{ mol } NH_3$ বা, $34 \text{ g } NH_3$ উৎপন্ন হয়

 \therefore 50 mol H₂ থেকে $\frac{34 \text{ g} \times 50}{3} = 566.66 \text{ g NH}_3$ উৎপন্ন হয়।

শিক্ষার্থীর কাজ-৩,৫: সীমিত বিক্রিয়কভিত্তিক:

সমস্যা - ৩.২০ : মিথেন ও অক্সিজেন মিশ্রণের দহনে CO_2 ও পানি বাষ্প উৎপন্ন হয়। $2.0~{
m g}$ CH_4 এবং $4.0~{
m g}$ O_2 মিশ্রণের দহনে উৎপন্ন সর্বোচ্চ পরিমাণ CO_2 এর ভর ও SATP-তে আয়তন কত হবে? টি: $2.75~{
m g}$, $1.55~{
m L}$]

সমস্যা - ৩.২১ : লোহা ও স্টিমের বিক্রিয়ায় উচ্চ তাপমাত্রায় H_2 গ্যাস উৎপন্ন করা যায়। $450~{
m g}$ Fe ও $150~{
m g}$ পানি থেকে উৎপন্ন স্টিমের মধ্যে বিক্রিয়ায় উৎপন্ন H_2 এর পরিমাণ গ্রামে ও $20^{\circ}{
m C}$ তাপমাত্রায় লিটার এককে বের কর।

ডি: 16.79 g; 200.25 L]

সমস্যা - ৩.২২(ক) : 2.02 g ক্যালসিয়াম ও 2.02 g H₂ গ্যাসের একটি মিশ্রণকে উত্তপ্ত করলে কত গ্রাম ক্যালসিয়াম হাইড্রাইড (CaH₂) উৎপন্ন হবে? ডিঃ 2.1218 g]

সমস্যা-৩.২২(খ) : 24.5 g KClO₃-কে উত্তপ্ত করে প্রাপ্ত O₂ গ্যাসকে 10 g বিশুদ্ধ ও উত্তপ্ত কার্বনের ওপর দিয়ে চালনা করা হলো। এর ফলে উৎপন্ন CO₂ গ্যাসের আয়তন 27°C ও 750 mm (Hg) চাপে কত হবে? ডি: 7.482 L]

৩.৪ বিক্রিয়ায় উৎপাদ গ্যাসের আয়তন নির্ণয়

To determine Volume of Gaseous Product

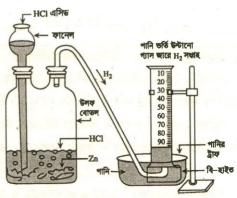
- (১) সুলভ উপকরণ ব্যবহার করে বিক্রিয়ায় উৎপাদ গ্যাসের আয়তন নির্ণয় করা যাবে। এজন্য মধ্যম সক্রিয় ধাতু জিঙ্ক ও লঘু HCl এসিডের বিক্রিয়ায় H₂ গ্যাসকে পানির নিম্নমুখী অপসারণ প্রক্রিয়ায় সংগ্রহ করতে হবে। পানিতে অদ্রবণীয় গ্যাসকে এ প্রক্রিয়ায় সংগ্রহ করতে হয়।
- (২) এছাড়া 20-আয়তন H_2O_2 দ্রবণ ও MnO_2 এর বিক্রিয়ায় উৎপন্ন স্বল্প দ্রবণীয় O_2 গ্যাসকে পানি অপসারণ প্রক্রিয়ায় সংগ্রহ করা যাবে।

ব্যবহারিক (Practical) শিক্ষার্থীর কাজ : পরীক্ষা নং-৭ তারিখ : পরীক্ষার নাম : বিক্রিয়ায় উৎপাদ গ্যাসের আয়তন নির্ণয়

মূলনীতি: নির্দিষ্ট ভরের জিঙ্ক ধাতু ও লঘু HCl এসিডের বিক্রিয়ায় উৎপন্ন H₂ গ্যাসকে পানি অপসারণ প্রক্রিয়ায় দাগ কাটা কাচনল বা মেজারিং সিলিভারে সংগ্রহ করে আয়তন (V mL) পাওয়া যায়।

$$Zn(s) + 2HCl(aq) \longrightarrow ZnCl_2(aq) + H_2(g)$$

ব্যারোমিটার থেকে চাপ ও পানি থেকে তাপমাত্রা এবং ঐ তাপমাত্রায় জলীয়বাষ্পের চাপ জেনে সংগৃহীত H_2 গ্যাসের মোল সংখ্যা, মোলার আয়তন ও ভর গণনা করা যায় :


প্রয়োজনীয় রাসায়নিক পদার্থ: (১) জিঙ্ক, (২) লঘু (HCI) এসিড, (৩) পানি।

প্রয়োজনীয় যন্ত্রপাতি : (১) উলফ বোতল, (২) ফানেল, (৩) নির্গম নল সেট, (৪) দাগকাটা গ্যাসজার অথবা মেজারিং সিলিন্ডার (250 cm³), (৫) ওয়াটার ট্রাফ, (৬) থার্মোমিটার, (৭) ব্যারোমিটার।

কাজের ধারা :

(১) চিত্র ৩.১ অনুসারে একটি উলফ বোতলে 2 g জিঙ্ক নাও। (২) উলফ বোতলের এক মুখে ফানেল ও অপর মুখে নির্গম

নল কর্কসহকারে যুক্ত করে বায়ুরোধী করো। (৩) ওয়াটার ট্রাফে বিহাইভসহ গ্যাস নির্গমন নলের মুখে পানিভর্তি গ্যাসজারের অথবা
মেজারিং সিলিভারকে উন্টানো অবস্থায় ক্ল্যাম্প-স্ট্যান্ডসহ আটেকিয়ে
নাও। (৪) এবার ফানেলের মুখে লঘু HCl এসিড ঢেলে ফানেলের
নিচের অংশ ডুবিয়ে রাখো। লক্ষ্য করো Zn ও HCl এসিডের
বিক্রিয়ায় উৎপন্ন H2 গ্যাস পানিতে বুদবুদসহকারে বের হচ্ছে এবং
গ্যাসজারের ভেতরের পানিকে নিচে সরিয়ে ঐ H2 গ্যাস-জারে জমা
হচ্ছে। জমা হওয়া H2 গ্যাসের আয়তন, V mL ধরে নিচের ডাটায়
রেকর্ড করো। (৫) থার্মোমিটার দিয়ে ট্রাফের পানির তাপমাত্রা (t° C)
রেকর্ড করো। ল্যাবরেটরিতে থাকা ব্যারোমিটার থেকে বায়ুমণ্ডলের চাপ
P mm(Hg) রেকর্ড করো।

চিত্র-৩.১ : পরীক্ষাগারে H₂ গ্যাস সংগ্রহ।

গণনা (Calculation):

সংগৃহীত H_2 গ্যাসের প্রকৃত আয়তন গণনার জন্য প্রথমে মোল সংখ্যা (n) আদর্শ গ্যাস সমীকরণ, n=PV/RT থেকে বের করা যাবে। এজন্য ব্যারোমিটার পাঠ, P_{total} থেকে: $t^{\circ}C$ তাপমাত্রায় জলীয়বাম্পের আংশিক চাপ (P_{H_2O}) বিয়োগ করে H_2 গ্যাসের আংশিক চাপ P_{H_2} বের করা যাবে।

ধরা যাক , সংগৃহীত H_2 গ্যাসের আয়তন $=\mathrm{V} \; \mathrm{mL}.$

পানি বা গ্যাসের তাপমাত্রা = t°C

বায়ুমণ্ডলের চাপ (ব্যারোমিটার থেকে) = P_{total} (mmHg) জলীয়বাম্পের চাপ (t°C এ) = P_{H_2O} (mmHg) [চার্ট থেকে]

 \therefore H_2 গ্যাসের আংশিক চাপ $P_{H_2} = (P_{total} - P_{H_2O}) = P mmHg$

∴ H₂ গ্যাসের আংশিক চাপ,

$$P_{H_2}(atm) = P mmHg \times \frac{1 atm}{760 mmHg} = P \frac{(atm)}{760}$$

 H_2 গ্যাসের আয়তন (L) = V mL $\times \frac{1 \text{ L}}{1000 \text{ mL}} = \frac{\text{V(L)}}{1000}$

জেনে নাও : ডাল্টনের আংশিক চাপের গাণিতিক সম্পর্ক থেকে পাই : উপাদান গ্যাসের আংশিক চাপ = ঐ গ্যাসের মোল ভগ্নাংশ \times মিশ্র গ্যাসের মোট চাপ (P_{total})

∴ P_A= X_A × P_{total}
 উপাদান গ্যাসের মোল ভগ্নাংশ যত বেশি
 হবে, এর আংশিক চাপ তত বেশি হবে,
 ∴ P_A α X_A

 H_2 গ্যাসের তাপমাত্রা, $T(K) = (t^{\circ}C + 273) = (t + 273) K$; H_2 গ্যাসের মোল সংখ্যা, $n_{H_2} = ?$ (অজানা)

∴
$$H_2$$
 এর মোল সংখ্যা, $n_{H_2} = \frac{PV}{RT} = \frac{P(atm)/760 \times V(L)/1000}{0.082 \text{ L atm K}^{-1} \text{mol}^{-1} \times (t + 273) \text{ K}}$

এখন নির্ণীত ${
m H_2}$ এর মোল সংখ্যা থেকে STP-তে ও SATP-তে আয়তন বের করা যাবে।

N.B. এ পরীক্ষা থেকে মিশ্র গ্যাসের আংশিক চাপের ধারণা পাওয়া যাবে। গ্যাসের আংশিক চাপ বলতে বিক্রিয়াবিহীন গ্যাস মিশ্রণের প্রত্যেক উপাদান এককভাবে মিশ্রণের সমগ্র আয়তন দখল করে যে চাপ দেয়, একে ঐ উপাদান গ্যাসের আংশিক চাপ বলে। এখানে H_2 গ্যাস ও জলীয়বাষ্প মিলে গ্যাস মিশ্রণ সৃষ্টি করেছে।

৩.৫ দ্রবণের মোলার ঘনমাত্রা বা মোলারিটি Molarity or Molar Concentration

ল্যাবরেটরিতে ব্যবহৃত এসিড, ক্ষার ইত্যাদি দ্রবের ঘনমাত্রা মোলারিটি (M) এককে প্রকাশ করা হয়।

মোলারিটি: নির্দিষ্ট তাপমাত্রায় এক পিটার দ্রবণে যত মোল দ্রব দ্রবীভূত থাকে, সে মোল সংখ্যাকে ঐ দ্রবণে দ্রবটির
মোলারিটি বলে।

$$\therefore$$
 দ্রবের মোলারিটি $(M)=\frac{$ দ্রবের মোল সংখ্যা $(n)=\frac{$ দ্রবের জর $(g)/$ গ্রাম আণবিক ভর (M_w) g mol^{-1} লিটারে দ্রবণের আয়তন (L)

যেমন, 30° C তাপমাত্রায় 500~mL Na $_2$ CO $_3$ এর দ্রবণে 53~g Na $_2$ CO $_3$ এর মোলারিটি হবে :

$$Na_2CO_3$$
 এর মোলারিটি, $(M)=rac{Na_2CO_3}{6}$ এর ভর/ Na_2CO_3 এর গ্রাম আ: ভর $=rac{53\ g/106\ g\ mol^{-1}}{\left(rac{500}{1000}
ight)L}=rac{0.5\ mol}{0.5L}=1.0\ mol L^{-1}$

 \therefore এ দ্রবণে Na_2CO_3 এর মোলারিটি হলো 1.0। এটিকে Na_2CO_3 এর 1.0 মোলার দ্রবণ বলে। MAT 21-22

মোলার দ্রবণ: নির্দিষ্ট তাপমাত্রায় এক লিটার দ্রবণে 1 mol দ্রব দ্রবীভূত থাকলে এ দ্রবণকে দ্রবটির এক মোলার (1M) দ্রবণ বলে। যেমন, 25°C-এ 1 লিটার দ্রবণে 1 mol Na₂CO₃ বা 106 g Na₂CO₃ দ্রবীভূত করা হলে ঐ দ্রবণকে 1M Na₂CO₃ দ্রবণ বলা হয়।

ডেসিমোলার দ্রবণ: এক লিটার দ্রবণে দ্রবের এক-দশমাংশ মোল দ্রবীভূত থাকলে ঐ দ্রবণকে ঐ দ্রবের ডেসিমোলার

(0.1M) দ্রবণ বলে। যেমন, 25°C-এ 1 লিটার দ্রবণে 0.1 mol Na₂CO₃ বা, 10.6 g Na₂CO₃ দ্রবীভূত করা হলে ঐ
দ্রবণকে 0.1M Na₂CO₃ দ্রবণ বলা হয়।

(18-19)

সেমিমোলার দ্রবণ: প্রতি লিটার দ্রবণে অর্ধমোল দ্রব দ্রবীভূত থাকলে ঐ দ্রবণকে ঐ দ্রবের সেমিমোলার (0.5 M) দ্রবণ বলে। যেমন, 25°C-এ 1 লিটার দ্রবণে অর্ধমোল বা, 0.5 mol বা, 53 g Na₂CO₃ দ্রবীভূত করা হলে ঐ দ্রবণকে 0.5 M Na₂CO₃ দ্রবণ বলা হয়। ল্যাবরেটরিতে বিভিন্ন পরীক্ষা কাজে সাধারণত 0.1 M দ্রবণ ব্যবহৃত হয়।

জেনে নাও: 'মোলার দ্রবণ তাপমাত্রা নির্ভরশীল'; এর কারণ হলো; সংজ্ঞা মতে, এক লিটার দ্রবণে 1 মোল দ্রব দ্রবীভূত থাকলে তাকে মোলার দ্রবণ বলে। মোলার দ্রবণের একক হলো molL^{-1} . এক্ষেত্রে দ্রবটি মোল এককে বা গ্রাম এককে আছে। গ্রাম একক তাপমাত্রার ওপর নির্ভরশীল নয়। কিন্তু দ্রবণের আয়তন লিটার এককে। তরল পদার্থের আয়তনের ওপর তাপমাত্রার প্রভাব আছে। তাপমাত্রা বৃদ্ধি করলে তরলের আয়তন উল্লেখযোগ্য হারে বৃদ্ধি পায়। তখন দ্রবের ঘনমাত্রা হাস পায়। এজন্য বলা হয় মোলার দ্রবণ তাপমাত্রা নির্ভরশীল।

* ইতিপূর্বে কোনো দ্রবণের ঘনমাত্রাকে প্রকাশের পাঁচটি একক ব্যবহৃত হতো। যেমন, (১) মোলার দ্রবণ, (২) মোলাল দ্রবণ, (৩) নরমাল দ্রবণ, (৪) শতকরা পরিমাণ, (৫) মোল ভগ্নাংশ ইত্যাদি। বর্তমানে মোলাল দ্রবণ, প্রতি কিলোগ্রাম দ্রাবকে এক মোল দ্রব থাকে; এটি তাপমাত্রার প্রভাবমুক্ত) এবং নরমাল দ্রবণ প্রতি লিটার দ্রবণে এক গ্রাম তুল্য ভর দ্রব থাকে) পদ দুটি দ্রবণের ঘনমাত্রার এককরপে ব্যবহৃত হয় না। দ্রবণের ঘনমাত্রা প্রকাশের এ দুটি একক বর্তমান সিলেবাস বা পাঠ্যস্চির অন্তর্ভুক্ত নয়। বরঞ্চ বর্তমানে নতুন একক যেমন ppm, ppmv, ppb ইত্যাদি দ্রবণের ঘনমাত্রার সৃক্ষতম এককরপে ব্যবহৃত হয়। ত্রিনুচ্ছেদ-৩.৬ দ্রষ্টব্য]

ব্যবহারিক (Practical)

শিক্ষার্থীর কাজ : পরীক্ষা নং-৮

তারিখ:

পরীক্ষার নাম: 0.1M Na2CO3 দ্রবণ প্রস্তৃতি:

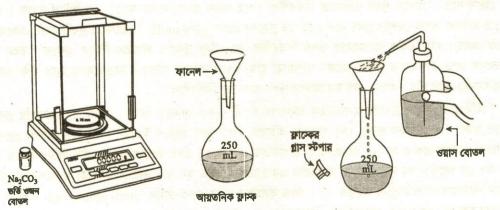
সময় : ১ পিরিয়ড

মূলনীতি: নির্দিষ্ট তাপমাত্রায় এক লিটার দ্রবণে সংশ্লিষ্ট দ্রবের এক-দশমাংশ মোল বা 0.1 mol দ্রবীভূত থাকলে সে দ্রবণকে ডেসিমোলার (0.1M) দ্রবণ বলে। সোডিয়াম কার্বনেট (Na₂CO₃) এর 0.1M দ্রবণ 250 mL ফ্লাঙ্কে প্রভূত করা হবে। সূতরাং প্রয়োজনীয় Na₂CO₃ এর পরিমাণ হলো—

$$0.1M = \frac{\text{n (Na2CO3)}}{0.25 \text{ L}}; \text{ } \text{ } \text{n.(Na2CO3)} = 0.1 \text{ mol } \text{L}^{-1} \times 0.25 \text{ L} = 0.025 \text{ mol}$$

1 mol Na₂CO₃ = 106 g Na₂CO₃; \therefore 0.025 mol Na₂CO₃ = 0.025 × 106 g Na₂CO₃ = 2.65 g Na₂CO₃

অর্থাৎ 250 mL 0.1M Na₂CO₃ দ্রবণ তৈরি করতে 2.65 g Na₂CO₃ প্রয়োজন।


প্রয়োজনীয় রাসায়নিক পদার্থ : (১) বিশুদ্ধ Na₂CO₃, (2) পানি।

প্রয়োজনীয় যদ্রপাতি : (১) রাসায়নিক নিক্তি, (২) ওজন বোতল, (৩) আয়তনিক ফ্লান্ধ বা মেজারিং ফ্লান্ধ-250 mL, (৪) ফানেল, (৫) পানিভর্তি ওয়াস বোতল।

কাজের ধারা : (১) প্রয়োজনীয় দ্রবের ওজন নেয়া : প্রথমে রসায়ন-১ম পত্রের বইয়ের অনুচ্ছেদ-১.৪.১ এ দেয়া পল-বুঙ্গি ব্যালেন্সে ওজন গ্রহণ নিয়ম মতে Na₂CO₃ ভর্তি ওজন বোতলের ১ম ওজন নাও। অথবা নিচের চিত্র-৩.২ এর ইলেকট্রনিক ডিজিটাল ব্যালেন্সে Na₂CO₃ ভর্তি ওজন বোতলের ১ম ওজন নাও।

এখন আয়তনিক ফ্লাঙ্কের মুখে ফানেল বসিয়ে ঐ ফানেলের ওপর Na_2CO_3 ভর্তি ওজন বোতল থেকে ধীরে ধীরে Na_2CO_3 গুঁড়া ঢেলে 2.65~g পরিমাণের কাছাকাছি পরিমাণ নাও। এবার Na_2CO_3 ভর্তি ওজন বোতলের ২য় ওজন রেকর্ড করো। (১ম ওজন - ২য় ওজন) = গৃহীত Na_2CO_3 এর ভর = 2.703~g (মনে করি)।

(২) আয়তনিক ফ্লান্কে দ্রবের ছানান্তর : এবার চিত্র মতে ফানেলের ওপর ওয়াস বোতল থেকে পানি দিয়ে সমন্ত Na₂CO₃ আয়তনিক ফ্লাক্কে ধুয়ে নাও। পানি যোগ করে ফ্লাক্ষটি অর্ধেক ভর্তি করে ফ্লাক্ষের মুখে গ্লাস স্টপার লাগাও এবং কয়েকবার ফ্লাক্ষটিকে ঝাঁকিয়ে সমন্ত Na₂CO₃ দ্রবীভূত করো।

চিত্র-৩.২ : পরীক্ষাগারে 0.1M Na2CO3 দ্রবণ প্রস্তৃতি।

(৩) শেষে গ্লাস স্টপার খুলে ওয়াস বোতল থেকে পানি <mark>যোগ করে আয়তনিক ফ্লান্কের গলার দাগ পর্যন্ত পূর্ণ কর</mark>ো। সবশেষে গ্লাস স্টপার ফিট করে ঝাঁকিয়ে মিশ্রণটিকে সমসত্ত্ব করো। এটিই প্রস্তুতকৃত 0.1M Na₂CO₃ এর 250 mL দ্রবণ। গণনা : প্রভূত Na₂CO₃ দ্রবণের মোলারিটি নির্ণয় :

গৃহীত
$$Na_2CO_3$$
 এর মোল সংখ্যা (n) = $\frac{2.703 \text{ g } Na_2CO_3 \times 1 \text{ mol}}{106 \text{ g } Na_2CO_3} = \frac{2.703}{106} \text{ mol} = 0.0255 \text{ mol}$

প্রস্তুত
$$Na_2CO_3$$
 দ্রবণের মোলারিটি $=\frac{Na_2CO_3}{\text{লিটারে দ্রবণের আয়তন}}=\frac{0.0255 \text{ mol}}{0.250 \text{ L}}=0.102 \text{ (M)}$

এভাবে প্রস্তুতকৃত 0.1M Na₂CO₃ দ্রবণটিকে প্রমাণ দ্রবণ (Standard solution) বলে। কারণ ঐ দ্রবণটির ঘনমাত্রা জানা হয়ে গেল এবং এটি হলো প্রাইমারি স্ট্যান্ডার্ড (Primary Standard) পদার্থ Na₂CO₃ থেকে তৈরি।

প্রমাণ দ্রবণ : কোনো প্রাইমারি স্ট্যাভার্ড পদার্থের নমুনা দিয়ে তৈরি করা দ্রবণের ঘনমাত্রা সঠিকভাবে জানা থাকলে ঐ দ্রবণকে ঐ নমুনা দ্রবের প্রমাণ দ্রবণ বলে। 1M Na₂CO₃ দ্রবণ, 0.5 M Na₂CO₃ দ্রবণ, 0.1M Na₂CO₃ দ্রবণ হলো প্রত্যেকেই এক একটি প্রমাণ দ্রবণ। কারণ Na2CO3 প্রথমত প্রাইমারি স্ট্যান্ডার্ড পদার্থ এবং দ্বিতীয়ত প্রতিটি প্রস্তুত করা দ্রবণের বেলায় নির্দিষ্ট পরিমাণ Na2CO3 রাসায়নিক নিজিতে সঠিকভাবে ওজন করে দ্রবণটি তৈরি করা হয়।

প্রাইমারি স্ট্যান্ডার্ড পদার্থ: যেসব কঠিন রাসায়নিক পদার্থকে (i) বিশুদ্ধ অবস্থায় প্রস্তুত করা যায়; (ii) এরা বাতাসের সংস্পর্শে জলীয়বাষ্প বা O2 সহ বিক্রিয়া করে না; (iii) এদের ওজন নেয়ার সময় রাসায়নিক নিজিকে ক্ষয় করে না এবং (iv) এদের দ্রবণের ঘনমাত্রা দীর্ঘদিন অপরিবর্তিত থাকে; এদেরকে প্রাইমারি স্ট্যান্ডার্ড পদার্থ বলে। যেমন ,

(১) অনার্দ্র সোডিয়াম কার্বনেট (Na₂CO₃) ক্ষার,

(২) কেলাসিত ইথেন ডাইওয়িক এসিড বা অক্সালিক এসিড (H₂C₂O₄.2H₂O),

(৩) প্টাসিয়াম ডাইক্রোমেট (K2Cr2O7) জারক পদার্থ,

(8) কেলাসিত সোডিয়াম ইথেন ডাইওয়েট বা অক্সালেট (Na₂C₂O₄.2H₂O) বিজারক পদার্থ ইত্যাদি হলো প্রাইমার্নি স্ট্যান্ডার্ড পদার্থ।

সেকেন্ডারি পদার্থ : যেসব পদার্থের মধ্যে প্রাইমারি স্ট্যান্ডার্ড পদার্থের চারটি বৈশিষ্ট্যের যেমন বিশুদ্ধতা, বাতাসে অপরিবর্তিত থাকা, রাসায়নিক নিক্তির ক্ষয় না করা অথবা ঘনমাত্রার পরিবর্তন না ঘটা ইত্যাদির কোনো একটির অভাব ঘটে, তখন এদেরকে সেকেভারি স্ট্যাভার্ড (Secondary Standard) পদার্থ বলে। সেকেভারি পদার্থ হলো যেমন,

- (১) NaOH ক্ষার, (২) HCl এসিড, (৩) H2SO4 এসিড, -এরা জলীয়বাষ্প ও CO2 শোষণ করে।
- (8) পটাসিয়াম পারম্যাঙ্গানেট (KMnO4) জারক পদার্থ, এটিকে বিশুদ্ধ অবস্থায় তৈরি করা যায় না; দ্রবণের ঘনমাত্রা পরিবর্তিত হয়।
- (৫) সোডিয়াম থায়োসালফেট ($Na_2S_2O_3$. $5H_2O$) বিজারক পদার্থ। এটি বাতাস থেকে জলীয়বাষ্প শোষণ করে। সঠিকভাবে ওজন নেওয়া যায় না।

এসব সেকেন্ডারি পদার্থের মোলার দ্রবণ বা ডেসিমোলার (0.1 M) দ্রবণ প্রমাণ দ্রবণ হয় না। সেকেন্ডারি পদার্থের দ্রবণকে অপর পদার্থের প্রমাণ দ্রবণ দ্বারা টাইট্রেশন করে এর সঠিক মোলার ঘনমাত্রা নির্ণয় করা হয়। এরূপ সেকেন্ডারি পদার্থের যেমন KMnO4 এর 0.1M দ্রবণ তৈরি করে জারণ-বিজারণ টাইট্রেশনে ব্যবহার করা হয়।

দ্রষ্টব্য : প্রস্তুত 0.01M KMnO4 দ্রবণকে প্রমাণ 0.025 M অক্সালিক এসিড দ্রবণ দ্বারা প্রমিতকরণ করে রিডক্স টাইট্রেশনে ব্যবহার করা হয় (পরীক্ষা নং-১৩)।

বি. দ্র. প্রস্তুত করা 0.1M Na₂CO₃ প্রমাণ দ্রবণটি গ্রুপভিত্তিক শিক্ষার্থীর ডেক্কে সংরক্ষণ করো। এ প্রমাণ দ্রবণটি ১২ নং পরীক্ষার জন্য ব্যবহার করা হবে।

সমাধানকৃত সমস্যা-৩.২৯ : তরল পদার্থের মোলারিটি গণনা :

কামাল $2.355~{
m g}$ সালফিউরিক এসিড $({
m H}_2{
m SO}_4)$ পানিতে দ্রবীভূত করে মোট আয়তন $50.0~{
m mL}$ করেছে। এ এসিড দ্রবণের মোলারিটি কত হবে?

দক্ষতা : মোলারিটি হলো প্রতি লিটার দ্রবণে সংশ্লিষ্ট দ্রবের মোল সংখ্যা । তাই $2.355~{
m g~H_2SO_4}$ এর মোল সংখ্যাকে লিটার এককে দ্রবণের আয়তন দিয়ে ভাগ করতে হবে ।

সমাধান: H₂SO₄ এর মোলার ভর = 98 g / mol

$$\therefore 2.355 \text{ g H}_2\text{SO}_4 = (2.35 \text{ 5 g H}_2\text{SO}_4) \times \frac{1 \text{ mol H}_2\text{SO}_4}{98 \text{ g H}_2\text{SO}_4} = 0.024 \text{ mol H}_2\text{SO}_4$$

$$H_2SO_4$$
 দ্রবণের মোলারিটি (M) $=\frac{H_2SO_4}{$ লিটারে দ্রবণের আয়তন $=\frac{0.024\ mol\ H_2SO_4}{0.050\ L}$
 $=0.480\ (M)\ H_2SO_4$

সমাধানকৃত সমস্যা—৩.৩০ : দ্রবণে মোল সংখ্যা গণনা :

বাজারের বাণিজ্যিক হাইড্রোক্লোরিক এসিড হলো 12.0 M জলীয় দ্রবণ। ঐ রূপ 12 M HCl বাণিজ্যিক এসিডের 300.0 mL এ কত মোল HCl থাকে?

দক্ষতা: মোল সংখ্যা (n) = মোলারিটি (M) × দ্রবণের আয়তন (L)

সমাধান: HCl-এর মোল সংখ্যা (n) = (HCl এর মোলারিটি) × দ্রবণের আয়তন (L)

$$=\frac{\text{(12 mol HCl)}}{1 \text{ L}} \times 0.300 \text{ L} = 3.60 \text{ mol HCl}.$$

	্ববের মোল এককে ভর
শিক্ষার্থী নিজে করো-৩.৬ : দ্রবণে দ্রবের মোল সংখ্যাভিত্তিক : মোলার ঘনমাত্রা , $M=rac{3}{6}$	নটারে দ্রবণের আয়তন
সমস্যা- ৩.২৩(ক) : নিচের দ্রবণে দ্রবের মোল সংখ্যা বের করো :	
(১) 0.20 M NaHCO3 এর 125 mL ত্রবণ;	্ডি: (ক) 0.025 mol]
(২) 2.50 M H ₂ SO ₄ এর 650 mL দ্রবণ;	ডি: (খ) 1.625 mol]
সমস্যা - ৩.২৩(খ) : নিচের দ্রবণে দ্রবের গ্রাম পরিমাণে কত প্রয়োজন হবে?	
(১) 1.25 M NaOH এর 500 mL দ্রব ^ত ;	ডি: 25.0 g]
(২) 0.25 M গ্রুকোজ (C ₆ H ₁₂ O ₆) এর 1.50 L দ্রবণ;	ডি: 67.5 g]
(৩) 0.01M KMnO ₄ এর 250 mL দ্রবণ;	ডি: 0.395 g]
(8) 0.01M FeSO ₄ এর 500 mL দ্রবণ।	ডি: 0.759 g]
সমস্যা - ৩.২৪(ক): 18.4 mL 0.2 M NaOH দ্রবণে কত গ্রাম NaOH দ্রবীভূত ব	মাছে? ডি: 0.1472 g
	मि. त्वा.२०১८)
সমস্যা-৩.২৪(খ) : 200 mL 0.2 M ঘনমাত্রার MOH দ্রবণ প্রস্তুত করতে কত গ্রাম ভর = 39।	ডি: 2.24 gl Iস. বো. ২০১৫
সমস্যা-৩.২৫(ক) : 250 mL NaOH এর দ্রবণে 5.0 g NaOH দ্রবীভূত আছে। ঐ কত?	দ্রবণে NaOH এর মোলার ঘনমাত্র ডি: 0.5 MI
সমস্যা-৩.২৫(খ) : 500 mL Na ₂ CO ₃ এর দ্রবণে 21.2 g Na ₂ CO ₃ দ্রবীভূত মোলারিটি কত?	[8: U.4 M]
সমস্যা-৩.২৫(গ) : 250 mL দ্রবণের মধ্যে কী পরিমাণ Na ₂ CO ₃ দ্রবীভূত থাকলে.ড	
	ডি: 26.5 g]

সমস্যা-৩.২৫(ঘ): 250 mL কোনো Na₂CO₃ এর দ্রবণে 10.6 g বিশুদ্ধ Na₂CO₃ দ্রবীভূত আছে। দ্রবণটির ঘনমাত্রা মোলারিটিতে প্রকাশ করো। ডি: 0.4 M সমস্যা-৩.২৫(%) : H_2SO_4 দ্রবণে 2 লিটারে 28 g H_2SO_4 দ্রবীভূত আছে। দ্রবণটির ঘনমাত্রা মোলারিটিতে প্রকাশ ডি: 0.143 MT সমস্যা-৩.২৫(চ) : 500 mL ডেসিমোলার দ্রবণে কত গ্রাম H₂SO₄ দ্রবীভূত থাকবে? (5: 4.9 g) সমস্যা-৩.২৫(ছ): 98% H₂SO₄ ঘনমাত্রা মোলারিটিতে কত? [এ এসিডের ঘনত্র 1.53 g/mL] ডি: 15.3 M সমস্যা-৩.২৫(জ) : 250 mL KMnO4 এর দ্রবণে 0.395 g দ্রব দ্রবীভূত আছে। ঐ দ্রবণে দ্রবের মোলারিটি কত? ডি: 0.01 M] সমস্যা-৩.২৫(ঝ) : 250 mL K₂Cr₂O₇ এর দ্রবণে 7.45 g দ্রব দ্রবীভূত আছে। ঐ দ্রবণে দ্রবের মোলার ঘনমাত্রা কত? ডি: 0.1 M সমস্যা-৩.২৬(ক) : কোনো রোগীকে $25.0~{
m g}$ গ্রুকোজ যোগান দিতে $0.2~{
m M}$ গ্রুকোজ (${
m C}_6{
m H}_{12}{
m O}_6$) এর কত মিলিলিটার দ্রবণ প্রয়োজন হবে? ডি: 694.4 mL] সমস্যা-৩.২৬(খ) : শ্বাভাবিক রক্তে কোলেস্টেরল (C₂₇H₄₆O) এর ঘনমাত্রা প্রায় 0.005 M হলে 750 mL রক্তে কত প্রাম্ব কোলেস্টেরল থাকে? ডি: 1.4475 g] সমস্যা-৩ $oldsymbol{1}$ ্ত একজন রোগীর রক্তে গ্রুকোজের পরিমাণ $8~\mathrm{mili~molL}^{-1}$ । ঐ রক্তে গ্রুকোজের পরিমাণ $~\mathrm{mili~gram}$ d⊥¹ এককে কত হবে? ডি: 144 mg/dL] সমস্যা-৩.৯৬(ম) : একজন রোগীর রক্তে গ্রুকোজের পরিমাণ 162 মিল্ফ্রিয়াম/ডেসি. লিটার হলে মিলিমোল/লিটার এককে MAT (18-19) উ: 9 m. mol/L]

৩.৬ মোলারিটিকে শতকরা ও পিপিএম (ppm) এককে রূপান্তর

Conversion of Molarity into Percentage & ppm Units

আমরা জেনেছি, মোলারিটি হলোঁ প্রতি লিটার বা 1000 মিলিলিটার দ্রবণে দ্রবীভূত থাকা দ্রবের মোল সংখ্যা। এখন দ্রবণের দ্রব ও দ্রাবকের পরিমাণকে ভর (mass), আয়তন (volume) ও মোল (mol) রূপে শতকরা হার' হিসেবে প্রকাশ করা হবে।

দ্রবদে দ্রবের শতকরা হার : শতকরা হার বলতে দ্রবকে দ্রবণের মোট ভর অথবা আয়তনের প্রতি শত (10^2) এর অংশ বা শতকরা অংশরূপে প্রকাশ করা হয়। যেমন, (১) শতকরা ভর %(w/w), (২) শতকরা আয়তন %(v/v) ও (৩) শতকরা ভর/আয়তন %(w/v) ইত্যাদিতে প্রকাশ করা হয়।

(১) শতকরা ভর %(w/w) পদ্ধতি : শতকরা ভর পদ্ধতিতে প্রতি 100 ভাগ ভরের দ্রবণে দ্রবীভূত থাকা দ্রবের ভরের পরিমাণকে বোঝায়। শতকরা ভরকে %(w/w) লেখা প্রতীক দ্বারা প্রকাশ করা হয়, এখানে 'w' দ্বারা ব্ছুর ভরকে বোঝানো হয়েছে।

$$\therefore$$
 দ্রবের শতকরা ভর % $(w/w)=\frac{$ দ্রবের ভর $(g)\times 100$ $}{($ দ্রবের ভর $+$ দ্রাবকের ভর $)$ $}{g}=\frac{$ দ্রবের ভর $(g)\times 100$ $}{$ দ্রবণের ভর (g)

কঠিন রাসায়নিক পদার্থের বোতলের গায়ে দেয়া লেভেলে 5% (w/w) লেখা প্রতীক দ্বারা বোঝানো হয় যে, মূল পদার্থের সাথে অপদ্রব্য বা ভেজাল থাকার পরিমাণ শতকরা ভরের 5 ভাগ। এখানে মূল পদার্থের সাথে ২য় পদার্থ হলো ভেজাল বস্তু।

এক্ষেত্রে অনুরূপ একটি ভরভিত্তিক সূক্ষ্ম একক পিগিএম, ppm (parts per million, 10^6) ব্যবহৃত হয়।

পিপিএম (ppm) পদ্ধতি: পিপিএম, (ppm) একক দ্বারা দ্রবের ভরকে দ্রবণ বা মিশ্রণের ভরের দশ লক্ষ (10^6) এর অংশরূপে প্রকাশ করা হয়। এছাড়া পিপিবি, (ppb) (parts per billion, 10^9) এককেও সৃক্ষ পরিমাণে দ্রবকে প্রকাশ করা হয়। সেসব ক্ষেত্রে ওপরের সমীকরণে 100 এর বদলে যথাক্রমে 10^6 অথবা 10^9 দ্বারা গুণ করা হয়। অর্থাৎ,

পিপিএম, ppm $(w/w) = \frac{\underline{\text{দ্রবের ভর }(g) \times 10^6}}{(\underline{\text{দ্রবের ভর } + \underline{\text{দ্রাবেনের ভর }g}})}$; পিপিবি, ppb $(w/w) = \frac{\underline{\text{দ্রবের ভর }(g) \times 10^9}}{(\underline{\text{দ্রবের ভর } + \underline{\text{দ্রাবনের ভর }g}})}$

অনুরূপভাবে দ্রবের আয়তনকে দ্রবণের আয়তনের দশ লক্ষ (10^6) ভাগ এর অনুপাতরূপে প্রকাশ করাকেও দ্রবের ppm ঘনমাত্রা বলা হয়। অর্থাৎ দ্রবের পরিমাণ গ্রাম (g) অথবা আয়তন (mL) এককে এবং দ্রবণের পরিমাণ গ্রাম (g) অথবা আয়তন (mL) এককে ক্ষেত্রবিশেষে প্রযোজ্য হয়। পিরবর্তী উদাহরণ-১, উদাহরণ-২ ও উদাহরণ-৩ দেখো।

যেমন পানিতে তাপমাত্রা নির্ভর অক্সিজেন গ্যাসের দ্রাব্যতা 0°C তাপমাত্রায় 14.6 ppm এবং 35°C তাপমাত্রায় O₂ এ<u>র দ্রাব্যতা হলো 7.1 ppm । অনুরূপভাবে ভূগর্ভন্থ পানীয় জলে অজৈব আর্সেনিকের গড় পরিমাণ প্রায় 2.5 ppb থাকে ।</u>

(২) শতকরা ভর/আয়তন %(w/v) পদ্ধতি : এ পদ্ধতিতে প্রতি 100 ভাগ আয়তনের দ্রবণে দ্রবের ভর এককে পরিমাণকে বোঝায়।

দ্রবের শতকরা ভর/আয়তন $\%(w/v) = \frac{দ্রবের ভর (g) \times 100}{$ দ্রবণের আয়তন (mL);

যেমন, 5% (w/y) Na₂CO₃ দ্রবণ বলতে 100 mL দ্রবণে 5 g Na₂CO₃ দ্রব দ্রবীভূত আছে বোঝায়। উদাহরী ১ 100 mL NaOH এর দ্রবণে 5 g NaOH আছে। ঐ দ্রবণের ঘনমাত্রা ppm এককে কত হবে? [মাদ্রাসা বোর্ড-২০১৮]

সমাধান : দ্রবের ppm ঘনমাত্রা $(w/v) = \frac{দ্রবের ভর (g) \times 10^6}{দ্রবণের আয়তন (mL)}$ প্রশ্নমতে , দ্রবের ভর = 5 gNaOH (কঠিন NaOH) দ্রবণের আয়তন = 100 mL : NaOH এর ppm ঘনমাত্রা $(w/v) = \frac{5 g \times 10^6}{100 \text{ mL}} = 50000 \text{ ppm}$ $= 5 \times 10^4 \text{ ppm}$

উদাহরণ ২ একটি পাত্রে 80 mL 2.55% (w/v) NaOH দ্রবণ আছে। ঐ পাত্রের দ্রবণের ঘনমাত্রা ppm এককে হিসাব করো।

সমাধান : দ্রবের ppm ঘনমাত্রা $(w/v) = \frac{দ্রবের ভর (g) \times 10^6}{$ দ্রবণের আয়তন (mL) ;

প্রশ্নমতে, দ্রবের ভর = 2.55 g NaOH

দ্রবণের আয়তন = 100 mL

∴ NaOH এর ppm ঘনমাত্রা (w/v) = $\frac{2.55 \text{ g} \times 10^6}{100 \text{ mL}}$ = 25500 ppm

(৩) শতকরা আয়তন পদ্ধতিতে %(v/v) : দ্রবের শতকরা আয়তন হলো প্রতি 100 ভাগ আয়তনের দ্রবণে দ্রবীভূত থাকা দ্রবের আয়তনের পরিমাণ। শতকরা আয়তন % (v/v) প্রতীক দ্বারা প্রকাশ করা হয়। এখন `v' দ্বারা দ্রব ও দ্রবণের আয়তন বোঝানো হয়েছে। অর্থাৎ

দ্রবের শতকরা আয়তন % $(v/v) = \frac{দ্রবের আয়তন <math>(mL) \times 100}{$ দ্রবণের আয়তন (mL)

শৈতকরা আয়তন-ঘনমাত্রা একক' তরল-তরল দ্রবণ ও গ্যাস মিশ্রণের বেলায় ব্যবহৃত হয়। বাণিজ্যিক rubbing alcohol এর বোতলে '70% (v/v)' প্রতীক লেখা থাকে। এ প্রতীক দ্বারা বোঝানো হয় এটির জলীয় দ্রবণের 100 ভাগ আয়তনের মধ্যে 70 ভাগ হলো তরল আইসোপ্রোপাইল অ্যালকোহল।

অনুরূপভাবে, সৃক্ষ আয়তন একক পিপিএমভি, ppmv (parts per million by volume) দ্বারা বায়ুমণ্ডলে থাকা গ্যাসীয় পদার্থ ও সৃক্ষ কঠিন কণা বন্তুর উপাদানের ঘনমাত্রা প্রকাশ করা হয়।

পিপিএমভি (ppmv) = $\frac{\text{দ্রবের আয়তন (mL)} \times 10^6}{\text{(দ্রবণের আয়তন) (mL)}}$

যেমন, গ্রাম এলাকার পরিষ্কার বায়ুতে প্রায় 0.05 ppmv পরিমাণ টক্সিক CO গ্যাস থাকে; কিন্তু শহরের ট্রাফিক (যানবাহন) এলাকায় দৃষিত বায়ুতে 50 ppmv টক্সিক CO গ্যাস থাকে।

উদাহরণ—৩। একটি পাত্রে 250 mL 5% HNO3 দ্রবণ আছে। ঐ পাত্রের দ্রবণের ঘনমাত্রা ppm এককে হিসাব করো।

সমাধান : দ্রবের ppm ঘনমাত্রা $(v/v) = \frac{দ্রবের আয়তন (mL) \times 10^6}{$ দ্রবের আয়তন (mL) ; প্রশ্নমতে, দ্রবের আয়তন $= 5mL \ HNO_3$ দ্রবের আয়তন $= 100 \ mL$

∴ HNO₃ এর ppm ঘনমাত্রা
$$(v/v) = \frac{5 \text{ mL} \times 10^6}{100 \text{ mL}} = 50000 \text{ ppm}$$

(8) <u>মোল ভগ্নাংশ হিসেবে</u> : দ্রবের মোল ভগ্নাংশ, X (mole fraction) হলো দ্রবের মোল সংখ্যা ও দ্রবণের উপাদান দ্রব ও দ্রাবকের মোট মোল সংখ্যার অনুপাত।

মোল ভগ্নাংশ , $X=\dfrac{}{}{}$ দ্রব ও দ্রাবকের মোট মোলসংখ্যা

- (৫) শতকরা মোল ভগ্নাংশ হিসেবে : শতকরা মোল ভগ্নাংশ হলো প্রতি শতে মোল ভগ্নাংশের পরিমাণ। যেমন :
- ∴ শৃতকরা মোল ভগ্নাংশ (mol %) = মোল ভগ্নাংশ (X) × 100

প্রথম অধ্যায়ে ডাল্টনের আংশিক চাপ সূত্রের আলোচনায় মোল ভগ্নাংশ সম্বন্ধে আলোচনা করা হয়েছে। এটি গ্যাস মিশ্রণ, তরল-তরল মিশ্রণ ও কঠিন-কঠিন মিশ্রণের বেলায় আলোচিত হয়।

৩.৬.১ দ্রবণের মোলারিটি ও শতকরা হারের পারস্পরিক রূপান্তর

Interconversion of Molarity & Percentage Units

- * দ্রবণের 'মোলারিটি' দ্বারা স্থির তাপমাত্রায় 1000 mL দ্রবণে থাকা দ্রবের মোল সংখ্যা (n)-কে বোঝায়।
- * আবার দ্রবের শতকরা ভর বলতে %(w/w) বা %(w/v) দ্বারা $100~{
 m g}$ বা $100~{
 m mL}$ দ্রবণে থাকা দ্রবের গ্রাম পরিমাণকে বোঝায়।

এক্ষেত্রে n মোল দ্রবের গ্রাম পরিমাণ হবে $= n \times$ দ্রবের গ্রাম আণবিক ভর (M_w)

 $\therefore 1000 \text{ mL}$ দ্রবণে থাকা দ্রবের পরিমাণ হলো = $n \times M_w$ g

$$\therefore~100~mL$$
 দ্রবণে থাকা দ্রবের পরিমাণ ফলো = $\frac{n \times M_w \times 100}{1000}\,\mathrm{g}$

$$\therefore x\%(^{W}/v)=rac{$$
দ্রবের মোল সংখ্যা $(n) imes$ গ্রাম আণবিক ভর $(M_{W}) imes 100$ g;

এখন বজ্রগুণন করে পাই---

মোলারিটি বা মোল সংখ্যা (n) =
$$\frac{x\% \left(^{W}\!/v \right) imes 1000}{$$
দ্রবের গ্রাম-আণবিক ভর $\left(M_{w} \right) imes 100}$

MCQ-3.13: 5% NaOH
এর মোলারিটি কত?
(ক) 1.25 (খ) 1.30
(গ) 0.98 (ঘ) 0.93

(১) গাণিতিক সমস্যা : দ্রবণের মোলারিটিকে শতকরা হার এককে প্রকাশ : এক্ষেত্রে সংশ্রিষ্ট সম্পর্কটি হলো :

ে
$$x\%(w/v) = \frac{$$
 দ্রবের মোল সংখ্যা $(n) \times$ গ্রাম-আণবিক ভর $(M_w) \times 100$

সমাধানকৃত সমস্যা-৩.৩১ : 0.1M HCl দ্রবণের ঘনমাত্রাকে শতকরা ভর এককে x%(w/v) প্রকাশ করো। দক্ষতা : মোলারিটিকে শতকরা ভর এককে রূপান্তরের সম্পর্ক সমীকরণটি হলো

∴
$$x\%$$
 (w/v) = $\frac{\text{দ্রবের মোল সংখ্যা (n)} \times \text{গ্রাম-আণবিক ভর (Mw)} \times 100}{1000}$

সমাধান : এক্ষেত্রে HCl এর মোল সংখ্যা (n) = 0.1এবং HCl এর গ্রাম আণবিক ভর = 36.5 g

∴ x% (w/v) =
$$\frac{\text{HCl এর মোল সংখ্যা (n)} \times \text{HCl এর গ্রাম-আণবিক ভর × 100}}{1000}$$

$$= \frac{0.1 \text{ mol} \times 36.5 \text{ g mol}^{-1} \times 100}{1000} = 0.365 \text{ g}$$

∴ 0.1M HCl দ্রবণের শতকরা তর এককে ঘনমাত্রা = 0.365% (w/v)

সমাধানকৃত সমস্যা—১,৩২: 0.1M Na₂CO₃ দ্রবণের খনমাত্রাকে শতকরা এককে প্রকাশ করো।

দক্ষতা : মোলারিটিকে শতকরা ভর এককে রূপান্তরের সম্পর্কটি ব্যবহৃত হবে।

সমাধান: এক্ষেত্রে Na_2CO_3 এর মোল সংখ্যা (n) = 0.1 এবং Na_2CO_3 এর গ্রাম-আণবিক ভর $= 106 \text{ g mol}^{-1}$ শতকরা ভর একক x% (w/v) ও মোলারিটি এককের সম্পর্ক মতে.

$$x\%(w/v) = \frac{\text{Na}_2\text{CO}_3}{1000}$$
 এর মোল সংখ্যা (n) \times Na $_2\text{CO}_3$ এর গ্রাম-আণবিক ভর \times 100 \times 1000 \times 10000 \times 1000 \times 1000 \times 1000 \times 1000 \times 1000 \times 1000 \times 10000 \times 1000 \times 1000 \times 1000 \times 1000 \times 1000 \times 1000 \times 10000

- ∴ 0.1M Na₂CO₃ দ্রবণের শতকরা ভর এককে ঘনমাত্রা = 1.06% (w/v)
- (২) গাণিতিক সমস্যা : দ্রবণের শতকরা হারকে মোলারিটিতে প্রকাশ [দ্রবণের ঘনত্ব 1g/mL] এক্ষেত্রে সংশ্লিষ্ট সম্পর্কটি হলো:

দ্রবণের মোলারিটি (M) বা দ্রবের মোল সংখ্যা (n) = $\frac{x\% (^{W}/_{V}) \times 1000 \times \text{ দ্রবণের ঘনত্ব}}{\text{দ্রবের গ্রাম-আণবিক ভর } (M_{w}) \times 100}$

সমাধানকৃত সমস্যা-৩.৩৩ 10% Na₂CO₃ দ্রবণের ঘনমাত্রাকে মোলার ঘনমাত্রা বা মোলারিটিতে প্রকাশ করো

সমাধান: এক্ষেত্রে Na_2CO_3 এর শতকরা ভর $(x\%)=10~\mathrm{g}$ এবং দ্রব (Na_2CO_3) এর গ্রাম-আণবিক ভর ∴ দ্ৰবের মোল সংখ্যা (n) = $\frac{10 \text{ g} \times 1000 \times 1}{106 \text{ g mol}^{-1} \times 100} = \frac{100 \text{ mol}}{106} = 0.943 \text{ mol}$ $(M_w) = 106 \text{ g mol}^{-1}$. দ্রবণের ঘনত্ব 1 g/mL ধরে পাই,

∴ দ্রবের মোল সংখ্যা (n) =
$$\frac{10 \text{ g} \times 1000 \times 1}{106 \text{ g mol}^{-1} \times 100} = \frac{100 \text{ mol}}{106} = 0.943 \text{ mol}$$

 $∴ 10\% \text{ Na}_2\text{CO}_3$ দ্রবর্ণের মোলার ঘনমাত্রা = 0.943 (M) বা, molL^{-1}

সমাধানকৃত সমস্যা—৩.৩8 : বাণিজ্যিক 25% ভরের H₂SO₄ এর জলীয় দ্রবণের ঘনত্ব 25°C এ 1.1783 g/mL. ঐ এসিড দ্রবণের মোলারিটি কত?

দক্ষতা : 25% H_2SO_4 ভরের দ্রবণে 25 g H_2SO_4 ও 75 g পানি আছে। মোলারিটি নির্ণয়ের বেলায় ঐ 25 g $m H_2SO_4$ এর মোল সংখ্যা এবং 100~
m g দ্রবণকে ঘনত্ব 1.1783 দারা ভাগ করে m mL আয়তনে নিতে হয়। পরে দ্রবের মোল সংখ্যাকে দ্রবণের লিটার আয়তন দিয়ে ভাগ করলে মোলারিটি বের হয়।

সমাধান : 25 g
$$H_2SO_4$$
 এর মোল সংখ্যা (n) = $\frac{25 \text{ g } H_2SO_4}{98 \text{ g/mol } H_2SO_4} = 0.255 \text{ mol}$

$$100~{
m g}$$
 এসিড দ্রবণের আয়তন ${
m (v)}=rac{100~{
m g}}{1.1783} rac{{
m g}}{{
m g}} = 84.87~{
m mL}$

$$\therefore 25\%$$
 ভরের H_2SO_4 এর মোলারিটি (M) = $\frac{0.255 \text{ mol}}{(84.87/1000) \text{ L}} = 3.00 \text{ M}$

বিকল্প পদ্ধতি : দ্রবণের (w/w) হার ও ঘনত্ব থেকে মোলারিটির সাধারণ সূত্র মতে :

দ্রবণের মোলারিটি বা দ্রবের মোল সংখ্যা
$$(n)=rac{x\%~(w/w)\times 1000 imes$$
 দ্রবণের ঘনত্ত্ব $(M_w)\times 100$
$$=rac{25~g\times 1000\times 1.1783}{98~g~mol^{-1}\times 100}=3.00~M$$

 $\therefore 25\%$ ভরের $m ~H_2SO_4$ এর মোলারিটি = 3.00~M

৩.৬.২ দ্রবণের মোলারিটিকে পিপিএম (ppm) এককে রূপান্তর Interconversion of Molarity & ppm Units

* দ্রবণের মোলারিটি হলো প্রতি লিটার দ্রবণে দ্রবের মোল সংখ্যা

 $_*$ অপরদিকে ${
m ppm}$ এককে দ্রবের গ্রাম পরিমাণ ভরকে এর দ্রবণের আয়তনের দশ লক্ষ (10^6) এর অংশরূপে প্রকাশ করা হয়।

MCQ-3.14: 10% Na₂CO₃ দ্রবণে কত মোল দ্রব আছে? (ক) 0.2 (খ) 0.09 (গ) 0.11 (ঘ) 0.08

তাই দ্রবের মোল স্থ্যাকে প্রথমে ভরের গ্রাম এককে প্রকাশ করে পরে 1~L বা, 1000~mL দ্রবণের দ্রবের ঐ পরিমাণকে এক মিলিয়ন বা দশ লক্ষ $(10^6)~mL$ দ্রবণে দ্রবীভূত দ্রবের ভর হিসেবে প্রকাশ করলে ঐ দ্রবণে দ্রবের ~ppm

1000~mL দ্রবণে দ্রবের মোল পরিমাণের ভর = মোল সংখ্যা (n) × গ্রাম আণবিক ভর (M_w) বা , মোলার ভর $\therefore (10^6)~mL$ দ্রবণে ঐ দ্রবের গ্রাম পরিমাণ $(ppm) = \frac{$ মোল সংখ্যা (n) × গ্রাম-আণবিক ভর (M_w) × 10^6

** উপরোক্ত ppm এককটিকে নিমুরূপেও প্রকাশ করা হয়ে থাকে :

 $ppm = \frac{1 \text{ ভাগ দ্রব}}{10^6 \text{ ভাগ দ্রবণ}} = \frac{1g \text{ দ্রব}}{10^6 g \text{ দ্রবণ}} = \frac{1mg \text{ দ্রব}}{10^3 g \text{ দ্রবণ}} = \frac{1g \text{ দ্রব}}{10^3 kg \text{ দ্রবণ}} = \frac{1 \mu g \text{ দ্রব}}{10^3 kg \text{ দ্রবণ}} = \frac{1 \mu g \text{ দ্রব}}{1mL \text{ দ্রবণ}}$ ∴ 1 ppm = 1 mg/kg = 1 μ g/g, 1 ppm = 1 mg/L = 1 μ g/ mL = 1 g/m³ [থেহেতু 1000 L μ g, 10³ L = 1 m³]

MCQ-3.15: 35°C এ পানিতে O_2 এর দ্রাব্যতা 2.3 \times 10⁻⁴ M হলে ppm এককে তা কত? (ক) 0.74 (খ) 7.01 (গ) 7.36 (ঘ) 6.90

জেনে নাও:

এককে ঘনমাত্রা পাওয়া যাবে। অর্থাৎ

- 🔹 মোলারিটি হলো প্রতি লিটার দ্রবণে থাকা দ্রবের মোল সংখ্যা।
- ppm হলো প্রতি লিটার দ্রবণে থাকা দ্রবের মিলি গ্রাম সংখ্যা।
- দ্রবণের মোলার ঘনমাত্রাকে ppm এককে রূপান্তরের সহজ পদ্ধতি হলো, 'প্রতি লিটার দ্রবণে থাকা দ্রবের মোট গ্রাম পরিমাণকে মিলিগ্রামে রূপান্তর করা।' প্রাপ্ত সংখ্যা হবে ppm এককে।
- ** দ্রবণের মোলারিটি জানা থাকলে তখন ঐ মোল সংখ্যা (n)-কে দ্রবের গ্রাম-আণবিক ভর ও 1000 দিয়ে গুণ করলে প্রাপ্ত mg এককের সংখ্যাটি ppm এককে সংখ্যা মান পাওয়া যায়। এক্ষেত্রে মোলারিটি জানা থাকায় প্রশ্নে দেয়া দ্রবণের আয়তনের (যেমন 100 mL) কোনো ভূমিকা নেই।

শমাধানকৃত সমস্যা-৩.৩৫ : 35° C তাপমাত্রায় পুকুরের পানিতে O_2 এর দ্রাব্যতা 2.3×10^{-4} M হলে ppm এককে O_2 এর দ্রাব্যতা কত হবে?

দক্ষতা : দ্রবের $ppm = \frac{$ মোল সংখ্যা $(n) \times$ দ্রবের গ্রাম-আণবিক ভর $(M_w) \times 10^6}{1000}$

TMAT 24-25

সমাধান : এক্ষেত্রে O_2 এর মোল সংখ্যা , $(n)=2.3\times 10^{-4}$ এবং O_2 এর গ্রাম-আণবিক ভর $(M_w)=32~{
m g~mol}^{-1}$

∴ O₂ এর ppm =
$$\frac{2.3 \times 10^{-4} \text{ mol} \times 32 \text{ g mol}^{-1} \times 10^{6}}{1000}$$
 = 7.36 g

অর্থাৎ দশ লক্ষ $(10^6)~\mathrm{mL}$ আয়তনের পানিতে বা , 1000 লিটার পানিতে মাত্র $7.36~\mathrm{g}~\mathrm{O}_2$ আছে।

- ∴ 1 লিটার পানিতে দ্রবীভূত O_2 এর পরিমাণ = $7.36~{
 m mg}~O_2$
- ∴ ঐ পানিতে O₂ এর দ্রাব্যতা হলো 7.36 ppm

সমাধানকৃত সমস্যা—৩.৩৬ : কর্ণফুলি নদীর $1\ L$ পানিতে ক্লোরাইড (Cl^-) আয়নের পরিমাণ নির্ণয়ে টাইট্রেশনের সমাপ্তি বিন্দুতে $3\ mL\ 0.01M\ Ag^+$ আয়ন প্রয়োজন হয়। নদীর পানিতে Cl^- আয়নের ঘনমাত্রা ppm এককে কত হবে?

দক্ষতা : (i) এক্ষেত্রে বিক্রিয়ার বেলায় $1 \text{ mol } Ag^+$ আয়ন $= 1 \text{ mol } Cl^-$ আয়ন (ii) দ্রবের ppm $= \frac{(Cl^-)}{1000}$

সমাধান : এক্ষেত্রে Cl^- আয়নের মোল সংখ্যা $(n)=Ag^+$ এর মোল সংখ্যা 1000~mL~0.01M দ্রবণে Ag^+ আয়ন $=0.01~mol~Ag^+$

$$\therefore 3 \text{ mL } 0.01 \text{M}$$
 দ্রবণে Ag^+ আয়ন $= \frac{0.01 \times 3 \text{ mol}}{1000} \text{ Ag}^+$ আয়ন $= 3.0 \times 10^{-5} \text{ mol Ag}^+$ আয়ন

∴ 1 \bot নদীর পানিতে Cl^- আয়ন আছে = $3.0 \times 10^{-5}~mol$

আবার Cl আয়নের গ্রাম আয়নিক ভর = 35.5 g

∴ নদীর পানিতে
$$\text{Cl}^-$$
 আয়নের $\text{ppm} = \frac{3.0 \times 10^{-5} \times 35.5 \text{ g} \times 10^6}{1000} = 1.065 \text{ g}$

় নদীর পানিতে Cl আয়নের ঘনমাত্রা = 1.065 ppm

বিকল্প পদ্ধতি : যেহেতু বিক্রিয়ার ক্ষেত্রে মোল অনুপাত সম্পর্ক থাকে এবং এক্ষেত্রে $3~\text{mL}~0.01 \text{M Ag}^+$ এর মধ্যে থাকা মোট Ag^+ এর সাথে 1000~mL নদীর পানিতে থাকা মোট Cl^- আয়নের বিক্রিয়া ঘটেছে। তাই 1000~mL~x~(M) Cl^- আয়ন মিশ্রিত নদীর পানির বেলায় সম্পর্কটি হবে নিমুরূপ :

দ্রষ্টব্য: ফর্মুলা ব্যবহার করলে ppm এর সংখ্যা

গ্রামে হবে। লিটারে গণনা করলে ppm এর

সংখ্যা মান mg।

 $1000 \text{ mL} \times x = 3 \text{ mL} \times 0.01 \text{ M}$

$$\therefore x = \frac{3 \times 0.01M}{1000} = 3 \times 10^{-5} M;$$

∴ Cl^- আয়নের দ্রবণের ঘনমাত্রা = $3 \times 10^{-5} \, \mathrm{M}^{\circ}$

এখন 3×10^{-5} M CI আয়নের ppm ঘনমাত্রা হবে = $3 \times 10^{-5} \times 35.5 \times 1000$ mg = 1.065 mg বা, 1.065 ppm.

সমাধানকৃত সমস্যা—৩.৩৭ : দ্রবের শতকরা ভর, পিপিএম ও মোল ভগ্নাংশভিত্তিক :

- (ক) 3.5 g ভরের ট্যাবলেটে 40.5 mg Ca আছে। এ ট্যারলেটের Ca এর ঘনমাত্রা ppm কত হবে?
- খে) কোনো নমুনা Rubbing alcohol-এ 142 g আইসোপ্রোপাইল অ্যালকোহল (C₃H₇OH) ও 58.0 g পানি আছে। এতে অ্যালকোহল ও পানির মোল ভগ্নাংশ কত?

দক্ষতা : (ক) ট্যাবলেটের ভর $3.5~{
m g}$ । Ca এর ভর $40.5~{
m mg}$ কে গ্রামে নিয়ে Ca এর ভর ও ট্যাবলেটের ভরের অনুপাত বের করে $10^6~{
m g}$ ারা গুণ করলে ${
m ppm}$ হবে।

্খ) উভয় উপাদানের সংকেত ও সংকেত ভর জানা আছে। উভয় উপাদানের ভর থেকে মোল সংখ্যা ও মোল ভগ্নাংশ বের করা সম্ভব। সমাধান : (ক) Ca এর ppm নির্ণয় :

Ca এর ppm =
$$\frac{\text{Ca}}{\text{ট্যাবলেটের ভর}} = \frac{40.5 \text{ mg Ca} \times 10^6}{10^3 \text{ mg} \times 3.50 \text{ g}} = 1.16 \times 10^4 \text{ ppm Ca}$$

(খ) মোল ভগ্নাংশ নির্ণয়: গ্রাম একক থেকে মোলে রূপান্তর:

 C_3H_7OH এর মোল সংখ্যা = 142 g $C_3H_7OH imes \frac{1 \text{ mol } C_3H_7OH}{60.09 \text{ g } C_3H_7OH} = 2.36 \text{ mol } C_3H_7OH$

 H_2O এর মোল সংখ্যা = 58.0 g $H_2O \times \frac{1 \text{ mol } H_2O}{18.02 \text{ g } H_2O}$ = 3.22 mol H_2O

MCQ-3.16: 10% Na₂CO₃ এর মোলারিটি কত? (ক) 1.94 (খ) 0.95 (গ) 0.94 (ঘ) 9.15

মোল ভগ্নাংশ গণনা:

 $X_{C_3H_7OH} = \frac{C_3H_7OH}{$ দ্রবেণর দ্রব ও দ্রাবকের মোল $= \frac{2.36 \text{ mol}}{(2.36 + 3.22) \text{ mol}} = 0.423$

 $X_{H_2O} = \frac{H_2O}{\text{দ্রবণের দ্রব ও দ্রাবকের মোল}} = \frac{3.22 \text{ mol}}{(2.36 + 3.22) \text{ mol}} = 0.577$ দর ও দ্রাবকের মোল ভগ্নাংশের যোগফল 1 হয় ; (0.423 + 0.577) = 1.00

শিক্ষার্থী নিজে করো ২৩.৭ : দ্রবণের বিভিন্ন ঘনমাত্রাভিত্তিক সমস্যা : সমস্যা – ৩২৭(ক): 10% H2SO4 দ্রবণের ঘনমাত্রাকে মোলারিটিতে প্রকাশ করো। ডি: 1.02 MT সমস্যা - ৩.৭(খ): 10% Na₂CO₃ দ্রবণের ঘনমাত্রাকে মোলারিটিতে নির্ণয় করো। (5: 0.9434 M) টি: 2.5 M1 [কু. বো. ২০২৩] সমস্যা - ৩.২৭(গ): 10% NaOH এর মোলার ঘনমাত্রা কত হবে? সমস্যা - ৩.২৮(ক) : হাইড্রোজেন পারঅক্সাইড (H2O2) এর গাঢ় দ্রবণ জারকরপে রকেট জ্বালানি এবং লঘু দ্রবণ চুলের ব্লিচরূপে ব্যবহৃত হয়। একটি 30.0% ভরের $m H_2O_2$ এর জলীয় দ্রবণের ঘনত্ব 1.11~
m g/mL। এ দ্রবণে $m H_2O_2$ $[5: 9.79 \text{ M}; X_{H_2O_2} = 0.185]$ এর মোলারিটি ও মোল ভগ্নাংশ কত হবে? সমস্যাত ২৮(খ): 500 g পানিতে 25 g চিনি (C12H22O11) দ্রবীভূত আছে। এ চিনির দ্রবণে চিনির মোলারিটি ও ডি: 0.146 M; XHO = 0.9974, X িল = 0.0026] উভয় উপাদানের মোল ভগ্নাংশ কত? সমস্যা - ৩.২৯ : বাণিজ্যিক হাইড্রোক্লোরিক এসিডে 11.8 M HCl আছে। এর ঘনত্ব 1.19 g/mL। এ দ্রবণে HCl ডি: 36.19%: 0.221 এর শতকরা ভর ও মোল ভগ্নাংশ কত হবে? সমস্যা - ৩.৩০(ক): সাগরের 150 mL লোনা পানিতে 0.0045 g NaCl আছে। ppm এককে ঐ লোনা পানিতে NaCl এর ঘনমাত্রা কত? সমস্যা-৩.৩০(খ): 250 mL Na₂CO₃ এর দ্রবণে 2.65 g Na₂CO₃ দ্রবীভূত আছে। ঐ দ্রবণের ঘনমাত্রা ppm ডি: 1.06 × 10⁴ ppm] [ঢা. বো. ২০১৫] এককে কত? সমস্যা - ৩.৩০(গ): কোনো লবণের দ্রবণের ঘনমাত্রা 1.25 g/ L হলে ppm এককে ঐ লবণের দ্রবণের ঘনমাত্রা ডি: 1250 ppm] কত? সমস্যা - ৩.৩০(ঘ) : কোনো লবণের দ্রবণের ঘনমাত্রা 0.5 mg/ mL হলে ঐ লবণের দ্রবণের ঘনমাত্রা ppm এককে ডি: 500 ppm] সমস্যা - ৩.৩০(৪): 0.01 M HCl এর 100 mL দ্রবণের ppm ঘনমাত্রা কত হবে? ডি: 365 ppm] ডি: 5.6 × 10³ ppm] সমস্যা-৩.৩০(চ): 0.1 M 100 mL KOH দ্রবণের ppm ঘনমাত্রা কত হবে? যি. বো. ২০১৫ সমস্যা-৩.৩০(ছ): 150 mL NaOH দ্রবণকে পূর্ণ প্রশমিত করতে 200 mL 0.1 M অক্সালিক এসিড দ্রবণ প্রয়োজন হয়। ঐ NaOH দ্রবণের ঘনমাত্রা ppm এককে কত? 👿: 1.068 × 10⁴ ppm] [চ. বো. ২০১৫]

```
সমস্যা-৩.৩০(জ) : পাত্র 'A' এর 250 mL দ্রবণে 2.65 g Na<sub>2</sub>CO<sub>3</sub> আছে। এ দ্রবণের ঘনমাত্রা ppm এককে নির্ণয়
                                                           টি: 10600 ppm] ঢ়া. বো. ২০১৬ সি. বো. ২০১৯
কবো।
সমস্যা-৩.৩০(ঝ) : একটি পাত্রের 200 ml দ্রবণে 0.2 g NaOH দ্রবীভূত আছে। এ দ্রবণের ঘনমাত্রা ppm এককে
নির্ণয় করো।
                                                                         ডি: 1000 ppm] কি. বো. ২০১৬]
সমসা-৩.৩০ (এঃ) : একটি পাত্রে 20 mL দ্রবণে 0.2 g NaOH দ্রবীভূত আছে। ঐ দ্রবণের ঘনমাত্রা ppb এককে
                                                                         ডি: 1 × 10<sup>6</sup> ppb] যি, বো, ২০১৭]
নির্ণয় করো।
সমস্যা-৩.৩০ (ট) : একটি পাত্রে 80 mL দ্রবণে 2.55% (w/v) NaOH আছে। এ দ্রবণের ঘনমাত্রা ppm এককে
                                                                         ডি: 25,500 ppm] [ব. বো. ২০১৭]
সমস্যা-৩.৩০ (ঠ) : একটি পাত্রে 250 mL 5% HNO3 আছে। ঐ দ্রবণের ঘনমাত্রা ppm এককে নির্ণয় করো।
                                                                         উ: 50000 ppm] [স. বো. ২০১৭]
সমস্যা-৩.৩১(ক): 0.01 M NaOH এর 100 mL দ্রবণের ppm এককে ও শতকরা w/v এককে ঘনমাত্রা কত
                                                                   [ ७: 400 ppm : 4.0 × 10<sup>-2</sup> % (w/v)]
হবে?
সমস্যা-৩.৩১(খ): 0.2 M Na2CO3 দ্রবণের ঘনমাত্রা % (w/v) এককে ও ppm এককে রূপান্তর করো।
                                                                    [\overline{\mathbf{v}}: 2.12\% (\text{w/v}): 2.12 \times 10^4 \text{ ppm}]
সমস্যা-৩.৩১(গ) : 5 mL 10% NaOH দ্রবণের ঘনমাত্রা ppm এককে হিসাব করো। ডি: 1,00,000 ppm]
                                                                                          ঢ়া বো ২০১৯]
সমস্যা-৩.৩১(ঘ) : 250 mL 5% H<sub>2</sub>SO<sub>4</sub> দ্রবণের ঘনমাত্রা ppm এককে নির্ণয় করো টি: 50000 ppm] বি. বো. ২০১৯
সমস্যা-৩.৩১(৩): 0.5 mol L<sup>-1</sup> H<sub>2</sub>SO<sub>4</sub> দ্রবণে H<sup>+</sup> এর ঘনমাত্রো ppm এককে কত? ডি: 1000 ppm] [ঢা. বো. ২০২৩]
সমস্যা-৩.৩১(চ) : 0.04 M 600 mL MOH দ্রবণের ঘনমাত্রা ppm এককে নির্ণয় করো। 'M' এর পা: ভর = 39।
                                                                         ডি: 2240 ppm] [দি. বো. ২০১৯]
সমস্যা-৩.৩২(ক) : খুলনা এলাকার কৃষিজমির পানিতে 585 ppm NaCl থাকলে ঐ পানিতে NaCl এর মোলারিটি
                                                                                           ডि: 0.01 M]
কত্
সমস্যা-৩.৩২(খ): বিশ্ব স্বাস্থ্য সংস্থা (WHO) ঘোষিত পানীয় জলে আর্সেনিকের প্রমাণমাত্রা হলো 0.05 mg/L. এক্ষেত্রে
                                                                         ডি: 0.05 ppm; 6.67 × 10<sup>-7</sup> M]
ppm একক ও মোলারিটিতে আর্সেনিকের ঘনমাত্রা কত হয়? [As = 74.92]
সমস্যা -৩.৩৩(ক): কোনো কারখানার বর্জ্য পানিতে 0.01 ppm Pb<sup>2+</sup> আয়ন আছে। (i) প্রতি লিটার ঐ বর্জ্য পানিতে
Pb^{2+} আয়ন গ্রাম এককে কত আছে? (ii) ঐ বর্জ্য পানিতে Pb^{2+} আয়নের মোলারিটি কত হবে?
                                                                   [5: 1.0 \times 10^{-5} \text{ g L}^{-1}: 4.83 \times 10^{-8} \text{ M}]
সমস্যা-৩.৩৩(খ) : গভীর নলকূপের পানিতে \mathrm{Fe}^{2+} আয়নের ঘনমাত্রা 0.0003~\mathrm{M} হলে ঐ নলকূপের পানিতে \mathrm{Fe}^{2+}
আয়নের ঘনমাত্রা ppm এককে কত হবে? [Fe = 55.84]
                                                                                      ডি: 16.752 ppm]
সমস্যা-৩.৩৪(ক) : একটি রোগীর রক্তে গ্রুকোজের পরিমাণ গ্রুকোমিটারে 10 millimole/L হলে ppm এককে তা কত
                                                                                         ডি: 1800 ppm]
হবে?
সমস্যা-৩.৩8(খ) : কোনো ভায়াবেটিক রোগীর 25.0 mL রক্তের মধ্যে 26 mg গ্রুকোজ আছে। গ্রুকোজের এ
                                                                      পরিমাণকে ppm একক ও % (mg/dL) এককে রূপান্তর করো।
```

৩.৭ ব্যবহারিক: দ্রবণের ঘনমাত্রা লঘুকরণ

Diluting Concentrated Solution

দ্রবণের লঘুকরণ: উচ্চ মোলার দ্রবণ থেকে নিমু মোলার দ্রবণ তৈরি করার প্রক্রিয়াকে দ্রবণের লঘুকরণ বলে। বিভিন্ন বিশ্লেষণ কাজের জন্য গাঢ় এসিড থেকে লঘু এসিড দ্রবণ তৈরি করতে হয়। লঘুকরণের মূলভিত্তি হলো নিমুরূপ:

আমরা জানি, দ্রবের মোল সংখ্যা = মোলারিটি × লিটার এককে দ্রবণের আয়তন।

সুতরাং M_1 মোলারিটির V_1 লিটার দ্রবণে পানি যোগ করে V_2 লিটার করা হলো এবং এ দ্রবণের ঘনমাত্রা M_2 ধরা হলে, তখন উভয় দ্রবণের মোল সংখ্যা সমান থাকার কারণে লঘুকরণ প্রক্রিয়ার ক্ষেত্রে নিমুরূপ সম্পর্ক হয় :

$$V_1 \times M_1 = V_2 \times M_2$$
 MAT $(21-22)$

যেমন, বাণিজ্যিক 12 M HCl দ্রবণ থেকে 500 mL 0.1 M HCl দ্রবণ তৈরি করতে কী পরিমাণ 12 M গাঢ় HCl দ্রবণ প্রয়োজন হবে? আমরা ওপরের লঘুকরণের সমীকরণিট ব্যবহার করে 0.1 M HCl দ্রবণ তৈরি করবো। এক্ষেত্রে লঘুকরণের পর মিশ্রণের আয়তন $V_2 = 500$ mL, $M_2 = 0.1$ M এবং গাঢ় HCl এর $M_1 = 12$ (M)

$$\therefore V_1 = \frac{V_2 \times M_2}{M_1} = \frac{500 \text{ mL} \times 0.1 \text{ M}}{12 \text{ M}} = 4.17 \text{ mL}.$$

উদাহর্ম্বা-১ 50 mL 0.5M Na₂CO₃ দ্রবণের ঘনমাত্রা 0.01M-এ রূপান্তর করতে এতে কত mL পানি যোগ করতে হবে?

উদাহর<mark>ণ-২া 500 mL 0..25 M NaOH দ্রবণ মোলা</mark>রিটি 0.15 M করতে কত mL পানি এতে যোগ করতে হবে তা নির্ণয় করো।

সমাধান-১। প্রশ্নমতে, 0.5 M Na₂CO₃ দ্রবণকে 0.01 M দ্রবণে রূপান্তর করতে হবে। তাই এক্ষেত্রে দ্রবণের ঘনমাত্রা লঘুকরণ সমীকরণটি ব্যবহৃত হবে।

লঘুকরণ সমীকরণ মতে, $V_1 \times M_1 = V_2 \times M_2$ প্রশ্নমতে,

$$V_2 = \frac{V_1 \times M_1}{M_2} = \frac{50 \text{ mL} \times 0.5 \text{ M}}{0.01 \text{ M}}$$

$$Na_2CO_3$$
 দ্রবণের প্রাথমিক আয়তন, $V_1 = 50 \text{ mL}$

$$Na_2CO_3$$
 এর প্রাথমিক ঘনমাত্রা, $M_1 = 0.5M$

লঘুকৃত
$$Na_2CO_3$$
 দ্রবণের আয়তন, $V_2 = ?$

লঘুকৃত
$$Na_2CO_3$$
 এর ঘনমাত্রা, $M_2=0.01M$

∴ পানি যোগ করতে হবে =
$$(2500 - 50) \text{ mL} = 2450 \text{ mL}$$
 (উ:)

সমাধান-২। প্রশ্নমতে, 0.25M NaOH দ্রবণকে 0.15M দ্রবণে পরিণত করতে হবে। তাই এক্ষেত্রে দ্রবণের ঘনমাত্রা লঘুকরণ সমীকরণটি ব্যবহৃত হবে।

লঘুকরণ সমীকরণটি মতে, $V_1 \times M_1 = V_2 \times M_2$

∴ মানগুলো বসিয়ে পাই,

$$V_2 = \frac{V_1 \times M_1}{M_2} = \frac{500 \text{ mL} \times 0.25 \text{ M}}{0.15 \text{ M}}$$

প্রশ্নমতে,

NaOH দ্রবণের প্রাথমিক আয়তন $V_1 = 500 \text{ mL}$

NaOH এবং প্রাথমিক ঘনমাত্রা, $M_1 = 0.25 \text{ M}$

লঘুকৃত NaOH দ্রবণের আয়তন $V_2 = ?$

লঘুকৃত NaOH দ্রবণের ঘনমাত্রা, $M_2 = 0.15 \text{ M}$

ব্যবহারিক (Practical)

শিক্ষার্থীর কাজ:

পরীক্ষা নং-৯

তারিখ:.....

পরীক্ষার নাম : গাঢ় HCI এর নমুনা থেকে 0.1 M HCI দ্রবণ প্রস্তুতি

সময় : ১ পিরিয়ড

(ক) মূলনীতি : গাঢ় হাইড্রোক্লোরিক এসিড হলো একটি সেকেন্ডারি স্ট্যান্ডার্ড পদার্থ। গাঢ় হাইড্রোক্লোরিক এসিডের বোতলের গায়ে এর ঘনমাত্রা মোলার এককে উল্লেখ থাকে। তাই লঘুকরণ সমীকরণ ব্যবহার করে ঐ নমুনা এসিড থেকে যেকোনো ঘনমাত্রার এসিড দ্রবণ প্রস্তুত করা যায়। বাণিজ্যিক হাইড্রোক্লোরিক এসিডের ঘনমাত্রা সাধারণত 8 M থেকে 12M পর্যন্ত থাকে। লঘকরণ সমীকরণটি নিমুরূপ:

এখন 5000 mL 0.1 M HCl দ্রবণ তৈরি করা হবে।

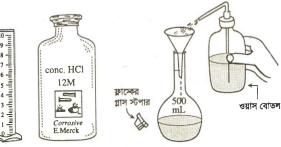
$$V_1 \times M_1 = V_2 \times M_2$$

বা. 500 mL \times 0.1 M = $V_2 \times 12$ M

ৰা,
$$V_2 = \frac{500 \text{ mL} \times 0.1 \text{ M}}{12 \text{ M}} = 4.2 \text{ mL}$$

এখানে.

V₁ = লঘু HCl দ্রবণের আয়তন = 500 mL


 $M_1 =$ লঘু HCl দ্রবণের মোলার ঘনমাত্রা $= 0.1 \ M$

 V_2 = গাঢ় HCl নমুনার আয়তন

M₂ = গাঢ় HCl নমুনার ঘনমাত্রা 12 M

- (খ) প্রয়োজনীয় রাসায়নিক বছু : (১) গাঢ় HCl (নমুনা এসিড); (২) পাতিত পানি।
- (গ) প্রয়োজনীয় যদ্রপাতি : (১) আয়তনিক ফ্লান্ক (500 mL); (২) মেজারিং সিলিন্ডার, ফানেল; (৩) ওয়াস বোতল।
- (ঘ) কাজের ধারা : (১) 500 mL আয়তনিক ফ্লাঙ্কটি নিয়ে এর মুখে একটি ফানেল বসাও।
- (২) মূলনীতি অনুসারে গাঢ় HCl এসিডের 4.2 mL মেজারিং সিলিভারে মেপে ফ্লাক্ষের মুখে বসানো ফানেলের ভেতর ঢেলে দাও।
- (৩) ওয়াস বোতল থেকে পাতিত পানি ফানেলের ওপর অল্প অল্প যোগ করে ফানেলে লেগে থাকা HCl-কে

সমসত্ত্ব করো।

চিত্র-৩.৩ : পরীক্ষাগারে 0.1 M HCl দ্রবণ প্রস্তৃতি। ধুয়ে আয়তনিক ফ্লান্ধটিকে অর্ধপূর্ণ করো। এরপর ফ্লাঙ্কের মুখে গ্লাস স্টপার যুক্ত করে এসিড ও পানির মিশ্রণটিকে ঝাঁকিয়ে

(৪) এবার গ্লাসস্টপার খুলে ফ্লাক্ষের মুখে ফানেল বসিয়ে ওয়াস বোতল থেকে পানি যোগ করে ফ্লাক্ষের গলায় দাগ পর্যন্ত পূর্ণ করো। সবশেষে আবারও ফ্লাক্ষে গ্লাস স্টপার লাগিয়ে ফ্লাক্ষের এসিড মিশ্রণকে টিল্টিং বা কয়েকবার উল্টিয়ে সমসত্ত্ব করো। এভাবে প্রস্তুতকৃত HCl দ্রবণটি মোটামুটি 0.1 M ঘনমাত্রার দ্রবণ হলো।

দ্রষ্টব্য : গ্রুপভিত্তিক শিক্ষার্থীর ডেক্ষে এ প্র<mark>স্তুত করা</mark> 0.1 M HCl দ্রবণ সংরক্ষণ করো। পরবর্তী ১২ নং পরীক্ষার জন্য এ 0.1 M HCl দ্রবণ ব্যবহার করা হবে।

শিক্ষার্থী নিজে করো-৩.৮: দ্রবণের ঘনমাত্রা লঘুকরণভিত্তিক : $V_1M_1=V_2M_2$

তুমি কী জান ? দ্রবণ তৈরির বেলায় , পানিতে গাঢ় H_2SO_4 যোগ করতে হয়; কখনো গাঢ় H_2SO_4 এর মধ্যে পানি যোগ করা যাবে না। 'Add conc. H_2SO_4 to water; but not reverse; কারণ গাঢ় H_2SO_4 হলো পানি-শোষী (hygroscopic) ; পানির সংস্পর্শে প্রচুর তাপ সৃষ্টি হয়; ফলে গাঢ় H_2SO_4 ছিটকে গায়ে পড়তে পারে।

সমস্যা - ৩.৩৫ : বাণিজ্যিক গাঢ় H_2SO_4 হলো 18 M + 500 mL ফ্লাকে $0.1 \text{ M} H_2SO_4$ প্রস্তুত করতে কত mL গাঢ় H_2SO_4 প্রয়োজন হবে?

সমস্যা-৩.৩৬(ক) : 100 mL 0.5 M Na₂CO₃ দ্রবণ থেকে কত mL ডেসিমোলার (0.1 M) দ্রবণ তৈরি করা যাবে?

সমস্যা-৩.৩৬(খ) : 500 mL 1.25 M/20 Na₂CO₃ এর দ্রবণের মধ্যে কতটুকু পানি মিশালে তা M/20 দ্রবণে পরিণত হবে?

সমস্যা-৩.৩৬(গ) : 250 cm³ 0.5 M Na₂CO₃ দ্রবণ থেকে কত আয়তনের ডেসিমোলার Na₂CO₃ দ্রবণ তৈরি করা যাবে?

সমস্যা-৩.৩৬(घ): 100 mL 0.5 M Na₂CO₃ দ্রবণ তোমাকে দেয়া হলো। তুমি ঐ দ্রবণ দিয়ে মোট কত mL ডেসিমোলার দ্রবণ তৈরি করতে পারবে?

সমস্যা-৩.৩৭(ক) : তোমার 300 mL আয়তনের 1 M HCl প্রয়োজন। কিন্তু বোতলে আছে 6 M HCl দ্রবণ। কী পরিমাণ ঐ বোতলের এসিডের সাথে কী পরিমাণ পানি মিশালে তোমার কাজ চলতে পারে?

উ: বোতলের 50 mL এসিডের সাথে 250 mL পানি মিশাতে হবে।]

সমস্যা-৩.৩৭(খ) : একটি এসিডের আণবিক ভর 63। ঐ এসিডের 1.89 g পরিমাণকে 200 mL পানিতে দ্রবীভূত করা হলো। ঐ দ্রবণে কী পরিমাণে আরো পানি মিশালে তা 0.1 M দ্রবণ হবে? [উ: 100 mL]

সমস্যা-৩.৩৮ : 100 mL পানিতে 1.6 g Na₂CO₃ দ্রবীভূত করা হলো। ঐ দ্রবণকে কীভাবে ডেসিমোলার দ্রবণে পরিণত করা যাবে?

সমস্যা-৩.৩৯ : 1.5 M ঘনমাত্রার 250 mL HCl দ্রবণ তৈরি করতে 12 M HCl এর কত mL প্রয়োজন হবে? ডি: 31.25 mLl

সমস্যা-৩.৪০ (ক) : একটি 250 mL পরিমাপক ফ্লাঙ্কে 60 mL 0.5 M HCl দ্রবণ, 40 mL 2 M HCl দ্রবণ ও 20 mL 1 M HCl দ্রবণ নিয়ে শেষে এর মধ্যে পানি যোগ করে 250 mL দ্রবণ তৈরি করা হলো। ঐ প্রভূত দ্রবণের মোলারিটি কত?

সমস্যা-৩.৪০(খ): 40 mL 0.5 M H₂SO₄ দ্রবণ, 35 mL 2 M H₂SO₄ দ্রবণ এবং 10 mL 1 M H₂SO₄ দ্রবণকে একত্রে মিশ্রিত করে একটি পরিমাপক ফ্লাঙ্কে পানি যোগ করে 250 mL করা হলো। মিশ্র এসিড দ্রবণের ঘনমাত্রা কত? এ দ্রবণে কত গ্রাম H₂SO₄ আছে?

সমস্যা-৩.৪০(গ): একটি 250 mL ফ্লাকে 50 mL 0.5 M NaOH দ্রবণ, 100 mL 0.4 M NaOH দ্রবণ ও 40 mL 2.0 M NaOH দ্রবণ নিয়ে শেষে পানি যোগ করে 250 mL দ্রবণ তৈরি করা হলো, ঐ প্রভূত NaOH দ্রবণের মোলারিটি কত? ডি: 0.58 M]

সমস্যা-৩.৪১: 0.25 M HCl দ্রবণ এবং 0.4 M HNO3 দ্রবণ কী অনুপাতে মিশ্রিত করলে ঐ এসিড মিশ্রণের ঘনমাত্রা 0.32 M হবে? ডিঃ ৪ঃ 7]

জেনে নাও: যেকোনো এসিড বা ক্ষার দ্রবণের আয়তন (V).কে দ্রবণের মোলারিটি (M) দ্বারা গুণ করলে গুণফল নির্দেশক আয়তন 1 M আয়ন তুল্য হয়।

যেমন, 60~mL~0.5~M~HCl~ দ্রবণ = $60\times0.5~\text{mL}~1~\text{M}~\text{HCl}~$ দুবণ (৩.৪০ ক , খ , গ) নং সমস্যা সমাধানে এ সম্পর্ক প্রয়োগ করতে হবে ।

ব্যবহারিক (Practical)

শিক্ষার্থীর কাজ:

পরীক্ষা নং-১০

সময়: ১ পিরিয়ড

তারিখ:

পরীক্ষার নাম : গাঢ় H_2SO_4 এর নমুনা থেকে $0.1~M~H_2SO_4$ দ্রবণ প্রস্তুতি

(ক) মূলনীতি : গাঢ় H_2SO_4 হলো একটি সেকেন্ডারি পদার্থ। বাণিজ্যিক গাঢ় H_2SO_4 হলো $18~\mathrm{M}$ । $500~\mathrm{mL}$ ফ্লাঙ্কে 0.1 M H₂SO₄ দ্রবণ তৈরি করতে প্রয়োজনীয় এসিড নিতে হবে 2.8 mL। লঘুকরণের সমীকরণ মতে,

$$V_1 \times M_1 = V_2 \times M_2$$

वा, 500 mL \times 0.1 M = $V_2 \times$ 18 M
वा, $V_2 = \frac{500 \text{ mL} \times 0.1 \text{ M}}{18 \text{ M}} = 2.8 \text{ mL}$

এখানে.

 $V_1 =$ লঘু H_2SO_4 দ্রবণের আয়তন = 500 mL

 M_1 =লঘু H_2SO_4 দ্রবণের মোলার ঘনমাত্রা = 0.1~M

 $V_2 =$ গাঢ় H_2SO_4 নমুনার আয়তন

 $M_2 =$ গাঢ় H_2SO_4 নমুনার ঘনমাত্রা = 18 M

- (খ) প্রয়োজনীয় রাসায়নিক বস্তু : (১) গাঢ় H_2SO_4 (নমুনা এসিড), (২) পাতিত পানি।
- (গ) প্রয়োজনীয় যন্ত্রপাতি : (১) আয়তনিক ফ্লাঙ্ক (500 mL), (২) মেজারিং সিলিন্ডার ও ফানেল, (৩) ওয়াস বোতল।
- (ঘ) কাজের ধারা : (১) 500 mL আয়তনিক ফ্লাক্ষের মুখে ফানেল বসাও। এর মধ্যে 300 mL পাতিত পানি ফানেলের মুখে ঢেলে নাও।
- (2) মূলনীতি অনুসারে গাঢ় H_2SO_4 এসিডের $2.8~\mathrm{mL}$ মেজারিং সিলিন্ডারে মেপে ফ্রাঙ্কের মুখে বসানো ফানেলের ভেতর ঢেলে ফ্রাক্ষের পানিতে যোগ করো। [চিত্র-৩.৩]।
- (৩) এবার ওয়াস বোতল থেকে ফানেলের মুখে পাতিত পানি ঢেলে ফ্লাক্ষের গলায় দাগ পর্যন্ত পূর্ণ করো। সবশেষে ফ্লান্কের মুখে গ্লাস স্টপার লাগিয়ে ফ্লান্কের এসিড মিশ্রণকে কয়েকবার টিল্টিং বা উল্টিয়ে সমসত্ত্ব করো। এভাবে 0.1 M H₂SO₄ দ্রবণ তৈরি হলো।

৩.৮ এসিড-ক্ষার প্রশমন বিক্রিয়া ও প্রশমন বিন্দু

Acid-Base Neutralisation Reactions & End Points

তোমরা নবম ও দশম শ্রেণিতে এসিড ও ক্ষারের প্রশমন বিক্রিয়াকালে পূর্ণ লবণ ও পানি উৎপন্ন হয়ে থাকে , তা জেনেছো। প্র<u>শমন বিক্রিয়া : যে বিক্রিয়ায় তুল্য মোল পরিমাণ এসিড তুল্য মোল</u> পরিমাণ ক্ষারের সাথে বিক্রিয়ায় উভয়ের ধর্ম বিনষ্ট করে নিরপেক্ষ বা প্রশম যৌগ লবণ ও পানি উৎপন্ন করে তাকে এসিড-ক্ষার প্রশমন বিক্রিয়া বলে। এক্ষেত্রে দ্রবণে এসিড প্রদত্ত হাইড্রোজেন আয়ন (H^+) ও ক্ষার প্রদত্ত হাইড্রোক্সিল আয়ন (OH^-) এর মধ্যে প্রকৃতপক্ষে বিক্রিয়ায় পানি অণু (H_2O) সৃষ্টি হয়। অন্য আয়নগুলো দ্রবণে অপরিবর্তিত বা দর্শক আয়ন (spectator ion) রূপে থাকে।

$$HCl(aq) + NaOH(aq) \longrightarrow NaCI(aq) + H_2O(I)$$
 1 মোল 1 মোল

উপরিউক্ত প্রশমন বিক্রিয়ার ক্ষেত্রে, জলীয় দ্রবণে 1 মোল HCl প্রদত্ত 1 মোল হাইড্রোজেন আয়ন (H^{\dagger}) এর সাথে 1মোল NaOH প্রদন্ত 1 মোল হাইড্রোক্সিল আয়ন $(OH^{-)}$ বিক্রিয়া করে 1 মোল পানি অণু (H_2O) গঠন করে 1

$$H^+$$
 (aq) + OH $^-$ (aq) \longrightarrow H_2O (l)
ਪਸ਼ਾਜ 1 ਸ਼ਾਜ 1 ਸ਼ਾਜ

সুতরাং আয়নিক তত্ত্বমতে , এক মোল H^+ আয়ন ও এক মোল OH^- আয়নের বিক্রিয়ায় এক মোল পানি $(\operatorname{H}_2\operatorname{O})$ উৎপন্ন হওয়ার বিক্রিয়াকে **প্রশমন বিক্রিয়া** বলে। **প্রশমন বিক্রিয়ার মি**শু দ্রবণে নীল লিটমাস ও লাল লিটমাস উভয়ই অপরিবর্তিত থাকে অর্থাৎ এসিড ও ক্ষারের মিশ্র দ্রবণটি এসিড ও ক্ষার উভয়ের ধর্ম হারিয়ে নিরপেক্ষ দ্রবণ হয়েছে। সুতরাং এসিড ও ক্ষারের মিশণে প্রশমন বিক্রিয়া ঘটেছে।

জেনে নাও: এসিড-ক্ষারের প্রশমন বিক্রিয়ার মূলকথা:

- প্রশমন বিক্রিয়ায় সমতাযুক্ত সমীকরণ মতে মোল অনুপাতে এসিড ও ক্ষার পরক্ষারকে প্রশমিত করে।
- * এসিডের মোল সংখ্যা হতে সৃষ্ট H^+ আয়নের মোল সংখ্যাকে অ্যাভোগ্যাডো সংখ্যা 6.022×10^{23} দ্বাবা গুণ করলে এসিড দবণে মোট H⁺ আয়নের সংখ্যা বের হয়।
- st ক্ষারের মোল সংখ্যা হতে সৃষ্ট $m OH^-$ আয়নের মোল সংখ্যাকে অ্যাভোগ্যাড্রো সংখ্যা $m 6.022 imes 10^{23}$ দ্বারা গুণ করলে ক্ষার দ্বণে মোট OH আয়নের সংখ্যা বের হয়।

তখন এসিডের মোল অনুপাতে সৃষ্ট H^+ আয়ন সংখ্যা = ক্ষারের মোল অনুপাতে সৃষ্ট OH^- আয়ন সংখ্যা হয়। 2 NaOH (aq) \longrightarrow 2 H₂O(1) + 2Na⁺ (aq) + SO₄²⁻ (aq)

প্রশমন বিন্দুর সংজ্ঞা : এসিড ক্ষার টাইট্রেশনের লেখচিত্রে হঠাৎ সর্বাধিক pH পরিবর্তন নির্দেশক রেখার যে বিন্দুতে এসিড-ক্ষার মিশ্রণে পূর্ণ প্রশমন ঘটেছে বলে ব্যবহৃত নির্দেশক বর্ণ পরিবর্তন দ্বারা বোঝায়, সে বিন্দুকে ঐ এসিড-ক্ষার টাইট্রেশনের প্রশমন-বিন্দু (end-point) বলে। যেমন, সবল এসিড (HCl এসিড) ও সবল ক্ষার (NaOH) দ্রবণের টাইট্রেশনের প্রশমন বিন্দতে pH হলো 7।

প্রশমন বিন্দুর ব্যাখ্যা : এসিড-ক্ষার টাইট্রেশনের প্রশমন বিন্দু বা সমাপ্তি বিন্দু (end point) বলতে উপযুক্ত নির্দেশকের উপস্থিতিতে নির্দিষ্ট আয়তনের এসিড দ্রবণে প্রমাণ ক্ষার দ্রবণ (অথবা নির্দিষ্ট আয়তনের ক্ষার দ্রবণে প্রমাণ এসিড দ্রবণ) মিশ্রিত করার এমন এক অবস্থাকে বোঝায়, যে অবস্থায় এসিড প্রদন্ত সব H^+ আয়ন এবং ক্ষার প্রদন্ত সব OH আয়নের বিক্রিয়ায় পানি উৎপন্ন হওয়ার ফলে ঐ মিশ্র-দ্রবণের pH এর মান হঠাৎ সর্বাধিক পরিবর্তনের কারণে ব্যবহৃত নির্দেশকের বর্ণের হঠাৎ সুস্পষ্ট পরিবর্তন ঘটে এবং প্রশমন বিক্রিয়ার সমাপ্তি প্রকাশ পায়। যেমন্ সবল এসিড (HCl এসিড) ও সবল ক্ষারের (NaOH দ্রবণের) প্রশমন বিন্দুতে pH হলো 7: সবল এসিড ও দুর্বল ক্ষারের প্রশমন বিন্দুতে pH হলো 5.27 এবং দুর্বল এসিড ও সবল ক্ষারের প্রশমন বিন্দুতে pH হলো 8.80।

এসিড ও ক্ষারের বিয়োজন ধ্রুবক থেকে জানা যায়, সবল এসিড ও সবল ক্ষার জলীয় দ্রবণে পূর্ণভাবে আয়নিত হয়; কিন্তু দ্রবণে দুর্বল এসিড ও দুর্বল ক্ষার আংশিকভাবে আয়নিত হয়। তাই এসিড ও ক্ষারের আয়নীকরণ মাত্রার ওপর নির্ভর করে এসিড-ক্ষার প্রশমন বিক্রিয়া চার শ্রেণিতে আলোচনা করা হয়। যেমন

(১) সবল এসিড- সবল ক্ষার, (২) দুর্বল এসিড-সবল ক্ষার, (৩) সবল এসিড-দুর্বল ক্ষার ও (৪) দুর্বল এসিড-দুর্বল ক্ষার-এর মধ্যে প্রশমন বিক্রিয়া। এ চার প্রকার প্রশমন বিক্রিয়ার প্রশমন বিন্দু বা এসিড-ক্ষার টাইট্রেশনের তুল্যতা-বিন্দু (equivalence point or end point) উপযুক্ত নির্দেশক ব্যবহার করে অথবা pH মিটার ব্যবহার করে জানা যায়। এ সম্বন্ধে এখন আলোচনা করা হবে।

(১) সবল এসিড-সবল ক্ষার প্রশমন বিক্রিয়া ও প্রশমন বিন্দু:

সবল এসিড ও সবল ক্ষার দ্রবণের মধ্যে প্রশমন বিক্রিয়ার উদাহরণ হলো HCl এসিড ও NaOH ক্ষার দ্রবণের প্রশমন বিক্রিয়া। এতে পানি ও NaCl এর জলীয় দ্রবণ উৎপন্ন হয়। এক্ষেত্রে মূল বিক্রিয়া ঘটে হাইড্রোজেন আয়ন (H^+) বা হাইড্রোনিয়াম আয়ন (H_3O^+) এবং হাইড্রোক্সিল আয়ন (OH^-) এর মধ্যে \bot

∴ প্রশমন বিক্রিয়াটি হলো—

$$HCl(aq) + NaOH(aq) \longrightarrow H_2O(l) + NaCl(aq)$$

 $H_3O^+(aq) + OH^-(aq) \longrightarrow 2H_2O(l)$

$$_{\rm 2H_2O}(l)$$

NaCl(aq)

এক্ষেত্রে 1 mol HCl (aq) ও 1 mol NaOH (aq) এক্ষেত্রে মিশালে প্রশমন বিক্রিয়া শেষে উৎপন্ন NaCl (aq) এর দ্রবণে $\mathrm{H_3O}^+$ আয়ন ও OH^- আয়নের ঘনমাত্রা হবে বিশুদ্ধ পানির আয়নীকরণে সৃষ্ট ঐ সব আয়নের ঘনমাত্রা। তখন,

 $[H_3O^+]$ = $[OH^-]$ = 1.0×10^{-7} M | অপর কথায় HCl (aq) ও NaOH (aq) এর প্রশমন বিক্রিয়ার সাম্যাবস্থা ডানদিকের প্রান্তে রয়েছে। সুতরাং সবল এসিড-সবল ক্ষারের প্রশমন বিক্রিয়ার বিপরীতে পানি বিয়োজন বা, পানির অটো-আয়নীকরণ উভমুখী বিক্রিয়াটি জড়িত। তাই এ প্রশমন বিক্রিয়ার সাম্য-শ্রুবক, Kn ('n' প্রতীক neutralization) হবে পানির আয়নীকরণ ধ্রুবকের ব্যস্তানুপাতিক, $K_n = 1/K_w$

$$H_3O^+$$
 (aq) + OH⁻ (aq) \rightleftharpoons 2H₂O (l)
 $K_n = \frac{1}{[H_3O^+][OH^-]} = \frac{1}{K_w} = \frac{1}{1.0 \times 10^{-14}} = 1.0 \times 10^{14}$

MCO-3.17: দুর্বল এসিড ও সবল ক্ষারের টাইট্রেশনের উপযুক্ত নির্দেশক হলো কোনটি? (ক) লিটমাস (খ) মিথাইল অরেঞ্জ

(গ) মিথাইল রেড (ঘ) ফেনলফথ্যালিন

সবল এসিড-সবল ক্ষারের প্রশমন বিক্রিয়ার বেলায় $K_n=1.0 imes10^{14}$ হওয়ায়, এদের প্রশমন বিক্রিয়া 100%

সমাপ্ত হয়েছে বোঝায়। এক্ষেত্রে উৎপন্ন লবণের ক্যাটায়ন (Na^+) ও অ্যানায়ন ($C\Gamma$) এর এসিড ও ক্ষার ধর্ম না থাকায় সংশ্রিষ্ট প্রশমন বিক্রিয়া শেষে প্রশমন বিন্দুতে দ্রবণটির pH = 7 হয়; (বিশুদ্ধ পানির মতো)।

* নির্দেশক ব্যবহার : এক্ষেত্রে নির্দেশকরূপে মিথাইল অরেঞ্জ (pH = 3.1-4.4), মিথাইল রেড (pH = 4.2 - 6.3) অথবা ফেনলফথ্যালিন (pH = 8.2 − 9.8) ব্যবহার করা যায়। কারণ সবল এসিড-সবল ক্ষারের টাইট্রেশনে নির্দেশকের হঠাৎ বর্ণ পরিবর্তনের p^H পরিসর 4.0-10.0 এর মধ্যে থাকে এবং এ দীর্ঘ p^H পরিসর যেকোনো নির্দেশকের জন্য কার্যকর হয়। [চিত্র-৩.৪ দ্রষ্টব্য] MAT

14 ¬ যোগ করা : টাইটোল: 40.0 mL 0.10 M HCl NaOH দ্রবণ pH ज्वर 0.10 M NaOH 12 -10.00 20.00 1.48 ফেনলফথ্যালিন 1.85 10-39.50 3.20 3.50 39.75 3.90 H 8 39.90 pH = 7.0039.95 4.20 39,99 4.90 প্রশমন বিন্দুতে 7.00 6 40.00 40.01 9.10 9.80 40.05 4-10.10 40.10 মথাইল অরেঞ্জ 10.50 10.79 40.50 11.09 41.00 11.76 45.00 12.05 60.00 30 40 50 70 80 20 10 যোগ করা 0.1M NaOH (mL)

চিত্র-৩.৪ : সবল HCl এসিড-সবল NaOH ক্ষারের প্রশমন লেখ ও প্রশমন বিন্দু।

(২) দুর্বল এসিড-সবল ক্ষার প্রশমন বিক্রিয়া ও প্রশমন বিন্দু:

দুর্বল এসিড পানিতে আংশিক আয়নিত হয়। দুর্বল এসিড যেমন অ্যাসিটিক এসিড ($\mathrm{CH_3CO_2H}$) ও সবল ক্ষার সোডিয়াম হাইড্রোক্সাইড (NaOH) এর মধ্যে প্রশমন বিক্রিয়াটি এ শ্রেণির বিক্রিয়া। এ বিক্রিয়ায় সোডিয়াম অ্যাসিটেট (CH₃CO₂Na)-এর দ্রবণ ও পানি উৎপন্ন হয়। এ ক্ষেত্রে বিক্রিয়াটি উভমুখী বিক্রিয়া হয়।

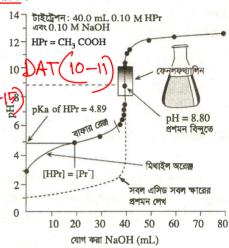
$$CH_3CO_2H(aq) + OH^-(aq) \rightleftharpoons H_2O(l) + CH_3CO_2^-(aq)$$

এক্ষেত্রে উৎপন্ন $\mathrm{CH_3CO_2Na}$ এবং বিক্রিয়ক NaOH পূর্ণভাবে আয়নিত থাকায় নিট আয়নিক সমীকরণে Na^+ আয়নগুলোকে দেখানো হয়নি। এখন এ প্রশমন বিক্রিয়ার সামধ্রে<mark>বক K_n এর মান, এমন দুটি বিক্রিয়ার জানা সাম্প্রেবকের</mark> গুণফল থেকে বের করা হবে, যাতে ঐ দু' বিক্রিয়ার যোগফল এ প্রশমন বিক্রিয়ার নিট আয়নিক সমীকরণ হয়। এ নিট বিক্রিয়ায় বামদিকে $\mathrm{CH_3CO_2H}$ ও ডানদিকে $\mathrm{CH_3CO_2}^-$ আয়ন থাকায় ঐ বিক্রিয়া দুটির একটি হবে $\mathrm{CH_3CO_2H}$ এর পানিতে বিয়োজন বিক্রিয়া।

CH₃CO₂H (aq) + H₂O (
$$l$$
) \rightleftharpoons H₃O⁺ (aq) + CH₃CO₂⁻ (aq) K_a = 1.8 × 10⁻⁵
H₃O⁺ (aq) + OH⁻ (aq) \rightleftharpoons 2H₂O (l) 1/K_w = 1.0 × 10¹⁴

নিট বিক্রিয়া : CH_3CO_2H (aq) + OH^- (aq $\implies H_2O(l) + CH_3CO_2^-$ (aq); K_n $= K_a \times 1/K_w$ $= 1.8 \times 10^9$

লক্ষ্য করো, ওপরের ২য় বিক্রিয়াটি পানির আয়নীকরণের বিপরীতভাবে দেখানো আছে; তাই $1/K_w$ এর মান 1.0×10^{14} ধরা হয়েছে। এক্ষেত্রে K_n (1.8×10^9) এর মানটি বেশ বড়ো। তবে সবল এসিড ও সবল ক্ষারের প্রশমন বিক্রিয়ার K_n এর চেয়ে ছোটো। তাই এরূপ প্রশমন বিক্রিয়া **প্রায় সমান্তির কাছাকাছি থাকে।** এক্ষেত্রে OH আয়নের প্রবল প্রোটন আসক্তির কারণে দুর্বল এসিড ও সবল ক্ষারের প্রশমন বিক্রিয়া সাধারণ নিয়মে 100% সমান্তি গণ্য করা হয়। প্রশমনের পর দ্রবণে থাকা Na^+ আয়নের কোনো অসু বা ক্ষার ধর্ম নেই; কিন্তু $CH_3CO_2^-$ আয়ন দুর্বল ক্ষারক হওয়ায়, প্রশমন বিন্দুতে দ্রবণের pH>7 হয়। তখন প্রশমন বিন্দুর pH8.8 এ থাকে।


* নির্দেশক ব্যবহার : দূর্বল এসিড-সবল ক্ষারের টাইট্রেশনে হঠাৎ বর্ণ পরিবর্তনের p^H পরিসর প্রায় 8.0 –10.0 এর মধ্যে থাকে। কিন্তু কনজুগেট ক্ষারকরপে CH₃COŌ আয়ন এর মাতৃ দুর্বল এসিড CH₃COOH থেকে তুলনামূলকভাবে সবল হয়। তাই এক্ষেত্রে কেবল ঐ পরিসরে থাকা ফেনলফথালিন ও থাইমল বু (ক্ষার) ইত্যাদি নির্দেশক ব্যবহার করা যায়। নির্দেশকসমূহ : অনুচ্ছেদ-৩.১১ দেখো MAT (14-

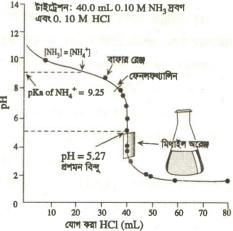
(৩) সবল এসিড-দূর্বল ক্ষার প্রশমন বিক্রিয়া ও প্রশমন বিন্দু:

সবল এসিড সম্পূর্ণ আয়নিত হয়। তাই সবল এসিডের প্রশমনের বেলায় ${\rm H_3O}^+$ আয়ন দুর্বল ক্ষারকে প্রোটন স্থানান্তর করে। যেমন সবল ${\rm HCl}$ এসিড ও দুর্বল ক্ষারক অ্যামোনিয়া দ্রবণের নিট বিক্রিয়া হলো—

$$H_3O^+(aq) + NH_3(aq) \rightleftharpoons H_2O(l) + NH_4^+(aq)$$

দুর্বল এসিড ও সবল ক্ষার দ্রবণের প্রশমন বিক্রিয়ার মতো এক্ষেত্রেও প্রশমন বিক্রিয়াটির সাম্যঞ্রবক K_n এর মান, এমন দুটি বিক্রিয়ার জানা সাম্যঞ্রবকের গুণফল থেকে বের করা হবে, যাতে ঐ দু'বিক্রিয়ার যোগফল এ প্রশমন বিক্রিয়ার নিট আয়নিক সমীকরণ হয়। বিক্রিয়া দুটি হলো—

চিত্র-৩.৫ : দুর্বল 0.1M CH₃COOH এসিড-সবল 0.1M NaOH ক্ষারের প্রশমন লেখ ও প্রশমন বিন্দু।


$$NH_3 (aq) + H_2O (l)$$
 \rightleftharpoons $NH_4^+ (aq) + OH^- (aq)$ $K_b = 1.8 \times 10^{-5}$ $H_3O^+ (aq) + OH^- (aq)$ \rightleftharpoons $2H_2O (l)$ $1/K_w = 1.0 \times 10^{14}$

নিট বিক্রিয়া : H_3O^+ (aq) + NH_3 (aq) \rightleftharpoons H_2O (I) + NH_4^+ (aq); $K_n = K_b \times 1/K_w = 1.8 \times 10^9$

এক্ষেত্রে K_n এর মান বেশ বড়ো এবং CH_3COOH ও NaOH এর প্রশমন সামাঞ্রেকের মানের সমান। এর কারণ CH_3COOH এর K_a এবং NH_3 এর K_b এর মান সমান (1.8×10^{-5}) । আবার H_3O^+ আয়ন সবল প্রোটনদাতা হওয়ায় সবল এসিড ও দুর্বল ক্ষারের প্রশমন বিক্রিয়াও সাধারণ নিয়মে 100% সমাপ্তি ধরা হয়। প্রশমন শেষে মিশ্র দ্রবণে HCI এসিডের CI^- আয়নের কোনো অস্ত্র বা ক্ষার ধর্ম থাকে না। তবে NH_4^+ আয়ন দুর্বল এসিড হওয়ায়, প্রশমন বিন্দুতে দ্রবণের pH < 7 হয়। তখন প্রশমন বিন্দুর pH 5.27 হয়।

* নির্দেশক ব্যবহার : সবল এসিড-দুর্বল ক্ষারের টাইট্রেশনে আকর্ষিক বর্ণ পরিবর্তনের pH পরিসর 4.0 –7.0 এর মধ্যে থাকে। তাই যেসব নির্দেশকের হঠাৎ বর্ণ পরিবর্তনের পরিসর এ সীমার মধ্যে পড়ে যেমর্ম মিথাইল অরেঞ্জ ও মিথাইল রেড ইত্যাদি নির্দেশক এরূপ টাইট্রেশনে ব্যবহৃত হয়।

[নির্দেশকসমূহ : অনুচ্ছেদ-৩.১১ এর সারণি-৩.২ দেখো]

চিত্র-৩.৬ : দুর্বল ক্ষার ও সবল এসিডের প্রশমন লেখ

MAT (21-22) (23-24)

RMDAC

(৪) দুর্বল এসিড-দুর্বল ক্ষার প্রশমন বিক্রিয়া ও প্রশমন বিন্দু: দুর্বল এসিড ও দুর্বল ক্ষার পানিতে আংশিকভাবে আয়নিত হয় এবং এদের মধ্যে প্রশমন বিক্রিয়ায় এসিড থেকে প্রোটন দুর্বল ক্ষারে ছানান্তর ঘটে। দুর্বল অ্যাসিটিক এসিড ও দুর্বল ক্ষার অ্যামোনিয়া দ্রবণে প্রশমন বিক্রিয়ার নিট সমীকরণ হলো:

$$CH_3CO_2H(aq) + NH_3(aq) \rightleftharpoons NH_4^+(aq) + CH_3CO_2^-(aq)$$

এক্ষেত্রে প্রশমন বিক্রিয়ার সাম্য-ধ্রুবক K_n এর মান তিনটি বিক্রিয়ার সাম্য-ধ্রুবক মানের গুণফল থেকে বের করা হবে। যেমন, (১) CH_3CO_2H এর আয়নীকরণ ধ্রুবক, (২) অ্যামোনিয়া ক্ষারকে প্রোটন সংযোজন ধ্রুবক, (৩) বিপরীত পানি-আয়নীকরণ ধ্রুবক ইত্যাদির মান।

নিট বিক্রিয়া:
$$CH_3CO_2H$$
 (aq) + NH_3 (aq) $\rightleftharpoons NH_4^+$ (aq) + $CH_3CO_2^-$ (aq); $K_n = K_a \times K_b \times 1/K_w = 3.2 \times 10^4$

এক্ষেত্রে K_n এর মান পূর্বের তিন শ্রেণির প্রশমন বিক্রিয়ার K_n এর মান থেকে অনেক কম। তাই এ **দুর্বল এসিড-দুর্বল** ক্ষারকের মধ্যে প্রশমন বিক্রিয়া কখনো সাম্যাবদ্বার ডানদিকে ঘটে না। HCN এর জলীয় দ্রবণ ও NH_3 এর জলীয় দ্রবণের প্রশমনের K_n এর মান 1 থেকে ছোটো হয়। এতে বোঝা যায় এদের মধ্যে প্রশমন বিক্রিয়া 50% এর কম ঘটে।

$$HCN(aq) + NH_3(aq) \rightleftharpoons NH_4^+(aq) + CN^-(aq) K_n = 0.88$$

* নির্দেশক ব্যবহার : এ শ্রেণির প্রশমন বিক্রিয়া অতি ধীরে ধীরে ঘটে। তাই প্রশমন বিন্দৃতে কোনো নির্দেশকের হঠাৎ বর্গ পরিবর্তন সঠিকভাবে পাওয়া যায় না। প্রশমনের শেষ পর্যায়েও pH এর তেমন কোনো হঠাৎ পরিবর্তন হয় না। এজন্য দূর্বল এসিড ও দূর্বল ক্ষারের প্রশমন টাইট্রেশনে কোনো নির্দেশক কার্যকর হয় না।

সমাধানকৃত সমস্যা – ৩.৩৮ : প্রশমন বিক্রিয়ার সমীকরণ ও প্রশমন বিন্দুতে pH :

লঘু নাইট্রিক এসিড (HNO₃) ও মিথাইল অ্যামিন (CH₃NH₂) এর সমমোলার প্রশমন বিক্রিয়ার সমতাযুক্ত নিট সমীকরণ লেখ। প্রশমন বিন্দুতে pH এর মান কত হবে?

দক্ষতা : প্রশমন বিক্রিয়ার এসিড ও ক্ষার সবল কী দুর্বল এর ওপর 'নিট আয়নিক সমীকরণ' নির্ভর করে। প্রশমন বিন্দুতে দ্রবণের \mathbf{p}^H নির্ভর করে উপস্থিত ক্যাটায়ন ও অ্যানায়নের এসিড ও ক্ষার ধর্মের ওপর।

সমাধান: HNO3 হলো সবল এসিড ও CH_3NH_2 হলো দুর্বল ক্ষার। তাই এদের প্রশমন বিক্রিয়া প্রায় সমাপ্তির প্রান্তে থাকে। নিট আয়নিক সমীকরণ হলো—

$$H_3O^+(aq) + CH_3NH_2(aq) \rightleftharpoons H_2O(l) + CH_3NH_3^+(aq)$$

প্রশমনের পর দ্রবণের ${
m CH_3NH_3}^+$ আয়ন হলো দুর্বল এসিড এবং ${
m NO_3}^-$ আয়নের কোনো এসিড বা ক্ষার ধর্ম নেই। তাই প্রশমন বিন্দুতে ${
m pH} < 7$;

অধিক জেনে নাও : সমাধানকৃত সমস্যা-৩.৩৯ : নির্দেশক নির্বাচনভিত্তিক :

*(১) অমু-ক্ষার টাইট্রেশনের বেলায় উপযুক্ত নির্দেশক নির্বাচন অমু ও ক্ষার উভয়েরই প্রকৃতির ওপর নির্ভর করে। এর ব্যাখ্যা দাও।

সমাধান : কোনো অসু ও ক্ষার দ্রবণের টাইট্রেশনের শেষ বিন্দুতে মিশ্র দ্রবণের প্রকৃতি প্রশম বা নিরপেক্ষ , অথবা ক্ষারীয় অথবা অস্মীয় হতে পারে; যা ব্যবহৃত অসু ও ক্ষারের সবল ও দুর্বল প্রকৃতির ওপর নির্ভর করে। যেমন—

(ক) সবল অন্ন (HCl) ও সবল ক্ষার (NaOH) এর মধ্যে টাইট্রেশনের বেলায় মূল বিক্রিয়াটি হলো:

$$HCl(aq) + NaOH(aq) \longrightarrow H_2O(l) + Na^+(aq) + Cl^-(aq)$$

সবল অমু-সবল ক্ষারের পূর্ণ আয়নীকরণ ঘটে। তাই এক্ষেত্রে প্রশমন বিক্রিয়ার সামধ্রুবক K_n এর মান 1.0×10^{14} হয়ে থাকে। প্রশমন বিক্রিয়ার মিশ্র দ্রবণে থাকা দর্শক আয়ন ক্যাটায়ন ও অ্যানায়ন যেমন এক্ষেত্রে Na^+ আয়ন ও Cl^- আয়ন যথাক্রমে সবল ক্ষার (NaOH) ও সবল অমু (HCl) এর অংশ হওয়ায় এদের কোনো অমু ও ক্ষার ধর্ম থাকে না। তাই প্রশমনের পর মিশ্রণের দ্রবণটির $p^H=7$ হয় অর্থাৎ প্রশমন বিন্দুর p^H হলো p^H এবং প্রশমন বিন্দুর কাছাকাছি p^H মানের হঠাৎ অতিরিক্ত পরিবর্তনের p^H রেঞ্জ p^H রেজ্ঞ p^H বিন্দুর p^H পরিসরে যেকোনো নির্দেশক উপযুক্ত হয়।

অনুরূপভাবে, 2HCl (aq) + Na₂CO₃ (aq) \longrightarrow H₂O (l) + 2Na + (aq) + 2Cl - (aq) + CO₂(g)

 ${
m CO_2}(g)$ বুদবুদ আকারে বিমুক্ত হয়। মিশ্র দ্রবণে ${
m Na}^+$ আয়ন ও ${
m CI}^-$ আয়ন থাকে। তাই এক্ষেত্রে প্রশমন বিন্দুতে ${
m pH}$ হলো 7। এজন্য যেকোনো নির্দেশক ব্যবহার করা যাবে।

(খ) দুর্বল অম্ন (CH₃COOH, অক্সালিক এসিড) ও সবল ক্ষার (NaOH, KOH) এর মধ্যে টাইট্রেশনের বেলায় মূল বিক্রিয়াটি হলো—

$$CH_3COOH(aq) + NaOH(aq) \longrightarrow H_2O(l) + CH_3COO^-(aq) + Na^+(aq)$$

দুর্বল এসিডটি (যেমন CH_3COOH) পানিতে আংশিক আয়নিত হয়; NaOH সবল ক্ষার পূর্ণ আয়নিত হয়। এক্ষেত্রে প্রশমন বিক্রিয়ার সাম্যঞ্জবক K_n এর মান 1.8×10^9 হয়, যা সবল অমু—সবল ক্ষারের K_n এর মান 1.0×10^{14} এর মতো বেশ বড়ো মান (value)। তাই প্রশমন বিক্রিয়াটির সাধারণ নিয়মে প্রায় 100% সমাপ্তি গণ্য করা হয়। প্রশমনের পর দ্রবণে থাকা Na^+ আয়নের কোনো অমু বা ক্ষার ধর্ম নেই; কিছু অ্যাসিটেট আয়ন (CH_3COO^-) দুর্বল ক্ষার হওয়ায় প্রশমন বিন্দুতে দ্রবণের pH > 7 হয়, প্রশমন বিন্দুর $p^H = 8.8$ হয়। প্রশমন বিন্দুর কাছাকাছি হঠাৎ pH মানের অধিক পরিবর্তনের p^H রেঞ্জ ৪.০ –10.0 হয়। তাই এ p^H মানের পরিসরে কেনলফথ্যালিন উপযুক্ত নির্দেশক হয়।

(গ) সবল অহু ও দুর্বল ক্ষার NH4OH এর টাইট্রেশনের বেলায় মূল বিক্রিয়াটি হলো :

$$HCl(aq) + NH_4OH(aq) \longrightarrow H_2O(l) + Cl^-(aq) + NH_4^+(aq)$$

সবল অসুটি পূর্ণ আয়নিত হয় জলীয় দ্রবণে; কিন্তু দুর্বল ক্ষার NH4OH দ্রবণে আংশিক আয়নিত হয়। প্রশমন বিক্রিয়ার সাম্যক্রবক $K_n=1.8\times 10^9$ হয় অর্থাৎ প্রশমন বিক্রিয়াটির প্রায় 100% সমাপ্তি গণ্য করা হয়। এক্ষেত্রে প্রশমনের পর Cl^- আয়নের কোনো অসু বা ক্ষার ধর্ম থাকে না ; কিন্তু NH_4^+ আয়ন দুর্বল অসু হওয়ায় প্রশমন বিন্দুতে $p^H<7$ হয়; প্রশমন বিন্দুর $p^H=5.27$ হয়। প্রশমন বিন্দুর কাছাকাছি হঠাৎ p^H মানের অতিরিক্ত হ্রাসের ফলে এক্ষেত্রে p^H রেঞ্জ 4.0-7.0 হয়। তাই এ p^H মানের পরিসরে মিথাইল অরেঞ্জ বা মিথাইল রেড নির্দেশক ব্যবহৃত হয়।

সূতরাং বলা যায়, অস্ত্র-ক্ষার টাইট্রেশনের নির্দেশক নির্বাচন অস্ত্র ও ক্ষার উভয়ের প্রকৃতির ওপর নির্ভর করে।

*(২) মৃদু অসু বা এসিড বা তীব্র ক্ষার দ্রবণের টাইট্রেশনের বেলায় নির্দেশকরণে ফেনলফখ্যালিন ব্যবহৃত হয় কেন? এক্ষেত্রে মিথাইল অরেঞ্জ ব্যবহৃত হয় না কেন —ব্যাখ্যা করো। [য. বো. ২০১৭]

সমাধান: মৃদু অস্ত্র বা এসিড যেমন অ্যাসিটিক এসিড (CH3COOH) বা অক্সালিক এসিড (HOOC-COOH) ও তীব্র বা সবল ক্ষার যেমন NaOH বা, KOH দ্রবণের টাইট্রেশনের বেলায় প্রশমন বিক্রিয়াটি হলো—

$${
m CH_3COOH~(aq)~+~NaOH~(aq)~\longrightarrow~H_2O~(\it l)~+~CH_3COO^-(aq)~+~Na^+(aq)}$$
 জ্যাসিটিক এসিড

বা, HOOC—COOH (aq) + 2KOH (aq)
$$\longrightarrow$$
 2H₂O (I) + \top OOC—COO \top (aq) + 2K $^+$ (aq)
অক্সালিক এসিড

মৃদু অসু বা দুর্বল এসিড জলীয় দ্রবণে আংশিক আয়নিত হয়; কিছু তীব্র বা সবল ক্ষার দ্রবণে পূর্ণ আয়নিত হয়। তখন প্রশামন বিক্রিয়ার সামপ্রেবক $K_n=1.8\times 10^9$ হয়। প্রশামনের পর দ্রবণে থাকা Na^+ আয়ন বা K^+ আয়নের কোনো অসু বা ক্ষার ধর্ম থাকে না; কিছু দুর্বল এসিডের অনুবন্ধী ক্ষারক দুর্বল ক্ষার হওয়ায় প্রশামন বিন্দুতে দ্রবণের pH>7 হয় এবং প্রশামন বিন্দুর pH=8.8 হয়। প্রশামন বিন্দুর কাছাকাছি হঠাৎ pH মানের অধিক পরিবর্তনের ফলে p^H রেঞ্জ 8-10 হয়। এ p^H রেঞ্জ 8-10 এর মধ্যে বর্ণ পরিবর্তন ঘটে ফেনলফথ্যালিন [অথবা, থাইমল রু (ক্ষার)] নির্দেশকের। তাই মৃদু অসু ও তীব্র ক্ষারের টাইট্রেশনে উপযুক্ত নির্দেশক হলো ফেনলফথ্যালিন।

অপরদিকে মিথাইল অরেঞ্জ নির্দেশকের বর্ণ পরিবর্তনের pH রেঞ্জ হলো 3.1-4.4। তাই মৃদু অস্ত্র ও তীব্র ক্ষারের টাইট্রেশনে মিথাইল অরেঞ্জ উপযুক্ত নির্দেশক না হওয়ায় এটি ব্যবহৃত হয় না।

শিক্ষার্থীর প্রয়োগ দক্ষতা অর্জনভিত্তিক সমস্যা :

উদ্দীপক: 40 mL ডেসিমোলার MOH দ্রবণ (M এর পা: ভর = 39.1) দ্বারা 50 mL 1.26% HNO₃ দ্রবণকে টাইট্রেশনের জন্য উপযুক্ত নির্দেশক নির্বাচন লেখচিত্রের সাহায্যে তত্ত্বীয়ভাবে ব্যাখ্যা করো। [য. বো. ২০১৯]

৩.৮.১ এসিড-ক্ষারক প্রশমন বিক্রিয়াভিত্তিক গণনা

Calculation based on Acid-Base Neutralisation

এসিড ক্ষারক প্রশমন বিক্রিয়ার একটি সাধারণ উদাহরণ হলো ক্ষারধর্মী Na₂CO₃ এর সাথে HCl এসিডের বিক্রিয়া। এ বিক্রিয়ার সমতাযুক্ত সমীকরণ হলো:

2HCl (aq) + Na₂CO₃ (aq)
$$\longrightarrow$$
 2NaCl (aq) + CO₂ (g) + H₂O (l)
2 mol এসিড 1 mol ক্ষারক

ধরা যাক , 2 mol HCl এসিডের দ্রবণের আয়তন V_A হলে তখন মোলারিটি হয় M_A এবং $1 \text{ mol Na}_2\text{CO}_3$ ক্ষারকের দ্রবণের আয়তন V_B হলে তখন মোলারিটি হয় M_B । বিক্রিয়কের মোল সংখ্যা , দ্রবণের আয়তন ও মোলারিটি সম্পর্ক মতে লেখা হয় :

$$\frac{V_A \times M_A \, (HCl)}{V_B \times M_B \, (Na_2CO_3)} \, = \frac{2 \, \, mol \, \, HCl}{1 \, \, mol \, \, Na_2CO_3} \, \, ; \, \text{T}, \, 1 \times V_A \times M_A = 2 \times V_B \times M_B$$

এ সম্পর্কটিকে সাধারণভাবে লেখা হয়: aA (এসিড) + bB (ক্ষারক) \longrightarrow উৎপাদ

$$\cdot \frac{V_A imes M_A$$
 (এসিড) $V_B imes M_B$ (ক্ষারক) $= rac{a \; ($ এসিডের মোল সংখ্যা)}{b \; (ক্ষারকের মোল সংখ্যা)}; বা , $\left[rac{b V_A imes M_A = a imes V_B imes M_B}{b \; (a imes M_B imes M_B)}
ight]$

[অনুচ্ছেদ - ৩.১৩, পরীক্ষা নং এর শেষে টাইট্রেশন ডাটার গণনা দ্রষ্টব্য]

সমাধানকৃত সমস্যা-৩.৪০ : কোনো কস্টিক সোডা দ্রবণের $20~\mathrm{mL}$ -কে প্রশমিত করার জন্য $0.5~\mathrm{M}~\mathrm{H}_2\mathrm{SO}_4$ এসিডের $20.5~\mathrm{mL}$ প্রয়োজন । ঐ ক্ষার দ্রবণের মোলারিটি কত এবং তাতে প্রতি L আয়তনে কত গ্রাম কস্টিক সোডা আছে, তা নির্ণয় করো ।

দক্ষতা : এক্ষেত্রে এসিড ক্ষারের পূর্ণ প্রশমন ঘটেছে। তাই প্রশমন বিক্রিয়ার সূত্র প্রযোজ্য হবে।

সমাধান: H2SO4 ও NaOH-এর মধ্যে প্রশমন বিক্রিয়াটি নিমরূপ:

$$H_2SO_4$$
 (aq) + 2NaOH (aq) \longrightarrow Na₂SO₄ (aq) + 2H₂O (l)

সমীকরণ হতে এটি স্পষ্ট যে, 1 mol H2SO4 বিক্রিয়া করে 2 mol NaOH এর সাথে।

অম্র-ক্ষার প্রশমনের সূত্র মতে,

 $aM_BV_B = bM_AV_A$

$$\therefore M_B = \frac{bM_AV_A}{aV_B} = \frac{2 \times 0.5 \times 20.5}{1 \times 20}$$

 $= 1.025 \text{ mol L}^{-1}$

∴ NaOH দ্রবপের ঘনমাত্রা = 1.025 M

এখানে, ক্ষারের দ্রবণের ঘনমাত্রা, $M_B=?$ ক্ষারের দ্রবণের আয়তন, $V_B=20~\text{mL}$ দ্রবণে ক্ষারের মোল সংখ্যা, b=2 অন্মের দ্রবণের ঘনমাত্রা, $M_A=0.5~\text{molL}^{-1}$ অন্মের দ্রবণের আয়তন, $V_A=20.5~\text{mL}$ দ্রবণে অন্মের মোল সংখ্যা, a=1

আবার NaOH এর সংকেত ভর = 40

∴ 1 M NaOH এর 1 L দ্রবণে NaOH দ্রবীভূত থাকে = 40 g

∴ 1.025 M NaOH এর 1 L দ্রবণে NaOH থাকে = 40 × 1.025 g = 41.0 g

MCQ-3.18 : সবল এসিড ও দুর্বল ক্ষারের টাইট্রেশনে প্রশমন বিন্দুতে pH হয় কত?

(季) 7.0

(착) 8.8

(গ) 5.27

(旬) 6.11

উত্তর : NaOH এর দ্রবণের মোলারিটি = $1.025~{
m molL}^{-1}$ এবং প্রতি L দ্রবণে NaOH আছে = $41~{
m g}$ । সমাধানকৃত সমস্যা-৩.8১ : $500~{
m mL}$ আয়তনের ${
m H}_2{
m SO}_4$ দ্রবণে $49~{
m g}~{
m H}_2{
m SO}_4$ দ্রবীভূত আছে। উক্ত দ্রবণের $50~{
m mL}$ পরিমাণকে 10% NaOH দ্রবণ দ্বারা প্রশমিত করতে কী পরিমাণ NaOH দ্রবণ প্রয়োজন হবে?

দক্ষতা : প্রথমে এসিড ও ক্ষার দ্রবণের মোলারিটি নির্ণয় করতে হবে। এক্ষেত্রে প্রশমন বিক্রিয়ার সূত্র ব্যবহৃত হবে। সমাধান : প্রথমে H_2SO_4 দ্রবণ ও 10% NaOH দ্রবণের মোলার ঘনমাত্রা নির্ণয় করি।

(i) H_2SO_4 দ্রবণের লিটারে আয়তন = $\frac{500}{1000}~L=0.5~L$

দ্রবীভূত H_2SO_4 এর মোল সংখ্যা = $\frac{49 \text{ g}}{98 \text{ g mol}^{-1}}$ = 0.5 mol

$$\therefore \ H_2 SO_4$$
 দ্রবণের মোলার ঘনমাত্রা , $M_1 = \frac{H_2 SO_4}{\text{লিটারে দ্রবণের আয়্রতন}} = \frac{0.5 \ \text{mol}}{0.5 L} = 1 \ \text{mol} L^{-1}$

(ii) 10% NaOH দ্রবণের বেলায় এর 100 mL দ্রবণে 10 g NaOH থাকে।

$$\therefore$$
 লিটারে ঐ NaOH দ্রবণের আয়তন = $\frac{100}{1000}$ = 0.1 L

দ্ৰবীভূত NaOH এর মোল সংখ্যা =
$$\frac{10 \text{ g}}{40 \text{ g mol}^{-1}} = 0.25 \text{ mol}$$

$$\therefore$$
 NaOH দ্রবণের মোলার ঘনমাত্রা , $M_2=\frac{\text{NaOH এর মোল সংখ্যা}}{\text{লিটারে দ্রবণের আয়তন}}=\frac{0.25 \text{ mol}}{0.1 L}=2.5 \text{ mol}L^{-1}$

H2SO4 ও NaOH এর পূর্ণ প্রশমন বিক্রিয়ার সমীকরণ নিম্নরূপ :

$$H_2SO_4$$
 (aq) + 2NaOH (aq) \longrightarrow Na₂SO₄ (aq) + 2H₂O (l)

সমীকরণ মতে, পূর্ণ প্রশমনের বেলায়, 1 mol H2SO4 এর সাথে 2 mol NaOH বিক্রিয়া করেছে।

$$\therefore \frac{V_1 \times M_1 (H_2 SO_4)}{V_2 \times M_2 (NaOH)} = \frac{1 \text{ mol}}{2 \text{ mol}}$$

এখানে, H_2SO_4 এর আয়তন, $V_1 = 50 \text{ mL}$

 H_2SO_4 এর ঘনমাত্রা, $M_1=1~{
m mol}~{
m L}^{-1}$

NaOH দ্রবণের আয়তন, $V_2 = ?$

বা, $2 \times V_1 \times M_1 = 1 \times V_2 \times M_2$

বা ,
$$2 \times 50 \text{ mL} \times 1 \text{ molL}^{-1} = 1 \times V_2 \times 2.5 \text{ molL}^{-1}$$
 NaOH দ্রবণের ঘনমাত্রা , $M_2 = 2.5 \text{ mol L}^{-1}$ $\therefore V_2 = \frac{2 \times 50 \text{ mL} \times 1 \text{ mol L}^{-1}}{1 \times 2.5 \text{ mol L}^{-1}} = 40 \text{ mL}$

উত্তর : 40 mL NaOH দ্রবণ।

সমাধানকৃত সমস্যা-৩.৪২ : 25 mL NaOH দ্রবণকে প্রথমে 10 mL 0.1 M HCl দ্রবণ দ্বারা প্রশমিত করা হলো কিছু পূর্ণ প্রশমনের জন্য 0.15 M HCl দ্রবণের আরো 400 mL প্রয়োজন হলো। NaOH দ্রবণের ঘনমাত্রা কত?

দক্ষতা : এক্ষেত্রে NaOH দ্রবণকে প্রশমিত করার জন্য দুটি ভিন্ন মোলার ঘনমাত্রার HCl ব্যবহৃত হয়েছে। তাই প্রতিটি HCl দ্রবণ দ্বারা প্রশমিত NaOH এর মোল সংখ্যা বের করতে হবে।

সমাধান: NaOH দ্রবণ ও HCl দ্রবণের প্রশমন বিক্রিয়ার সমীকরণ নিমুরূপ:

$$HCl(aq)$$
 + $NaOH(aq)$ \longrightarrow $NaCl(aq) + $H_2O(l)$$

সমীকরণ মতে, 1 mol HCl = 1 mol NaOH

বা, 1000 mL 1 M HCl দ্ৰবণ = 1 mol NaOH

$$\therefore$$
 10 mL 0.1 M HCl দ্ৰবণ $\equiv \frac{1 \times 10 \times 0.1}{1000}$ mol NaOH $\equiv \boxed{0.001 \text{ mol NaOH}}$

আবার ২য় অবছায় পূর্ণ প্রশমনের বেলায়—

সমীকরণ মতে, 1 mol HCl = 1 mol NaOH

বা, 1000 mL 1 M HCl দ্ৰবণ = 1 mol NaOH

∴ 400 mL 0.15 M HCl দ্ৰবণ =
$$\frac{1 \times 400 \times 0.15}{1000}$$
 mol NaOH = $\boxed{0.06 \text{ mol NaOH}}$

∴ প্রশ্নমতে, 25 mL NaOH দ্রবণে বিশুদ্ধ NaOH আছে = (0.001 + 0.06) mol = 0.061 mol

বা, মোলারিটি,
$$M = \frac{0.061 \text{ mol}}{0.025 \text{ L}} = 2.44 \text{ mol}\text{L}^{-1}$$
 [: 25 mL = 0.025 L]

∴ NaOH দ্রবণের ঘনমাত্রা = 2.44 molL⁻¹ বা, 2.44 (M) (উত্তর)

সমাধানকৃত সমস্যা-৩.৪৩(১) : ১ম পাত্রে 200 mL 0.2M দিক্ষারকীয় অস্ত্র, ২য় পাত্রে 300 mL 0.3 M এক অস্ত্রীয় ক্ষার এবং ৩য় পাত্রে 50 mL 0.2M HNO3 দ্রবণ আছে। [চ. বো. ২০১৯]

- (ক) ৩য় পাত্রের দ্রবণের ঘনমাত্রা ppm এককে নির্ণয় করো।
- (খ) ১ম ও ২য় পাত্রের মিশ্র দ্রবণকে ৩য় পাত্রের দ্রবণ দ্বারা পূর্ণ প্রশমিত করা সম্ভব হবে কীনা, তা গাণিতিকভাবে বিশ্লেষণ করো।

সমাধান (ক) : ৩য় পাত্রের 0.2M HNO3 দ্রবণের ঘননাত্রা ppm এককে নির্ণয় :

$$0.2 \text{M HNO}_3$$
 এর ppm ঘনমাত্রা = $\frac{\text{দ্রবের মোল সংখ্যা (n)} \times \text{মোলার ভর (M_w)} \times 10^6}{1000}$ = $\frac{0.2 \text{ mol} \times 63 \text{ g mol}^{-1} \times 10^6}{1000}$ = 12600 ppm (উ:)

সমাধান-(খ): ১ম ও ২য় পাত্রের মিশ্র দ্রবণকে ৩য় পাত্রের দ্রবণ পূর্ণ প্রশমিত করবে কীনা?

দ্বিক্ষারকীয় অমু বলতে ২টি প্রতিস্থাপনীয় H পরমাণুযুক্ত অমু যেমন H_2SO_4 , H_2SO_3 , H_2CO_3 ইত্যাদিকে বোঝায়। এক অম্রীয় ক্ষার বলতে ১টি-OH মূলক যুক্ত ক্ষার NaOH, KOH, NH_4OH ইত্যাদিকে বোঝায়। সূতরাং ১ম ও ২য় পাত্রের অমু ও ক্ষারের মধ্যে পূর্ণ প্রশমন বিক্রিয়াটি হলো :

$$H_2SO_4 + 2NaOH \longrightarrow Na_2SO_4 + 2H_2O$$
1 mol 2 mol

প্রথমে প্রদত্ত দ্রবণের প্রতি ক্ষেত্রে অ<u>সু</u> ও ক্ষারের মোল সংখ্যা গণনা করতে হবে।

১ম পাত্রের বেশায়, $1000 \text{ mL } 0.2 \text{M } \text{H}_2 \text{SO}_4$ দ্রবণে অন্ন আছে = $0.2 \text{ mol } \text{H}_2 \text{SO}_4$

∴ 200 mL 0.2M
$$H_2SO_4$$
 দ্ৰবণে অমু আছে = $\frac{0.2 \times 200}{1000}$ = $0.04 \text{ mol } H_2SO_4$

২য় পাত্রের বেশায়, 1000 mL 0.3M NaOH দ্রবণে ক্ষার আছে = 0.3 mol NaOH

$$\therefore 300 \text{ mL } 0.3 \text{M NaOH দ্রবণে ক্ষার আছে} = \frac{0.3 \times 300}{3000} = \boxed{0.09 \text{ mol NaOH}}$$

উপরোক্ত প্রশমন বিক্রিয়া মতে, $1 \text{ mol } H_2SO_4 \equiv 2 \text{ mol } NaOH$

$$\therefore 0.04 \text{ mol H}_2\text{SO}_4 = 2 \times 0.04 = 0.08 \text{ mol NaOH}$$

∴ ২য় পাত্রের NaOH দ্বারা ১ম পাত্রের H₂SO₄ কে প্রশমিত করার মিশ্র দ্রবণে অতিরিক্ত NaOH রয়েছে

$$= (0.09 - 0.08) = 0.01 \text{ mol NaOH}$$

উদ্দীপক মতে, মিশ্র দ্রবণে থাকা NaOH কে প্রশমিত করার জন্য 50 mL 0.2M HNO3 দ্রবণ মিশানো হয়েছে। সুতরাং NaOH ও HNO3 এর মধ্যে পূর্ণ প্রশমন বিক্রিয়াটি হলো:

$$HNO_3 + NaOH \longrightarrow NaNO_3 + H_2O$$

 $1 mol$ $1 mol$

৩য় পাত্রের বেলায়, 1000 mL 0.2M HNO3 দ্রবর্ণে অমু আছে = 0.2 mol HNO3

$$\therefore 50 \text{ mL } 0.2 \text{M } \text{HNO}_3$$
 দ্ৰবণে অমু আছে $= \frac{0.2 \times 50}{1000} = \boxed{0.01 \text{ mol HNO}_3}$

ওপরের ২য় প্রশমন বিক্রিয়া মতে, 1 mol HNO3 ≡ 1 mol NaOH

.: ৩য় পাত্রের দ্রবলে থাকা 0.01 mol HNO3 দ্বারা মিশ্র দ্রবলে থাকা 0.01 mol NaOH পূর্ণ প্রশমিত হবে।

বিশ্রেষণ : উদ্দীপকে প্রদন্ত ১ম, ২য় ও ৩য় পাত্রের মিশ্র দ্রবণে অত্ন-ক্ষারের পূর্ণ প্রশমন ঘটেছে তা সংশ্রিষ্ট বিক্রিয়াভিত্তিক মোল অনুপাতের সম্পর্ক থেকে গাণিতিকভাবে প্রমাণিত হলো। ফলে ঐ মিশ্র দ্রবণটি একটি লিটমাস নিরপেক্ষ দ্রবণ হবে। এতে নীল ও লাল উভয় বর্ণের কোনো লিটমাসের বর্ণ পরিবর্তন ঘটবে না। অধিকছু pH মিটার দ্বারা পরীক্ষণে ঐ সবল এসিড-ক্ষারের মিশ্র-দ্রবণে pH=7.0 প্রদর্শিত হবে।

সদৃশ সমস্যা-১ 'A' পাত্রে 200 mL 0.1M H₂SO₄ দ্রবণ, 'B' পাত্রে 50 mL 0.5M Na₂CO₃ দ্রবণ এবং 'C' পাত্রে 40 mL 0.05M HCl দ্রবণ আছে।

(ক) 'B' পাত্রের দ্রবণের ঘনমাত্রা 0.01M এ রূপান্তর করতে কতটুকু পানি যোগ করতে হবে?

ডি: 2450 mL]

(খ) 'A', 'B' ও 'C' পাত্রের তিনটি দ্রবণকে একত্রে মিশ্রিত করলে মিশ্রণের প্রকৃতি কীরূপ হবে, তা গাণিতিকভাবে বিশ্লেষণ করো।

িউ: প্রদত্ত মিশ্রণটি ক্ষারীয় হবে। কারণ এতে H_2SO_4 আছে 0.020 mol, Na_2CO_3 আছে 0.025 mol, HCl আছে 0.002 mol । উভয় এসিড দ্বারা যথাক্রমে 0.02 mol ও 0.001 mol Na_2CO_3 প্রশমিত হয়। অবশিষ্ট Na_2CO_3 = (0.025-0.021)=0.004 mol মিশ্রণে থাকে।

সমাধানকৃত সমস্যা-৩.৪৩ (২) : 40 mL ডেসিমোলার MOH দ্রবণ (M-এর পাঃ ভর = 39) এবং 50 mL 1.26% HNO3 দ্রবণের মিশ্রণে 0.25 g CaCO3 যোগ করা হলো। এ মিশ্রণটির প্রকৃতি কীরূপ হবে, তা গাণিতিকভাবে বিশ্রেষণ করো।

সমাধান: উদ্দীপক মতে MOH হলো KOH ক্ষার দ্রবণ। উদ্দীপকের তথ্য অনুসারে HNO3 এসিডের সাথে প্রথমে KOH দ্রবণের প্রশমন বিক্রিয়া এবং শেষে অবশিষ্ট HNO3 এসিডের সাথে কঠিন $CaCO_3$ এর বিক্রিয়া ঘটবে। উভয় বিক্রিয়ায় সমীকরণভিত্তিক বিক্রিয়কের মোল অনুপাত অনুসারে গণনা করা হবে।

(১) KOH দ্রবণের বেশায় : 1000 mL 0.1M KOH দ্রবণে আছে = 0.1mol KOH

∴ 40 mL 0.1M KOH দ্রবণে আছে =
$$\frac{0.1 \times 40}{1000}$$
 = 0.004 mol KOH

(২) HNO₃ দ্রবণের বেশায় : 100 mL দ্রবণে HNO₃ আছে = $1.26 \text{ g} = \frac{1.26 \text{ g}}{63 \text{ g mol}^{-1}} = 0.02 \text{ mol HNO}_3$

$$\therefore$$
 50 mL দ্ৰবণে HNO₃ আছে = $\frac{0.02 \times 50 \text{ mol}}{100} = \boxed{0.01 \text{ mol HNO}_3}$

১ম প্রশমন বিক্রিয়া : KOH + HNO₃ → KNO₃ + H₂O₁ long 10.0 = (80.0 - 90.0) = 1 mol 1 mol

সমীকরণ মতে, 1 mol KOH ক্ষার দ্বারা প্রশমিত হয় = 1 mol HNO3 এসিড

∴ 0.004 mol KOH ক্ষার দ্বারা প্রশমিত হয় = 0.004 mol HNO3 এসিড ুক্ত তেনে ১ HO&A গ্রাহত

∴ মিশ্র দ্রবণে অবশিষ্ট HNO₃ এসিড থাকে = (0.01 – 0.004) mol = 0.006 mol HNO₃

আবার, CaCO3 ও HNO3-এর মধ্যে প্রশমন বিক্রিয়াটি হলো:

$$CaCO_3 + 2HNO_3 \longrightarrow Ca(NO_3)_2 + CO_2 + H_2O$$

1 mol 2 mol সমীকরণ মতে, 1 mol বা 100 g CaCO₃ দারা প্রশমিত হয় = 2 mol HNO₃ এসিড

∴ 0.25 g CaCO₃ দ্বারা প্রশমিত হয় =
$$\frac{2 \times 0.25 \text{ mol}}{100}$$
 = $\boxed{0.005 \text{ mol HNO}_3}$

∴ সর্বশেষ ঐ মিশ্রণটিতে অবশিষ্ট HNO3 এসিড থাকে = (0.006 – 0.005) mol = 0.001 mol HNO3

বিশ্লেষণ : মিশ্র দ্রবণের আয়তন = $(40+50)=90~\mathrm{mL}$ এবং এতে $0.001~\mathrm{mol}~\mathrm{HNO_3}$ এসিড আছে । সূতরাং মিশ্র দ্রবণটির প্রকৃতি হবে $\mathrm{HNO_3}$ এসিডের অশ্লীয় দ্রবণ এবং এ দ্রবণে নীল লিটমাস পেপার লাল হবে ।

এ
$$HNO_3$$
 এসিডের মিশ্র দ্রবণটির মোলার ঘনমাত্রা হবে $= \frac{0.001 \; mol}{0.09 \; L} = 0.011 M$

এবং pH = - log 0.011 = 1.96 হবে। (উ:)

সমাধানকৃত সমস্যা-৩.৪৩ (৩) : ১ম বিকারে 50 mL 0.5 M $m H_2XO_4$ এসিড দ্রবণে 2.45 g এসিড আছে । ২য় বিকারে 100 mL 0.5 M ঘনমাত্রার MOH ক্ষার দ্রবণ আছে ।

(ক) উদ্দীপকের H2XO4 এর আণবিক ভর নির্ণয় করো।

(খ) উদ্দীপকের উভয় বিকারকের দ্রবণ মিশ্রিত করলে মিশ্রণের প্রকৃতি কীরূপ হবে তা বিশ্রেষণ করো।

দক্ষতা : (১) H_2XO_4 হলো দ্বিক্ষারকীয় অক্সো এসিড। এর মোলারিটি (0.5M) ও দ্রবণে থাকা ভর $(2.45~\mathrm{g})$ দেয়া আছে। তাই মোলার ভর বের করা যায়। 🔍 🧦 🕬 🕬 🕬 🕬 🕬 🕒 🕒 🕒 🗥 🖂

(২) দ্বিতীয়ত এসিড-ক্ষারের প্রশমন বিক্রিয়ার সমীকরণ মতে মোল সম্পর্ক ব্যবহৃত হয়।

সমাধান : (ক) মোলারিটির সংজ্ঞা মতে:

$$H_2XO_4$$
 দ্রবণের মোলারিটি $= rac{H_2XO_4}{ ext{Prior}}$ এর মোল সংখ্যা $ext{Prior}$

$$\therefore 0.5 \text{ mol } L^{-1} = \frac{2.45 \text{ g/M}_{w}}{0.05 \text{ L}};$$

বা,
$$0.5 \text{ mol}L^{-1} \times 0.05 \text{ L} = \frac{2.45 \text{ g}}{M_w}$$
; দ্রবণের আয়তন = $50 \text{ mL} = 0.05 \text{ L}$

$$\boxed{\text{41, } M_{\text{w}} = \frac{2.45 \text{ g}}{0.5 \times 0.05 \text{ mol}} = 98 \text{ g mol}^{-1}} = 98 \text{ g mol}^{-1}}$$

∴ H_2XO_4 এর আণবিক ভর = 98 (উ:)

মোলারিটি = 0.5 mol L⁻¹ H₂XO₄ এর গৃহীত ভর = 2.45 g মোলার ভর, M_w=?

সমাধান: (খ) উভয় দ্রবণের মিশ্রণের প্রকৃতি নির্ণয় : এক্ষেত্রে প্রদত্ত এসিড ও ক্ষার দ্রবণে উপস্থিত প্রত্যেকের মোল সংখ্যা গণনা করতে হবে।

(i) 1000 mL 0.5 M H₂XO₄ দ্ৰবণে দ্ৰব আছে = 0.5 mol H₂XO₄ এসিড

$$\therefore 50 \text{ mL } 0.5 \text{ M } \text{H}_2 \text{XO}_4$$
 দ্ৰবণে দ্ৰব আছে = $\frac{0.5 \times 50 \text{ mol}}{1000} = \frac{0.025 \text{ mol } \text{H}_2 \text{XO}_4}{0.025 \text{ mol } \text{H}_2 \text{XO}_4}$

(ii) 1000 mL 0.5 M MOH ক্ষার দ্রবণে দ্রব আছে = 0.5 mol MOH ক্ষার ১৯৯ তালি পিএ = ১৯৯ টি

∴
$$100 \text{ mL } 0.5 \text{ M MOH}$$
 ক্ষার দ্রবণে দ্রব আছে $= \frac{0.5 \times 100 \text{ mol}}{1000} = \frac{0.05 \text{ mol MOH}}{0.05 \text{ mol MOH}}$

H2XO4 এসিড ও MOH ক্ষারের প্রশমন বিক্রিয়ার সমীকরণ হলো:

$$H_2XO_4$$
 + 2 MOH \longrightarrow M_2XO_4 + 2 H_2O

বিশ্লেষণ : উপরের সমীকরণে মোল অনুপাত ও গণনা মতে $1 \mod H_2XO_4$ এসিডকে পূর্ণ প্রশমিত করতে $2 \mod H_2XO_4$ MOH ক্ষার দরকার হয়। সুতরাং প্রদত্ত এসিড দ্রবণের $0.025~{
m mol}$ H_2XO_4 দ্রবণকে পূর্ণ প্রশমিত করতে $2 \times 0.025 =$ 0.05 mol MOH ক্ষার দ্রবণ দরকার হয়। প্রশ্নমতে, প্রদত্ত MOH ক্ষার দ্রবণে 0.05 mol MOH আছে তা গণনা মতে প্রতিষ্ঠিত। সুতরাং উভয় দ্রবণের মিশ্রণটি নিরপেক্ষ হবে। (উ:)

সদৃশ সমস্যা-১ ১ম পাত্রে 250 mL দ্রবণে 5.3 g Na₂CO₃ আছে এবং ২য় পাত্রে 10 mL 0.1M 'X' যৌগের দ্রবণ আছে $|X' + NH_3| \rightarrow$ সাদা ধোঁয়া |X'|সি. বো. ২০১৯]

(ক) ১ম পাত্রের দ্রবণের ঘনমাত্রা ppm এককে নির্ণয় করো।

[\$: 21200 ppm]

(খ) ১ম পাত্রের দ্রবণে ২য় পাত্রের দ্রবণ মিশালে মিশ্রণের প্রকৃতি p^H কেলের মাধ্যমে বিশ্লেষণ করো।

জি: Na₂CO₃ আছে 0.05 mol এবং HCl আছে 0.001 mol; মিশ্রণে HCl এর প্রশামনের পর 0.0495 mol Na2CO3 মিশ্রণের 260 mL দ্রবণে থেকে যায় অর্থাৎ মিশ্র দ্রবণে Na2CO3 এর ঘনমাত্রা 0.19M হয়। Na2CO3 দ্রবণ ক্ষারীয় হওয়ায় দ্রবণের $p^H > 7$ হবে। উল্লেখ্য এর প্রকৃত p^H মান গণনা জটিল।]

সমাধানকৃত সমস্যা-৩.88 : 12 g CaCO_3 কে HCl এসিডে দ্রবীভূত করলে যে পরিমাণ CO $_2$ গ্যাস নির্গত হয়, একে সম্পূর্ণরূপে Na_2CO_3 এ পরিণত করতে 650 mL কম্টিক সোড়া দ্রবণের প্রয়োজন হয়। ক্ষারক দ্রবণের ঘনমাত্রা মোলারিটিতে কত হবে?

দক্ষতা : দুটি সমীকরণ থেকে সংশ্লিষ্ট যৌগের মোল পরিমাণ হিসাবে গণনা করা হয়।

সমাধান : CaCO3 এর সাথে HCl এর বিক্রিয়ায় CO2 গ্যাস উৎপন্ন হয়। উৎপন্ন CO2 গ্যাস ও NaOH দ্রবণের বিক্রিয়ায় Na₂CO₃ উৎপন্ন হয়। উভয় বিক্রিয়ার সমীকরণ নিম্নরূপ :

MCQ-3.19: 100 mL 0.1M Na₂CO₃ এর জন্য কতটুকু দ্রব প্রয়োজন? (ক) 1.06 g (খ) 1.22 g (গ) 1.57 g (ঘ) 1.84 g

 \therefore 12 g CaCO₃ থেকে উৎপন্ন হয় $\frac{1 \times 12}{100}$ mol CO₂ গ্যাস = $\boxed{0.12 \text{ mol CO}_2 \text{ গ্যাস}}$

আবার দ্বিতীয় সমীকরণ মতে, 1 mol CO2 গ্যাস ≡ 2 mol NaOH

 0.12 mol CO_2 গ্যাস = $2 \times 0.12 \text{ mol NaOH} = 0.24 \text{ mol NaOH}$

প্রশ্নমতে, 650 mL দ্রবণে 0.24 mol NaOH দ্রবীভূত আছে।

$$\therefore 1 \text{ L}$$
 বা, 1000 mL দ্ৰবণে $\frac{0.24 \times 1000}{650} \text{ mol NaOH} = 0.3692 \text{ mol NaOH}$ দুবীভূত আছে।

∴ **উত্তর** : क्षांत्रक मुवर्णित মোলার ঘনমাত্রা হবে = 0.37 M (প্রায়)।

সমাধানকৃত সমস্যা-৩.৪৫ : 50 mL 0.3 M দিক্ষারীয় এসিডের দ্রবণে 200 mL 0.2 M MOH ক্ষার দ্রবণ (M এর পা. ভর = 39) মিশ্রিত করা হলো। মিশ্রিত দ্রবণ প্রশমিত হবে কি? মিশ্রণের প্রকৃতি pH গণনার মাধ্যমে বিশ্লেষণ করো।

দক্ষতা : বিক্রিয়ায় পূর্ণ প্রশমনের কথা বলা হয় নি। তাই প্রথমে প্রদত্ত এসিড দ্রবণ ও ক্ষার দ্রবণে থাকা দ্রবের মোল সংখ্যা বের করতে হবে। দ্বিতীয়ত এসিড-ক্ষারের প্রশমন বিক্রিয়ার সমীকরণ মতে উভয়ের মোল সম্পর্ক ব্যবহৃত হবে।

সমাধান : প্রশ্নমতে ক্ষারের M-এর পা. ভর = 39। তাই MOH হলো KOH দ্রবণ

দ্বিক্ষারীয় এসিডের 1000 mL 0.3 M দ্রবণে এসিড থাকে = 0.3 mol এসিড

$$:$$
 " 50 mL 0.3 M দ্রবণে এসিড থাকে = $\frac{0.3 \times 50 \text{ mol}}{1000}$ = 0.015 mol

আবার, KOH ক্ষারের 1000 mL 0.2 mol M দ্রবণে KOH থাকে = 0.2 mol KOH

$$\therefore$$
 KOH ক্ষারের 200 mL 0.2 mol M দ্রবণে KOH থাকে = $\frac{0.2 \times 200 \text{ mol}}{1000}$ = $\boxed{0.04 \text{ mol}}$

মনে করি, দ্বিক্ষারকীয় এসিডটি হলো H_2SO_4 । সুতরাং H_2SO_4 ও KOH এর মধ্যে বিক্রিয়াটি হলো : H_2SO_4 (aq) + 2KOH (aq) $\longrightarrow K_2SO_4$ (aq) + $2H_2O$ (I)

1 mol 2 mol

উপরের গণনা মতে, H_2SO_4 এর mol সংখ্যা কম আছে। তাই লিমিটিং বা সীমিত বিক্রিয়কের নিয়ম মতে, H_2SO_4 এর মোল সংখ্যা প্রথমে ব্যবহৃত হবে।

সমীকরণ মতে, 1 mol H2SO4 প্রশমিত করে = 2 mol KOH

∴ 0.015 mol H_2SO_4 প্রশমিত করে = (2×0.015) mol = 0.03 mol KOH

- \therefore প্রশ্নমতে, H_2SO_4 কে প্রশমনের পর মিশ্র দ্রবণে অতিরিক্ত KOH থাকে = (0.04-0.03)~mol = 0.01~mol বর্তমানে এসিড-ক্ষার মিশ্র দ্রবণের মোট আয়তন = (50+200)~mL = 250~mL
- \therefore H_2SO_4 এর প্রশমনের পর অতিরিক্ত KOH এর ঘনমাত্রা $= \frac{KOH}{\text{mil}}$ এর মোল সংখ্যা $= \frac{0.01}{0.250 \, \text{L}} = 0.04 \, (\text{M})$
- ∴ মিশ্র দ্রবণে KOH এর pH = (14 pOH) = 14 (− log [OH]) = 14 – (− log 0.04) = (14 – 1.39) = 12.61

বিশ্লেষণ : মিশ্রিত এসিড-ক্ষার দ্রবণ পূর্ণ প্রশমিত হয় নি । H_2SO_4 দ্রবণ KOH দ্রবণ দ্বারা প্রশমিত হলেও অতিরিক্ত KOH মিশ্র দ্রবণে থেকে যাওয়ায় মিশ্রিত দ্রবণের প্রকৃতি হলো ক্ষারীয় । এ ক্ষার দ্রবণের ঘনমাত্রা হলো 0.04 (M) এবং pH মান হলো 12.61 ।

সদৃশ সমস্যা-১ 'A' পাত্ৰে 250 mL 5% H₂SO₄ দ্ৰবণ এবং 'B' পাত্ৰে 250 mL 0.1M NaOH দ্ৰবণ আছে।

- (क) 'A' পাত্রের দ্রবণের ঘনমাত্রা ppm এককে নির্ণয় করো। ডি: 50000 ppm]
- (খ) 'A' ও 'B' পাত্রের দ্রবণ একত্রে মিশ্রিত করলে মিশ্রণের p^H কত হবে?

ডি: অম্লীয় pH = 0.34 হবে। কারণ দ্রবণে $0.1275 \text{ mol } H_2SO_4$ আছে এবং ক্ষার দ্রবণে 0.025 mol NaOH আছে। মিশ্র দ্রবণে অবশিষ্ট $0.115 \text{ mol } H_2SO_4$ থাকে; H_2SO_4 দ্রবণটি 0.23 M হয়।]

সমাধানকৃত সমস্যা-৩.৪৬ : $100 \text{ mL } 0.5 \text{ M } \text{H}_2\text{SO}_4$ এসিডের মধ্যে 200 mL 0.2 g NaOH মিশ্রিত করা হলো । মিশ্রণের প্রকৃতি কীরূপ হবে এবং মিশ্র দ্রবণের <math> pH মান গণনা করো । $[\phi$, বো. ২০১৬]

দক্ষতা : প্রশ্নমতে এসিড ও ক্ষার মিশ্রণটিতে পূর্ণ প্রশমনের কথা বলা হয় নি। তাই এসিড ও ক্ষার দ্রবণের প্রতি ক্ষেত্রে থাকা মোল সংখ্যা গণনা করতে হবে। পরে সমীকরণভিত্তিক মোল অনুপাত থেকে মিশ্র দ্রবণের প্রকৃতি জানা যাবে।

সমাধান : প্রদত্ত এসিড দ্রবণ ও ক্ষার দ্রবণে H2SO4 ও NaOH এর মোল সংখ্যা গণনা :

 $1000 \text{ mL } 0.5 \text{ M } \text{H}_2 \text{SO}_4$ দ্ৰবণে দ্ৰবীভূত আছে = $0.5 \text{ mol } \text{H}_2 \text{SO}_4$

$$\therefore 100 \text{ mL } 0.5 \text{ M } \text{H}_2\text{SO}_4$$
 দ্ৰবণে দ্ৰবীভূত আছে $=\frac{0.5 \times 100}{1000} \text{ mol} = \boxed{0.05 \text{ mol } \text{H}_2\text{SO}_4}$

আবার 200 mL দ্রবণে
$$0.2 \text{ g NaOH}$$
 দ্রবীভূত আছে $= \frac{0.2 \text{ g}}{\text{NaOH}}$ এর গ্রা. আ. ভর $= \frac{0.2 \text{ g}}{40 \text{ g mol}^{-1}}$ $= \boxed{0.005 \text{ mol NaOH}}$

H₂SO₄ এসিড ও NaOH ক্ষার দ্রবণের প্রশমন বিক্রিয়ার সমীকরণ হলো:

$$H_2SO_4$$
 (aq) + 2NaOH (aq) \longrightarrow Na₂SO₄ (aq) + 2H₂O (*l*).
1 mol 2 mol

উপরের গণনা মতে NaOH এর মোল সংখ্যা কম আছে। তাই লিমিটিং বা সীমিত বিক্রিয়কের নিয়ম মতে, NaOH এর মোল সংখ্যা প্রথমে বিবেচিত হবে।

সমীকরণ মতে, 2 mol NaOH প্রশমিত করে = 1 mol H_2SO_4

∴ 0.005 mol NaOH প্রশমিত করে =
$$\frac{(1 \text{ mol} \times 0.005)}{2}$$
 = 0.0025 mol H₂SO₄

∴ প্রশ্নমতে. NaOH কে প্রশমনের পর মিশ্র দ্রবণে অডিরিক্ত H2SO4 থাকে = (0.05 – 0.0025) mol $= 0.0475 \text{ mol H}_2SO_4$

বর্তমানে এসিড-ক্ষার মিশ্র দবণের মোট আয়তন = (100 + 200) mL = 300 mL

∴ NaOH এর প্রশমনের পর অতিরিক্ত H₂SO₄ এর ঘনমাত্রা = H₂SO₄ এর মোল সংখ্যা লিটারে দবণের আয়তন $=\frac{0.0475 \text{ mol}}{0.300 \text{ J}} = 0.158 \text{ (M)}$

আবার 0.158 (M) H_2SO_4 থেকে (2×0.158) mol H^+ উৎপন্ন হবে।

∴ মিশ্রণ দ্রবণে H₂SO₄ এর pH = -log[H⁺] = -log (2 × 0.158) = 0.50

বিশ্লেষণঃ মিশ্রিত এসিড-ক্ষার দ্রবণ পূর্ণ প্রশমিত হয়নি। NaOH দ্রবণটি H₂SO₄ দ্রবণ দ্বারা প্রশমিত হলেও অতিরিক্ত H2SO4 মিশ্র দ্রবণে থেকে যাওয়ায় মিশ্রিত দ্রবণের প্রকৃতি হলো অম্রীয়। এ অম্রীয় দ্রবণের ঘনমাত্রা হলো 0.158 M এবং pH মান হলো 0.50।

সমাধানকৃত সমস্যা-৩.৪৭ : নিচের উদ্দীপকভিত্তিক সংশ্লিষ্ট সমস্যা সমাধান করো। মাদ্রাসা বোর্ড (-ক)-২০১৮]

65 mL

0.15 M

KOH

D-পাত্ৰ

25 mL

0.1 M

C-পাত্ৰ

H2SO4

- (ক) উদ্দীপকের C পাত্রের দ্রবণ তৈরিতে প্রয়োজনীয় H2SO4 এর পরিমাণ হিসাব করো।
- (খ) উদ্দীপকের C ও D পাত্রের দ্রবণদ্বয়কে মিশ্রণের ফলে সৃষ্ট মিশ্রিত দ্রবণের প্রকৃতি কীরূপ হবে তা বিশ্রেষণ করো।

সমাধান : (ক) প্রয়োজনীয় H_2SO_4 এর পরিমাণ গণনা :

 H_2SO_4 এর মোলারিটি = $\frac{H_2SO_4}{\text{লিটারে দ্রবণের আয়তন}}$

প্রশ্নমতে, H_2SO_4 এর মোলারিটি = 0.1 moL^1

দ্রবণের আয়তন = 0.025 L

মোল সংখ্যা, n = ?

বা,
$$0.1 \text{ mol } L^{-1} = \frac{n}{0.025 \text{ L}}$$

 $\sqrt{1}$, n = 0.1 × 0.025 mol = 0.0025 mol

আমরা জানি, 1 mol H₂SO₄ = 98 g H₂SO₄

∴ 0.0025 mol H₂SO₄ = 98 × 0.0025 g = 0.245 g H₂SO₄ (উত্তর)

বিকল্প গণনা: আমরা জানি, মোলারিটির সংজ্ঞা মতে,

1000 mL 1 M H₂SO₄ দ্ৰবলে থাকে =1 mol H₂SO₄ = 98 g H₂SO₄

∴ 25 mL 0.1 M H_2SO_4 দ্রবণে থাকে = $\frac{98 \times 25 \times 0.1}{1000 \times 1}$ g = 0.245 g H_2SO_4

সূতরাং প্রয়োজনীয় H_2SO_4 এর পরিমাণ = 0.245 g H_2SO_4 (উত্তর)

সমাধান : (খ) মিশ্রিত দ্রবণের প্রকৃতি বিশ্লেষণ :

প্রশ্নমতে, 25 mL 0.1 M H₂SO₄ দ্রবণের সাথে 65 mL 0.15 M KOH দ্রবণ মিশ্রিত করা হয়েছে। H₂SO₄ এসিডের সাথে KOH ক্ষারের প্রশমন বিক্রিয়াটি নিমুরূপ:

$$H_2SO_4 + 2KOH \rightarrow K_2SO_4 + 2H_2O$$

প্রশ্নমতে, এক্ষেত্রে পূর্ণ প্রশমনের কথা বুলা হয়নি। তাই এসিড ও ক্ষার দ্রবণে প্রতি ক্ষেত্রে থাকা মোল সংখ্যা গণনা করতে হবে। পরে উপরের সমীকরণভিত্তিক মোল অনুপাত থেকে মিশ্র দ্রবণের প্রকৃতি জানা যাবে।

(i) मुवर्ण H2SO4 अब स्थान मश्था गणना :

 $1000 \text{ mL} \ 0.1 \text{ M} \ \text{H}_2 \text{SO}_4$ দ্রবণে আছে = $0.1 \text{ mol H}_2 \text{SO}_4$

$$\therefore$$
 25 mL 0.1 M H₂SO₄ দ্ৰবণে আছে = $\frac{0.1 \times 25}{1000}$ mol = $\boxed{0.0025 \text{ mol H}_2\text{SO}_4}$

(ii) দ্রবণে KOH এর মোল সংখ্যা গণনা :

1000 mL 0.15 M KOH দ্ৰবণে আছে = 0.15 mol KOH

$$\therefore$$
 65 mL 0.15 M KOH দ্ৰবণে আছে = $\frac{0.15 \times 65}{1000}$ mol = $\boxed{0.00975 \text{ mol KOH}}$

উপরের সমীকরণ মতে $1 \text{ mol } H_2SO_4$ এর পূর্ণ প্রশমনের জন্য 2 mol KOH প্রয়োজন হয়। এক্ষেত্রে ওপরের গণনা থেকে সুস্পষ্ট $0.0025 \text{ mol } H_2SO_4$ এর পূর্ণ প্রশমনের জন্য $0.0025 \times 2 \text{ mol} = 0.005 \text{ mol } KOH$ প্রয়োজন। কিন্তু প্রদত্ত KOH দ্রবণে 0.00975 mol KOH আছে অর্থাৎ (0.00975 - 0.005) mol = 0.00475 mol KOH বেশি আছে।

সুতরাং মিশ্রিত দ্রবণের প্রকৃতি হবে <mark>ক্ষারীয়।</mark>

সমাধানকৃত সমস্যা-৩.৪৮ : নিচের উদ্দীপকভিত্তিক সংশ্লিষ্ট সমস্যা সমাধান করো।

[চ. বো. ২০২৩]

(ক) 'A' ও 'B' পাত্রের দ্রবণ দুটির মিশ্রণের ঘনমাত্রা কত হবে?

40 mL 0.5 M HCI দ্ৰবণ HCI দ্ৰবণ পাত্ৰ-A পাত্ৰ-B

(খ) 'B' পাত্রের দ্রবণে 10 mL 5% (w/v) NaOH দ্রবণ যোগ করতে মিশ্র দ্রবণের প্রকৃতি কেমন হবে? গাণিতিকভাবে বিশ্লেষণ করো।

সমাধান : (ক) মিশ্র দ্রবণের ঘনমাত্রা নির্ণয় : প্রথমে 'A' ও 'B' পাত্রের উভয় দ্রবণকে তুল্য 1M দ্রবণে পরিণত করা হবে । পরে দ্রবণের লঘুকরণ সম্পর্ক $V_1M_1=V_2M_2$ প্রয়োগ করা হবে ।

পাত্র-A এর $40~\text{mL}~0.5~\text{M}~\text{HCl} \equiv 40 \times 0.5~\text{mL}~1~\text{M}~\text{HCl} \equiv 20~\text{mL}$ তুল্য 1M~HCl দ্রবণ পাত্র-B এর $50~\text{mL}~2.5~\text{M}~\text{HCl} \equiv 50 \times 2.5~\text{mL}~1~\text{M}~\text{HCl} \equiv 125~\text{mL}$ তুল্য 1M~HCl দ্রবণ

∴ তুল্য 1M HCl দ্রবণের মোট আয়তন, $V_1 = (20 + 125) \, \text{mL} = 145 \, \text{mL} \, 1 \, \text{M}$ HCl দ্রবণ

A ও B পাত্রের মিশ্র দ্রবণের প্রকৃত আয়তন, $V_2 = (40 + 50) \text{ mL} = 90 \text{ mL}$, ঘনমাত্রা, $M_2 = ?$

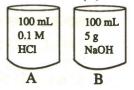
তুল্য মিশ্র দ্রবণে মোল অনুপাত সম্পর্ক মতে ,
$$V_1M_1=V_2M_2$$
 ; $M_2=\frac{V_1M_1}{V_2}=\frac{145\times 1}{90}=1.61~M$

- ∴ A ও B দ্রবণ দুটির মিশ্রণের ঘনমাত্রা = 1.61 M

$$\therefore$$
 দ্রবণের মোলারিটি , $M=rac{ ext{মোল সংখ্যা}}{ ext{দ্রবণের আয়তন লিটারে}}=rac{50/40}{1~L}=1.25~ ext{mol L}^{-1}$

HCl ও NaOH এর প্রশমন বিক্রিয়ার সমীকরণ, HCl + NaOH —→ NaCl + H2O

∴ 1 mol HCl = 1 mol NaOH; পূর্ণ প্রশমনের বেলায়, V_1M_1 (HCl) = V_2M_2 (NaOH)


বা,
$$50 \times 2.5 = 1.25 \times V_2$$
; $V_2 = \frac{50 \times 2.5}{1.25} = 100 \text{ mL NaOH}$

বিশ্লেষণ: প্রশ্নমতে 50 mL 2.5 M HCl দ্রবণকে পূর্ণ প্রশনের জন্য 100 mL 1.25 M বা, 5%(w/v) NaOH দ্রবণ প্রয়োজন হবে। এক্ষেত্রে NaOH এর পরিমাণ 10 mL অর্থাৎ কম হওয়ায় B পাত্রে মিশ্রিত HCl ও NaOH এর মিশ্রণে অধিক HCl থাকে; তাই মিশ্রণের প্রকৃতি অশ্লীয় হবে।

সমাধানকৃত সমস্যা-৩.৪৯ : নিচের উদ্দীপকভিত্তিক সংশ্লিষ্ট সমস্যা সমাধান করো।

মা. বো. (খ)-২০১৮)

- (ক) উদ্দীপকের 'B' পাত্রের দ্রবণের ঘনমাত্রা ppm এককে কত হবে তা নির্ণয় করো।
- (খ) উদ্দীপকের 'A' ও 'B' পাত্রের উভয় দ্রবণকে মিশ্রিত করে প্রাপ্ত মিশ্র দ্রবণের pH মান 7 পেতে কী করতে হবে তা গাণিতিক বিশ্লেষণ করো।

সমাধান : (ক) NaOH দ্রবণের ঘনমাত্রা ppm এককে নির্ণয়

দ্রবের ppm ঘনমাত্রা (w/v) = $\frac{দ্রবের ভর (g) \times 10^6}{$ দ্রবেণর আয়তন (mL)

্র বের ppin বন্ধারা (W/V) — দ্রবণের আয়তন (mL) $\therefore \text{ NaOH এর ppm ঘনমারা} = \frac{5 \text{ g} \times 10^6}{100 \text{ mL}}$

প্রশ্নমতে,

দ্রবের ভর = 5 g (কঠিন NaOH)

দ্রবণের আয়তন = 100 mL

 $= 5 \times 10^4 \text{ ppm} = 50000 \text{ ppm}$ (উত্তর)
সমাধান : (খ) উদ্দীপকের \mathbf{A} ও \mathbf{B} এর মিশ্র দ্রবণের $\mathbf{pH} = 7$ কীরূপে করা সম্ভব :

উদ্দীপকের A দ্রবণটি হলো সবল এসিড HCl এর এবং B দ্রবণটি হলো সবল ক্ষার NaOH এর। উভয়ের মোল অনুপাতে পূর্ণ প্রশমনের পর প্রাপ্ত মিশ্র দ্রবণের pH মান 7 হবে। প্রশমন বিক্রিয়াটি হলো নিমুরূপ:

$$HCl + NaOH \longrightarrow NaCl + H_2O$$
1 mol 1 mol

সমীকরণ মতে 1 mol HCl এর দ্রবণ 1 mol NaOH-এর দ্রবণকে পূর্ণ প্রশমিত করবে এবং এরা উভয়ে সবল এসিড ও সবল ক্ষার হওয়ায় প্রশমন মিশ্রণটির pH মান 7 হবে।

এখন A ও B দ্রবণের প্রতি ক্ষেত্রে উপস্থিত মোল পরিমাণ গণনা করতে হবে।

(i) HCl দ্রবণের মোল পরিমাণ গণনা :

1000 mL 0.1 M HCl দ্ৰবণে আছে = 0.1 mol HCl

- $\therefore 100 \text{ mL } 0.1 \text{ M } \text{ HCl দ্রবণে আছে} = \frac{0.1 \times 100}{1000} \text{ mol} = \boxed{0.01 \text{ mol HCl}}$
- (ii) NaOH দ্রবণের পরিমাণ মোল গণনা :

NaOH এর গ্রাম-আণবিক ভর = 40 g mol^{-1}

- ∴ 5 g NaOH এর মোল পরিমাণ = $\frac{5 \text{ g}}{40 \text{ g mol}^{-1}}$ = 0.125 mol NaOH
- ∴ 100 mL NaOH দ্রবণে NaOH আছে 5 g = 0.125 mol NaOH

সূতরাং পূর্ণ প্রশমন বিক্রিয়ার সমীকরণ মতে 1 mol HCl কে 1 mol NaOH পূর্ণ প্রশমিত করে। প্রদত্ত উদ্দীপক মতে 0.01 mol HCl এর সাথে 0.125 mol NaOH মিশানো হয়েছে। মিশ্রণে NaOH বেশি আছে = (0.125 – 0.01) mol = 0.115 mol NaOH; অর্থাৎ পূর্ণ প্রশমনের জন্য ঐ মিশ্র দ্রবণে আরো 0.115 mol HCl এসিড মিশানো প্রয়োজন হবে। আমরা জানি, 0.1 mol HCl আছে 1000 mL প্রদত্ত HCl দ্রবণে।

∴
$$0.115 \text{ mol HCl}$$
 আছে = $\frac{1000 \times 0.115}{0.1} \text{ mL} = 1150 \text{ mL}$ প্রদত্ত দ্রবণে

সিদ্ধান্ত: উদ্দীপকের A ও B পাত্রের উভয় দ্রবণকে মিশ্রিত করার পর প্রাপ্ত মিশ্র দ্রবণের pH মান 7 পেতে হলে ঐ মিশ্র দ্রবণের মধ্যে অতিরিক্ত 0.115 mol NaOH কে পূর্ণ প্রশমনের জন্য প্রদত্ত 0.1 M HCl এসিডের আরো 1150 mL মিশাতে হবে।

সদৃশ সমস্যা-১ 'A' পাত্রে 50 mL দ্রবণে 0.6 g NaOH আছে এবং 'B' পাত্রে 50 mL 0.5M HCl দ্রবণ আছে।

- (ক) উদ্দীপকের 'A' পাত্রের দ্রবণের ঘনমাত্রা নির্ণয় কর। ডি: 0.3M]
- (খ) 'A' ও 'B' পাত্রের মিশ্র দ্রবণে কোনো পিটমাস পেপারের বর্ণ পরিবর্তন হবে কি-না গাণিতিকভাবে বিশ্লেষণ করো।

্ডি: মিশ্রণটিতে নীল লিটমাস লাল হবে। কারণ NaOH এর প্রশমনের পরও মিশ্র দ্রবণে 0.01 mol HCl থাকায় দ্রবণটির ঘনমাত্রা 0.1M HCl হয়েছে।

সদৃশ সমস্যা-২ 'A' পাত্রে 150 mL 0.1M दिक्ষারকীয় অমু দ্রবণ এবং 'B' পাত্রে 0.04 M ঘনমাত্রার 600 mL MOH দ্রবণ (M এর পা. ভর = 39) আছে।

- (क) 'B' পাত্রের দ্রবণের ঘনমাত্রা ppm এককে নির্ণয় করো। ডি: 2240 ppm]
- (খ) 'A' ও 'B' পাত্রের মিশ্র দ্রবণটি কোন প্রকার লিটমাস পেপারের বর্ণ পরিবর্তন করবে, তা বিশ্লেষণ করো।

্ডি: নীল লিটমাসকে লাল করবে। কারণ অস্ত্র আছে 0.015 mol; KOH আছে 0.024 mol, যা দ্বারা 0.012 mol H_2SO_4 প্রশমিত হয়। তাই মিশ্রণে 0.003 mol H_2SO_4 থাকায় এটি 0.004 M H_2SO_4 দ্ববণ হবে।

শিক্ষার্থী নিজে করো-৩.৯ : এসিড-ক্ষার প্রশমন বিক্রিয়াভিত্তিক সমীকরণ মতে

$$rac{V_1 imes M_1$$
(এসিড)}{V_2 imes M_2 (ক্ষারক) = $rac{a}{}$ ক্ষারকের মোল সংখ্যা (b)

সমস্যা-৩.৪২ : নিচের এসিড ও ক্ষার যুগলের প্রশমন বিক্রিয়ার সমতাযুক্ত নিট আয়নিক সমীকরণ লেখ। প্রশমন বিন্দুতে pH এর মান 7 এর কম না বেশি হবে? রসায়ন -১ম পত্রের পরিশিষ্ট- ক থেকে এসিড ও ক্ষারের K_a ও K_b জেনে নাও। (ক) HNO_2 ও KOH; (খ) HBr ও NH_3 (গ) $HCIO_4$ ও KOH

সমস্যা-৩.৪৩(ক) : Na₂CO₃ এর 25 mL দ্রবণকে প্রশমিত করতে 10.2 mL. 0.05 M H₂SO₄ প্রয়োজন হয়। ঐ Na₂CO₃ দ্রবণের মোলারিটি কত?

সমস্যা-৩.৪৩ (খ) : কস্টিক সোডার 20 mL দ্রবণকে প্রশমিত করতে 20.5 mL 0.5 M H2SO4 প্রয়োজন হয়। ঐ ক্ষার দ্রবণের মোলারিটি এবং প্রতি লিটার দ্রবণে NaOH এর ভর গণনা করো। ডি: 1.025 M; 41 g]

সমস্য-৩.৪৩(গ): 750 mL M/4 H₂SO₄ কে প্রশমিত করতে কত লিটার ডেসিমোলার কস্টিক সোডা প্রয়োজন হবে?

সমস্যা-৩.৪৩(ছ) : কোনো নির্দিষ্ট আয়তনের M/20 H₂SO₄ দ্বারা সমআয়তনের কত মোলার NaOH দ্রবণকে পূর্ণ প্রশমিত করা যাবে? সমস্যা-৩.৪৩(%) : 1 L M/20 H₂SO₄ দ্রবণকে প্রশমিত করতে 5% অনার্দ্র Na₂CO₃ দ্রবণের কত আয়তন ডি: 0.106 L] সমস্যা-৩.৪৩(চ) : 25 mL 1.0 M Na₂CO₃ দ্রবণকে গ্রশমিত করতে 20 mL H₂SO₄ দ্রবণের প্রয়োজন হয়। ডি: 1.25 MT এসিডের ঘনমাত্রা কত? সমস্যা-৩.88(ক): 50 mL সেমিমোলার H_2SO_4 এবং 100 mL ডেসিমোলার NaOH দ্রবণ মিশালে ঐ মিশ্রণটি ডি: অশ্রীয়; ঘনমাত্রা = 0.133 M] অশীয় হবে না ক্ষারীয় হবে? মিশ্রণটির ঘনমাত্রা নির্ণয় করো। সমস্যা-৩.88(খ): 'A' পাত্রে 10 mL দ্রবণে 0.4 g NaOH এবং 'B' পাত্রে 25 mL 0.05 M HCl দ্রবণ আছে। উভয় পাত্রের দ্রবণকে মিশ্রিত করলে মিশ্রণের প্রকৃতি কীরূপ হবে তা গাণিতিকভাবে বিশ্লেষণ করো। টি: ক্ষারীয়; 0.01 mol NaOH এর জন্য 0.01 mol HCl প্রয়োজন; কিছু HCl আছে 0.00125 mol] সমস্যা-৩.88(গ): 50 mL 0.3 M দ্বিক্ষারীয় অমু (যেমন H₂SO₄) এর দ্রবণ দ্বারা 200 mL 0.2 M MOH দ্রবণ পূর্ণ প্রশমিত হবে কি? গাণিতিকভাবে তা বিশ্লেষণ করো। এক্ষেত্রে MOH এর M এর পা. ভর = 39। দি বো. ২০১৯: সি. বো. ২০১৫ ডি: MOH হলো KOH; মিশ্রিত দ্রবণ ক্ষারীয় হবে। কারণ এক্ষেত্রে 0.015 mol অম্লের জন্য 0.03 mol [সমাধানকৃত সমস্যা-৩.৪৫ দেখো] KOH দরকার; কিন্তু ক্ষার আছে 0.04 mol] সমস্যা-৩.88(घ) : 'A' পাত্রে 10% H2SO4 দ্রবণের 500 mL আছে। 'B' পাত্রে NaOH এর 500 mL সি বো ২০১৬ সেমিমোলার দ্রবণ আছে। (ক) 'A' পাত্রে কী পরিমাণ পানি মিশালে তা সেমিমোলার দ্রবণে পরিণত হবে? ডি. 520 mL পানি] (খ) 'A' ও 'B' পাত্রের দ্রবণকে একত্রে মিশালে ঐ মিশ্রিত দ্রবণের প্রকৃতি কী হবে; তা গাণিতিকভাবে মূল্যায়ন করো। উ: অশ্রীয় হবে. H2SO4 বেশি আছে সমস্যা-৩.88(%) : ১ম বিকারে 50 mL 0.5 M H₂X()₄ এসিডের দ্রবণে 2.45 g এসিড দ্রবীভূত আছে। ২য় দি, বো.২০১৬ বিকারে 100 mL 0.5 M ঘনমাত্রার MOH ক্ষার দ্রবণ আছে। (ক) উদ্দীপকের ${
m H}_2{
m XO}_4$ এর আণবিক ভর নির্ণয় করো। TS: 981 (খ) উদ্দীপকের উভয় বিকারের দ্রবণ মিশ্রিত করলে মিশ্রণের প্রকৃতি কীরূপ হবে তা বিশ্রেষণ করো। [সমাধানকৃত সমস্যা-৩.৪৩(৩) দেখো] 🖫: নিরপেক্ষ হবে] [দি. বো. ২০১৬] সমস্যা-৩.88(চ) : ১ম পাত্রে 100 mL 0.5 M H₂SO₄ দ্রবণ আছে। ২য় পাত্রে 200 mL দ্রবণে NaOH এর কু. বো. ২০১৬ 0.2 g দ্ৰবীভূত আছে। (ক) উদ্দীপকের ২য় পাত্রের দ্রবণের ঘনমাত্রা ppm এককে নির্ণয় করো। ডি: 1000 ppm] (খ) উদ্দীপকের ১ম ও ২য় পাত্রের উভয় দ্রবণকে একত্রে মিশ্রিত করলে মিশ্রিত দ্রবণের pH কীরূপ হবে, তা কারণসহ [সমাধানকৃত সমস্যা-৩.৪৬ দেখো] ডি: অশ্লীয় সমস্যা-৩.88(ছ) : ১ম পাত্রে 250 mL দ্রবণে 2.65 g Na₂CO₃ দ্রবীভূত আছে। ২য় পাত্রে 10 mL ডেসিমোলার চি বো ২০১৬ HCI দ্ৰবণ আছে। ডি: 10600 ppm] (ক) উদ্দীপকের ১ম পাত্রের দ্রবণের ঘনমাত্রা ppm এককে কত হবে?

বিশ্রেষণ করো।

(খ) উদ্দীপকের ১ম পাত্রের 10 mL এর সাথে ২য় পাত্রের সব দ্রবণ যোগ করলে মিশ্রণের প্রকৃতি কীরূপ হবে, তা

সমস্যা-৩.88 (জ) : ১ম পাত্রে 20 mL NaOH এর দ্রবর্ণে 0.2 g NaOH আছে। ২য় পাত্রে 35 mL 0.5M HCl

দ্রবণ আছে। ঐ উদ্দীপকভিত্তিক নিচের প্রশ্নের সমাধান করো। যি, বো. ২০১৭ (ক) উদ্দীপকের ১ম পাত্রের দ্রবণে দ্রবটির ঘনমাত্রা ppb এককে কত হবে? ডি: 1 × 10⁷ ppb] (খ) উদ্দীপকের উভয় দ্রবণকে মিশ্রিত করলে মিশ্রিত দ্রবণে কোন ধরনের লিটমাস পেপারের বর্ণ পরিবর্তিত হবে, তা ডি: অম্রীয় দ্রবণ, নীল লিটমাস লাল হবে] বিশ্রেষণ করো। সমস্যা-৩.88 (ঝ) : ১ম পাত্রে 51.2 mL 0.5M H₂SO₄ দ্রবণ আছে। ২য় পাত্রে 80 mL 2.55% (w/v) NaOH বি. বো. ২০১৭ দ্ৰবণ আছে। (ক) উদ্দীপকের ২য় পাত্রের দ্রবণের ঘনমাত্রা ppm এককে হিসাব করো। ডি: 25500 ppm] (খ) উদ্দীপকের পাত্রদ্বয়ের দ্রবণ মিশ্রিত করলে মিশ্রণের প্রকৃতি কীরূপ হবে, তা বিশ্লেষণ করো। ডি: অশ্ৰীয়া সমস্যা-৩.88 (এঃ) : ১ম পাত্রে 250 mL 5% HNO3 দ্রবণ এবং ২য় পাত্রে KOH এর 250 mL সেমিমোলার দ্ৰবণ আছে। সি. বো. ২০১৭ (क) ১ম পাত্রের দ্রবণের ঘনমাত্রা ppm এককে নির্ণয় করো। ডি: 50000 ppm] (খ) উদ্দীপকের উভয় দ্রবণকে মিশ্রিত করলে মিশ্রণের প্রকৃতি কীরূপ হবে, তা বিশ্লেষণ করো। ডি: অশ্ৰীয় হবে সমস্যা-৩.৪৫: 30 mL HCl দ্রবণে 20 mL 0.5 M Na2CO3 দ্রবণ যোগ করার পর সম্পূর্ণ প্রশমনের জন্য আরো 20 mL 0.1 M NaOH দ্রবণ প্রয়োজন হয়। ঐ এসিড দ্রবণটির ঘনমাত্রা কত? ডি: 0.73 MT সমস্যা-৩.৪৬(ক): 3,375 g ভরের কোনো এক-অম্রীয় ক্ষারকে পানিতে দ্রবীভূত করে 250 mL দ্রবণ তৈরি করা হয়। ঐ দ্রবণকে সম্পূর্ণরূপে প্রশমিত করতে 67.5 mL 1 M HCl দ্রবণ প্রয়োজন হলো। ক্ষারটির আণবিক ভর বের করো। সমস্যা-৩.৪৬(খ) : 2.3 g ভরের কোনো এক-অম্রীয় ক্ষারকে পানিতে দ্রবীভূত করে 250 mL দ্রবণ তৈরি করা হলো। এ দ্রবণকে পূর্ণ প্রশমিত করতে 0.575 L 0.1 M HCl প্রয়োজন হয়। ঐ ক্ষারটির 1.0 মোলার পরিমাণ নির্ণয় করো। ডি: 40 g] সমস্যা-৩.89(क) : 40 mL HCl দ্রবণে প্রথমে 30 mL 0.5 M Na2CO3 দ্রবণ যোগ করা হলো। এ এসিড দ্রবণটিকে পূর্ণ প্রশমিত করতে 25 mL 0.1M NaOH দ্রবণ প্রয়োজন হয়। এসিড দ্রবণটির ঘনমাত্রা কত? ডি: 0.8125 MT সমস্যা-৩.8৭(খ): 25 mL NaOH দ্রবণকে প্রথমে 10 mL 0.1 M HCl দ্বারা আংশিক প্রশমিত করা হলো। কিন্তু প্রশমন সম্পূর্ণ করতে 0.15 M HCl এর আরও 8. mL প্রয়োজন হয়। ক্ষার দ্রবণটির ঘনমাত্রা কত? ©: 0.088 M সমস্যা-৩.8৭(গ): 10 cm³ Na₂CO₃ দ্রবণকে প্রথমে 20 cm³ 0.1 M HCl দ্রবণ দ্বারা আংশিক প্রশমিত করা হলো। দ্রবণটিকে সম্পূর্ণরূপে প্রশমিত করতে আরো $16~{\rm cm}^3$ $0.15~{\rm M}$ HCl দ্রবণ প্রয়োজন হলো। Na_2CO_3 দ্রবণটির ঘনমাত্রা কত? ডি: 0.22 M1 সমস্যা-৩.৪৮: 1 g বিশুদ্ধ CaCO3 কে 40 mL HCl দ্রবণে সম্পূর্ণরূপে দ্রবীভূত করা হলো। প্রাপ্ত দ্রবণকে পূর্ণ প্রশমিত করতে আরো 40 mL 0.5 M NaOH দ্রবণ প্রয়োজন হলো। প্রদন্ত HCl দ্রবণটির ঘনমাত্রা কত? ডি: 1.0 M সমস্যা-৩.৪৯(ক): ভেজাল মিশ্রিত 3.762 g Na₂CO₃ কে পানিতে মিশ্রিত করে দ্রবণের আয়তন 500 mL করা হলো। এ দ্রবণের 20 mL পরিমাণকে 0.1 M HCl দ্বারা পূর্ণ প্রশমিত করতে 19.24 mL HCl প্রয়োজন হয়। Na2CO3 এর মধ্যে ভেজালের শতকরা পরিমাণ বের করো। ডি: 32.23 %]

সমস্যা-৩.৪৯(খ): 1.0 g Na₂CO₃ কে পানিতে দ্রবীভূত করে 500 mL করা হলো। এ দ্রবণ থেকে 50 mL নিয়ে টাইট্রেশন করে প্রশমনের শেষ বিন্দৃতে পৌছাতে 0.1 M HCl দ্রবণের 10 mL প্রয়োজন হলে ঐ Na₂CO₃ এ-ভেজালের শতকরা পরিমাণ বের করো।

সমস্যা-৩.৫০(ক) : একটুকরা Mg ধাতুকে 20 mL 0.1M HCl-এ দ্রবীভূত করা হলো। দ্রবণের অবশিষ্ট HCl কে প্রশমিত করতে 7.5 mL 0.2 M NaOH দ্রবণ প্রয়োজন হয়। Mg টুকরার ভর কত? ডি: 0.006 g]

সমস্যা-৩.৫০(খ) : 200 mL 0.1M অক্সালিক এসিডের দ্রবণকে পূর্ণ প্রশমিত করতে 150 mL NaOH দ্রবণ প্রয়োজন হয়। NaOH দ্রবণের ঘনমাত্রা ppm এককে নির্ণয় করো। উ: 10664 ppm] চি. বো. ২০১৫

সমস্যা-৩.৫০(গ) : NaOH দ্রবণকে অক্সালিক এসিড হারা টাইট্রেট করতে কোন্ নির্দেশকটি উপযোগী হবে তা যুক্তিসহ ব্যাখ্যা করো। [চ. বো. ২০১৫]

সমস্যা-৩.৫০ (ঘ) : 0.1 M HCl এসিড দ্রবণকে Na_2CO_3 দ্রবণ দ্বারা টাইট্রেশন করতে মিথাইল অরেঞ্জ (pH রেঞ্জ = 3.1-4.4) এবং ফেনলফথ্যালিন (p $^{\text{H}}$ রেঞ্জ = 8.3-10.0) উভয়কে ব্যবহার করা যাবে কি? প্রশমন লেখের সাহায্যে ব্যাখ্যা করো। [সমাধানকৃত সমস্যা-৩.৩৯ (১) দেখো] [ঢা. বো. ২০১৭; রা. বো. ২০১৭]

সমস্যা-৩.৫০(%): (১) 0.1M HCl দ্রবণকে NaOH বারা টাইট্রেশনে মিথাইল অরেঞ্জ;

(২) 0.1M HCI দ্রবণকে NH4OH দ্রবণ দারা টাইট্রেশন ফেনলফথ্যালিন;

(৩) 0.1M CH3COOH দ্রবণকে NaOH দ্রবণ দ্বারা টাইট্রেশনে ফেনলফথ্যালিন ইত্যাদি এ তিন ক্ষেত্রে ভিন্ন ভিন্ন নির্দেশকের ব্যবহার অম্ল-ক্ষারের প্রকৃতির ওপর নির্ভর করে; এর যথার্থ বিশ্লেষণ করো। টি: সমাধানকৃত সমস্যা-৩.৩৯ (১) দেখো] [ঢা. বো. ২০১৭; য. বো. ২০১৬ রা. বো. ২০১৭]

সসম্যা-৩.৫০(চ) : মৃদু এসিড ও তীব্র ক্ষার দ্রবণের টাইট্রেশনে ফেনলফথ্যালিনকে নির্দেশকরপে ব্যবহার করা হয় কেন?

৩.৯ জারণ-বিজারণ বিক্রিয়া

Oxidation-Reduction Reactions

জারণ-বিজারণ বিক্রিয়া ঘটে আয়নিক যৌগ গঠনে. সব দহন বিক্রিয়ায়, ব্যাটারিতে বিদ্যুৎ উৎপন্ন করার বিক্রিয়ায়, ধাতু নিষ্কাশন বিক্রিয়ায়, দেহের কোষে শক্তি উৎপাদনকালে এরপ আরো অনেক বিক্রিয়ায় রিডক্স বিক্রিয়া ঘটে।

জারণ-বিজারণ বা রিডক্স (Redox) বিক্রিয়ায় ইলেকট্রন ছানান্তর ঘটে। বিজারক ইলেকট্রন ত্যাগ করে এবং জারক ইলেকট্রন গ্রহণ করে। আয়নিক যৌগে ইলেকট্রন ছানান্তর সম্পূর্ণভাবে ঘটলেও সমযোজী যৌগে যেমন HCl অণুতে ইলেকট্রন ছানান্তর আংশিকভাবেও ঘটে। মূলত ইলেকট্রন ছানান্তর বলতে বিক্রিয়কের একটি পরমাণু থেকে অপর বিক্রিয়কের পরমাণুতে ইলেকট্রনের নিট ছানান্তর (net movement)। আবার ইলেকট্রন ছানান্তরের দিক হলো এক বিক্রিয়কের কম ইলেকট্রন আসক্তির পরমাণু থেকে অপর বিক্রিয়কের বেশি ইলেকট্রন আসক্তির পরমাণুর দিকে। এ তথ্যগুলো নিচের দুটি বিক্রিয়ার বেলায় সুম্পষ্ট :

$$Mg$$
 : ইলেকট্রন Mg^{2+} + O^{2-} Mg^{2+} O^{2-} Mg^{2+} O^{2-} O^{2-}

^{*} MgO গঠনে ইলেকট্রন চার্জ শিফট সম্পূর্ণভাবে ঘটেছে বলে এটি হলো ইলেকট্রন ছানান্তর এবং সংশ্রিষ্ট পরমাণুতে পূর্ণ ধনাত্মক ও পূর্ণ ঋণাত্মক চার্জযুক্ত আয়ন সৃষ্টি করেছে।

- * HCl এর বেলায় তুলনামূলক কম ইলেকট্রন চার্জ শিফট ঘটেছে। তাই আংশিক ধনাত্মক (δ^+) ও আংশিক ঋণাত্মক (δ^-) চার্জ সংশ্রিষ্ট পরমাণুতে সৃষ্টি হয়েছে।
- রসায়নবিদেরা রিডক্স বিক্রিয়ায় ইলেকট্রনের ছানান্তর বোঝানোর জন্যে কিছু 'পদ' (term) ব্যবহার করেছেন।
 যেমন জারণ হলো ইলেকট্রন 'ত্যাগ' বা বর্জন (loss)।
- * বিজারণ হলো ইলেকট্রন 'গ্রহণ' বা অর্জন (gain)।

MgO গঠনকালে Mg পরমাণুর ইলেকট্রন ত্যাগের ফলে জারণ ঘটে এবং O পরমাণুর ইলেকট্রন গ্রহণে বিজারণ ঘটে।

জারণ (Mg কর্তৃক ইলেকট্রন বর্জন) :

$$Mg \longrightarrow Mg^{2+} + 2e^{-}$$

বিজারণ (O_2 কর্তৃক ইলেকট্রন গ্রহণ) : $\frac{1}{2}$ O_2 + $2e^ \longrightarrow$ O^{2-}

এক্ষেত্রে অক্সিজেন (O_2) দারা Mg জারিত হয়েছে; তাই O_2 হলো জারক (oxidant) বা অক্সিডাইজিং (oxidising) এজেন্ট। একইভাবে Mg দারা O_2 বিজারিত হয়েছে, তাই Mg হলো বিজারক (reductant) বা রিডিউসিং (reducing) এজেন্ট। এতে বোঝা গেল,

- (১) ইলেকট্রন বর্জন ও ইলেকট্রন গ্রহণ যথাক্রমে বিজারক ও জারক পদার্থের মধ্যে একই সাথে ঘটে। এছাড়া,
- (২) বিজারক ইলেকট্রন ত্যাগ করে জারিত হয় এবং জারক ইলেকট্রন গ্রহণ করে বিজারিত হয়। এখন আমরা **জারণ, বিজারণ, জারক পদার্থ, বিজারক পদার্থ**—এ চারটি পদের সংজ্ঞা জানবা।

জারণের সংজ্ঞা : যে রাসায়নিক বিক্রিয়ার পরমাণু, অণু বা আয়ন ইলেকট্রন বর্জন বা ত্যাগ করে, তাকে জারণ বিক্রিয়া বলে। ইলেকট্রন বর্জনের ফলে পরমাণু, অণু বা আয়ন জারিত হয়। যেমন,

(i) Na
$$\longrightarrow$$
 Na⁺ +

(ii) Ca
$$\longrightarrow$$
 Ca²⁺ + 2e⁻

$$(i) H_2 \longrightarrow 2H^+ + 2e^-$$

$$(ii) H2O2 \longrightarrow 2H+ + 2e-$$

$$(i) Fe^{2+} \longrightarrow Fe^{3+} + e^{-}$$

ii)
$$\operatorname{Sn}^{2^+} \longrightarrow \operatorname{Sn}^{4^+} + 2e^-$$

থায়োসালফেট টেট্রাথায়োনেট

বিজারণের সংজ্ঞা : যে রাসায়নিক বিক্রিয়ার পরমাণু, অণু বা আয়ন ইলেকট্রন গ্রহণ করে, তাকে বিজারণ বিক্রিয়া বলে। ইলেকট্রন গ্রহণের ফলে পরমাণু, অণু বা আয়ন বিজারিত হয়। যেমন

(i) Cl
$$+ e^- \longrightarrow Cl$$

(ii) O +
$$2e^{-} \longrightarrow O^{2-}$$

(i)
$$I_2$$
 + $2e^- \longrightarrow 2\Gamma$

(ii)
$$H_2O_2 + 2e^- + 2H^+ \longrightarrow 2H_2O$$

(৩) ক্যাটায়নের ইলেকট্রন গ্রহণের ফলে বিজারণ
$$:$$
 (i) $Cu^{2+} + 2e^- \longrightarrow Cu$

(ii)
$$Fe^{3+} + e^{-} \longrightarrow Fe^{2+}$$

(8) অ্যানায়নের ইলেকট্রন গ্রহণের ফলে বিজারণ : (i)
$$MnO_4^- + 5e^- + 8H^+ \longrightarrow Mn^{2+} + 4H_2O$$
 (ii) $Cr_2O_7^{2-} + 6e^- + 14H^+ \longrightarrow 2Cr^{3+} + 7H_2O$

রিজন্ম বিক্রিয়া (Redox Reaction): যে বিক্রিয়ায় বিক্রিয়কসমূহের মধ্যে ইলেকট্রনের আদান-প্রদান বা ত্যাগ ও গ্রহণ ঘটে, তাকে রিজন্ম বিক্রিয়া বা জারণ-বিজারণ বিক্রিয়া বলে। রিজন্ম বিক্রিয়ায় ধাতব পরমাণু থেকে অধাতব পরমাণুতে ইলেকট্রনের স্থানান্তর ঘটে।

যেমন,
$$Mg: + :0: \longrightarrow Mg^{2+} + O^{2-} \longrightarrow MgO$$

জারক পদার্থের সংজ্ঞা : জারণ-বিজারণ বিক্রিয়ায় যে পদার্থ ইলেকট্রন গ্রহণ করে নিজে বিজারিত হয় এবং অপর বিক্রিয়ক পদার্থকে জারিত করে, তাকে জারক পদার্থ বলে। জারক পদার্থ হলো ইলেকট্রন-গ্রহীতা। যে পদার্থের ইলেকট্রন গ্রহণের প্রবণতা যত বেশি সে পদার্থ তত বেশি সবল জারক পদার্থ হয়।

MAT (18-14)

তড়িৎ-ঋণাত্মকতা বৃদ্ধির সাথে হ্যালোজেন মৌলগুলোর জারণ ক্ষমতা নিম্নোক্ত ক্রমে বৃদ্ধি পায় : $I_2 < \mathrm{Br}_2 < \mathrm{Cl}_2 < \mathrm{F}_2$

(1x-10)

কয়েকটি জারক পদার্থের উদাহরণ :

(১) গ্যাসীয় জারক পদার্থ : ফ্রোরিন (F2), ক্লোরিন, অক্সিজেন, ওজোন, সালফার ডাইঅক্সাইড (SO2), নাইট্রোজেন ডাইঅক্সাইড (NO2)।

(২) তরুপ জারক পদার্থ : তরল ব্রোমিন, হাইড্রোজেন পারঅক্সাইড $(
m H_2O_2)$, নাইট্রিক এসিড , গাঢ় $m H_2SO_4$ এসিড

ইত্যাদি।

(৩) কঠিন জারক পদার্থ : আয়োডিন, পটাসিয়াম পারম্যাঙ্গানেট ($KMnO_4$), পটাসিয়াম ডাইক্রোমেট ($K_2Cr_2O_7$), প্র্টাসিয়াম ক্লোরেট ($KClO_3$), ম্যাঙ্গানিজ ডাইঅক্সাইড (MnO_2), ফেরিক ক্লোরাইড ($FeCl_3$) ইত্যাদি।

* সারণি-৩.১ এ দেয়া কিছু জারক পদার্থের বিক্রিয়াকালে জারণ সংখ্যা পরিবর্তন বুঝে নাও।

বিজ্ঞারক পদার্থের সংজ্ঞা: জারণ-বিজারণ বিক্রিয়ায় যে পদার্থ ইলেকট্রন ত্যাগ বা বর্জন করে নিজে জারিত হয় এবং অপর বিক্রিয়ক পদার্থকে বিজারিত করে, তাকে বিজারক পদার্থ বলে। বিজারক পদার্থ হলো ইলেকট্রনদাতা। যে পদার্থের ইলেকট্রন বর্জনের প্রবণতা যত বেশি, সে পদার্থ তত বেশি সবল বিজারক পদার্থ হয়।

পর্যায় সার্গনির গ্রন্থ-1 এর ক্ষার ধাতুগুলোর আয়নীকরণ শক্তি হ্রাসের সাথে তাদের ইলেকট্রন ত্যাগের প্রবণতা বৃদ্ধি পায়। তাই ক্ষার ধাতুগুলো তীব্র বিজারক এবং এদের বিজারণ ক্ষমতা বৃদ্ধির ক্রম হলো : Li < K < Na < Rb < Cs । ক্ষেকটি বিজারক পদার্থের উদাহরণ :

(১) গ্যাসীয় বিজারক পদার্থ : H2, CO, H2S, SO2

MAT (19-20) DAT (21-22)

- (২) ত্রল বিজারক পদার্থ : নাইট্রাস এসিড (HNO_2) , সালফিউরাস এসিড (H_2SO_3) , হাইড্রোব্রোমিক এসিড (HBr), হাইড্রিয়োডিক এসিড (HI)।
- (৩) কৃঠিন বিজারক পদার্থ : অধিকাংশ ধাতু, কার্বন, ফেরাস লবণ ($FeSO_4$, $FeCl_2$), স্ট্যানাস ক্লোরাইড ($SnCl_2$), মারকিউরাস ক্লোরাইড (Hg_2Cl_2), অক্রালিক এসিড ($H_2C_2O_4.2H_2O$), সোডিয়াম থায়োসালফেট ($Na_2S_2O_3.5H_2O$)

সারণি-৩.১ এ দেয়া কিছু বিজারক পদার্থের বিক্রিয়াকালে জারণ সংখ্যা পরিবর্তন বুঝে নাও।

জেনে নাও :

- * ইলেকট্রন বর্জন প্রক্রিয়াকে জারণ বলে। যে পদার্থ ইলেকট্রন বর্জন করে তাকে বিজারক বলে।
- * ইলেকট্রন গ্রহণ প্রক্রিয়াকে বিজারণ বলে। যে পদার্থ ইলেকট্রন গ্রহণ করে তাকে জারক বলে।
- * জারণ ও বিজারণ বিক্রিয়া এক সাথে ঘটে; একটি ছাড়া অপরটি ঘটে না। জারণ-বিজারণকে রিডক্স বিক্রিয়া বলে।
- বিজারক নিজের ইলেকট্রন জারকের উদ্দেশ্যে তখনই ত্যাগ করবে; যখন জারক নিজে বিজারকের সংস্পর্শে থাকবে।

(되) CH₂O₂

(গ) C2H6

* সমযোজী যৌগের ক্ষেত্রে ইলেকট্রনীয় মতবাদ অনুসারে ইলেকট্রন স্থানান্তরের মাধ্যমে জারণ-বিজারণ ব্যাখ্যা করা যায় না। এক্ষেত্রে ইলেকট্রনের চার্জ-শিফ্টের মাধ্যমে সংশ্লিষ্ট পরমাণুতে ইলেকট্রন আসক্তির কম-বেশি অনুসারে আংশিক ধনাত্মক চার্জ $(\delta+)$ ও আংশিক ঋণাত্মক চার্জ $(\delta-)$ দেখানো হয়। এজন্য বর্তমানে জারণ-বিজারণ বিক্রিয়া বা রিডক্স (redox) বিক্রিয়াকে 'নতুন নিয়ম জারণ-সংখ্যা পদ্ধতিতে' ব্যাখ্যা করা হয়।

৩.৯.১ জারণ-সংখ্যা ও রিডক্স বিক্রিয়া

Oxidation number & Redox reaction

বর্তমানে রসায়নবিদেরা 'জারণ-সংখ্যা' O.N (Oxidation Number) নামক 'পদ' ব্যবহার করে যৌগ অণুতে কোন্ পরমাণু ইলেকট্রন-চার্জ ত্যাগ করে এবং কোন্ পরমাণু সেই ইলেকট্রন-চার্জ গ্রহণ করে তা জানার সুনির্দিষ্ট নিয়ম করেছেন।

যে পরমাণু যতটি ইলেকট্রন চার্জ পূর্ণ বা আংশিকভাবে ত্যাগ করে বা হারায় (loss) ততটি পূর্ণ ধনাত্মক চার্জ

্ত্র পরমাণু ঐ ইলেকট্রন চার্জ গ্রহণ বা লাভ করে (gain) ততটি পূর্ণ ঋণাত্মক চার্জ থেমন, -1, -2, -3 সে পরমাণুতে দেখানো হয়।

জারণ-সংখ্যা : বিক্রিয়াকালে পরমাণ্ড স্ব্রমাণ্ড স্বরমাণ্ড স্বরমাণ্ড স্ব্রমাণ্ড স্ব্রমাণ্ড স্ব্রমাণ্ড স্বরমাণ্ড স্বর্মাণ স্বরমাণ্ড স্বরম

চার্জের সংখ্যাকে ঐ মৌলের জারণ সংখ্যা বা জারণ অবছা বলে। যেমন, Na^+ আয়নের বেলায় Na পরমাণুর $\mathrm{O} \cdot \mathrm{N} = +1$ হয়, O^{2-} আয়নের বেলায় O-পরমাণুর $O \cdot N = -2$ হয়।

* নিচে জারণ-সংখ্যা (O.N) নির্ণয়ের সাধারণ নিয়মগুলো উল্লেখ করা হলো :

- ১। মৌলিক অবস্থায় যেমন Na, O₂, Cl₂, P₄, S₈ ইত্যাদিতে পরমাণুর জারণ অবস্থা বা জারণ সংখ্যা O.N = 0
- ২। এক-পরমাণুবিশিষ্ট আয়নের O.N আয়নের চার্জের সমান। যেমন, Na^+ এর $\mathrm{O.N} = +1$, Cl^- এর $\mathrm{O.N} = -1$, Mg^{2+} এর O.N = +2
- ৩। সমযোজী যৌগে যে মৌলের তড়িৎ-ঋণাত্মকতা বেশি সেটির জারণ সংখ্যা ঋণাত্মক এবং অপরটির জারণ সংখ্যা যোজনী অনুসারে ধনাত্মক হয়। যেমন, HCl যৌগে H এর জারণ সংখ্যা + 1 এবং Cl এর জারণ সংখ্যা –1 হয়।
- ৪। যৌগের নিরপেক্ষ বা আধানবিহীন অণুতে উপস্থিত সব কয়টি পরমাণুর জারণ সংখ্যার যোগফল শূন্য হয়। কিন্তু আয়নে উপস্থিত সব পরমাণুর জারণ সংখ্যার যোগফল আয়নের চার্জের সমান।
- * ৫। পর্যায় সারণির গ্রুপভিত্তিক মৌলের O.N এর নিয়মাবলি : MCQ-3.20 : নিচের কোন যৌগে (ক) গ্রুপ- IA (1) এর বেলায় : O.N = + 1 সব ধাতুর যৌগে। কেন্দ্রীয় পরমাণুর O.N. শূন্য হয়েছে? (খ) গ্রুপ- 2A (2) এর বেলায় : O.N = + 2 সব ধাতুর যৌগে। (季) Fe₃O₄ (খ) CHCl3 (গ) গ্রুপ - 3A (3) এর A1 বেলায় : O.N = + 3 সব A1 যৌগে। (গ) CH2Cl2 (旬) CH2O2 (घ) H এর ধাতব যৌগে: O.N = −1 সব ধাতব হাইড্রাইডে। MCQ-3.21 : নিচের কোন যৌগে H এর অধাতব যৌগে : O.N = + 1 সব অধাতুর H যৌগে। কেন্দ্রীয় পরমাণুর যোজনী ও O.N. (ঙ) O এর যৌগের বেলায় : O.N = -1 সব পার অক্সাইডে। এর সংখ্যা সমান হয়েছে? : O.N = -2 সব সাধারণ অক্সাইডে (F বাদে)। (本) CH₂Cl₂ (খ) CCl4
 - : O.N = -1/2 সব সুপার অক্সাইডে (KO_2) ।
- (চ) F এর যৌগের বেলায় : O.N = -1 সব ফ্লোরাইড যৌগে।
- (ছ) গ্রুপ -7A (17) এর মৌলে : O.N =−1 সব ধাতব ও অধাতব যৌগে (O বাদে)।
- (জ) আল্ঞহ্যালোজেন যৌগসমূহ যেমন ICl, BrCl, IBr, BrF প্রভৃতি যৌগে অধিকতর তড়িৎ ঋণাত্মক মৌলের জারণ সংখ্যা –1 এবং অন্যটির জারণ সংখ্যা + 1 । ICl3, IBr3, IF3, প্রভৃতি যৌগে Cl, Br, F এর জারণ সংখ্যা –1; কিছু 1 এর জারণ সংখ্যা + 3 (সর্বমোট শূন্য)।

- ** (ঝ) পর্যায় সারণির p ব্লকের অধিকাংশ অধাতব মৌল যৌগ গঠনে দু বা ততোধিক জারণ-অবস্থা প্রদর্শন করে। এ সব ক্ষেত্রে পরিবর্তনশীল জারণ সংখ্যা যুক্ত পরমাণুর সর্বোচ্চ ও সর্বনিম জারণ-সংখ্যা থাকে।
 - (১) মৌলের ইলেকট্রন বিন্যাস থেকে এ সর্বোচ্চ ও সর্বনিম জারণ-সংখ্যা নির্ণয় করা যায়।
- (২) মৌলের পরমাণুর সর্বশেষ কক্ষপথে বা যোজ্যতান্তরে যতগুলো ইলেকট্রন থাকে, সেই সংখ্যাই হলো মৌলটির পরমাণুর সর্বোচ্চ জারণ-সংখ্যা। অপরদিকে অযুগা বা বিজোড় ইলেকট্রন সংখ্যাই হলো ঐ মৌলের পরমাণুর সর্বনিম জারণ সংখ্যা। যেমন, N এর সর্বনিম জারণ-সংখ্যা NH3 অণুতে 🖃 এবং সর্বোচ্চ জারণ-সংখ্যা HNO3 অণুতে + 5 হয়। N(7) এর ইলেকট্রন বিন্যাস হলো:

$$N(7) \longrightarrow 1s^2 2s^2 2p_x^1 2p_y^2 2p_z^1$$

∴N এর সর্বনিম জারণ সংখ্যা হবে : · N-এর সর্বোচ্চ জারণ সংখ্যা হবে : যোজ্যতান্তরের মোট বিজোড় সংখ্যা: যোজ্যতান্তরের মোট ইলেকট্রন সংখ্যা: $2p_x^1 \longrightarrow 1\overline{b}$ 2s² → 2t 7 : N এর সর্বোচ্চ ∴ N এর সর্বনিম $2p_v^1 \longrightarrow 1\overline{\nu}$ $2p_x^1 \longrightarrow 1\overline{b}$ জারণ-সংখ্যা হবে + 5 $2p_z^1 \longrightarrow 1\overline{b}$ $2p_v^1 \longrightarrow 1\overline{\nu}$ জারণ সংখ্যা হবে -3 মোট ইলেকট্রন = 3টি $2p_z^1 \longrightarrow 1\overline{b}$ **RMDAC** মোট ইলেক্ট্রন = 5টি

অনুরূপভাবে, S এর ইলেকট্রন বিন্যাস, S(16) \rightarrow 1s²2s²2p⁶ $3s^23p_x^2 3p_y^1 3p_z^1$

S এর যোগ্যতান্তরে মোট ইলেকট্রন = 6টি, ... H_2SO_4 যৌগে S এর সর্বোচ্চ জারণ সংখ্যা + 6

S এর যোজ্যতান্তরে বিজোড় ইলেকট্রন = 2টি $\therefore H_2S$ যৌগে S এর সর্বনিমু জারণ সংখ্যা -2

অনুরূপভাবে, Cl এর ইলেকট্রন বিন্যাস, Cl (17) → 1s²2s²2p⁶ 3s²3p_x²3p_y²3p_z 1

Cl এর যোজ্যতা স্তরে মোট ইলেকট্রন = 7টি, : HClO4 যৌগে Cl এর সর্বোচ্চ জারণ সংখ্যা + 7

Cl এর যোজ্যতা স্তরে বিজোড় ইলেকট্রন = 1টি, ∴ HCl যৌগে Cl এর সর্বনিমু জারণ সংখ্যা – 1

* উল্লেখ্য Cl এর জারণ সংখ্যা পরিবর্তনশীল হলে ও F এর জারণ সংখ্যা দ্বির এবং তা −1 হয়। এর কারণ হলো—

Cl হলো ৩য় পর্যায়ভুক্ত মৌল; এর 3d অরবিটাল খালি আছে। উচ্চ তাপে উদ্দীপিত অবস্থায় অধিক সক্রিয় অক্সিজেন প্রমাণুর সাথে বিক্রিয়াকালে Cl এর যুগ্ম ইলেকট্রন বিজোড় হয়ে 3d অরবিটালে ছানান্তরিত হলে Cl-এর বিজোড় ইলেকট্রন সংখ্যা বেড়ে যায়। তখন অষ্টক সম্প্রসারণ সম্ভব হয়।

এরপে পর্যায়ক্রমে $3p_y^2$, $3p_x^2$ ও $3s^2$ ইলেকট্রনযুগল ভেঙ্গে ইলেকট্রন $3d_{xy}^{-1}$, $3d_{yz}^{-1}$, $3d_{zx}^{-1}$ অরবিটালে ছানান্তরিত

হলে Cl-এর যোজ্যতান্তরে ইলেকট্রন বিন্যাস হয় : 3s¹ 3px¹ 3py¹ 3pz¹ 3dxy¹ 3dyz¹ 3dzx

তখন ক্লোরিন পরমাণু 7টি বিজোড় ইলেকট্রন ব্যবহার করে অন্য পরমাণুর সাথে 7টি সমযোজী বন্ধন করতে পারে। यमन, HClO4 योर्ग Cl-এর জারণ সংখ্যা হয়েছে + 7।

অপরদিকে F পরমাণুর যোজ্যতান্তর দ্বিতীয় শক্তিন্তর এবং ২য় শক্তিন্তরে খালি d অরবিটাল না থাকায় F পরমাণুর অষ্টক সম্প্রসারণ সম্ভব হয় না এবং একমাত্র জারণ সংখ্যা -1 ছাড়া অন্য কোনো জারণ সংখ্যা F এর সম্ভব নয়।

(us) মৌলের সর্বোচ্চ জারণ-সংখ্যা পর্যায় সারণিতে ঐ মৌলের গ্রুপ সংখ্যা অপেক্ষা কখনো বেশি হতে পারে না।

** বিশেষ দ্রষ্টব্য : মৌলের সর্বোচ্চ জারণ-সংখ্যা ও গ্রুপ-সংখ্যার মধ্যে এ সম্পর্কভিত্তিক নিয়মটি কয়েকটি যৌগের বেলায় ব্যতিক্রম দেখায়। এর কারণ হলো—সংশ্রিষ্ট যৌগে কেন্দ্রীয় মৌলটির ২টি পরমাণুর মধ্যে অব্যবহৃত যোজনী বা, সুপ্ত-যোজনী থাকা অর্থাৎ এ**কই মৌলের ২টি পরমাণুর মধ্যে 'সমযোজী বন্ধন' অথবা 'সমযোজী সন্নিবেশ বন্ধন'** গঠনে ইলেকট্রন যুগলের ব্যবহার। নিচে এরূপ কয়েকটি যৌগের বেলায় ব্যতিক্রম ঘটার কারণ ব্যাখ্যা করা হলো।

* শিক্ষাবোর্ডের পরীক্ষার ক্ষেত্রে প্রশ্নে যদি এ নিয়মটির ব্যতিক্রমের ব্যাখ্যা জানতে চাওয়া না হয়, তবে 'সাধারণ নিয়ম' মতে উিপরোক্ত ৫-এর (ক) থেকে (ঝ) পর্যন্ত নিয়মসমূহ ব্যবহার করে] সংশ্লিষ্ট মৌলের জারণ-সংখ্যা নির্ণয় করতে হবে।

জেনে নাও: জারণ-সংখ্যা নির্ণয়ে কয়েকটি ব্যতিক্রম:

(1) H₂SO₅ অণুতে S এর জারণ সংখ্যা : [H₂SO₅ হলো Caro's acid বা পার অক্সোসালফিউরিক এসিড] প্রচলিত নিয়ম মতে, H_2SO_5 (পার অক্সোসালফিউরিক এসিড) এর অণুতে S এর জারণ-সংখ্যা + 8 হওয়া উচিত।

$$\begin{bmatrix} +1 & x-2 \\ H_2 & SO_5 \end{bmatrix}$$
; $x + 2 - 10 = 0$; $x = +8$

কিন্তু S এর সর্ববহিন্তু কক্ষপথে $6\overline{b}$ ইলেকট্রন আছে। তাই S এর সর্বোচ্চ জারণ সংখ্যা + 6 এর বেশি হওয়া সম্ভব নয়। এখন H_2SO_5 -এর গাঠনিক সংকেতের সাহায্য নেয়া H—Oদরকার। H₂SO₅ এর গাঠনিক সংকেত থেকে বোঝা যায় H₂SO₅ অণুতে S এর জারণ সংখ্যা হয়েছে বান্তবপক্ষে + 6। এক্ষেত্রে একটি পারঅক্সাইড বন্ধনে দুটি O পরমাণুর জন্য [Caro's acid] 2(-1) ধরতে হবে। কারণ পারঅক্সাইড বন্ধনে (-O-O-) প্রতিটি O পরমাণুর একটি করে সুপ্ত যোজনী রয়েছে। দুটি একই পরমাণুর মধ্যে ব্যবহৃত যোজনীকে সুপ্ত যোজনী বলে। যোজনী বলতে দুটি ভিন্ন পরমাণুর মধ্যে যুক্ত হওয়ার ক্ষমতাকে বোঝানো হয়। তখন H_2SO_5 অণুতে S এর জারণ সংখ্যা = χ (মনে করি)

$$\therefore 2x \ (+1)$$
 + x + $2x(-1)$ + $3 \times (-2) = 0$, $\therefore x = +6$ (H এর জন্য) (O – O বন্ধনের অপর 3টি 2টি O এর জন্য) O এর জন্য

∴ H₂SO₅ অণুতে S এর প্রকৃত জারণ সংখ্যা = + 6

Na₂S₂O₃,

(2) Na₂S₂O₃ (সোডিয়াম থায়োসালকেট) অণুতে S এর জারণ সংখ্যা: প্রচলিত নিয়ম মতে, Na2S2O3 অণুতে S এর জারণসংখ্যা + 2 হওয়া উচিত। +1 x -22(+1) + 2x + 3(-2) = 0; $\therefore x = +2$

$$\stackrel{+}{\text{Na}} \stackrel{-}{\text{O}} - \stackrel{+}{\text{S}} - \stackrel{-}{\text{O}} \stackrel{+}{\text{Na}}$$

কিন্তু $Na_2S_2O_3$ এর সাথে লঘু H_2SO_4 এর বিক্রিয়ায় $Na_2S_2O_3$ এর অণুন্থিত $2\overline{b}$ S পরমাণু মধ্যে একটি S রূপে অধঃক্ষিপ্ত হয় এবং অপরটি SO2 অণুতে জারিত হয়। সুতরাং Na2S2O3 অণুর 2টি S পরমাণুর প্রকৃতি ভিন্ন বোঝায়। কাজেই এদের জারণ সংখ্যা একই রকম হতে পারে না। এবার $Na_2S_2O_3$ অণুর গাঠনিক সংকেত জানা দরকার। গাঠনিক সংকেতে 2টি S পরমাণুর জারণ সংখ্যা ভিন্ন। এক্ষেত্রে দুটি S পরমাণুর মধ্যে একটি সন্নিবেশ বন্ধন রয়েছে; তাই ইলেকট্রন-যুগল গ্রহণকারী S পরমাণুর জারণ সংখ্যা – 2 ধরা হয়। অপর S পরমাণুর জারণ সংখ্যা x ধরা হলে, তবে-

- $\therefore Na_2S_2O_3$ এর অণুতে দুটি S পরমাণুর মধ্যে একটির জারণ সংখ্যা -2 এবং অপরটির জারণ সংখ্যা =+6
- (৩) Na₂S₄O₆ অণুতে S এর জারণ সংখ্যা : প্রচলিত নিয়ম মতে, Na₂S₄O₆ (সোডিয়াম টেট্রাথায়োনেট) এর অণুতে S এর জারণ সংখ্যা + 2.5 হয়। কিছু $Na_2S_4O_6$ এর গাঠনিক সংকেত থেকে বোঝা যায় যে, দুটি S পরমাণু পরস্পরের সাথে সমযোজী বন্ধনে আবদ্ধ আছে; তাদের জারণ সংখ্যা 0 (শূন্য) হয়। অবশিষ্ট দুটি S পরমাণুর প্রতিটির জারণ সংখ্যা x হলে, তখন—

$$2 \times (+1)$$
 + $2 \times x$ + 2×0 + $6 \times (-2)$ = 0 $\therefore 2x + 2 - 12 = 0$ (2ि Na এর জন্য) (2ि S এর জন্য) (S-S এবং বন্ধনের জন্য) (6ি O এর জন্য) $\therefore x = +5$

 $\therefore Na_2S_4O_6$ অণুতে প্রকৃতপক্ষে যে দুটি S পরমাণু পরস্পরের সাথে সমযোজী বন্ধনে আবদ্ধ আছে তাদের জারণ সংখ্যা শূন্য এবং অপর দুটি S পরমাণুর প্রতিটি জারণ সংখ্যা =+5।

(8) CrO5 এর অণুতে Cr এর জারণ সংখ্যা :

প্রচলিত নিয়ম মতে, CrO_5 (পারক্রোমিক অক্সাইড) এর অণুতে Cr এর জারণ সংখ্যা + 10 হয়। কিছু পর্যায় সারণিতে Cr এর গ্রুপ সংখ্যা হলো 6, যা এর ইলেকট্রন থিন্যাস $3d^54s^1$) যেমন Cr এর 3d অরবিটালে $5\bar{b}$ ও 4s অরবিটালে $1\bar{b}$ মিলে মোট $6\bar{b}$ ইলেকট্রনের সংখ্যা বোঝায়। সুতরাং Cr এর জারণ সংখ্যা কখনো + 6 এর বেশি হওয়া সম্ভব নয়। এখন CrO_5 এর গাঠনিক সংকেত বিবেচনা করা যাক। এর গাঠনিক সংকেতে $4\bar{b}$ O পরমাণু দুটি পারঅক্সাইড (-O-O-) বন্ধনে যুক্ত আছে। গাঠনিক সংকেত থেকে বোঝা যায় CrO_5 এর অণুতে Cr এর প্রকৃত জারণ সংখ্যা + 6।

প্রতিটি পারঅক্সাইড মূলক (-O-O-) এর প্রতিটি O এর জারণ সংখ্যা -1 ধরে এবং Cr এর জারণ সংখ্যা x ধরে পাই, $x+4\times(-1)+1\times(-2)=0; \ \therefore x-4-2=0, \ \therefore x=+6$

2ট O—O বন্ধনের (1ট O এর জন্য) 4ট O এর জন্য

∴ CrO₅ এর অণুতে প্রকৃতপক্ষে Cr এর জারণ সংখ্যা = + 6

(৫) Fe₃O₄ অণুতে Fe এর জারণ সংখ্যা :

প্রচলিত নিয়মে
$$Fe_3O_4$$
 এ Fe -এর জারণ সংখ্যা হয় $+\frac{8}{3}$ । [যেমন, $3x+4$ (-2) $=0$; $3x=8$; $x=+\frac{8}{3}$]

এক্ষেত্রে Fe এর জারণ সংখ্যার মান Fe_3O_4 যৌগের অণুতে থাকা FeO ও Fe_2O_3 এর ক্ষেত্রে Fe এর দুটি জারণ সংখ্যার গড় মান বোঝাচ্ছে। Fe_3O_4 হলো Fe এর একটি যৌগিক অক্সাইড ($FeO+Fe_2O_3=Fe_3O_4$)

প্রকৃতপক্ষে FeO এর বেলায় Fe এর জারণ সংখ্যা +2 এবং Fe_2O_3 এর বেলায় Fe এর জারণ সংখ্যা +3। জারণ সংখ্যা ও যোজনীর মধ্যে কিছু পার্থক্য আছে। যেমন,

- (1) মৌলের যোজনী হলো অপর মৌলের সাথে যুক্ত হওয়ার ক্ষমতা; মৌলের যোজনী নির্ণয়ের H-ক্ষেল ও O-ক্ষেল আছে; [রসায়ন-১ম পত্র, সারণি-৩.৩ দেখো]।
 - (2) যোজনীর ধনাত্মকতা বা ঋণাত্মকতা নেই, শুধু সংখ্যা মান আছে; যেমন H, Cl এর যোজনী 1, O এর যোজনী 2;
- (3) মৌলের যোজনী সবসময় পূর্ণ সংখ্যা হয়; কিছু জারণ সংখ্যা ভগ্নাংশ ও শূন্য হতে পারে; যেমন Fe_3O_4 যৌগে $Fe_3O_4 = (FeO + Fe_2O_3)$ ধরে $Fe_3O_4 = (FeO + Fe_2O_3)$ ধরে $Fe_3O_4 = (FeO + Fe_2O_3)$ ধরে $Fe_3O_4 = (FeO + Fe_3O_4)$ ধরে $Fe_3O_4 = (FeO + Fe_3O_3)$ ধরে $Fe_3O_4 = (FeO + Fe_3O_3)$

স্ক্রমার্বানকৃত সমস্যা—৩.৫০ : মৌলের O.N নির্ণয় :

নিচের যৌগসমূহে প্রত্যেক কেন্দ্রীয় মৌলের পরমাণুর জারণ- সংখ্যা (O.N) নির্ণয় করো।

(季) ZnS

(뉙) AlH3

 $(7) S_2 O_3^{2-}$

(ব) Na₂Cr₂O₇

(8) Ca(OCl)Cl

- (চ) KMnO4 যৌগের Mn এর জারণ সংখ্যা গণনা করো।
- (ছ) ${
 m MnO_4^-}$ আয়নে ${
 m Mn}$ এর জারণ সংখ্যা গণনা করো।
- (জ) K₂Cr₂O₇ যৌগে Cr এর জারণ সংখ্যা কত হবে?
- (ঝ) Cl₂O₇ যৌগে Cl এর জারণ সংখ্যা কত হবে?
- (ঞ) $[Cr(CN)_6]^{3-}$ আয়নে Cr এর জারণ মান কত?

দক্ষতা : জারণ-সংখ্যা (O.N.) নির্ণয়ের সাধারণ নিয়ম অনুসরণ করা হবে। যৌগের বেলায় সব পরমাণুর O.N এর যোগফল =0 হবে। পলিএটমিক আয়নের বেলায় সব পরমাণুর O.N এর যোগফল আয়নের চার্জ সংখ্যার সমান।

সমাধান : (ক) ZnS যৌগে সালফাইড আয়ন, S^{2-} এ সালফার (S) পরমাণুর O.N=-2; তাই Znএর O.N=+2। যৌগটিতে পরমাণুর জারণ সংখ্যা ZnS

- ্খ) AlH_3 যৌগে H পরমাণু Al ধাতুর সাথে যুক্ত থাকায় এর O.N=-1 তাই A1 এর O.N.=+3। যৌগটিতে পরমাণুর জারণ সংখ্যা AlH_3
- (গ) $S_2O_3^{2-}$ আয়নে 3টি O পরমাণু মিলে O.N.=-6 হওয়ায় 2টি S পরমাণুর O.N.+4 মিলে যোগফল -2 হবে, যা আয়নের নিট চার্জের সমান। অর্থাৎ $(2S^{+2})$, $(3O^{-2})$ মিলে 2(+2)+3(-2)=-2 (নিট চার্জ)। আয়নটিতে বিভিন্ন পরমাণুর জারণ সংখ্যা $\begin{bmatrix} +2\times 2-2\times 3\\ S_2 & O_3 \end{bmatrix}$ 2-
- (ঘ) $Na_2Cr_2O_7$ যৌগে Na পরমাণু +1 এবং O পরমাণু -2 জারণ অবস্থায় আছে। তাই যৌগ অণুতে মোট চার্জ শূন্য করার জন্য প্রতিটি Cr পরমাণুর O.N.=+6 হবে। অর্থাৎ $(2Na^+)$, $(2Cr^{+6})$, $(7O^{2-})$ মিলে 2(+1)+2(+6)+7 (-2)=0 (নিট চার্জ)। যৌগটিতে বিভিন্ন পরমাণুর জারণ সংখ্যা $\frac{+1\times 2+6\times 2-2\times 7}{Na_2Cr_2O_7}$ $\frac{AT}{22-2B}$
- ে $_{2}$ $_{2}$ $_{3}$ $_{4}$ $_{4}$ $_{5$

(চ) KMnO4 যৌগে Mn এর জারণ সংখ্যা নির্ণয় করো।

মনে করি, Mn এর জারণ সংখ্যা হলো $x \mid KMnO_4$ যৌগে K-এর জারণ সংখ্যা +1, প্রতিটি অক্সিজেনের জারণ সংখ্যা +2। যেহেতু আধানবিহীন যৌগের বেলায় সর্বমোট জারণ সংখ্যা শূন্য হয়, সেহেতু, $+1+x+(-2)\times 4=0$; সুতরাং $KMnO_4$ যৌগে Mn এর জারণ সংখ্যা x=+7।

(ছ) পারম্যাঙ্গানেট ($\mathrm{MnO_4}$) আয়নে Mn এর জারণ সংখ্যা নির্ণয় করো।

মনে করি, পারম্যাঙ্গানেট (MnO_4) আয়নে Mn এর জারণ-সংখ্যা হলো x। তখন একটি Mn এর জারণ সংখ্যা এবং চারটি অক্সিজেন পরমাণুর জারণ সংখ্যার যোগফল ঐ আয়নের চার্জের সমান অর্থাৎ -1 হবে :

$$x + (-2) \times 4 = -1$$
; $4 \times 4 = -1$, $4 \times 4 = -1 \times 4 = -1$

সুতরাং প্রদত্ত আয়নে Mn এর জারণ সংখ্যা হলো + 7।

(জ) K₂Cr₂O₇ যৌগে Cr এর জারণ সংখ্যা নির্ণয় করো।

মনে করি, চার্জবিহীন অণু পটাসিয়াম ডাইক্রোমেট $(K_2Cr_2O_7)$ যৌগে Cr-এর জারণ সংখ্যা \times হলে, তখন K এর জারণ সংখ্যা +1 ও অক্সিজেনের জারণ সংখ্যা -2 ধরে পাই,

MAT (
$$\frac{1}{2}$$
 –10) $\frac{1}{2}$ (+1) × 2 + x × 2 + (–2) × 7 = 0 ; বা, 2 + 2x – 14 = 0 ; বা, 2x = 12 বা, $x = 6$; ... এক্ষেত্রে $K_2Cr_2O_7$ যৌগে Cr এর জারণ সংখ্যা হলো + 6

(ঝ) ক্লোরিন হেন্টঅক্সাইড $\mathrm{Cl}_2\mathrm{O}_7$ যৌগে Cl এর জারণ সংখ্যা কত?

সাধারণ নিয়ম মতে Cl এর জারণ সংখ্যা -1 হওয়ার কথা; কিন্তু অধিকতর তড়িৎ-ঋণাত্মক O ও F এর সাথে Cl এর ব্যতিক্রম হয়। এক্ষেত্রে অক্সিজেনের জারণ সংখ্যা -2 এবং Cl এর জারণ সংখ্যা ধনাত্মক ও x হলে আমরা পাই-

$$2x + (-2) \times 7 = 0$$
 .. $x = 7$ Cl_2O_7 (ক্লোরিন হেন্টঅক্সাইড) যৌগে Cl এর জারণ সংখ্যা হলো $+7$

(এঃ) হেক্সাসায়ানো ক্রোমেট (III), $[{\rm Cr}({\rm CN})_6]^3$ - আয়নে ${\rm Cr}$ এর জারণ সংখ্যা নির্ণয় করো।

প্রদত্ত আয়নটি হলো জটিল আয়ন। এ জটিল আয়নে সায়ানাইড আয়ন (CN^-) লিগ্যান্ড বা ইলেকট্রনযুগল যোগানকারীরূপে ছয়টি সায়ানাইড আয়ন (CN^-) যুক্ত আছে।

এক্ষেত্রে সায়ানাইড আয়ন (CN^-) এর চার্জ বা জারণ সংখ্যা হলো -1

Cr জারণ সংখ্যা x ধরে আমরা লিখতে পারি-

$$x + (-1) \times 6 = -3$$
; $\therefore x = 3$

∴ [Cr(CN)₆]³⁻ আয়নে Cr এর জারণ সংখ্যা হলো +3

অনুরূপভাবে (১) H₃PO₄, (২) HClO₄, (৩) H₂SO₃, (৪) H₂SO₄, (৫) Na₂S₂O₃, (৬) Fe(CN)₆]³⁻,

(৭) $[Cu(NH_3)_4]^{2+}$ প্রভৃতি যৌগ ও আয়নসমূহে কেন্দ্রীয় মৌলের জারণ সংখ্যা সংক্ষেপে নিম্ন মতে গণনা করা যায়।

মনে করি, সংশ্লিষ্ট যৌগে ও আয়নে তারকা চিহ্নিত মৌলের জারণ সংখ্যা হলো 'x'। জারণ সংখ্যা নির্ণয়ের নিয়ম মতে,

$$: (+1) \times 3 + x + (-2) \times 4 = 0,$$

$$: (+1) \times 1 + x + (-2) \times 4 = 0,$$

$$: (+1) \times 2 + x + (-2) \times 3 = 0,$$

$$: (+1) \times 2 + x + (-2) \times 4 = 0,$$

বা.
$$x = 8 - 2$$
 . $x = + 6$

$$: (+1) \times 2 + 2x + (-2) \times 3 = 0,$$

$$\sqrt{3}$$
 $\sqrt{2}$ $x = 6 - 2$ ∴ $x = +2$

(৬)
$$[\bar{F}e(CN)_6]^{3-}$$
 এর বেলায়

$$x + (-1) \times 6 = -3$$

$$x + (0) \times 4 = +2$$

শিক্ষার্থী নিজে করো-৩.১০ : জারণ-সংখ্যাভিত্তিক :

সমস্যা - ৩.৫১ : নিচের যৌগসমূহে প্রত্যেক কেন্দ্রীয় মৌলের পরমাণুর জারণ সংখ্যা (O.N.) নির্ণয় করো।

(ক) পটাসিয়াম পারম্যাঙ্গানেট (KMnO₄)

- (খ) পারক্লোরিক এসিড (HClO₄)
- (গ) মনোহাইড্রোজেন ফসফেট আয়ন $({
 m HPO}_4^{2-})$
- (ঘ) আয়োডিন পেন্টাফ্লোরাইড (IF5)

৩.৯.২ রিডক্স (Redox) বিক্রিয়ায় জারক ও বিজারক শনাক্তকরণ

Identifying Oxidizing and Reducing Agents in Redox reaction

কোনো বিক্রিয়ায় বিক্রিয়ক এবং উৎপাদ পদার্থের বিভিন্ন প্রমাণুর জারণ সংখ্যার হ্রাস-বৃদ্ধি ঘটলে তখন বিক্রিয়াটি রিডক্স বিক্রিয়া হবে। বিক্রিয়া শেষে উৎপাদের বেলায় বিক্রিয়কের সংশ্লিষ্ট পরমাণুর জারণ সংখ্যার বৃদ্ধি ঘটলে বিক্রিয়কটি বিজারক এবং জারণ সংখ্যার হ্রাস ঘটলে বিক্রিয়কটি জারক হবে। নিচের বিক্রিয়াটিতে এ সব তথ্য খাটে কী না দেখবো:

$$PbO(s) + CO(g) \longrightarrow Pb(s) + CO_2(g)$$

বিক্রিয়ক ও উৎপাদে পরমাণুগুলোতে জারণ সংখ্যা নির্দিষ্ট করে পাই:

$$^{+2-2}_{PbO}(s) + ^{+2-2}_{CO}(g) \longrightarrow ^{0}_{Pb}(s) + ^{+4-2\times2}_{CO_2}(g)$$

Pb পরমাণুর জারণসংখ্যা +2 থেকে হ্রাস পেয়ে শূন্য (0) হয়েছে। তাই PbO বিজারিত হয়েছে। সুতরাং PbO হলো জারক। C পরমাণুর জারণ সংখ্যা + 2 থেকে বৃদ্ধি পেয়ে + 4 হয়েছে। তাই CO এর জারণ ঘটেছে। সুতরাং CO হলো

MAT

বিজারক। অতএব, সমগ্র বিক্রিয়াটি হলো রিডক্স বিক্রিয়া। এক্ষেত্রে Pb^{2+} আয়ন 2টি ইলেকট্রন গ্রহণ করেছে অর্থাৎ এতে অক্সাইড আয়ন (O^{2-}) থেকে দুটি ইলেকট্রনের Pb^{2+} আয়নে পূর্ণ স্থানান্তর ঘটেছে। অপরদিকে উৎপন্ন CO_2 সমযোজী অণুতে নতুন যুক্ত O পরমাণুতে আংশিকভাবে দুটি ইলেকট্রনের চার্জ শিফট ঘটেছে। সুতরাং **রিডক্স বিক্রিয়ায় ইলেকট্রনের** স্থানান্তর ঘটে। এ বিক্রিয়া থেকে বিজারক ও জারক পদার্থের বৈশিষ্ট্যসমূহ জেনে নাও।

বিজারক

বিজারণ ঘটায়,

এক বা একাধিক ইলেকট্রন হারায়,

নিজের জারণ ঘটে,

সংশ্রিষ্ট পরমাণুর O.N. বৃদ্ধি পায়।

জারক

জারণ ঘটায়, এক বা একাধিক ইলেকট্রন লাভ করে, নিজের বিজারণ ঘটে, সংশ্রিষ্ট পরমাণুর O.N. হ্রাস পায়।

শিক্ষার্থী নিজে করো-৩.১১ : জারক ও বিজারক শনাক্তকরণভিত্তিক :

সমস্যা- ৩.৫২ : নিচের বিক্রিয়াসমূহে জারক ও বিজারক এবং জারিত ও বিজারিত পদার্থ শনাক্ত করো।

$$(\overline{\Phi})$$
 SnO(s) + C(s) \longrightarrow Sn(s) + CO(g)

(
$$\forall$$
) 5CO(g) + $I_2O_5(s)$ \longrightarrow $I_2(s)$ + 5CO₂(g)

(
$$^{\circ}$$
) $^{\circ}$ 2C₂H₆(g) + $^{\circ}$ 7O₂(g) \longrightarrow 4CO₂(g) + $^{\circ}$ 6 H₂O(g)

* জেনে নাও : জারণ সংখ্যা ও একই পদার্থের জারক ও বিজারকরূপে আচরণ :

যেসব মৌলের পরমাণুর একাধিক জারণ সংখ্যা থাকে, তাদের যৌগগুলো অবস্থাভেদে জারক ও বিজারক উভয়রূপে আচরণ করতে পারে। তখন তাদের জারণ সংখ্যার পরিবর্তন ঘটে। যেমন

- শ্রালটির সর্বনিম জারণ সংখ্যার যৌগ কেবল বিজারকরূপে বিক্রিয়া করে বিক্রিয়া শেষে নিজে জারিত হয়ে কেন্দ্রীয় পরমাণুর জারণ সংখ্যা বৃদ্ধি করে।
- * মৌলটির সর্বোচ্চ জারণ সংখ্যার যৌগ কেবল জারকরূপে ক্রিয়া করে বিক্রিয়া শেষে নিজে বিজারিত হয়ে কেন্দ্রীয় পরমাণুর জারণ সংখ্যা হ্রাস করে। যেমন,
- (১) H_2S হলো বিজারক, গাঢ় H_2SO_4 হলো জারক, কিন্তু SO_2 হলো অবস্থাভেদে জারক ও বিজারক উভয়ই। ব্যাখ্যা : (i) H_2S বিজারকরূপে ক্রিয়া করে। [মাদ্রাসা বোর্ড ২০১৮]

আমরা জানি, S এর জারণ সংখ্যা হতে পারে +6, +4, $0 \cdot 9 \cdot -2$ ।

 H_2S যৌগ S এর জারণ সংখ্যা -2 আছে এবং এটি হলো S এর সর্বনিম্ন জারণ সংখ্যা। তাই S এর জারণ সংখ্যা আর হ্রাস পাওয়ার সুযোগ নেই; কেবল বৃদ্ধি করার সুযোগ আছে। তখন H_2S এর সালফাইড আয়ন (S^{2-}) বিক্রিয়াকালে জারক পদার্থকে ইলেকট্রন দান করে নিজে জারিত হয়ে জারণ সংখ্যা বৃদ্ধি করতে পারে।

$$3H_2\overset{-2}{S} + 2H\overset{+6}{NO_3}$$
 (লঘু) $\longrightarrow 2\overset{+2}{NO} + 3\overset{\circ}{S} + 4H_2O$

(ii) গাঢ় H_2SO_4 জারকরূপে ক্রিয়া করে।

 H_2SO_4 অণুতে S এর সর্বোচ্চ জারণ সংখ্যা + 6 হয়েছে। তাই S এর জারণ সংখ্যা হ্রাস করতে H_2SO_4 অণুকে জারকরূপে ইলেকট্রন গ্রহণ করতে হবে। তখন S এর জারণ সংখ্যা + 6 থেকে হ্রাস পেয়ে + 4, 0 (শূন্য), অথবা, - 2 হতে পারে।

$$2HBr + H_2 \overset{+6}{S}O_4$$
 (গাঢ়) \longrightarrow $Br_2 + \overset{+4}{S}O_2 + 2H_2O$ $2HI + H_2 \overset{+6}{S}O_4$ (গাঢ়) \longrightarrow $I_2 + \overset{+6}{S}O_2 + 2H_2O$

(iii) ${
m SO}_2$ অবছাভেদে জারক ও বিজারক উভয়রূপে ক্রিয়া করে। কারণ—

 SO_2 অণুতে S এর জারণ সংখ্যা + 4 হয়েছে। তাই **জারকরপে SO_2** বিজারক প্রদন্ত ইলেকট্রন গ্রহণ করে নিজে বিজারিত হয়ে S জারণ সংখ্যা + 4 থেকে হ্রাস করে (0) শূন্য করতে পারে।

$$^{+4}$$
 SO_2 + 4HI \longrightarrow 2H₂O + 2I₂ + $^{\circ}$

আবার **বিজারকরূপে SO₂** জলীয় দ্রবণে FeCl₃-কে বিজারিত করে নিজে জারিত হয়ে S এর জারণ সংখ্যা বৃদ্ধি করে H_2SO_4 অণু গঠন করতে পারে।

$$^{+4}$$
SO₂ + 2FeCl₃ + 2H₂O \longrightarrow 2FeCl₂ + 2HCl + $^{+6}$ SO₄

(২) তদ্রেপ, FeO অবছাভেদে জারক ও বিজারক উভয়রূপে ক্রিয়া করে। আমরা জানি, Fe এর জারণ সংখ্যা 0, +2, +3 হতে পারে। বর্তমান FeO অণুতে Fe এর জারণ সংখ্যা +2 আছে। সুতরাং FeO জারকরূপে ক্রিয়া করলে নিজে বিজারিত হয়ে Fe এ পরিণত হবে অর্থাৎ জারণ সংখ্যা 0 (শূন্য) হবে। আবার FeO বিজারকরূপে ক্রিয়া করলে নিজে জারিত হয়ে জারণ সংখ্যা বৃদ্ধি পেয়ে +3 হবে অর্থাৎ Fe_2O_3 অণুতে পরিণত হবে। যেমন—

FeO জারকরপে :
$$\stackrel{+2}{\text{FeO}}$$
 + C $\stackrel{-1200^{\circ}\text{C}}{\longrightarrow}$ Fe + CO $\stackrel{+2}{\text{Fe}}$ + CO $\stackrel{+2}{\longrightarrow}$ Fe + CO $\stackrel{+2}{\longrightarrow}$ Fe + CO $\stackrel{+2}{\longrightarrow}$ FeO বিজারকরপে : $\stackrel{+2}{\text{SFeO}}$ + O₂ $\stackrel{\Delta}{\longrightarrow}$ Fe₂O₃ $\stackrel{+3}{\longrightarrow}$ Fe₂O₃ $\stackrel{(\stackrel{1}{\Rightarrow})}{\longrightarrow}$ ($\stackrel{\stackrel{1}{\Rightarrow}}{\longrightarrow}$ +7 ($\stackrel{\stackrel{1}{\Rightarrow}}{\longrightarrow}$ +6 ($\stackrel{\stackrel{1}{\Rightarrow}}{\longrightarrow}$ +7 ($\stackrel{\stackrel{1}{\Rightarrow}}{\longrightarrow}$ +4

৩.৯.৩ জারণ সংখ্যা ও বিশেষ রিডক্স বিক্রিয়া

Oxidation Number & Special Redox Reactions

রিডক্স বিক্রিয়ায় বিজারকের কেন্দ্রীয় পরমাণুটির জারণ সংখ্যা বৃদ্ধি পায় এবং জারকের কেন্দ্রীয় পরমাণুটির জারণ সংখ্যা হ্রাস পায়। বিজারক ও জারক পদার্থের অন্যান্য পরমাণুর জারণ সংখ্যা অপরিবর্তিত থাকে। এটি রিডক্স বিক্রিয়ার স্বাভাবিক নিয়ম। এখন আমরা নিম্নোক্ত তিন ধরনের রিডক্স বিক্রিয়ায় কিছু ব্যতিক্রম দেখবো এবং এসব বিক্রিয়ার নামও ভিন্ন দেওয়া হয়েছে। যেমন,

(১) স্বতঃজারণ-বিজারণ বিক্রিয়া (Auto-Redox Reaction)

সংজ্ঞা : যে রিডক্স বিক্রিয়ায় কোনো বিক্রিয়ক পদার্থের অর্ণুস্থৃত কোনো মৌলের পরমাণু জারিত হয় এবং একই সাথে ঐ একই অণুস্থিত অপর মৌলের পরমাণু বিজারিত হয় , তখন সে রিডক্স বিক্রিয়াকে স্বতঃজারণ-বিজারণ বিক্রিয়া বলে। যেমন , পটাসিয়াম নাইট্রেট (KNO₂) ও O₂ উৎপন্ন হয়।

এ বিক্রিয়ায় KNO_3 যৌগের N পরমাণুর বিজারণ ঘটেছে এবং একই সাথে KNO_3 অণুষ্থিত O পরমাণু (জারণ সংখ্যা -2) জারিত হয়ে O_2 অণুতে (জারণ সংখ্যা 0) পরিণত হয়েছে। তাই এ বিক্রিয়াটি একটি স্বতঃজারণ-বিজারণ বিক্রিয়ার উদাহরণ। তদ্রপ-

$$2Pb(NO_3)_2 \xrightarrow{\Delta} 2PbO + 4NO_2 + O_2$$

(২) অসামঞ্চন্যতা বিক্রিয়া (Disproportionation Reaction)

সংজ্ঞা : যে রিডক্স বিক্রিয়ায় কোনো বিক্রিয়কের অণুষ্থিত নির্দিষ্ট মৌলের কিছু পরমাণু জারিত হয়ে উচ্চ জারণ সংখ্যায় এবং অবশিষ্ট পরমাণু বিজারিত হয়ে নিমু জারণ-সংখ্যা যুক্ত ভিন্ন উৎপাদে পরিণত হয়, সে রিডক্স বিক্রিয়াকে অসামঞ্জস্যতা বা ডিস্প্রোপরসনেশন বিক্রিয়া বলে। যেমন,

উত্তপ্ত ও গাঢ় NaOH দ্রবণের সাথে Cl2 এর বিক্রিয়ায় NaCl ও NaClO3 যৌগ উৎপন্ন হয়ে থাকে :

$$3\mathring{C}l_2 + 6NaOH \xrightarrow{\Delta} 5NaCl + NaClO_3 + 3H_2O$$

এ বিক্রিয়ায় বিক্রিয়ক পদার্থ Cl_2 এর 0 (শূন্য) জারণ সংখ্যার 6টি Cl পরমাণুর মধ্যে 5টি Cl পরমাণু বিজারিত হয়ে -1 জারণ-সংখ্যাযুক্ত NaCl উৎপন্ন করেছে এবং 1টি Cl পরমাণু জারিত হয়ে +5 জারণ সংখ্যা যুক্ত সোডিয়াম ক্লোরেট $(NaClO_3)$ যৌগে পরিণত হয়েছে। তাই এ বিক্রিয়াটি একটি অসামঞ্জস্যতা বিক্রিয়া।

(৩) সামঞ্জস্যতা বিক্রিয়া (Com-proportionation Reaction)

সংজ্ঞা: যে রিডক্স বিক্রিয়ায় দু বিক্রিয়ক পদার্থের অণুর মধ্যে থাকা ভিন্ন জারণ অবস্থার একটি নির্দিষ্ট মৌলের এমন একটি উৎপাদ উৎপন্ন হয়; যার মধ্যে উভয় বিক্রিয়কের ঐ নির্দিষ্ট মৌলটি রিডক্স বিক্রিয়ার ফলে মধ্যবর্তী কোনো একটি জারণ অবস্থা লাভ করে, সে রিডক্স বিক্রিয়াকে সামঞ্জস্যতা বিক্রিয়া বলে। এ সামঞ্জস্যতা বিক্রিয়াটি হলো অসামঞ্জস্যতা বিক্রিয়ার বিপরীত। যেমন,

(i)
$$2H_2S + SO_2 \longrightarrow 2H_2O + 3S$$
 MAT $(19-20)$

এ বিক্রিয়ায় H_2S অণুতে S এর জারণ অবস্থা -2 এবং SO_2 অণুতে S এর জারণ অবস্থা +4 আছে। কিছু উভয় বিক্রিয়ক থেকে সৃষ্ট উৎপাদ পদার্থ S এ জারণ অবস্থা একই রয়েছে। তাই এটি একটি সামঞ্জস্যতা বিক্রিয়া।

(ii) অনুপ, HCl মিশ্রিত KBrO3 ও KBr এর মধ্যে বিক্রিয়ায় Br2 ও KCl উৎপন্ন হয়।

$$\overset{+5}{\text{KBrO}_3}$$
 + $\overset{-1}{5\text{KBr}}$ + $\overset{-1}{6\text{HCl}}$ \longrightarrow $\overset{-}{6\text{KCl}}$ + $\overset{\circ}{3\text{Br}_2}$ + $3\text{H}_2\text{O}$

(৪) বির্**ঞ্জন বি**ক্রিয়া (Bleaching Reaction)

সংজ্ঞা : যেসব জারক ও বিজারক জারণ ও বিজারণ ক্রিয়ার মাধ্যমে উদ্ভিজ্ঞ ও প্রাণিজ রঙিন পদার্থকে বিবর্ণ করে তাদেরকে বিরঞ্জক বা Bleaching agent বলে। এরপ বিক্রিয়াকে বিরঞ্জন বা ব্লিচিং বিক্রিয়া বলে। পানির উপস্থিতিতে Cl_2 , SO_2 ও H_2O_2 বিরঞ্জকরপে ক্রিয়া করে। Cl_2 সবল বিরঞ্জক হওয়ায় মোটা আঁশ বা সুতার তৈরি গেঞ্জি ও কাপড়ের ব্লিচিং কাজে Cl_2 পানি ব্যবহৃত হয়। অপরদিকে SO_2 ও H_2O_2 মৃদু বিরঞ্জক। উল, সিল্ক ও সৃক্ষ সুতার বহুকেও কাগজের মণ্ডকে বিরঞ্জন কাজে SO_2 ব্যবহৃত হয়।

$$Cl_2 + H_2O \longrightarrow 2HCl + [O]$$
; রঙিন বস্তু $+ [O] \longrightarrow$ জারিত বর্ণহীন বস্তু $SO_2 + 2H_2O \longrightarrow H_2SO_4 + 2[H]$; রঙিন বস্তু $+ [H] \longrightarrow$ বিজারিত বর্ণহীন বস্তু

তদ্রপ $, H_2O_2$ দ্বারা উল, সিল্ক ও মাথার কালো চুলকে বিরঞ্জিত করা যায়। বর্তমানে মহিলাদের বিউটি পার্লারে মাথার কালো চুলকে সোনালি করার কাজে ব্যবহৃত ক্রিমে H_2O_2 মিশ্রিত থাকে।

৩.১০ জারণ-বিজারণ অর্ধ-বিক্রিয়া (Redox Half-Reactions)

জারণ-বিজারণ বিক্রিয়া দুটি অংশে বিভক্ত। যেমন, বিজারক যে ইলেকট্রন ত্যাগ করে, জারক তা গ্রহণ করে। বিজারক কর্তৃক ইলেকট্রন ত্যাগের ফলে এর সংশ্রিষ্ট মৌলের পরমাণুটি জারিত হয়, একে **জারণ অর্ধ-বিক্রিয়া** বলে। অপরদিকে জারক কর্তৃক ইলেকট্রন গ্রহণের ফলে এর সংশ্রিষ্ট মৌলের পরমাণুটি বিজারিত হয়, একে বিজারণ অর্ধ-বিক্রিয়া বলে। যেমন—সোডিয়াম পরমাণু ও ক্লোরিন পরমাণুর বিক্রিয়াকালে Na পরমাণু ইলেকট্রন ত্যাগ করে সোডিয়াম আয়ন (Na[†]) এ জারিত হয়, এটি জারণ অর্ধ-বিক্রিয়া। Cl পরমাণু ইলেকট্রন গ্রহণ করে ক্লোরাইড আয়ন (CI[¬]) এ বিজারিত হয়, এটি বিজারণ অর্ধ-বিক্রিয়া। যেমন—

$$Na$$
 $\longrightarrow Na^+ + e^-$ [জারণ অর্ধ-বিক্রিয়া] $Cl + e^- \longrightarrow Cl^-$ [বিজারণ অর্ধ-বিক্রিয়া] যোগ করে, $Na + Cl \longrightarrow Na^+ Cl^-$ [জারণ-বিজারণ বিক্রিয়া]

জারণ অর্ধ-বিক্রিয়া ও বিজারণ অর্ধ-বিক্রিয়াসহকারে রিডক্স বিক্রিয়ার সমীকরণ সমতা সাধন করা সহজ। জারণ-বিজারণ অর্ধ-বিক্রিয়া পদ্ধতিকে আয়ন-ইলেকট্রন পদ্ধতিও বলা হয়। এ পদ্ধতিতে প্রথমে সংশ্রিষ্ট বিক্রিয়ার বিজারক ও জারক চিহ্নিত করা হয়। সারণি-৩.১ মতে বিজারক ও জারক পদার্থে সংশ্রিষ্ট মৌলের জারণ সংখ্যা এবং পরিবর্তিত জারণ সংখ্যা জেনে নিতে হয়।

১ম ধাপ: বিজারকের জারণ সংখ্যার পরিবর্তন অনুসারে জারণ অর্ধ-বিক্রিয়ার সমীকরণের ডানদিকে জারিত আয়ন + ইলেকট্রন সংখ্যা লেখা হয়। এরপর জারকের বিজারণ অর্ধ-বিক্রিয়ার সমীকরণের বামদিকে জারকের আয়ন (বা মৌলিক অণু) + ইলেকট্রন সংখ্যা লিখে. শেষে ডানদিকে জারকের বিজারিত অবস্থা লেখা হয়। এর সাথে বিজারক ও জারক পদার্থের জারণ সংখ্যার পরিবর্তন অনুসারে সঠিক ইলেকট্রন সংখ্যা গণনা করে নেয়া হয়।

২য় ধাপ : প্রতিটি অর্ধ-বিক্রিয়ায় পরমাণু সংখ্যা ও চার্জ সংখ্যার সমতা সাধন।

পরমাণু সমতাকরণে O ও H এর আগে অন্য পরমাণু সংখ্যার সমতা করে, এরপর O পরমাণুর এবং শেষে H পরমাণুর সমতা করা হয়। এক্ষেত্রে জারণ অর্ধ-বিক্রিয়ায় উৎপাদ যৌগে অধিক O পরমাণু থাকলে সমীকরণে বামদিকে বিক্রিয়ক হিসেবে H_2O যোগ করা হয়। বিজারণ অর্ধ-বিক্রিয়ায় জারকের O পরমাণু H_2O গঠনের জন্য প্রয়োজনীয় সংখ্যক H^+ আয়ন সমীকরণের বামদিকে যোগ করতে হয়।

উভয় অর্ধ-বিক্রিয়ার সমীকরণে ইলেকট্রন ত্যাগ ও ইলেকট্রন গ্রহণ সংখ্যার সমতা করার জন্য প্রয়োজন হলে সমীকরণ দুটিকে সঠিকভাবে 2, 3, 5, 6 ইত্যাদি সংখ্যা দ্বারা গুণ করা হয়।

তয় ধাপ: এখন অর্ধ-বিক্রিয়ার সমীকরণ দৃটিকে যোগ করে জারণ-বিজারণের আয়নিক সমীকরণ পাওয়া যাবে। তখন উভয় দিকের ইলেকট্রনসমূহ ও অন্য উপাদান সমতা রক্ষা করে বাদ যাবে।

8র্থ ধাপ: সবশেষে 'দর্শক আয়ন' যোগ করে আণবিক সামীকরণ গঠন। আয়নিক সমীকরণের উভয়দিকে প্রয়োজনীয় সংখ্যক 'দর্শক-আয়ন' (বিক্রিয়াকালে অপরিবর্তিত আয়ন) সমূহ যোগ করে জারণ-বিজারণের পূর্ণাঙ্গ আণবিক সমীকরণ পাওয়া যাবে। শেষবারের মতো সমীকরণের উভয় দিকে পরমাণু সংখ্যা সমতা রয়েছে কীনা নিশ্চিত করতে হবে।

সারণি-৩.১: জারণ-বিজারণে কয়েকটি জারক ও বিজারকের জারণ সংখ্যার পরিবর্তন

জারক	জারক পদার্থের আয়নে সংশ্রিষ্ট মৌলের প্রাথমিক জারণ সংখ্যা	গ্রহণ করা e – সংখ্যা	পরিবর্তিত (O.N)	বিক্রিয়া শেষে অবস্থা
১ । KMnO4 (অম্লীয়)	MnO ₄ এ Mn এর জারণ সংখ্যা + 7	+ 5e -	+2	Mn ²⁺
KMnO4 (ক্ষারীয়)	MnO ₄ এ Mn-এর জারণ সংখ্যা + 7	+ 3e	+4	MnO ₂
* [ক্ষারীয় ও প্রশম মাধ্যমে]				
২। K ₂ Cr ₂ O ₇ (অন্নীয়)	Cr ₂ O ₇ ²⁻ এ Cr এর জারণ সংখ্যা + 6×2	+ 3e × 2	+ 3 × 2	$2 \times \text{Cr}^{3+}$
৩। FeCI ₃ , Fe ³⁺ আয়ন	Fe ³⁺ এ Fe এর জারণ সংখ্যা + 3	+ e -	+2	Fe ²⁺
8। CuSO ₄ , Cu ²⁺ আয়ন	Cu ²⁺ এ Cu-এর জারণ সংখ্যা + 2	+ e -	+ 1	Cu ⁺
e CI ₂ /Br ₂ /I ₂	X2 এ CI/Br/I এর জারণ সংখ্যা 0	+ e -	-1 .	CI ⁻ /Br ⁻ /I ⁻
৬। H ₂ O ₂ বা O ₂ আয়ন	O_2^{2-} এ $2O$ -এর প্রতিটির জারণ সংখ্যা -1	+ 2 e	-2	20 ²⁻

MAT (9-10)

বিজারক	বিজারক পদার্থের আয়নে সংশ্রিষ্ট মৌলের জারণ সংখ্যা (O.N)	ত্যাগ করা e সংখ্যা	পরিবর্তিত (O.N)	বিক্রিয়া শেষে অবস্থা	
১। H ₂ C ₂ O ₄ বা , C ₂ O ₄ : (অন্নীয় মাধ্যমে)	C ₂ O ₄ ²⁻ এ C-এর জারণ সংখ্যা + 3 × 2	- e ⁻ × 2	+ 4 × 2.	2CO ₂	
कातीय याधारयः	C ₂ O ₄ ²⁻ এ C এর জারণ সংখ্যা + 3 × 2	$-e^- \times 2$	+ 4 × 2	2CO 3	
২। FeSO ₄ বা, Fe ²⁺	Fe ²⁺ এ Fe এর জারণ সংখ্যা + 2	- e ⁻	+ 3	Fe ³⁺	
৩। SnCI₂বা, Sn ²⁺	Sn ²⁺ এ Sn এর জারণ সংখ্যা + 2	- 2e	+4	Sn ⁴⁺	
8। KI বা, I আয়ন অশ্লীয়	া এ 1 এর জারণ সংখ্যা − 1	- e	0	I ₂	
মাধ্যম (ক্ষারীয় মাধ্যম)	I¯ এ 1 এর জারণ সংখ্যা – 1	- 6e	+5	10,	
(+ SO ₂ (+2H ₂ O)	SO2 এ S এর জারণ সংখ্যা + 4	- 2e	+6	SO ₄ ²⁻	
৬। H ₂ S বা, S ²⁻ আয়ন	S ²⁻ এ S এর জারণ সংখ্যা – 2	- 2e	0	S	
H_2 S বা , S^{2-} আয়ন	S ²⁻ এ S এর জারণ সংখ্যা – 2	-8e	+6	SO ₄ ²⁻	
৭। Na ₂ S ₂ O ₃ বা, S ₂ O ₃ ²⁻	2S ₂ O ₃ ²⁻ এ জারণ সংখ্যা + 8 (4S)	-2e	+ 10 (4S)	S4O6 ²⁻	
থায়োসালফেট		0 1 1 1		(টেট্রাথায়োনেট)	
৮। H_2O_2 বা, O_2^{2-} আয়ন	O_2^{2-} এ O এর জারণ সংখ্যা $-1 imes 2$	- 2e	0	O ₂	

^{*} বিশেষ দুষ্টব্য: ক্ষারীয় ও প্রশম মাধ্যমে KMnO4 এর বিজারিত অবস্থা একই হয়ে MnO2 অধ্যক্ষিপ্ত হয়। কারণ ক্ষারীয় মাধ্যমে প্রথমে উৎপন্ন K₂MnO₄ বিজারকের উপস্থিতিতে পুনরায় পানির সাথে বিক্রিয়ায় MnO₂, KOH ও 2[O] উৎপন্ন করে। [Ref. Advanced Inorganic chemistry: Page—823: Tuli, Basu, Madan]

ক্ষারীয় মাধ্যমে :
$$2KMnO_4 + 2KOH \longrightarrow 2K_2MnO_4 + H_2O + [O]$$

$$2K_2MnO_4 + 2H_2O \longrightarrow 2MnO_2 + 4KOH + 2[O]$$
যোগ করে, $2KMnO_4 + H_2O \longrightarrow 2MnO_2 + 2KOH + 3[O]$

এটিই প্রশম মাধ্যমে KMnO4 এর বিক্রিয়া এবং বিক্রিয়া শেষে উৎপাদ KOH বিক্রিয়া মাধ্যমকে ক্ষারীয় করে।

** এখন অশ্রীয় দ্রবণে রিডক্স বিক্রিয়ার সমীকরণ সমতাকরণ এবং ক্ষারীয় দ্রবণে রিডক্স বিক্রিয়ার সমীকরণ সমতাকরণ দুটি সমাধানকৃত সমস্যা -৩.৫১ ও ৩.৫২ দ্বারা বোঝানো হলো।

সমাধানকৃত সমস্যা-৩.৫১ : অস্ত্রীয় দ্রবণে রিডক্স সমীকরণ সমতাকরণ :

যখন অপ্লীয় দ্রবণে রিডক্স বিক্রিয়া ঘটে, তখন সমতাকরণে H^+ আয়ন ও H_2O সংশ্লিষ্ট থাকে। অপ্লীয় দ্রবণে ডাইক্রোমেট আয়ন $(Cr_2O_7^{2-})$ জারক ও আয়রন (II) আয়ন বিজারকের মধ্যে রিডক্স বিক্রিয়ার সমীকরণ সমতা সাধন করা হলো। এক্ষেত্রে ডাইক্রোমেট আয়ন বিজারিত হয়ে Cr (VI) থেকে Cr (III) আয়নে এবং আয়রন (II) আয়ন জারিত হয়ে আয়রন (III) আয়নে পরিণত হয়। [সারণি-৩.১ দেখো] নিমোক্ত ধাপে তা দেখানো হলো—

১ম ধাপ : জারণ অর্ধ-বিক্রিয়া :
$$\mathrm{Fe}^{2+}(\mathrm{aq}) \longrightarrow \mathrm{Fe}^{3+}(\mathrm{aq}) + \mathrm{e}^{-}$$
 বিজারণ অর্ধ-বিক্রিয়া : $\mathrm{Cr}_2\mathrm{O}_7^{2-}(\mathrm{aq}) + 6\mathrm{e}^{-} \longrightarrow 2\mathrm{Cr}^{3+}(\mathrm{aq})$

২য় ধাপ : পরমাণু সংখ্যা ও চার্জ সংখ্যার সমতাকরণ। ${\rm Cr_2O_7^{2-}}$ আয়নের 7টি O পরমাণু সহযোগে 7টি ${\rm H_2O}$ তৈরি হতে 14টি ${\rm H^+}$ আয়ন বিজারণ অর্ধ-বিক্রিয়ায় যোগ হবে। চার্জ সংখ্যা এবং ইলেকট্রন গ্রহণ ও বর্জন সংখ্যা সমান করার জন্য জারণ অর্ধবিক্রিয়াকে 6 দিয়ে গুণ করতে হবে।

$$6Fe^{2+}$$
 (aq) $\longrightarrow 6Fe^{3+}$ (aq) + 6e⁻
 $Cr_2O_7^{2-}$ (aq) + 14H⁺ (aq) + 6e⁻ $\longrightarrow 2Cr^{3+}$ (aq) + 7H₂O (l)

তম্ন ধাপ: দুটি অর্ধ-বিক্রিয়াকে যোগ করে রিডক্স বিক্রিয়ার **আয়নিক সমীকরণ** পাওয়া যাবে। তখন উভয় দিকের ইলেকট্রন সংখ্যা বাদ পড়বে।

$$6\text{Fe}^{2+}$$
 (aq) \longrightarrow 6Fe^{3+} (aq) + 6e^{-}

$$\frac{\text{Cr}_2\text{O}_7^{2-}(\text{aq}) + 14\text{H}^+(\text{aq}) + 6\text{e}^- \longrightarrow 2\text{Cr}^{3+}(\text{aq}) + 7\text{H}_2\text{O}(\textit{l})}{\text{বোগ করে, } 6\text{Fe}^{2+}(\text{aq}) + \text{Cr}_2\text{O}_7^{2-}(\text{aq}) + 14\text{H}^+(\text{aq}) \longrightarrow 6\text{Fe}^{3+}(\text{aq}) + 2\text{Cr}^{3+}(\text{aq}) + 7\text{H}_2\text{O}(\textit{l})}$$

8র্থ ধাপ : দর্শক আয়ন যোগ করে রিডক্স বিক্রিয়ার **আণবিক সমীকরণ** পাওয়া যাবে। ডাইক্রোমেট লবণ $K_2Cr_2O_7$ রূপে এবং অসুরূপে লঘু $1M\ H_2SO_4$ ব্যবহৃত হয়। তাই দর্শক আয়নরূপে K^+ ও SO_4^{2-} আয়ন উভয় দিকে প্রয়োজনমতো যোগ করে আণবিক সমীকরণ পাই–

6FeSO₄ (aq) + $K_2Cr_2O_7$ (aq) + $7H_2SO_4$ (aq) → $3Fe_2(SO_4)_3$ (aq) + Cr_2 (SO₄) $_3$ (aq) + $7H_2O(l)$ + $1H_2SO_4(l)$ সমাধানকৃত সমস্যা-৩.৫২ : ক্ষারীয় দ্রবণে রিডক্স সমীকরণ সমতাকরণ :

্যখন ক্ষারীয় দ্রবণে রিডক্স বিক্রিয়া ঘটে; তখন সমতাকরণে OH আয়ন ও H_2O সংশ্রিষ্ট থাকে। (এর আগে দেখছো অন্ত্রীয় দ্রবণে H^+ আয়ন ও H_2O থাকে।) ক্ষারীয় দ্রবণে পারম্যাঙ্গানেট আয়ন (MnO_4^-) জারক ও অক্সালেট আয়ন $(C_2O_4^{2^-})$ বিজারকের মধ্যে রিডক্স বিক্রিয়ার সমীকরণ সমতা সাধন করবো। MnO_4^- আয়নের দ্রবণ পাপল বা বেগুনি-লাল বর্ণ হয়, তাই এ শক্তিশালী জারকের রিডক্স টাইট্রেশনে নিজেই নির্দেশকরূপে কাজ করে। রিডক্স বিক্রিয়ায় $NaMnO_4$ ও $Na_2C_2O_4$ এর ক্ষারীয় দ্রবণে অক্সালেট জারিত হয়ে কার্বনেট $(CO_3^{2^-})$ আয়নে এবং MnO_4^- আয়ন বিজারিত হয়ে প্রথমে $MnO_4^{2^-}$ আয়ন এবং পরে কঠিন ম্যাঙ্গানিজ ডাইঅক্সাইডে (MnO_2) পরিণত হয়। [সারণি-৩.১ দেখো] নিম্নোক্ত ধাপে তা দেখানো হলো। এক্ষেত্রে 'ক্ষার (OH^-) আয়ন যোগ' ধাপ নামে একটি ধাপ বাড়বে।

১ম ধাপ : জারণ অর্ধ-বিক্রিয়া :
$$C_2O_4^{2-}(aq)$$
 \longrightarrow $2CO_3^{2-}(aq) + 2 e^-$ বিজারণ অর্ধ-বিক্রিয়া : $MnO_4^-(aq) + 3e^ \longrightarrow$ $MnO_2(s)$

২য় ধাপ : পরমাণু সংখ্যা ও চার্জ সংখ্যার সমতাকরণ । $C_2O_4^{2-}$ আয়নে 4টি O পরমাণু আছে; কিন্তু এর জারিত অবস্থা $2CO_3^{2-}$ আয়নে 6টি O পরমাণু থাকায় বাম পার্শ্বে $2H_2O$ যোগ হবে । MnO_4^- আয়নের 4টি O পরমাণুর বিপরীতে MnO_2 অণুতে 2টি O পরমাণু থাকায় ডানদিকে $2H_2O$ যোগ করা হলো । H পরমাণুর সমতা করার জন্য জারণ বিক্রিয়ার সমীকরণের ডানে ও বিজারণ বিক্রিয়ার সমীকরণের বামে প্রতি ক্ষেত্রে $4H^+$ আয়ন যোগ করা হলো , উভয় অর্ধ-বিক্রিয়ায় চার্জ সংখ্যা ঠিক আছে ।

$$C_2O_4^{2-} + 2H_2O \longrightarrow 2CO_3^{2-} + 4H^+ + 2e^-$$

 $MnO_4^- + 4H^+ + 3e^- \longrightarrow MnO_2 + 2H_2O$

তবে উভয় অর্ধ-বিক্রিয়ায় ইলেকট্রন ত্যাগ ও ইলেকট্রন গ্রহণ সংখ্যার সমতা করার জন্য জারণ অর্ধ-বিক্রিয়াকে 3 দ্বারা এবং বিজারণ অর্ধ-বিক্রিয়াকে 2 দ্বারা গুণ করতে হবে।

তয় ধাপ : এখন দুটি অর্ধ-বিক্রিয়াকে যথাক্রমে 3 এবং 2 দ্বারা গুণ করে যোগ করতে হবে। তখন উভয় দিকে ইলেকট্রন সংখ্যা ও সমসংখ্যক H_2O ও H^+ আয়ন বাদ যাবে।

$$3C_2O_4^{2-} + 6H_2O \longrightarrow 6CO_3^{2-} + 12H^+ + 6e^-$$

 $2MnO_4^- + 8H^+ + 6e^- \longrightarrow 2MnO_2 + 4H_2O$

যোগ করে $3C_2O_4^{2-} + 2H_2O + 2MnO_4^{-} \longrightarrow 2MnO_2 + 6CO_3^{2-} + 4H^{+}$

8র্থ ধাপ : ক্ষারীয় মাধ্যম বজায় রাখার জন্য এবং ডানদিকের $4H^+$ আয়নকে প্রশমিত করতে উভয় দিকে $4OH^-$ আয়ন যোগ করা হলো। উৎপন্ন $4H_2O$ অণু থেকে বামদিকের 2টি H_2O অণু বাদ যাবে।

$$3C_2O_4^{2-} + 2H_2O + 2MnO_4^- + 4O\overline{H} \longrightarrow 2MnO_2 + 6CO_3^{2-} + 4H^+ + 4OH^-$$

Or, $3C_2O_4^{2-} + 2H_2O + 2MnO_4^- + 4O\overline{H} \longrightarrow 2MnO_2 + 6CO_3^{2-} + 4H_2O$

এখন প্রত্যেকটি উপাদানের ভৌত অবস্থাসহকারে **আয়নিক সমীকরণ** হবে-

$$3C_2O_4^{2-}(aq) + 2 MnO_4^{-}(aq) + 4OH(aq) \longrightarrow 2MnO_2(s) + 6CO_3^{2-}(aq) + 2H_2O(l)$$
েশ্ব ধাপ: দর্শক আয়নরূপে Na^+ আয়ন উভয় দিকে প্রয়োজনমতো যোগ করে আণবিক সমীকরণ পাই,

 $3Na_2C_2O_4$ (aq) + $2NaMnO_4$ (aq) + 4NaOH (aq) $\longrightarrow 2MnO_2$ (s) + $6Na_2CO_3$ (aq) + $2H_2O(l)$ সমাধানকত সমস্যা—৩.৫৩ : নিমোক্ত বিক্রিয়াটিকে অর্ধ-বিক্রিয়ার সাহায্যে শেখ :

 $FeSO_4 + KMnO_4 + H_2SO_4 \longrightarrow Fe_2(SO_4)_3 + MnSO_4 + K_2SO_4 + H_2O$ সমাধান : প্রদন্ত রিডক্স বিক্রিয়ার আয়নিক সমীকরণটি হলো :

$$Fe^{2+} + MnO_4^- + H^+ \longrightarrow Fe^{3+} + Mn^{2+} + H_2O$$

এক্ষেত্রে বিজারক হলো ${\rm Fe}^{2^+}$ আয়ন এবং জারক হলো অস্ট্রীয় ${\rm MnO}_4^-$ আয়ন। বিক্রিয়াকালে বিজারক ${\rm Fe}^{2^+}$ আয়ন ${\rm 1ll}$ ইলেকট্রন ত্যাগ করে ${\rm Fe}^{3^+}$ আয়নে জারিত হয় এবং জারক ${\rm MnO}_4^-$ আয়ন অস্ট্রীয় মাধ্যমে ${\rm 5ll}$ ইলেকট্রন গ্রহণ করে ${\rm Mn}^{2^+}$ আয়নে বিজারিত হয়। [সারণি-৩.১ দেখো] তখন ${\rm MnO}_4^-$ আয়নের ${\rm 4ll}$ O পরমাণু ${\rm 8ll}$ H $^+$ আয়নসহ ${\rm 4ll}$ H $_2$ O অণু গঠন করে। সুতরাং নিমুরূপ জারণ ও বিজারণ অর্ধ-বিক্রিয়া ঘটে:

জারণ অর্ধ-বিক্রিয়া :
$$\mathrm{Fe}^{2+} \longrightarrow \mathrm{Fe}^{3+} + \mathrm{e}^{-} \dots \dots \dots (1)$$

বিজারণ অর্ধ-বিক্রিয়া : $MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O (2)$

জারণ অর্ধ-বিক্রিয়া ও বিজারণ অর্ধ-বিক্রিয়ায় ইলেকট্রনের সংখ্যা সমান করার জন্য (1) নং সমীকরণকে 5 দিয়ে গুণ করে উভয় সমীকরণকে যোগ করে পাই:

$$5Fe^{2+} \longrightarrow 5Fe^{3+} + 5e^{-}$$
 $MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$
যোগ করে, $5Fe^{2+} + MnO_4^- + 8H^+ \longrightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$

কিছু $Fe_2(SO_4)_3$ অণুতে 2টি Fe^{3+} আয়ন আছে, তাই ওপরের সমীকরণকে 2 দিয়ে গুণ করে জোড় সংখ্যা করলে পাই—

$$10 {\rm Fe}^{2^+} + 2 {\rm MnO_4}^- + 16 {\rm I}^+ \longrightarrow 10 {\rm Fe}^{3^+} + 2 {\rm Mn}^{2^+} + 8 {\rm H}_2 {\rm O}$$
 এ সমতাকত আয়নিক সমীকরণে দর্শক আয়নরূপে ${\rm K}^-$ ও ${\rm SO_4}^{2^-}$ আয়ন যোগ করে পাই—

 $10 FeSO_4 + 2 KMnO_4 + 8 H_2 SO_4 \longrightarrow 5 Fe_2(SO_4)_3 + 2 MnSO_4 + 8 H_2 O$ এ সমীকরণের বাম ও ডানদিকে K^+ আয়ন ও $SO_4^{2^-}$ আয়নের সংখ্যা সমান করে আণবিক সমীকরণ পাই— $10 FeSO_4 + 2 KMnO_4 + 8 H_2 SO_4 \longrightarrow 5 Fe_2(SO_4)_3 + 2 MnSO_4 + K_2 SO_4 + 8 H_2 O$

সমাধানকৃত সমস্যা-৩.৫৪ : শঘু $m H_2SO_4$ মিশ্রিত $m KMnO_4$ দ্রবণে $m H_2S$ চালনা করলে সংঘটিত রিডক্স বিক্রিয়া আয়ন ইলেকট্রেন পদ্ধতিতে সমতা সাধন করো।

$$KMnO_4 + H_2SO_4 + H_2S \longrightarrow ? + ? + ? + ?$$

সমাধান: প্রদত্ত রিডক্স বিক্রিয়ার আয়নিক সমীকরণটি হলো নিমুরূপ:

$$MnO_4^- + S^{2-} + H^+ - \longrightarrow ? + ? + ? + ?$$

এক্ষেত্রে বিজারক হলো সালফাইড আয়ন (S^2^-) এবং জারক হলো অস্ট্রীয় পারম্যাঙ্গানেট আয়ন (MnO_4^-) । বিক্রিয়াকালে বিজারক S^{2^-} আয়ন 2টি ইলেকট্রন ত্যাগ করে সালফার (S) মৌলে জারিত হয় এবং জারক অস্ট্রীয় মাধ্যমে MnO_4^- আয়ন 5টি ইলেকট্রন গ্রহণ করে Mn^{2^+} আয়নে বিজারিত হয়। [সারণি-৩.১ দেখো]। তখন MnO_4^- আয়নের 4টি O পরমাণু 8টি O পরমাণু 1টি O আয়নসহ 1টি O অণু গঠন করে। এদের মধ্যে নিমুরূপ জারণ-বিজারণ অর্থ-বিক্রিয়া ঘটে:

জারণ অর্ধ-বিক্রিয়া :
$$S^{2-} \longrightarrow S + 2e^-$$
(1)

বিজারণ অর্ধ-বিক্রিয়া :
$$MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$$
(2)

জারণ অর্ধ-বিক্রিয়া ও বিজারণ অর্ধ-বিক্রিয়ায় ইলেকট্রন সংখ্যা সমান করার জন্য (1) নং সমীকরণকে 5 দিয়ে এবং (2) নং সমীকরণকে 2 দিয়ে গুণ করে যোগ করে পাই

$$5S^{2-} \longrightarrow 5S + 10e^{-}$$

$$2MnO_{4}^{-} + 16H^{+} + 10e^{-} \longrightarrow 2Mn^{2+} + 8H_{2}O$$

যোগ করে,
$$2MnO_4^- + 16H^+ + 5S^{2-} \longrightarrow 2Mn^{2-} + 5S + 8H_2O$$

এ সমতাযুক্ত আয়নিক সমীকরণে দর্শক আয়নরূপে K^+ আয়ন ও ${
m SO_4}^{2-}$ আয়ন যোগ করে আণবিক সমীকরণ পাই-

$$2KMnO_4 + 5 H_2S + 3H_2SO_4 \longrightarrow 2MnSO_4 + 5S + K_2SO_4 + 8H_2O$$

সমাধানকৃত সমস্যা-৩.৫৫ : শঘু H_2SO_4 মিশ্রিত $KMnO_4$ এর সাথে অক্সালিক এসিড ($H_2C_2O_4$) এর রিডক্স বিক্রিয়াটি অর্ধ-বিক্রিয়ার সাহায্যে শেখ :

$$H_2C_2O_4 + KMnO_4 + H_2SO_4 \longrightarrow CO_2 + MnSO_4 + K_2SO_4 + H_2O$$

সমাধান : প্রদত্ত রিডক্স বিক্রিয়ার আয়নিক সমীকরণটি হলো :

$$C_2O_4^{2-} + MnO_4^{-} + H^{+} \longrightarrow CO_2 + Mn^{2+} + H_2O$$

এক্ষেত্রে বিজারক হলো অক্সালেট আয়ন $(C_2O_4^{2^-})$ এবং জারক হলো অম্মীয় MnO_4^- আয়ন। বিক্রিয়াকালে বিজারক $C_2O_4^{2^-}$ আয়ন 2টি ইলেকট্রেন ত্যাগ করে 2 অণু CO_2 উৎপন্ন করে; এবং জারক অম্মীয় মাধ্যমে MnO_4^- আয়ন 5টি ইলেকট্রন গ্রহণ করে Mn^{2^+} আয়নে বিজারিত হয়। [সারণি-৩. দেখো]। তখন MnO_4^- আয়নের 4টি O পরমাণু 8টি H^+ আয়নসহ 4টি H_2O অণু গঠন করে। এদের মধ্যে নিমুরূপ জারণ-বিজারণ অর্ধ-বিক্রিয়া ঘটে :

জারণ অর্ধ-বিক্রিয়া :
$$C_2O_4^{2-} \longrightarrow 2CO_2 + 2e^- (1)$$

বিজারণ অর্ধ-বিক্রিয়া : $MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O \dots \dots (2)$

জারণ অর্ধ-বিক্রিয়া ও বিজারণ অর্ধ-বিক্রিয়ায় ইলেকট্রনের সংখ্যা সমান করার জন্য (1) নং সমীকরণকে 5 দিয়ে এবং (2) নং সমীকরণকে 2 দিয়ে গুণ করে যোগ করলে পাই—

$$5C_2O_4^{2-} \longrightarrow 10CO_2 + 10e^ 2MnO_4^- + 16H^+ + 10e^- \longrightarrow 2Mn^{2+} + 8H_2O$$
যোগ করে, $5C_2O_4^{2-} + 2MnO_4^- + 16H^+ \longrightarrow 10CO_2 + 2Mn^{2+} + 8H_2O$

এ সমতাযুক্ত আয়নিক সমীকরণে দর্শক আয়নরূপে K^+ আয়ন ও SO_4^{2-} আয়ন যোগ করে আণবিক সমীকরণ পাই— $5H_2C_2O_4 + 2KMnO_4 + 3H_2SO_4 \longrightarrow 10CO_2 + 2MnSO_4 + 8H_2O$ এ সমীকরণের বাম ও ডানদিকে K^+ আয়ন ও SO_4^{2-} আয়নের সংখ্যা সমান করে সমতাযুক্ত আণবিক সমীকরণ পাই— $5H_2C_2O_4 + 2KMnO_4 + 3H_2SO_4 \longrightarrow 10CO_2 + 2MnSO_4 + K_2SO_4 + 8H_2O$ সমাধানকত সমস্যা-৩.৫৬ : নিচের উদ্দীপক মতে সংশ্রিষ্ট সমস্যা সমাধান করো ।

A-দ্রবণ : 50 mL 0.1 M H₂C₂O₄ দ্রবণ; B-দ্রবণ : 30 mL KMnO₄ দ্রবণ;

C-দ্ৰবণ : 24 mL অপ্লীয় FeSO4 দ্ৰবণ।

যি. বো. ২০২৩]

উদ্দীপকের A ও B দ্রবণদ্বয়ের সাহায্যে C দ্রবণে Fe এর পরিমাণ নির্ণয় করো।

সমাধান : প্রথমে প্রদত্ত A-দ্রবণ সহযোগে B-দ্রবণের অর্থাৎ KMnO4 দ্রবণের ঘনমাত্রা নির্ণয় করতে হবে। এরপর জ্ঞাত ঘনমাত্রার KMnO4 দ্রবণ সহযোগে C-দ্রবণের থাকা Fe এর পরিমাণ নির্ণয় করা যাবে।

(ক) $H_2C_2O_4$ দ্রবণ দ্বারা $KMnO_4$ দ্রবণের ঘনমাত্রা নির্ণয় : অম্প্রীয় মাধ্যমে $KMnO_4$ দ্রবণ ও অক্সালিক এসিড $(H_2C_2O_4)$ দ্রবণের মধ্যে রিডক্স বিক্রিয়ার আয়নিক সমীকরণটি হলো :

$$C_2O_4^{2-} + MnO_4^{-} + H^{+} \longrightarrow CO_2 + Mn^{2+} + H_2O$$

এক্ষেত্রে বিজারক অক্সালেট আয়ন $(C_2O_4^{2-})$ বিক্রিয়াকালে 2টি ইলেকট্রন ত্যাগ করে 2 অণু CO_2 গ্যাস উৎপন্ন করে; এবং জারক অদ্পীয় মাধ্যমে MnO_4^- আয়ন 5টি ইলেকট্রন গ্রহণ করে বিজারিত হয়ে Mn^{2+} আয়নে পরিণত হয় এবং MnO_4^- আয়নের 4টি O পরমাণু 8টি H^+ আয়নসহ 4টি H_2O অণু গঠন করে। এদের মধ্যে নিম্নরপ জারণ-বিজারণ অর্ধ-বিক্রিয়া ঘটে:

জারণ অর্ধ-বিক্রিয়া :
$$C_2O_4^{2-} \longrightarrow 2CO_2 + 2e^- \times 5 (1)$$

বিজারণ অর্ধ-বিক্রিয়া : $MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$ $\times 2$ (2)

(1) নং বিক্রিয়াকে 5 দারা এবং (2) নং বিক্রিয়াকে 2 দারা গুণ করে যোগ করার পর সমতাযুক্ত আয়নিক সমীকরণ হলো:

$$5C_2O_4^{2-} + 2MnO_4^- + 16H^+ \longrightarrow 10CO_2 + 2Mn^{2+} + 8H_2O$$

বা, $5H_2C_2O_4 + 2KMnO_4 + 3H_2SO_4 \longrightarrow 10CO_2 + 2MnSO_4 + K_2SO_4 + 8H_2O$...(3) সমতাযুক্ত আণবিক সমীকরণ (3) মতে আমরা পাই, 5 mol $H_2C_2O_4 \equiv 2$ mol $KMnO_4$

$$\frac{V_1 \times M_1 \ (H_2C_2O_4 \, \underline{u}$$
বণ)}{V_2 \times M_2 \ (KMnO_4 \, \underline{u}বণ) = $\frac{5 \ mol \ H_2C_2O_4}{2 \ mol \ KMnO_4}$ = $\frac{50 \times 0.1 \times 2}{2 \ mol \ KMnO_4}$

বা,
$$\frac{50 \times 0.1}{30 \times M_2} = \frac{5}{2}$$
 : $M_2 = \frac{50 \times 0.1 \times 2}{30 \times 5} = 0.066 \,\mathrm{M}$ KMnO₄ এর খনমাত্রা, $M_2 \equiv ?$

্খ) 0.066 M KMnO_4 দ্রবণ দারা FeSO_4 দ্রবণে Fe এর পরিমাণ নির্ণয় : Fe^{2^+} আয়ন ও অশ্লীয় MnO_4^- আয়নের রিডক্স বিক্রিয়ার সমীকরণ নিম্নরূপ :

জারণ অর্ধ-বিক্রিয়া :
$$Fe^{2^+} \longrightarrow Fe^{3^+} + e^- \dots \times 5$$
বিজারণ অর্ধ-বিক্রিয়া : $MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2^+} + 4H_2O$
যোগ করে, $5Fe^{2^+} + MnO_4^- + 8H^+ \longrightarrow 5Fe^{3^+} + Mn^{2^+} + 4H_2O$
সমীকরণ মতে, $1 \mod KMnO_4 \equiv 5 \mod Fe^{2^+}$ আয়ন
বা, $1000 \mod L \mod KMnO_4$ দ্রবণ $\equiv 5 \times 55.85$ g Fe^{2^+} আয়ন

রসায়ন-২য় (হাসান) -৩১(ক)

∴ 30 mL 0.066 M KMnO₄ দ্ৰবণ $\equiv \frac{5 \times 55.85 \times 30 \times 0.066}{1000 \times 1}$ g Fe²⁺ = 0.553 g Fe²⁺

সিদ্ধান্ত: উদ্দীপক মতে, 24 mL অশ্লীয় FeSO₄ দ্ৰবণে 0.553 g Fe²⁺ আয়ন আছে।

সদৃশ সমস্যা: দ্রবণ-A: H₂SO₄ মিশ্রিত 2 mL KMnO₄; দ্রবণ-B: 28 mL 0.1 M H₂C₂O₄ দ্রবণ;

দ্রবণ-C: অস্ট্রীয় 50 mL FeSO₄ দ্রবণ। উদ্দীপকের A ও B দ্রবণ ব্যবহার করে দ্রবণ-C এ Fe এর পরিমাণ নির্ণয় করা সম্ভব কি? গাণিতিকভাবে বিশ্লেষণ করো।

সমাধানকৃত সমস্যা-৩.৫৭ : শঘু H_2SO_4 মিশ্রিত $KMnO_4$ এর সাথে H_2O_2 (হাইড্রোজেন পারঅক্সাইড) এর রিডক্স বিক্রিয়াটি অর্ধ-বিক্রিয়ার সাহায্যে শেখ :

 $H_2O_2 + KMnO_4 + H_2SO_4 \longrightarrow O_2 + MnSO_4 + K_2SO_4 + H_2O$ সমাধান : প্রদত্ত রিডক্স বিক্রিয়ার আয়নিক সমীকরণটি হলো :

$$O_2^{2-} + MnO_4^- + H^+ \longrightarrow O_2^- + Mn^{2+} + H_2O$$

এক্ষেত্রে বিজারক হলো পারঅক্সাইড আয়ন $({\rm O_2}^2^-)$ এবং জারক হলো অশ্লীয় ${\rm MnO_4^-}$ আয়ন । বিক্রিয়াকালে বিজারক ${\rm O_2}^{2^-}$ (পারঅক্সাইড) আয়ন 2টি ইলেকট্রন ত্যাগ করে ${\rm O_2}$ অণুতে জারিত হয়; এবং জারক অশ্লীয় মাধ্যমে ${\rm MnO_4^-}$ আয়ন 5টি ইলেকট্রন গ্রহণ করে ${\rm Mn}^{2^+}$ আয়নে বিজারিত হয় [সার্রাণ ৩.১ দেখো]। তখন ${\rm MnO_4^-}$ আয়নের 4টি ${\rm O}$ পরমাণু 8টি ${\rm H}^+$ আয়নসহ 4টি ${\rm H_2O}$ অণু গঠন করে। এদের মধ্যে নিমুর্নপ জারণ-বিজারণ অর্ধ-বিক্রিয়া ঘটে:

জারণ অর্ধ-বিক্রিয়া :
$$O_2^{2-} \longrightarrow O_2 + 2e^- \dots \dots \dots (1)$$

বিজারণ অর্ধ-বিক্রিয়া : $MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O \dots \dots (2)$

জারণ অর্ধ-বিক্রিয়া ও বিজারণ অর্ধ-বিক্রিয়ায় ইলেকট্রন সংখ্যা সমান করার জন্য (1) নং সমীকরণকে 5 দিয়ে এবং (2) নং সমীকরণকে 2 দিয়ে গুণ করে যোগ করলে পাই,

$$5O_2^{2-} \longrightarrow 5O_2 + 10e^{-}$$

$$2MnO_4^{-} + 16H^{+} + 10e^{-} \longrightarrow 2Mn^{2+} + 8H_2O$$

যোগ করে, $5O_2^{2-} + 2MnO_4^- + 16H^+ \longrightarrow 5O_2^- + 2Mn^{2+} + 8H_2O$ এ সমতাযুক্ত আয়নিক সমীকরণে দর্শক আয়নরূপে K^+ আয়ন ও SO_4^{2-} আয়ন যোগ করে আণবিক সমীকরণ পাই-

এ সমতাযুক্ত আয়নিক সমীকরণে দর্শক আয়নরূপে K^+ আয়ন ও $SO_4{}^{2-}$ আয়ন যোগ করে আণবিক সমীকরণ পাই- $5H_2O_2 + 2KMnO_4 + 3H_2SO_4 \longrightarrow 5O_2 + 2MnSO_4 + 8H_2O$

এ সমীকরণের বাম ও ডানদিকে K^{\dagger} আয়ন ও ${{
m SO_4}^{2-}}$ আয়নের সংখ্যা সমান করে সমতাযুক্ত আণবিক সমীকরণ পাই-

 $5H_2O_2 + 2KMnO_4 + 3H_2SO_4 \longrightarrow 5O_2 + 2MnSO_4 + K_2SO_4 + 8H_2O_4$

সমাধানকৃত সমস্যা-৩.৫৮ : শঘু H_2SO_4 এসিড মিশ্রিত $K_2Cr_2O_7$ এর সাথে $FeSO_4$ এর জারণ-বিজারণ বিক্রিয়াটি অর্ধ-বিক্রিয়ার সাহায্যে শেখ ।

 $FeSO_4 + K_2Cr_2O_7 + H_2SO_4 \longrightarrow Fe_2(SO_4)_3 + Cr_2(SO_4)_3 + K_2SO_4 + H_2O$ সমাধান : প্রদত্ত রিডক্স বিক্রিয়ার আয়নিক সমীকরণটি হলো :

$$Fe^{2+} + Cr_2O_7^{2-} + H^+ \longrightarrow Fe^{3+} + Cr^{3+} + H_2O$$

এক্ষেত্রে বিজারক হলো ${\rm Fe}^{2+}$ আয়ন এবং জারক হলো অপ্রীয় ${\rm Cr}_2{\rm O_7}^{2-}$ (ডাইক্রোমেট) আয়ন। বিক্রিয়াকালে বিজারক ${\rm Fe}^{2+}$ আয়ন 1টি ইলেক্ট্রন ত্যাগ করে ${\rm Fe}^{3+}$ আয়নে জারিত হয়। এবং জারক অপ্রীয় মাধ্যমে ${\rm Cr}_2{\rm O_7}^{2-}$ আয়ন 6টি ইলেক্ট্রন গ্রহণ করে 2টি ${\rm Cr}^{3+}$ আয়নে বিজারিত হয়। সারিণি ৩.১ দেখো। তখন ${\rm Cr}_2{\rm O_7}^{2-}$ আয়নের 7টি ${\rm O}$ পরমাণু 14টি ${\rm H}^+$ আয়নসহ 7টি ${\rm H}_2{\rm O}$ অণু গঠন করে। উভয়ের মধ্যে নিমুরূপ জারণ-বিজারণ অর্থ-বিক্রিয়া ঘটে :

জারণ অধ্-বিক্রিয়া :
$$Fe^{2+} \longrightarrow Fe^{3+} + e^{-} \dots \dots \dots (1)$$

বিজারণ অর্ধ-বিক্রিয়া : $Cr_2O_7^{2-} + 14H^+ + 6e^- \longrightarrow 2Cr^{3+} + 7H_2O \dots \dots (2)$

জারণ অর্ধ-বিক্রিয়ায় ও বিজারণ অর্ধ-বিক্রিয়ায় ইলেকট্রন সংখ্যা সমান করার জন্য (1) নং সমীকরণকে 6 দিয়ে গুণ করে উভয় সমীকরণকে যোগ করে পাই.

$$6Fe^{2+} \longrightarrow 6Fe^{3+} + 6e^{-}$$
 $Cr_2O_7^{2-} + 14H^+ + 6e^{-} \longrightarrow 2Cr^{3+} + 7H_2O$
যোগ করে, $6Fe^{2+} + Cr_2O_7^{2-} + 14H^+ \longrightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O$

এ সমতাযুক্ত আয়নিক সমীকরণে দর্শক আয়নরূপে K^+ আয়ন ও SO_4^{2-} আয়ন যোগ করে পাই—

 $6FeSO_4 + K_2Cr_2O_7 + 7H_2SO_4 \longrightarrow 3Fe_2(SO_4)_3 + Cr_2(SO_4)_3 + 7H_2O_1$ এ সমীকরণের বাম ও ডানদিকে K^+ আয়ন ও SO_4^{2-} আয়নের সংখ্যা সমান করে সমতাযুক্ত আয়নিক সমীকরণ পাই, $6FeSO_4 + K_2Cr_2O_7 + 7H_2SO_4 \longrightarrow 3Fe_2(SO_4)_3 + Cr_2(SO_4)_3 + K_2SO_4 + 7H_2O_4$ সমাধানকত সমস্যা-৩.৫৯ : লঘু H2SO4 মিশ্রিত K2Cr2O7 এর সাথে KI লবণের জারণ-বিজারণ-বিক্রিয়াটি অর্ধ-বিক্রিয়ার সাহায্যে শেখ।

 $2KI + K_2Cr_2O_7 + H_2SO_4 \longrightarrow I_2 + Cr_2(SO_4)_3 + K_2SO_4 + H_2O_4$ সমাধান: প্রদত্ত রিডক্স বিক্রিয়ার আয়নিক সমীকরণটি হলো:

$$2\Gamma + Cr_2O_7^{2-} + H^+ \longrightarrow I_2 + 2Cr^{3+} + H_2O$$

এক্ষেত্রে বিজারক হলো আয়োডাইড আয়ন (Γ) এবং জারক হলো অম্রীয় ডাইক্রোমেট আয়ন ($\operatorname{Cr}_2\operatorname{O_7}^2$)। বিক্রিয়াকালে বিজারক 2টি আয়োডাইড আয়ন (IT) প্রত্যেকে 1টি করে ইলেকট্রন ত্যাগ করে I2 অণুরূপে জারিত হয়; এবং জারক অস্ত্রীয় মাধ্যমে $\operatorname{Cr}_2\operatorname{O}_7^{2-}$ (ডাইক্রোমেট) আয়ন 6টি ইলেক্ট্রন গ্রহণ করে 2টি Cr^{3+} আয়নে বিজারিত হয়। তখন ${
m Cr_2O_7}^{2-}$ আয়নের 7টি ${
m O}$ পরমাণু 14টি ${
m H}^+$ আয়নসহ 7টি ${
m H_2O}$ অণু গঠন করে। উভয়ের মধ্যে নিমুরূপ জারণ ও বিজারণ অর্ধ-বিক্রিয়া ঘটে :

জারণ অর্ধ-বিক্রিয়া :
$$2\Gamma \longrightarrow I_2 + 2e^- \dots \dots (1)$$

বিজারণ অর্ধ-বিক্রিয়া :
$$Cr_2O_7^{2-} + 14H^+ + 6e^- \longrightarrow 2Cr^{3+} + 7H_2O \dots \dots (2)$$

জারণ অর্ধ-বিক্রিয়া ও বিজারণ অর্ধ-বিক্রিয়ায় ইলেকট্রন সংখ্যা সমান করার জন্য (1) নং সমীকরণকে 3 দিয়ে গুণ করে উভয় সমীকরণকে যোগ করে পাই

$$6\Gamma \longrightarrow 3I_2 + 6e^ Cr_2O_7^{2-} + 14H^+ + 6e^- \longrightarrow 2Cr^{3+} + 7H_2O$$
থোগ করে, $6\Gamma + Cr_2O_7^{2-} + 14H^+ \longrightarrow 3I_2 + 2Cr^{3+} + 7H_2O$

এ সমতাযুক্ত আয়নিক সমীকরণে দর্শক আয়নরূপে K^+ আয়ন ও SO_4^{2-} আয়ন যোগ করে আণবিক সমীকরণ পাই,

$$6KI + K_2Cr_2O_7 + 7H_2SO_4 \longrightarrow 3I_2 + Cr_2(SO_4)_3 + 7H_2O_4$$

এ সমীকরণের বাম ও ডানদিকে K^+ আয়ন ও SO_4^{2-} আয়নের সংখ্যা সমান করে সমতাযুক্ত আণবিক সমীকরণ পাই.

$$6KI + K_2Cr_2O_7 + 7H_2SO_4 \longrightarrow 3I_2 + Cr_2(SO_4)_3 + 4K_2SO_4 + 7H_2O_4$$

st জেনে নাও আয়োডাইড লবণ (KI) থেকে I_2 উৎপন্ন করা যায় কেবল অম্মীয় মাধ্যমে । ক্ষার মাধ্যমে I_2 জারিত হয়ে আয়োডেট লবণ (KIO_3) তৈরি করে। লঘু H_2SO_4 এর পরিবর্তে লঘু HC1 ব্যবহার করলে $14H^+$ আয়নের জন্য 14HCl অণু প্রয়োজন হবে। সমীকরণটি হবে নিমুরূপ :

$$6KI + K_2Cr_2O_7 + 14HCl \longrightarrow 3I_2 + 2CrCl_3 + 8KCl + 7H_2O$$

সমাধানকৃত সমস্যা-৩.৬০ : লঘু $m H_2SO_4$ মিশ্রিত $m Na_2Cr_2O_7$ এর সাথে সোডিয়াম অক্সালেট ($m Na_2C_2O_4$) এর বিডক্স বিক্রিয়াটি অর্থ-বিক্রিয়ার সাহায্যে শেখ।

 $Na_2C_2O_4 + Na_2Cr_2O_7 + H_2SO_4 \longrightarrow CO_2 + Cr_2(SO_4)_3 + Na_2SO_4 + H_2O_4$ সমাধান : প্রদত্ত জারণ-বিজারণ বিক্রিয়ার আয়নিক সমীকরণটি হলো :

$$C_{2}O_{4}^{2-} + Cr_{2}O_{7}^{2-} + H^{+} \longrightarrow 2CO_{2} + 2Cr^{3+} + H_{2}O_{3}^{2-}$$

এক্ষেত্রে বিজারক হলো অক্সালেট আয়ন ($C_2O_4^{2-}$) এবং জারক হলো অম্মীয় ডাইক্রোমেট আয়ন ($C_1O_7^{2-}$)। বিক্রিয়াকালে বিজারক $C_2O_4^{2-}$ (অক্সালেট) আয়ন $2\overline{b}$ ইলেকট্রন ত্যাগ করে 2 অণু CO_2 উৎপন্ন করে; এবং জারক অম্রীয় মাধ্যমে $C_{r_2}O_7^{2-}$ আয়ন 6টি ইলেক্ট্রন গ্রহণ করে 2টি C_r^{3+} আয়নে বিজারিত হয়। তখন $C_{r_2}O_7^{2-}$ আয়নের 7টি O_7^{2-} প্রমাণু 14টি $ext{H}^+$ আয়নসহ 7টি $ext{H}_2 ext{O}$ অণু গঠন করে। উভয়ের মধ্যে জারণ-বিজারণের অর্ধ-বিক্রিয়া নিমুরূপ :

জারণ অর্ধ-বিক্রিয়া :
$$C_2O_4^{2-}$$
 \longrightarrow $2CO_2$ + $2e^- (1)$

বিজারণ অর্ধ-বিক্রিয়া : $Cr_2O_7^{2-} + 14H^+ + 6e^- \longrightarrow 2Cr^{3+} + 7H_2O........(2)$

জারণ অর্ধ-বিক্রিয়া ও বিজারণ অর্ধ-বিক্রিয়ায় ইলেকট্রনের সংখ্যা সমান করার জন্য (1) নং সমীকরণকে 3 দিয়ে গুণ করে উভয় সমীকরণকে যোগ করে পাই.

$$3C_2O_4^{2-} \longrightarrow 6CO_2 + 6e^ Cr_2O_7^{2-} + 14H^+ + 6e^- \longrightarrow 2Cr^{3+} + 7H_2O$$
থোগ করে, $3C_2O_4^{2-} + Cr_2O_7^{2-} + 14H^+ \longrightarrow 6CO_2 + 2Cr^{3+} + 7H_2O$

এ সমতাযুক্ত আয়নিক সমীকরণে দর্শক আয়নরূপে Na^+ আয়ন ও SO_4^{2-} আয়ন যোগ করে আণবিক সমীকরণ পাই,

 $3Na_2C_2O_4 + Na_2Cr_2O_7 + 7H_2SO_4 \longrightarrow 6CO_2 + Cr_2(SO_4)_3$ এ সমীকরণের বাম ও ডানদিকে Na^+ আয়ন ও SO_4^{2-} আয়নের সংখ্যা সমান করে সমতাযুক্ত আয়নিক সমীকরণ পাই-

 $3Na_2C_2O_4 + Na_2Cr_2O_7 + 7H_2SO_4 \longrightarrow 6CO_2 + Cr_2(SO_4)_3 + 4Na_2SO_4 + 7H_2O_4$ সমাধানকৃত সমস্যা-৩.৬১ : সোডিয়াম থায়োসালফেট ও আয়োডিনের জারণ-বিজারণ অর্ধ-বিক্রিয়ার সাহায্যে লেখ :

$$2Na_2S_2O_3 + I_2 \longrightarrow Na_2S_4O_6 + 2NaI$$

 $2Na_2S_2O_3 + I_2 \longrightarrow Na_2S_4O_6$ সমাধান : প্রদত্ত জারণ-বিজারণ বিক্রিয়ার আয়নিক সমীকরণটি হলো :

$$S_2O_3^{2-}$$
 + $I_2 \longrightarrow S_4O_6^{2-}$ + 2Γ

 $S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-} + 2I^-$ এক্ষেত্রে বিজারক হলো থায়োসালফেট আয়ন $(S_2O_3^{2-})$ এবং জারক হলো আয়োডিন (I_2) । উভয়ের মধ্যে জারণ বিজারণকালে দুটি থায়োসালফেট আয়ন দুটি ইলেকট্রন বর্জন করে টেট্রাখায়োনেট $(S_4O_6^{\ 2})$ আয়নে পরিণত হয়। আয়োডিন ঐ ইলেকট্রন গ্রহণ করে আয়োডাইড (Г) আয়নে পরিণত হয়। তাদের মধ্যে জারণ-বিজারণের অর্ধ-বিক্রিয়ার সমীকরণ হলো নিমরূপ:

জারণ অর্ধ-বিক্রিয়া :
$$2S_2O_3^{2-}$$
 \longrightarrow $S_4O_6^{2-}$ + $2e^-$

বিজারণ অর্ধ-বিক্রিয়া : I₂ + 2e⁻ → 2∏

জারণ অর্ধ-বিক্রিয়া ও বিজারণ অর্ধ-বিক্রিয়ায় ইলেকট্রন বর্জন ও গ্রহণ করার সংখ্যা উভয় দিকে সমান আছে। তাই উভয় সমীকরণ যোগ করে আয়নিক সমীকরণ পাই.

$$2S_2O_3^{2-}$$
 \longrightarrow $S_4O_6^{2-}$ + $2e^ I_2$ + $2e^ \longrightarrow$ 2Γ
 $\stackrel{\text{যোগ করে, }}{} 2S_2O_3^{2-}$ + I_2 \longrightarrow $S_4O_6^{2-}$ + 2Γ

এ সমতাযুক্ত আয়নিক সমীকরণ উভয় দিকে দর্শক আয়নরূপে Na^+ আয়ন যোগ করে আণবিক সমীকরণ পাই,

$$2Na_2S_2O_3 + I_2 \longrightarrow Na_2S_4O_6 + 2NaI$$

** সমাধানকৃত সমস্যা-৩.৬২ : রিডক্স বিক্রিয়াভিত্তিক সমস্যা :

ঢা. বো. ২০১৯]

(1)
$$Fe^{2^{+}} + MnO_{4}^{-} + H^{+} \longrightarrow Fe^{3^{+}} + Mn^{2^{+}} + H_{2}O$$

(2)
$$I_2 + S_2O_3^2$$

(2)
$$I_2 + S_2O_3^{2-} \longrightarrow S_4O_6^{2-} + 2\Gamma$$

(3)
$$HCOOH + Na_2CO_3 \longrightarrow HCOONa + CO_2 + H_2O$$

- (ক) উদ্দীপকের (1) নং বিক্রিয়ায় জারক ও বিজারক পদার্থ চিহ্নিতকরণ এবং তা কারণসহ বর্ণনা করো।
- (খ) উদ্দীপকের (2) ও (3) নং বিক্রিয়া একই ধরনের কীনা, তা বিশ্লেষণ করো।

সমাধান: (ক) জারক ও বিজারক চিহ্নিতকরণ:

সংশ্লিষ্ট (1) নং বিক্রিয়া : $Fe^{2t} + MnO_4^- + H^+ \longrightarrow Fe^{3t} + Mn^{2t} + H_2O$

[^]বিজারক চিহ্নিতকরণ :

জারক চিহ্নিতকরণ :

- হারায় বা ত্যাগ করে।
- ঘটে অর্থাৎ বিজারক জারিত হয়।
- (১) বিক্রিয়ায় বিজারক এক বা একাধিক ইলেকট্রন ।(১) বিক্রিয়ায় জারক এক বা একাধিক ইলেকট্রন লাভ বা গ্রহণ করে।
- (২) ফলে উৎপন্ন আয়নে জারণ-সংখ্যা (O. N.) বৃদ্ধি (২) ফলে উৎপন্ন আয়নে জারণ সংখ্যা (O. N.) হ্রাস
- (৩) জারণ-সংখ্যা বৃদ্ধি পাওয়ায় বিজারকের জারণ (৩) জারণ-সংখ্যা হ্রাস পাওয়ায় জারকের বিজারণ ঘটে; অর্থাৎ জারক বিজারিত হয়।

বিজারক ও জারকের উপরোক্ত বৈশিষ্ট্য সংশ্রিষ্ট (1) নং বিক্রিয়ায় প্রয়োগ করে নিমুরূপ জারক ও বিজারক চিহ্নিতকরণ এবং নিশ্চিত করা হলো : এক্ষেত্রে ${
m Fe}^{2+}$ আয়ন হলো বিজারক এবং ${
m MnO}_4^-$ আয়ন হলো জারক। কারণ বিক্রিয়াকালে বিজারক ${\rm Fe}^{2+}$ আয়ন একটি ইলেকট্রন ত্যাগ করে জারণ-সংখ্যা বৃদ্ধিসহকারে ${\rm Fe}^{3+}$ আয়নে পরিণত হয়েছে। ফলে ${\rm Fe}^{2+}$ আয়ুনটি Fe^{3+} আয়ুনে জারিত হয়েছে। এটিকে জারণ অর্ধ-বিক্রিয়া বলে।

জারণ অর্থ-বিক্রিয়া : $Fe^{2+} \longrightarrow Fe^{3+} + e^{-}$

অপরদিকে, MnO_4^- আয়নে Mn এর জারণ সংখ্যা + 7 আছে; কিছু বিক্রিয়া শেষে উৎপন্ন Mn^{2+} আয়নে Mn এর জারণ-সংখ্যা পাঁচ একক হ্রাস পেয়ে +2 হয়েছে। অর্থাৎ বিক্রিয়াকালে MnO_4^- আয়ন অদ্রীয় মাধ্যমে 5টি ইলেকট্রন বিজারক ${
m Fe}^{2+}$ আয়নসমূহ থেকে গ্রহণ করে বিজারিত হয়েছে। ফলে ${
m Mn}^{2+}$ আয়ন ও চারটি ${
m H}_2{
m O}$ অণু উৎপন্ন হয়েছে। এটি হলো বিজারণ অর্ধ-বিক্রিয়া।

বিজারণ অর্ধ-বিক্রিয়া : $MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$

সমাধান: (খ) উদ্দীপকের (2) ও (3) নং বিক্রিয়ার ধরন বিশ্লেষণ:

(2)
$$I_2 + 2S_2O_3^2$$

$$(2) I_2 + 2S_2O_3^{2-} \longrightarrow S_4O_6^{2-} + 2\Gamma$$

(3) $HCOOH + Na_2CO_3 \longrightarrow HCOONa + CO_2 + H_2O$

- ** উদ্দীপকের (2) নং বিক্রিয়াটি হলো জারণ-বিজারণ বা রিডক্স বিক্রিয়া এবং আয়োডিমিতির একটি উদাহরণ বটে। কারণ এক্ষেত্রে বিক্রিয়ক আয়োডিন (I_2) হলো জারক এবং থায়োসালফেট আয়ন $(S_2O_3^{\ 2})$ হলো বিজারক । বিজারক ও জারক পদার্থের বৈশিষ্ট্য মতে-
- (i) বিজারকরপে দুটি $S_2O_3^{2-}$ আয়ন বিক্রিয়াকালে $2\bar{b}$ করে ইলেকট্রন ত্যাগ করে জারিত হয়ে টেট্রাখায়োনেট আয়ন $(S_4O_6^{2-})$ এ পরিণত হয়েছে। এর ফলে S এর জারণ সংখ্যা $+\ 2$ থেকে বৃদ্ধি পেয়ে $+\ 2.5$ হয়েছে।

$$2S_2O_3^{2-} \longrightarrow S_4O_6^{2-} + 2e^-$$

(ii) অপরদিকে, জারকরূপে I_2 অণু 2টি করে ইলেকট্রন গ্রহণ করে বিজারিত হয়ে আয়োডাইড আয়ন (2Γ) এ পরিণত হয়েছে। এর ফলে আয়োডিনের জারণ-সংখ্যা 0 (শূন্য) থেকে হ্রাস পেয়ে -1 হয়েছে।

$$I_2 + 2e^- \longrightarrow 2I^-$$

অধিকছু আয়োডিমিতির সংজ্ঞা মতে, এ রিডক্স বিক্রিয়ায় সরাসরি I_2 এর সাথে থায়োসালফেটের বিক্রিয়া দেখানো হয়েছে।

** উদ্দীপকের (3) নং বিক্রিয়াটি হলো জৈব এসিড যেমন ফরমিক এসিড (H—COOH) ও ক্ষারধর্মী Na_2CO_3 এর মধ্যে এসিড-ক্ষার প্রশমন বিক্রিয়া। এক্ষেত্রে প্রথমে ধনাত্মক Na^+ আয়ন ও ফরমিক এসিডের H^+ আয়নের মধ্যে ছানান্তর ঘটে; ফলে H— $COON_a$ লবণ ও অছায়ী H_2CO_3 (কার্বনিক এসিড) উৎপন্ন হয়। পরে অছায়ী H_2CO_3 এর বিযোজনে CO_2 গ্যাস ও H_2O উৎপন্ন হয়েছে।

$$2H-COOH + Na2CO3 \longrightarrow 2H-COONa + H2CO3$$

$$H2CO3 \longrightarrow H2O + CO2$$

যোগ করে : 2H–COOH + Na_2CO_3 \longrightarrow 2H–COONa + CO_2 + H_2O

এ প্রশমন বিক্রিয়ায় সরাসরি কোনো ইলেকট্রন ছানান্তর ঘটেনি। ফলে উভয় বিক্রিয়কের কেন্দ্রীয় C পরমাণুতে জারণ-সংখ্যার কোনো পরিবর্তন ঘটেনি। তাই এতে কোনো জারণ-বিজারণ বা রিডক্স বিক্রিয়া ঘটেনি। সুতরাং উভয় বিক্রিয়ার ধরন বা প্রকৃতি সম্পূর্ণ ভিন্ন।

সমাধানকৃত সমস্যা-৩.৬৩: পটাসিয়াম আয়োডাইড (KI) ও কপার সালফেট $(CuSO_4)$ এর মধ্যে জারণ-বিজারণ বিক্রিয়াট অর্ধ-বিক্রিয়ার সাহায্যে লেখ । $4KI + 2CuSO_4 \longrightarrow I_2 + Cu_2I_2 + 2K_2SO_4$ [ঢা. বো. ২০১৭]

সমাধান: প্রদত্ত জারণ-বিজারণ বিক্রিয়ার আয়নিক সমীকরণটি হলো:

$$2\Gamma + 2Cu^{2+} \longrightarrow I_2 + Cu_2^{2+}$$

এক্ষেত্রে বিজারক হলো আয়োডাইড আয়ন (Γ) এবং জারক হলো কপার (II) আয়ন (Cu^{2+}) । উভয়ের মধ্যে জারণ বিজারণের অর্ধ-বিক্রিয়া নিমুরূপ :

জারণ অর্ধ-বিক্রিয়া :

$$2I \longrightarrow I_2 + 2e^-$$

বিজারণ অর্ধ-বিক্রিয়া : $2Cu^{2+} + 2e^{-} \longrightarrow 2Cu^{+}$

জারণ অর্ধ-বিক্রিয়া ও বিজারণ অর্ধ-বিক্রিয়ায় ইলেকট্রন বর্জন ও গ্রহণ করার সংখ্যা উভয় দিকে সমান আছে। তাই উভয় সমীকরণ যোগ করে সমতাযুক্ত আয়নিক সমীকরণ পাই—

$$2\Gamma \longrightarrow I_2 + 2e^ 2Cu^{2+} + 2e^- \longrightarrow 2Cu^+$$
যোগ করে, $2\Gamma + 2Cu^{2+} \longrightarrow I_2 + 2Cu^+$

এ সমতাযুক্ত আয়নিক সমীকরণে উভয়দিকে দর্শক আয়নরূপে K^+ আয়ন ও ${SO_4}^{2-}$ আয়ন যোগ করে সমতাযুক্ত আণবিক সমীকরণ পাই : $4KI + 2CuSO_4 \longrightarrow I_2 + Cu_2I_2 + 2K_2SO_4$

দুষ্টব্য : Cu_2I_2 হলো CuI এর একটি ডাইমার অণু। প্রকৃতপক্ষে Cu_2^{2+} আয়ন হলো $2Cu^+$ আয়নের যুক্ত অবছা।

শিক্ষার্থী নিজে করো-৩.১২ : রিডক্স অর্থ-বিক্রিয়াভিত্তিক :

সমস্যা-৩.৫৩(ক) : অস্ত্রীয় K₂Cr₂O₇ দ্রবণ ও KI দ্রবণের রিডক্স বিক্রিয়া অর্ধ-বিক্রিয়ার সাহায্যে লেখ।

সমস্যা-৩.৫৩ (খ): ক্ষারীয় KMnO4 দ্রবণ ও KI দ্রবণের রিডক্স বিক্রিয়া অর্ধ-বিক্রিয়ার সাহায্যে লেখ।

দুষ্টব্য : এক্ষেত্রে অম্রীয় মাধ্যমের মতো I_2 হবে না, ক্ষারীয় মাধ্যমে IO_3^- হবে।

সমস্যা-৩.৫8 : কপার সালফেট ও পটাসিয়াম আয়োডাইড দ্রবণের রিডক্স বিক্রিয়া অর্ধ-বিক্রিয়ার সাহায্যে লেখ।

সমস্যা-৩.৫৫(ক) : সোডিয়াম থায়োসালফেট ও আয়োডিনের রিডক্স বিক্রিয়া অর্ধ-বিক্রিয়ার সাহায্যে লেখ।

সমস্যা-৩.৫৫ (খ): H₂O₂ অবছাভেদে জারক ও বিজারক উভয়রূপে ক্রিয়া করে, তা প্রমাণ করো। চি. বো. ২০১৯

[সমাধানকৃত সমস্যা-৩.৭৫ এর শেষে দেখো।]

সমস্যা-৩.৫৬(ক) : অশ্লীয় $K_2Cr_2O_7$ দ্রবণ ও H_2S দ্রবণের রিডক্স বিক্রিয়া অর্ধ-বিক্রিয়াসহ লেখ। চি. বো. ২০১৯] সমস্যা-৩.৫৬ (খ) : অশ্লীয় $KMnO_4$ দ্রবণ ও H_2S গ্যাসের রিডক্স বিক্রিয়া আয়ন ইলেকট্রন পদ্ধতিতে সমতাসহ লেখ। [সমাধানকৃত সমস্যা-৩.৫৪ দেখো।] [অভিন্ন বোর্ড ২০১৮]

সমস্যা-৩.৫৭ : অম্লীয় Na₂Cr₂O₇ ও SO₂ এর রিডক্স বিক্রিয়া অর্ধ-বিক্রিয়াসহ লেখ।

সমস্যা-৩.৫৮ : অদ্রীয় KMnO4 দ্রবণ ও KI এর রিডক্স বিক্রিয়া অর্ধ-বিক্রিয়াসহ লেখ।

সমস্যা-৩.৫৯ : অশ্লীয় KMnO4 দ্রবণ ও FeSO4 এর রিডক্স বিক্রিয়া অর্ধ-বিক্রিয়াসহ লেখ। [ঢা. বো. ২০২৩; মা রো. ২০১৭]

সমস্যা-৩.৬০ : অশ্লীয় KMnO4 দ্রবণ ও H_2O_2 এর রিডক্স বিক্রিয়া অর্ধ-বিক্রিয়াসহ লেখ।

সমস্যা-৩.৬১ : অম্লীয় K₂Cr₂O₇ দ্রবণ ও অক্সালিক এসিডের রিডক্স বিক্রিয়া অর্ধ-বিক্রিয়াসহ লেখ।

সমস্যা-৩.৬২ : আয়ন-ইলেকট্রন পদ্ধতিতে সমতা বিধান করো :

$$MnO_4^- + HCl \longrightarrow Mn^{2+} + Cl_2 + H_2O$$

সমস্যা-৩.৬৩: আয়ন-ইলেকট্রন পদ্ধতিতে সমতা বিধান করো:

$$MnO_4^- + C_2O_4^{2-} + H^+ \longrightarrow ? + ? + ?$$

সমস্যা-৩.৬8 : (ক) আয়ন-ইলেকট্রন পদ্ধতিতে সমতা বিধান করো :

$$Cr_2O_7^{2+} + \Gamma + H^+ \longrightarrow ? + ? + ?$$

(খ) আয়ন-ইলেকট্রন পদ্ধতিতে সমতা বিধান করো: $CuSO_4 + KI \longrightarrow ? + ? + ?$

[ঢা. বো. ২০১৭]

[সমাধানকৃত সমস্যা-৩.৬৩] দেখো]

৩.১০.১ জারণ-বিজারণভিত্তিক রাসায়নিক গণনা

Calculation based on Redox Reactions

গণনার ধাপগুলো:

- (১) প্রথমে জারণ-বিজারণের সমতাযুক্ত সমীকরণ লিখতে হয়।
- (২) শেষে জারক ও বিজারকের মোল সংখ্যার মধ্যে তুল্যতা সম্পর্ক লিখতে হয়।
- (৩) সবশেষে প্রশ্নমতে (i) ভরভিত্তিক গণনা অথবা (ii) দ্রবণ হলে আয়তন ও মোলার ঘনমাত্রাভিত্তিক সম্পর্ক ব্যবহার করতে হয়। যেমন, $\frac{V_1M_1}{V_2M_2}$ (বিজারক) = $\frac{n_1}{n_2}$ (বিজারকের মোল সংখ্যা)

নিচের সমাধানকৃত সমস্যাগুলো থেকে তা সহজে বোঝা যাবে।

সমাধানকৃত সমস্যা-৩.৬৪: 5~g অনার্দ্র ও বিশুদ্ধ ফেরাস সালফেটকে সম্পূর্ণ জারিত করতে কত গ্রাম $m K_2Cr_2O_7$ প্রয়োজন হবেং

সমাধান : ফেরাস লবণের দ্রবণকে অশ্লীয় পটাসিয়াম ডাইক্রোমেট দ্বারা জারিত করার বিক্রিয়া নিমুরূপ :

$$6Fe^{2+} + Cr_2O_7^{2-} + 14H^+ \longrightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O$$

অর্থাৎ
$$6FeSO_4 + K_2Cr_2O_7 + 7H_2SO_4 \longrightarrow 3Fe_2(SO_4)_3 + K_2SO_4 + Cr_2(SO_4)_3 + 7H_2O_4$$

 $\therefore 6 \text{ mol FeSO}_4 \equiv 1 \text{ mol } K_2Cr_2O_7$

$$K_2Cr_2O_7$$
 এর আণবিক ভর = $(39.1 \times 2 + 52 \times 2 + 16 \times 7) = 294.2$

∴ সমীকরণ মতে, 6 × 151.85 g FeSO₄ ≡ 294.2 g K₂Cr₂O₇

∴ 1 g পরিমাণ FeSO₄
$$\equiv \frac{294.2}{6 \times 151.85}$$
 g K₂Cr₂O₇

∴ 5 g পরিমাণ FeSO₄
$$\equiv \frac{294.2 \times 5}{6 \times 151.58}$$
 g K₂Cr₂O₇ $\equiv 1.6145$ g K₂Cr₂O₇ (উত্তর)

সমাধানকৃত সমস্যা-৩.৬৫: এক টুকরা লোহার তারকে লঘু H_2SO_4 এসিডে দ্রবীভূত করে প্রাপ্ত দ্রবণকে সম্পূর্ণরূপে জারিত করতে $0.03~M~KMnO_4$ দ্রবণের 27.5~mL প্রয়োজন হয়। লোহার তারটির ভর কত? কি. বা. ২০২১; বা. বো. ২০২১, অনুরূপ

সমাধান : লোহার তারকে লঘু $m H_2SO_4$ এসিডে দ্রবীভূত করলে $m FeSO_4$ ও $m H_2$ গ্যাস উৎপন্ন হয়।

$$Fe(s) + H_2SO_4(aq) \longrightarrow FeSO_4(aq) + H_2(g)$$

ফেরাস আয়নের দ্রবণকে অশ্লীয় KMnO4 দ্বারা জারিত করার আয়নিক সমীকরণ নিমুরূপ :

$$5Fe^{2+} + MnO_4^- + 8H^+ \longrightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$$

উপরিউক্ত সমীকরণ মতে , $1 \; \text{mol MnO}_4^-$ আয়ন $\equiv 5 \; \text{mol Fe}^{2+}$ আয়ন

বা, 1 mol KMnO₄ = 5 mol Fe

.: 1000 mL 1M KMnO₄ দ্ৰবণ ≡ 5 × 55.85 g Fe

∴ 27.5 mL 0.03 M KMnO₄ দ্ৰবণ
$$\equiv \frac{5 \times 55.85 \times 27.5 \times 0.03}{1000}$$
 g Fe = 0.2304 g Fe (প্ৰায়) (উত্তর)

সমাধানকৃত সমস্যা-৩.৬৬ : এক টুকরা লোহাকে লঘু $m H_2SO_4$ এসিডে দ্রবীভূত করা হলো। ঐ দ্রবণের বিজ্ঞারককে জারিত করতে m 60~mL ডেসিমোলার $m KMnO_4$ দ্রবণের প্রয়োজন হয়। এ উদ্দীপকভিত্তিক নিচের প্রশ্নের উত্তর দাও।

[রা. বো. ২০১৬]

- (ক) উদ্দীপকের লোহার ভর নির্ণয় করো।
- (খ) উদ্দীপকে জারক হিসেবে $K_2Cr_2O_7$ ব্যবহার করে ইলেকট্রন ছানান্তর পদ্ধতিতে অর্ধ-বিক্রিয়াসহ রিডক্স বিক্রিয়ার সমতাযুক্ত সমীকরণসহ জারক ও বিজারকের মোলার অনুপাত মূল্যায়ন করে।

সমাধান: (ক) উদ্দীপকের লোহার ভর নির্ণয়: (সমাধানকৃত সমস্যা-৩.৬৪ মতে)

Fe(s) + ল
$$H_2SO_4$$
 (aq) \longrightarrow FeSO₄ (aq) + H_2 (g)

 ${
m FeSO_4}$ এর ফেরাস আয়ন $({
m Fe^{2+}})$ কে অশ্রীয় ${
m KMnO_4}$ দ্রবণ দ্বারা জারিত করার আয়নিক সমীকরণ নিমুরূপ ;

$$5Fe^{2+} + MnO_4^- + 8H^+ \longrightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$$

উপরিউক্ত সমীকরণ মতে, 1 mol MnO₄ আয়ন ≡ 5 mol Fe²+ আয়ন

বা, 1 mol KMnO₄ \equiv 5 mol Fe

.. 1000 mL 1 M KMnO₄ দ্ৰবণ = 5 × 55.85 g Fe

∴ 60 mL 0.1 M KMnO₄ দ্ৰবণ =
$$\frac{5 \times 55.85 \times 60 \times 0.1 \text{ g Fe}}{1000 \times 1} = 1.6755 \text{ g Fe}$$
 (উত্তর)

সমাধান : (খ) উদ্দীপকের বিজারক ফেরাস আয়ন (Fe^{2^+}) ও অস্ত্রমিশ্রিত $K_2Cr_2O_7$ জারকের মধ্যে রিডক্স বিক্রিয়া : এক্ষেত্রে বিজারক ফেরাস আয়ন রিডক্স বিক্রিয়ায় 1টি করে ইলেকট্রন ত্যাগ করে ফেরিক আয়ন (Fe^{3^+}) রূপে জারিত হয়। অপরদিকে অস্ত্রমিশ্রিত ডাইক্রোমেট $(Cr_2O_7^{2^-})$ আয়ন 6টি ইলেকট্রন গ্রহণ করে $2Cr^{3^+}$ আয়নরূপে বিজারিত হয়। সূতরাং এদের মধ্যে জারণ অর্ধ-বিক্রিয়া ও বিজারণ অর্ধ-বিক্রিয়া হলো নিমুরূপ :

Fe²⁺ \longrightarrow Fe³⁺ জারণ অর্ধ-বিক্রিয়া: বিজারণ অর্ধ-বিক্রিয়া : $Cr_2O_7^{2-} + 14H^+ + 6e^- \longrightarrow 2Cr^{3+} + 7H_2O$ × 1 $Cr_2O_7^{2-} + 14H^+ + 6Fe^{2+} \rightarrow 2Cr^{3+} + 7H_2O + 6Fe^{3+}$

উভয় দিকে দর্শক আয়নরূপে K^+ আয়ন ও $\mathrm{SO_4}^{2-}$ আয়ন যোগ করে সমতাযুক্ত আণবিক সমী<mark>করণ পাই ,</code></mark>

 $K_2Cr_2O_7 + 7H_2SO_4 + 6FeSO_4 \longrightarrow 3Fe_2(SO_4)_3 + Cr_2(SO_4)_3 + K_2SO_4 + 7H_2O_4$ উপরিউক্ত সমতাযুক্ত সমীকরণ মতে, $1 \text{ mol } K_2Cr_2O_7 \equiv 6 \text{ mol } FeSO_4$

 \therefore রিডক্স বিক্রিয়ায় জারক $\mathrm{K_2Cr_2O_7}$ ও বিজারক $\mathrm{FeSO_4}$ এর মধ্যে মোলার অনুপাত হলো 1 ঃ 6 ।

[য. বো. ২০১৬] সমাধানকত সমস্যা-৩.৬৭ : (i) $Fe^{2+} + MnO_4^- + H^+ \longrightarrow \dots$ (ii) acidified $Cr_2O_7^{2-} + O_2^{2-} \longrightarrow Cr^{3+} + O_2 + H_2O$

উপরোক্ত সমীকরণে Fe^{2+} আয়নকে জারিত করতে $20~\mathrm{mL}~0.02~\mathrm{M~KMnO_4}$ দ্রবণ প্রয়োজন হয় ।

ক) উদ্দীপক মতে (i) নং বিক্রিয়ায় লোহার পরিমাণ নির্ণয় করো।

(খ) উদ্দীপকের (ii) নং বিক্রিয়াটি সমমোলার অবস্থায় সম্পন্ন হবে কী না মূল্যায়ন করো।

সমাধান : (ϕ) সমাধানকৃত সমস্যা-৩.৬৪ মতে পাই , ${
m Fe}^{2+}$ আয়ন ও ${
m MnO}_4^-$ আয়নের রিডক্স বিক্রিয়া :

$$5Fe^{2+} + MnO_4^- + 8H^+ \rightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$$

উপরিউক্ত সমীকরণ মতে , $1 \; \text{mol MnO}_4^-$ আয়ন $\equiv 5 \; \text{mol Fe}^{2+}$ আয়ন বা, 1 mol KMnO₄ \equiv 5 mol Fe

∴ 1000 mL 1 M KMnO₄ দ্ৰবণ = 5 × 55.85 g Fe

∴ 20 mL 0.02 M KMnO₄ দ্ৰবণ =
$$\frac{5 \times 55.85 \times 20 \times 0.02 \text{ g Fe}}{1000 \times 1} = 0.1117 \text{ g Fe}$$
 (উত্তর)

সমাধান : (খ) উদ্দীপকের (ii) নং বিক্রিয়াটি হলো অম্রীয় $\operatorname{Cr}_2\operatorname{O_7}^{2-}$ আয়ন ও পারঅক্সাইড আয়ন $\operatorname{(O_2}^{2-})$ এর মধ্যে রিডক্স বিক্রিয়া। এ রিডক্স বিক্রিয়ায় বিজারক হলো ${
m O_2}^2$ আয়ন এবং জারক হলো অসুমিশ্রিত ${
m Cr_2O_7}^2$ আয়ন। এক্ষেত্রে বিক্রিয়াকালে বিজারক ${\rm O_2}^{2-}$ আয়ন 2টি করে ইলেকট্রন ত্যাগ করে ${\rm O_2}$ অণুরূপে জারিত হয় এবং প্রতিটি ${\rm Cr_2O_7}^{2-}$ আয়ন অস্নীয় মাধ্যমে $6\overline{b}$ করে ইলেকট্রন গ্রহণ করে $2\overline{b}$ Cr^{3+} আয়নে বিজারিত হয়। তাই এদের মধ্যে জারণ অর্ধ-বিক্রিয়া ও বিজারণ অর্ধ-বিক্রিয়া নিমুরূপ:

জারণ অর্ধ-বিক্রিয়াকে 3 দ্বারা গুণ করে ইলেক্ট্রন ত্যাগ ও গ্রহণের সংখ্যা সমান করা হলো :

জারণ অর্ধ-বিক্রিয়া:

$$O_2^{2-} \longrightarrow O_2 + 2e^-$$

বিজারণ অর্ধ-বিক্রিয়া : $Cr_2O_7^{2-} + 14H^+ + 6e^- \longrightarrow 2Cr^{3+} + 7H_2O$ $\times 1$

যোগ করে পাই : $\operatorname{Cr}_2\operatorname{O_7}^{2-} + 14\operatorname{H}^+ + 3\operatorname{O_2}^{2-} \longrightarrow 2\operatorname{Cr}^{3+} + 7\operatorname{H}_2\operatorname{O} + 3\operatorname{O_2}$

উপরোক্ত সমতাযুক্ত আয়নিক সমীকরণ মতে, $1 \mod \operatorname{Cr}_2 \operatorname{O}_7^{2-}$ আয়ন $\equiv 3 \mod \operatorname{O}_2^{2-}$ আয়ন

সুতরাং উদ্দীপকের (ii) নং বিক্রিয়াটি সমমোলার অনুপাতে সম্পন্ন হবে না। বরঞ্চ ${
m Cr_2O_7}^{2-}$ আয়ন $:{
m O_2}^{2-}$ আয়ন = 1 : 3 অনুপাতে সম্পন্ন হবে।

সমাধানকৃত সমস্যা-৩.৬৮ : নিচের উদ্দীপকভিত্তিক সংশ্লিষ্ট প্রশ্নের উত্তর দাও :

ঢা. বো. ২০১৬

নমুনা (A) শোহা \longrightarrow শিঘু H_2SO_4 এ দ্রবীভূত \longrightarrow $KMnO_4$ দ্রবণ দ্বারা পূর্ণ জারিতকরণ

ক) উদ্দীপকের বিক্রিয়ার সমীকরণে জারণ-বিজারণ সমতা বিধান করো অর্ধ-বিক্রিয়াসহ।

(খ) উদ্দীপকের রিডক্স বিক্রিয়ায় ${
m KMnO_4}$ এর ছঙ্গে ${
m K_2Cr_2O_7}$ ব্যবহার করে কীভাবে আয়রনের পরিমাণ নির্ণয় করা যায়, তা বিশ্লেষণ করো।

সমাধান : (ক) উদ্দীপকের জারণ-বিজারণ বিক্রিয়াকে আয়ন ইলেকট্রন পদ্ধতিতে সমতা বিধান :

Fe + नघू
$$H_2SO_4$$
 → $FeSO_4 + H_2$

সংশ্লিষ্ট ১ম রিডক্স বিক্রিয়াটি হলো লঘু $m H_2SO_4$ এসিডের জলীয় দ্রবণে সৃষ্ট $m H^{\dagger}$ আয়ন ও m Fe পরমাণুর মধ্যে। যেমন ,

জারণ অর্ধ-বিক্রিয়া : Fe
$$\longrightarrow$$
 Fe²⁺ + 2e⁻

বিজারণ অর্ধ-বিক্রিয়া
$$: 2H^+ + 2e^- \longrightarrow H_2$$

যোগ করে :

$$Fe + 2H^{+} \longrightarrow Fe^{2+} + H_2$$

সংশ্রিষ্ট ২য় রিডক্স বিক্রিয়াটি হলো জলীয় দ্রবণে থাকা ${
m Fe}^{2+}$ আয়ন ও লঘু ${
m H}_2{
m SO}_4$ মিশ্রিত ${
m KMnO}_4$ দ্রবণের সাথে। প্রশ্নমতে এটিই মূল রিডক্স বিক্রিয়া:

$$Fe^{2+} + KMnO_4 + H_2SO_4 \longrightarrow ? + ? + ?$$

এক্ষেত্রে বিজারক হলো ফেরাস আয়ন $({\rm Fe}^{2+})$ এবং জারক হলো অসুমিশ্রিত ${
m MnO}_4^-$ (পারম্যাঙ্গানেট আয়ন)। রিডক্স বিক্রিয়াকালে বিজারক Fe^{2+} আয়ন 1টি ইলেকট্রন ত্যাগ করে ফেরিক আয়ন (Fe^{3+}) রূপে জারিত হয়। অপরদিকে অম্রীয় ${
m MnO}_4^-$ আয়ন 5টি ইলেকট্রন গ্রহণ করে ${
m Mn}^{2+}$ আয়নরূপে বিজারিত হয়। উভয়ের মধ্যে জারণ অর্ধ-বিক্রিয়া ও বিজারণ অর্ধ-বিক্রিয়া হলো নিমুরূপ। জারণ অর্ধ-বিক্রিয়াকে 5 দ্বারা গুণ করে ইলেক্ট্রন ত্যাগ ও গ্রহণ উভয় ক্ষেত্রে সমান করা হলে—

জারণ অর্ধ-বিক্রিয়া :

$$Fe^{2+} \longrightarrow Fe^{3+} + e^{-} \times 5$$

বিজারণ অর্ধ-বিক্রিয়া : $MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$ $\times 1$

$$MnO_4^- + 8H^+ + 5e^- \longrightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$$

এটিই হলো জারণ ও বিজারণ অর্ধ-বিক্রিয়াসহকারে সমতাযুক্ত <mark>আ</mark>য়নিক সমীকরণ।

উভয় দিকে দর্শক আয়নরূপে ${f K}^{+}$ আয়ন ও ${f SO_4}^{2-}$ আয়ন যোগ করে সমতাযুক্ত আণবিক সমীকরণ পাই :

 $KMnO_4 + 4H_2SO_4 + 5FeSO_4 \longrightarrow \frac{5}{2}Fe_2(SO_4)_3 + MnSO_4 + \frac{1}{2}K_2SO_4 + 4H_2O_4$ সমাধান : (খ) রিডক্স বিক্রিয়ায় $\mathbf{KMnO_4}$ এর ছলে $\mathbf{K_2Cr_2O_7}$ ব্যবহার করে \mathbf{Fe} এর পরিমাণ নির্ণয় :

এক্ষেত্রে রিডক্স বিক্রিয়ার কেলেটন আয়নিক সমীকরণ হলো নিমুরূপ:

$$Fe^{2+} + Cr_2O_7^{2-} + H^+ \rightarrow Fe^{3+} + 2Cr^{3+} + H_2O$$

উপরের সমীকরণ মতে, বিজ্ঞারক ${
m Fe}^{2+}$ আয়ন ও জারক ${
m Cr}_2{
m O_7}^{2-}$ আয়নের রিডক্স বিক্রিয়ার মোলার অনুপাত নির্ধারণ করে আয়রন $(1\mathrm{I})$ লবণের নির্দিষ্ট পরিমাণের দ্রবণকে প্রমাণ $\mathrm{K_2Cr_2O_7}$ এর দ্রবণ দ্বারা রিডক্স টাইট্রেশন করে ব্যবহৃত \circ $m K_2Cr_2O_7$ এর আয়তন থেকে নমুনা লবণে আয়রনের পরিমাণ গণনা করা যায়।

প্রথমে অর্ধ-বিক্রিয়ার সাহায্যে রিডক্স বিক্রিয়ার মোল অনুপাত নিমুমতে নির্ণয় করা যায়। এক্ষেত্রে রিডক্স বিক্রিয়ায় বিজারক ${
m Fe}^{2+}$ আয়ন 1টি ইলেকট্রন ত্যাগ করে ${
m Fe}^{3+}$ আয়নে জারিত হয়; ${
m Cr}_2{
m O_7}^{2-}$ আয়ন 6টি ইলেকট্রন গ্রহণ করে $2\mathrm{Cr}^{3+}$ আয়নে বিজারিত হয়। অর্ধ-বিক্রিয়ায় ইলেকট্রন ত্যাগ ও গ্রহণ-এর সংখ্যা সমান করার জন্য জারণ অর্ধ-বিক্রিয়াকে 6 দিয়ে গুণ করে পাই:

জারণ অর্ধ-বিক্রিয়া :
$$Fe^{2+} \longrightarrow Fe^{3+} + e^- \dots \times 6$$
বিজারণ অর্ধ-বিক্রিয়া : $Cr_2O_7^{2-} + 14H^+ + 6e^- \longrightarrow 2Cr^{3+} + 7H_2O \dots \times 1$
যোগ করে : $Cr_2O_7^{2-} + 14H^+ + 6Fe^{2+} \longrightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O$

উপরের রিডক্স বিক্রিয়ার সমীকরণ মতে, $1 \text{ mol } \mathrm{Cr_2O_7}^{2^-} \equiv 6 \text{ mol } \mathrm{Fe}^{2^+}$ আয়ন

বা, 1 mol $K_2Cr_2O_7 = 6$ mol Fe = 6×55.85 g Fe

∴ 1000 mL 1.0 M $K_2Cr_2O_7$ দ্ৰবণ $\equiv 6 \times 55.85$ g Fe

$$\therefore \chi \text{ mL 'y' M } \text{ } \text{K}_2\text{Cr}_2\text{O}_7$$
 দ্ৰবণ $\equiv \frac{6 \times 55.85 \times \chi \times \text{y (g) Fe}}{1000 \times 1}$

সমাধানকৃত সমস্যা-৩.৬৯: ১ম পাত্রে $20~\mathrm{mL}~0.1~\mathrm{M}~H_2C_2O_4$ দ্রবণ; ২য় পাত্রে $10~\mathrm{mL}$ তুল্য ঘনমাত্রার $\mathrm{K}_2\mathrm{Cr}_2\mathrm{O}_7$ দ্রবণ এবং ৩য় পাত্রে তুল্য পরিমাণ অশ্লীয় FeSO_4 দ্রবণ আছে। [সি. বো. ২০১৭]

- (ক) উদ্দীপকের ২য় ও ৩য় পাত্রের দ্রবণের মিশ্রণে সংঘটিত বিক্রিয়াটি আয়ন-ইলেকট্রন পদ্ধতিতে সমতা বিধান করো।
- (খ) উদ্দীপকের ১ম ও ২য় দ্রবণের সাহায্যে ৩য় দ্রবণে Fe এর পরিমাণ নির্ণয় করো।

সমাধান : (ক) উদ্দীপকের ২য় ও ৩য় পাত্রের দ্রবণ দুটি হলো যথাক্রমে $K_2Cr_2O_7$ এবং $FeSO_4$ এর দ্রবণ । $FeSO_4$ দ্রবণে Fe^{2+} আয়ন হলো একটি বিজারক এবং $K_2Cr_2O_7$ এর দ্রবণে ডাইক্রোমেট $(Cr_2O_7^{2-})$ আয়ন হলো একটি জারক । উভয় আয়নের মিশ্র দ্রবণে লঘু H_2SO_4 এর উপস্থিতিতে জারণ-বিজারণ বা রিডক্স বিক্রিয়া ঘটে ।

রিডক্স বিক্রিয়াকালে বিজারক Fe^{2^+} আয়ন 1টি ইলেকট্রন ত্যাগ করে জারিত হয়ে Fe^{3^+} আয়ন এবং অস্ত্রীয় $Cr_2O_7^{2^-}$ আয়ন 6টি ইলেকট্রন গ্রহণ করে বিজারিত হয়ে $2Cr^{3^+}$ আয়ন উৎপন্ন করে। জারণ অর্ধ-বিক্রিয়া ও বিজারণ অর্ধ-বিক্রিয়ায় উভয় ক্ষেত্রে ইলেকট্রন গ্রহণ ও বর্জন-এর সংখ্যা সমান করার জন্য জারণ অর্ধ-বিক্রিয়াকে 6 দ্বারা গুণ করে নিমুরূপ জারণ ও বিজারণ অর্ধ-বিক্রিয়া পাই—

$$Fe^{2+} \longrightarrow Fe^{3+} + e^{-} \qquad \times 6$$

বিজারণ অর্ধ-বিক্রিয়া :
$$Cr_2O_7^{2-} + 14H^+ + 6e^- \longrightarrow 2Cr^{3+} + 7H_2O$$
 × 1

যোগ করে:
$$6Fe^{2+} + Cr_2O_7^{2-} + 14H^+ \rightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O_7^{2-}$$

উভয় পার্শ্বে দর্শক আয়নরূপে K^+ আয়ন ও ${{
m SO_4}^{2-}}$ আয়ন যোগ করে সমতাযুক্ত আণবিক সমীকরণ হয় :

$$6FeSO_4 + K_2Cr_2O_7 + 7H_2SO_4 \rightarrow 3Fe_2(SO_4)_3 + Cr_2(SO_4)_3 + K_2SO_4 + 7H_2O_4 + 2Fe_2(SO_4)_3 + 2Fe_2(SO_4)_4 + 2Fe_2(SO_4)_5 + 2Fe_2(S$$

সমাধান : (খ) উদ্দীপক মতে ১ম পাত্রে $20~\text{mL}~0.1~\text{M}~H_2C_2O_4$ (অক্সালিক এসিড) দ্রবণ আছে। এ দ্রবণের অক্সালেট আয়ন $(C_2O_4^{2^-})$ হলো একটি বিজারক। ২য় পাত্রে 10~mL~ তুল্য $K_2Cr_2O_7$ এর দ্রবণ আছে। এ দ্রবণের ডাইক্রোমেট $(Cr_2O_7^{2^-})$ আয়ন হলো জারক। এ দ্রবণটির মোলার ঘনমাত্রা দেয়া নেই। তাই সংশ্রিষ্ট রিডক্স বিক্রিয়ায় বিজারক ও জারক পদার্থের মোল অনুপাতের সম্পর্ক জেনে $K_2Cr_2O_7$ দ্রবণের ঘনমাত্রা নির্ণয় করতে হবে।

এ রিডক্স বিক্রিয়ায় বিজারক $C_2O_4^{2^-}$ আয়ন $2\overline{D}$ ইলেকট্রন ত্যাগ করে জারিত হয়ে $2 CO_2$ উৎপন্ন করে। অপরদিকে অশ্লীয় $Cr_2O_7^{2^-}$ আয়ন $6\overline{D}$ ইলেকট্রন গ্রহণ করে বিজারিত হয়ে $2Cr^{3^+}$ আয়ন উৎপন্ন করে। তাই জারণ অর্ধ-বিক্রিয়াকে 3 দ্বারা গুণ করে জারণ অর্ধ-বিক্রিয়া ও বিজারণ অর্ধ-বিক্রিয়ায় ইলেকট্রন ত্যাগ ও গ্রহণ-এর সংখ্যা সমান করে পাই—

$$C_2O_4^{2-} \longrightarrow 2CO_2 + 2e^- \dots \times 3$$

বিজারণ অর্ধ-বিক্রিয়া :
$$Cr_2O_7^{2-} + 14H^+ + 6e^- \longrightarrow 2Cr^{3+} + 7H_2O \dots \times 1$$

যোগ করে:
$$Cr_2O_7^{2-} + 14H^+ + 3 C_2O_4^{2-} \longrightarrow 2Cr^{3+} + 7H_2O + 6CO_2$$

বা, $K_2Cr_2O_7 + 3H_2C_2O_4 + 4H_2SO_4 \longrightarrow Cr_2(SO_4)_3 + K_2SO_4 + 7H_2O + 6CO_2$ উপরোক্ত সমতাকৃত আণবিক সমীকরণ মতে,

 $1 \text{ mol } K_2Cr_2O_7 \equiv 3 \text{ mol } H_2C_2O_4$ সুতরাং জারক ও বিজারকের দ্রবণের আয়তন ও মোল অনুপাতের সম্পর্ক মতে ়

$$\begin{split} &\frac{V_1 \times M_1 \left(K_2 C r_2 O_7 \right)}{V_2 \times M_2 \left(H_2 C_2 O_4 \right)} = \frac{1 \ mol}{3 \ mol} \ ; \\ & \overline{\text{II}}, \ 3 \times V_1 \times M_1 = 1 \times V_2 \times M_2 \\ & \overline{\text{II}}, \ M_1 = \frac{V_2 \times M_2}{3 V_1} = \frac{20 \times 0.1}{3 \times 10} = 0.0667 \ M \end{split}$$

উদ্দীপক মতে, $K_2Cr_2O_7$ দ্রবণের আয়তন, $V_1=10~\mathrm{mL}$ ঘনমাত্রা, $M_1=?$

 $H_2C_2O_4$ দ্রবণের আয়তন , $V_2 = 20 \text{ mL}$ ঘনমাত্রা , $M_2 = 0.1M$

∴ ব্যবহৃত K₂Cr₂O₇ দ্রবণের ঘনমাত্রা হলো 0.0667 M

৩য় পাত্রের দ্রবণের Fe এর পরিমাণ নির্ণয়:

আমরা জানি, Fe^{2+} আয়ন এবং $Cr_2O_7^{2-}$ আয়নের রিডক্স বিক্রিয়ায় 1 mol $K_2Cr_2O_7=6$ mol Fe^{2+}

∴ 10 mL 0.0667 M K₂Cr₂O₇ দ্ৰবণ
$$\equiv \frac{6 \times 55.85 \times 10 \times 0.0667 \text{ g Fe}^{2+}}{1000 \times 1} = 0.2235 \text{ g Fe}^{2+}$$

সূতরাং উদ্দীপকের $FeSO_4$ দ্রবণে Fe^{2+} আছে = 0.2235 g (উ:)।

সমাধানকৃত সমস্যা-৩.৭০ : একটি নমুনা লোহার 2 g পরিমাণের টুকরাকে লঘু H_2SO_4 এসিডে দ্রবীভূত করা হলো । ঐ দ্রবণকে সম্পূর্ণরূপে জারিত করতে H_2SO_4 মিশ্রিত 50 mL 0.1 M $K_2Cr_2O_7$ দ্রবণ প্রয়োজন হলো । ঐ নমুনা লোহাটি বিশুদ্ধ কীনা গাণিতিকভাবে বিশ্রেষণ করো । $\boxed{\text{NNS}}$

সমাধান : (ক) লোহাকে লঘু H_2SO_4 এসিডে দ্রবীভূত করলে $FeSO_4$ দ্রবণ উৎপন্ন হয়।

$$Fe + H_2SO_4 \longrightarrow FeSO_4 + H_2$$

 ${
m FeSO_4}$ দ্রবণকে অম্প্রীয় ${
m K_2Cr_2O_7}$ দ্রবণ দ্বারা জারিত করার আয়নিক সমীকরণ হলো নিমুরূপ :

$$Fe^{2+} + Cr_2O_7^{2-} + H^+ \longrightarrow Fe^{3+} + 2Cr^{3+} + H_2O$$

বিক্রিয়াকালে বিজারক Fe^{2+} আয়ন 1টি ইলেকট্রন ত্যাগ করে Fe^{3+} আয়নে জারিত হয় এবং জারক $Cr_2O_7^{2-}$ আয়ন অণ্লীয় মাধ্যমে 6টি ইলেকট্রন গ্রহণ করে 2টি Cr^{3+} আয়নে বিজারিত হয়। তখন $Cr_2O_7^{2-}$ আয়নের 7টি O পরমাণু 14টি H^+ আয়নসহ 7টি H_2O অণু গঠন করে। উভয়ের মধ্যে জারণ ও বিজারণ অর্ধ-বিক্রিয়া নিমুর্নপ :

জারণ অর্ধ-বিক্রিয়া :

$$Fe^{2+} \rightarrow Fe^{3+} + e^{-}$$
 (1)

বিজারণ অর্ধ-বিক্রিয়া : $Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$ (2)

জারণ অর্ধ-বিক্রিয়া ও বিজারণ অর্ধ-বিক্রিয়ায় ইলেকট্রন ত্যাগ ও ইলেকট্রন গ্রহণ সংখ্যা সমান করতে (1) নং সমীকরণকে 6 দিয়ে গুণ করে (2) নং সমীকরণসহ যোগ করে পাই,

$$6Fe^{2+} \longrightarrow 6Fe^{3+} + 6e^{-}$$

$$Cr_2O_7^{2-} + 14H^+ + 6e^{-} \longrightarrow 2Cr^{3+} + 7H_2O$$

যোগ করে : $6Fe^{2+} + Cr_2O_7^{2-} + 14H^+ \longrightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O$

∴ সমীকরণ মতে, 1 mol $K_2Cr_2O_7 \equiv 6$ mol $FeSO_4 \equiv 6$ mol Fe

বা, $1000 \text{ mL } 1.0 \text{ M } \text{ K}_2\text{Cr}_2\text{O}_7$ দ্ৰবণ = $6 \times 55.85 \text{ g Fe}$ [যেহেতু Fe এর পা: ভর = 55.85]

$$\therefore 50 \text{ mL } 0.1 \text{ M } \text{K}_2\text{Cr}_2\text{O}_7$$
 দ্ৰবণ $\equiv \frac{6 \times 55.85 \times 50 \times 0.1}{1000 \times 1} \text{ g Fe} = 1.676 \text{ g Fe}$

বিশ্লেষণ : প্রশ্নমতে, 2.0~g নমুনা লোহায় বিশুদ্ধ লোহা আছে 1.676~g এবং ভেজাল আছে (2.0-1.676)~g=0.324~g। সুতরাং নমুনা লোহাটি বিশুদ্ধ নয়; ভেজাল মিশ্রিত; তা রাসায়নিক বিক্রিয়ার সম্পর্ক মতে গাণিতিকভাবে প্রমাণিত হলো।

সমাধানকৃত সমস্যা-৩.৭১: 1.5~g তারের এক টুকরা অবিশুদ্ধ লোহাকে লঘু H_2SO_4 এসিডে দ্রবীভূত করে প্রাপ্ত দ্রবণকে সম্পূর্ণভাবে জারিত করতে $0.3~M~KMnO_4$ দ্রবণের 15~mL প্রয়োজন হয়। লোহার টুকরাটিতে ভেজাল পদার্থের শতকরা পরিমাণ নির্ণয় করা যায় কী না গাণিতিকভাবে বিশ্বেষণ করো। [রা. বো. ২০১৯]

সমাধান : লোহাকে লঘু H_2SO_4 এসিডে দ্রবীভূত করলে $FeSO_4$ দ্রবণ উৎপন্ন হয়। $FeSO_4$ দ্রবণকে অম্রীয় $KMnO_4$ দ্রবণ দ্বারা জারিত করার আয়নিক সমীকরণ নিমুরূপ :

$$5Fe^{2+} + MnO_4^- + 8H^+ \longrightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$$

সমীকরণ মতে, 1 mol KMnO₄ ≡ 5 mol Fe

বা, 1000 mL 1 M KMnO₄ দ্ৰবণ = 5×55.85 g Fe

: 15 mL 0.3 M KMnO₄ দ্ৰবণ
$$\equiv \frac{5 \times 55.85 \times 15 \times 0.3 \text{ g Fe}}{1000} \equiv 1.2566 \text{ g Fe}$$
 (প্ৰায়)

 \therefore প্রদত্ত অবিশ্বদ্ধ লোহার টুকরায় ভেজাল আছে = $(1.5-1.2566)~{
m g}=0.2434~{
m g}$ প্রশ্নমতে, $1.5~{
m g}$ অবিশ্বদ্ধ লোহাতে ভেজাল আছে = $0.2434~{
m g}$

 $\therefore 100 \text{ g}$ অবিশ্বদ্ধ ঐ লোহাতে ভেজাল আছে $= \frac{0.2434 \times 100}{1.5} \text{g} = 16.227 \text{ g}$

বিশ্লেষণ : প্রদত্ত ডাটা মতে অবিশুদ্ধ লোহায় থাকা ভেজালের পরিমাণ নির্ণয় করা যায়। ভেজাল পদার্থের পরিমাণ = 16.227% প্রায়।

সদৃশ সমস্যা : সমাধানকৃত সমস্যা ৩.৭০ ও ৩.৭১ এর উভয় সমীকরণ ব্যবহার করে নিম্লোক্ত সমস্যা সমাধান করো।
নিম্লোক্ত উদ্দীপকের কোন কোম্পানির আকরিক হতে আয়রন উৎপাদন বেশি লাভজনক হবে?

[ঢা. বো. ২০২৩; রা. বো. ২০২৩]

- (১) কোম্পানি-A ; 10~g লৌহ আকরিক + লঘু $H_2SO_4=1L$ দ্রবণ; 25~mL দ্রবণের জন্য 4~mL 0.1M $KMnO_4$ দরকার।
- (২) কোম্পানি-B ; $10~{
 m g}$ লৌহ আকরিক + লঘু ${
 m H_2SO_4}=1L$ দ্রবণ; $25~{
 m mL}$ দ্রবণের জন্য $12~{
 m mL}~0.02~{
 m M}$ ${
 m K_2Cr_2O_7}$ দরকার।

সংকেত : কোম্পানি-A এর আকরিক লাভজনক হবে। কারণ উভয়ের আকরিক প্রাপ্ত আয়রন = 0.1117 : 0.084]

সমাধানকৃত সমস্যা-৩.৭২ : ফেরিক সালফেট ভেজাল মিশ্রিত 2~g আর্দ্র ফেরাস সালফেট ($FeSO_4.7H_2O$) কে অম্রীয় মাধ্যমে জারিত করতে 6~mL আয়তনের 0.02~ মোলার $KMnO_4~$ দ্রবণ প্রয়োজন। প্রদন্ত ফেরাস সালফেটের পরিমাণ নির্ণয় করো।

সমাধান : ফেরাস লবণকে অম্লীয় KMnO4 দ্বারা জারিত করার আয়নিক সমীকরণ নিমুরূপ :

$$MnO_4^- + 5Fe^{2+} + 8H^+ \longrightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$$

উপরিউক্ত সমীকরণ মতে, 1 mol MnO_4^- আয়ন $\equiv 5 \text{ mol Fe}^{2+}$ আয়ন

∴ 1000 mL আয়তনের 1 M KMnO₄ দ্রবণ = 5 mol FeSO₄.7H₂O

∴ 6 mL আয়তনের
$$0.02 \text{ M KMnO}_4$$
 দূবণ $\equiv \frac{5 \times 6 \times 0.02}{1000} \text{ mol FeSO}_4.7\text{H}_2\text{O}$
 $\equiv 0.0006 \text{ mol FeSO}_4.7\text{H}_2\text{O}$

আবার
$$FeSO_4.7H_2O$$
 এর সংকেত ভর = $(55.85 + 32 + 64 + 7 \times 18)$
= $(151.85 + 126) = 277.85$
সূতরাং 0.0006 mol $FeSO_4.7H_2O$ = 0.0006×277.85 g $FeSO_4.7H_2O$
= 0.16671 g $FeSO_4.7H_2O$ (উত্তর)

সমাধানকৃত সমস্যা-৩.৭৩ : লঘু H_2SO_4 মিশ্রিত 19.8 mL আয়তনের $0.02~M~KMnO_4$ দ্রবণ দারা 25 mL আয়তনের কোনো আয়রন (II) সালফেট দ্রবণকে পূর্ণভাবে জারিত করা যায়। ঐ আয়রন (II) সালফেট দ্রবণের ঘনমাত্রা নির্ণয় করো।

সমাধান: আয়রন (II) সালফেটকে অম্প্রীয় KMnO4 দ্বারা জারিত করার আয়নিক সমীকরণ নিমুরূপ:

$$MnO_4^- + 5Fe^{2+} + 8H^+ \longrightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$$

সমীকরণ মতে, $1 \; \mathrm{mol} \; \mathrm{MnO_4^-} \;$ আয়ন দ্বারা $5 \; \mathrm{mol} \; \mathrm{Fe}^{2+}$ আয়ন জারিত হয়।

∴ 1 mol KMnO₄ ≡ 5 mol FeSO₄। যেহেতু উভয় বিক্রিয়ক দ্রবণে আছে।

$$\cdot\cdot\frac{V_1\times M_1\ (KMnO_4)}{V_2\times M_2\ (FeSO_4)}=rac{1\ mol}{5\ mol}$$
 প্রস্নতে $KMnO_4$ এর আয়তন , $V_1=19.8\ mL$ বা , $5\times V_1\times M_1=1\times V_2\times M_2$ $KMnO_4$ এর ঘনমাত্রা , $M_1=0.02\ M$ বা , $5\times 19.8\times 0.02=25\times M_2$ $FeSO_4$ এর আয়তন , $V_2=25\ mL$ বা , $M_2=rac{5\times 19.8\times 0.02}{25}=0.0792\ M$

উত্তর : পরীক্ষাধীন $FeSO_4$ দ্রবণের ঘনমাত্রা = $0.0792 \text{ mol}\text{L}^{-1}$ বা , 0.0792 M

সমাধানকৃত সমস্যা-৩.৭8 : শঘু H_2SO_4 মিশ্রিত 15 mL আয়তনের 0.3 M KMn O_4 দ্রবণ দারা 25 mL আয়তনের হাইদ্রোজেন পারঅক্সাইডের কোনো নমুনাকে জারিত করা যায়। ঐ নমুনায় H_2O_2 এর মোলার ঘনমাত্রা নির্ণয় করো।

সমাধান : প্রশ্নমতে, বিজারক হলো H_2O_2 এর পারঅক্সাইড আয়ন (O_2^{2-}) এবং জারক হলো অদ্রীয় পারম্যাঙ্গানেট আয়ন (MnO_4^-) । তাদের মধ্যে জারণ-বিজারণের সমীকরণ নিমূরপ :

$$O_2^{2^-}\longrightarrow O_2 + 2e^- ... \times 5$$
 $MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2^+} + 4H_2O ... \times 2$
থোগ করে, $2MnO_4^- + 16H^+ + 5O_2^{2^-} \longrightarrow 2Mn^{2^+} + 8H_2O + 5O_2$
বা, $2KMnO_4 + 3H_2SO_4 + 5H_2O_2 \longrightarrow K_2SO_4 + 2MnSO_4 + 5O_2 + 8H_2O$
উপরিউক্ত সমীকরণ মতে, $2 \mod KMnO_4 \equiv 5 \mod H_2O_2$

$$\therefore \frac{V_1 \times M_1 \left(KMnO_4 \coprod eqn}{V_2 \times M_2 \left(H_2O_2 \coprod eqn}\right)} = \frac{2 \mod KMnO_4}{5 \mod H_2O_2}$$
 $\times M_2 \times M_2 \left(H_2O_2 \coprod eqn} = \frac{2 \mod KMnO_4}{5 \mod H_2O_2}$
 $\times M_2 \times M_2 \times M_2 \left(H_2O_2 \coprod eqn} = \frac{2 \mod KMnO_4}{5 \mod H_2O_2}$
 $\times M_2 \times M_2 \times M_2 = \frac{2}{5}$
 $\times M_2 = \frac{15 \times 0.3 \times 5}{25 \times 2} = 0.45$
 $\times M_2 = \frac{15 \times 0.3 \times 5}{25 \times 2} = 0.45$

... H_2O_2 দ্রবণের ঘনমাত্রা হলো $0.45~{
m mol}{
m L}^{-1}$ বা $, 0.45~{
m M}$ (উত্তর)

সমাধানকৃত সমস্যা-৩.৭৫: H_2O_2 এর কেনো নমুনা দ্রবণের $25~\mathrm{mL}$ পরিমাণকে টাইট্রেশন করতে $10~\mathrm{mL}$ $0.1~\mathrm{M}$ সোডিয়াম থায়োসালফেট প্রয়োজন হয়। ঐ H_2O_2 দ্রবণের মধ্যে প্রকৃত H_2O_2 এর ভর নির্ণয় করো।

সমাধান : H_2O_2 এর পরিমাণ নির্ণয় আয়োডোমেট্রিক পদ্ধতিতে করা হয়। এক্ষেত্রে H_2O_2 জারক এবং আয়োডাইড আয়ন (Γ) বিজারকরূপে ক্রিয়া করে। সংশ্রিষ্ট বিক্রিয়া নিমুরূপ :

$$H_2O_2 + 2H^+ + 2\Gamma \longrightarrow I_2 + 2H_2O$$

 $2S_2O_3^{2-} + I_2 \longrightarrow 2\Gamma + S_4O_6^{2-}$

- $\therefore 2Na_2S_2O_3 \equiv I_2 \equiv H_2O_2$
- ∴ 1000 mL 2 M Na₂S₂O₃ দ্ৰবণ = 1 mol H₂O₂ = 34 g H₂O₂
- ∴ 1000 mL 1 M Na₂S₂O₃ দ্ৰবণ = 17 g H₂O₂

MCQ-3.25: 9.5 g FeSO₄ কে জারিত করতে 1 M KMnO₄ দ্রবণের কতটুকু দরকার?
(ক) 12.5 mL (খ) 11.2 mL
(গ) 10.6 mL (ঘ) 7.5 mL

 \therefore প্রদত্ত 10 mL 0.1M Na₂S₂O₃ দ্রবণ $\equiv \frac{17 \times 0.1 \times 10}{1000}$ g H₂O₂ = 0.017 g H₂O₂ (উত্তর)

সমাধানকৃত সমস্যা-৩.৭৬ : নিম্নোক্ত উদ্দীপকভিত্তিক সমস্যাটি গাণিতিকভাবে সমাধান করো। [চ. বো. ২০২৩]

- (i) $H_2SO_4 + H_2O_2 + KMnO_4 \rightarrow O_2 + MnSO_4 + K_2SO_4 + H_2O_4$
- (ii) KClO₃ (s) $\stackrel{\Delta}{\longrightarrow}$ O₂ (g) + KCl(s)

উপরিউক্ত (i) ও (ii) নং বিক্রিয়া মতে STP তে 50~L করে অক্সিজেন তৈরি করতে একই পরিমাণ H_2O_2 এবং $KCIO_3$ প্রয়োজন হবে কি? উদ্দীপকের আলোকে বিশ্বেষণ করো।

সমাধান : প্রশ্নমতে H_2O_2 এবং $KCIO_3$ এর পরিমাণ গ্রাম এককে নির্ণয় করতে হবে। রাসায়নিক গণনার বেলায় সমতাকৃত উভয় সমীকরণ ব্যবহার করতে হবে। প্রদত্ত জারণ-বিজারণ বিক্রিয়া (i) নং এর আয়নিক মূল সমীকরণ হলো—

$$O_2^{2-} + MnO_4^{-} + H^+ \rightarrow O_2 + Mn^{2+} + H_2O$$

এক্ষেত্রে বিজারক পারঅক্সাইড আয়ন (O_2^-) বিক্রিয়াকালে 2 টি ইলেক্ট্রন ত্যাগ করে O_2 অণুতে জারিত হয় এবং জারক MnO_4^- আয়ন অস্ত্রীয় মাধ্যমে 5টি ইলেক্ট্রন গ্রহণ করে Mn^{2+} আয়নে বিজারিত হয়। তখন MnO_4^- আয়নের 4টি O পরমাণু 8টি H^+ আয়নসহ 4টি H_2O অণু গঠন করে। এদের মধ্যে জারণ-বিজারণ অর্ধ-বিক্রিয়া দুটি হয় নিম্নরূপ:

জারণ অর্ধ-বিক্রিয়া :
$$O_2^{2-} \longrightarrow O_2 + 2e^- \times 5 \dots (1)$$

বিজারণ অর্ধ-বিক্রিয়া : $MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2 O \times 2(2)$

(1) নং বিক্রিয়াকে 5 দ্বারা এবং (2) নং বিক্রিয়াকে 2 দ্বারা গুণ করে যোগ করার পর সমতাযুক্ত আয়নিক সমীকরণ হলো:

$$5O_2^{2-} + 2 \text{ MnO}_4^- + 16\text{H}^+ \longrightarrow 5O_2 + 2 \text{ Mn}^{2+} + 8\text{H}_2\text{O}$$
 বা, $5\text{H}_2\text{O}_2 + 2 \text{ KMnO}_4 + 3\text{H}_2\text{SO}_4 \longrightarrow 5O_2 + 2 \text{ MnSO}_4 + \text{K}_2\text{SO}_4 + 8\text{H}_2\text{O} \dots (3)$ সমতাযুক্ত আণবিক সমীকরণ (3) মতে আমরা পাই—

া mol H₂O₂ হতে 1 mol O₂ গ্যাস উৎপন্ন হয়।

- \therefore STP তে 1 mol O₂ বা 22.4 L O₂ গ্যাস \equiv 1 mol H₂O₂ বা, 34 g H₂O₂
- : STP তে, 50 L O₂ গ্রান উপান্ন হবে = $\frac{34 \times 50 \text{ g}}{22.4}$ H₂O₂ = $\frac{75.89 \text{ g H}_2\text{O}_2}{20.4}$ হতে

আবার প্রদত্ত (ii) নং সমীকরণে O পরমাণুর সমতা সাধনের জন্য ঐ সমীকরণকে 2 দ্বারা গুণ করে সমতাযুক্ত সমীকরণটি হবে নিমুরূপ:

$$2 \text{ KClO}_3 \xrightarrow{\Delta} 3\text{O}_2 + 2 \text{ KCl}$$
(4) এক্ষেত্রে KClO $_3$ এর আণবিক ভর = $(39+35.5+48)=122.5$

সমতাযুক্ত আণবিক সমীকরণ (4) মতে, 2 mol KClO₃ \equiv 3 mol O₂ গ্যাস

: STP-তে, 3 × 22.4 L O₂ গ্যাস ≡ 2 × 122.5 g KClO₃

∴ STP-তে, 50 L
$$O_2$$
 গ্যাস উৎপন্ন হবে $=\frac{2 \times 122.5 \times 50 \text{ g}}{3 \times 22.4}$ KCl O_3 = 182.29 g KCl O_3 হতে

বিশ্লেষণ : প্রদত্ত রাসায়নিক সমীকরণ ও প্রশ্নমতে STP তে 50 L O_2 গ্যাস তৈরি করতে H_2O_2 প্রয়োজন হয় 75.89 gএবং STP তে $50 \perp O_2$ গ্যাস তৈরি করতে $KClO_3$ প্রয়োজন হয় 182.29 g। সুতরাং STP তে $50 \perp O_2$ গ্যাস তৈরিতে ভিন্ন পরিমাণ H2O2 এবং KClO3 প্রয়োজন হবে।

জেনে নাও:
$$H_2O_2$$
 অবস্থাভেদে জারক ও বিজারক উভয়রপে ক্রিয়া করে।

চি. বো. ২০১৯]

st প্রবল জারক পদার্থের সংস্পর্গে $m H_2O_2$ বিজারকরূপে ক্রিয়া করে। তখন $m H_2O_2$ এর পারঅক্সাইড আয়ন $m (O_2^{2-})$ এর দুটি ইলেকট্রন জারক পদার্থকে যোগান দিয়ে O_2 অণুতে পরিণত হয়। যেমন প্রবল জারক $\mathrm{H}_2\mathrm{SO}_4$ অস্লুমিশ্রিত ${
m KMnO_4}$ এর সাথে ${
m H_2O_2}$ বিজারকরূপে ক্রিয়া করে। তখন ${
m H_2O_2}$ এর ${
m O}$ পরমাণুর জারণ-সংখ্যা-1 থেকে বৃদ্ধি পেয়ে 0হয়। বিক্রিয়ার সমীকরণ নিমুরপ:

$$H_2O_2$$
 (aq) $\longrightarrow 2H^+ + O_2^{2-} \dots \times 5$
 $O_2^{2-} \longrightarrow O_2 + 2e^- \dots \times 5$
 $MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O \dots \times 2$
যোগ করে, $5H_2O_2 + 2MnO_4^- + 6H^+ \longrightarrow 5O_2 + 2Mn^{2+} + 8H_2O$

যোগ করে,
$$5H_2O_2 + 2MnO_4^- + 6H^+ \longrightarrow 5O_2 + 2Mn^{2+} + 8H_2O_4$$

বা, $5H_2O_2 + 2KMnO_4 + 3H_2SO_4 \longrightarrow 5O_2 + 2MnSO_4 + 8H_2O + K_2SO_4$

st প্রবল বিজারক আয়োডাইড আয়ন (Γ) এর সংস্পর্শে $\mathrm{H}_2\mathrm{O}_2$ মৃদু জারকরূপে ক্রিয়া করে। লঘু HCl এসিড মিশ্রিত m KI এর দ্রবণে $m H_2O_2$ দ্রবণ যোগ করলে বিজারক আয়োডাইড প্রদত্ত দুটি ইলেকট্রন অপ্লীয় মাধ্যমে $m H_2O_2$ অণু গ্রহণ করে $m H_{2}O$ অণুতে পরিণত হয়। তখন $m H_{2}O_{2}$ এর m O পরমাণুর জারণ–সংখ্যা m -1 থেকে হ্রাস পেয়ে m -2 হয়। বিক্রিয়ার সমীকরণ নিমুরূপ:

$$2\Gamma$$
 \longrightarrow $l_2 + 2e^ H_2O_2 + 2H^+ + 2e^ \longrightarrow$ $2H_2O$
যোগ করে, $H_2O_2 + 2H^+ + 2\Gamma$ \longrightarrow $l_2 + 2H_2O$
বা, $H_2O_2 + 2HCl + 2KI$ \longrightarrow $l_2 + 2H_2O + 2KCl$

সূতরাং উপরোক্ত দুটি বিক্রিয়ার ক্ষেত্রে $m H_2O_2$ যথাক্রমে বিজারক ও জারকরূপে রিডক্স বিক্রিয়া সম্পন্ন করেছে প্রমাণিত হলো। দুষ্টব্য: সমাধানকৃত সমস্যা-৩.৭৪ ও ৩.৭৫ দেখো।]

সমাধানকৃত সমস্যা-৩.৭৭ $: 1.5~{
m g}$ সৌহ আকরিককে শঘু $m H_2SO_4$ এ দ্রবীভূত করে $100~{
m mL}$ করা হলো। ঐ দ্রবণের 25 mL-কে টাইট্রেশন করতে 0.02 M KMnO4 দ্রবণের 22.5 mL প্রয়োজন হয়। ঐ আকরিকে Fe (II) আয়ন এর [চ. বো. ২০২১, ২০২২; ঢা. বো. ২০২১, অনুরূপ] পরিমাণ কত?

সমাধান : লৌহ আকরিক ও লঘু $m H_2SO_4$ এর বিক্রিয়ায় $m FeSO_4$ উৎপন্ন হয়। $m Fe}^{2+}$ আয়ন ও অস্ত্রীয় $m MnO_4^-$ এর জারণ-বিজারণ বিক্রিয়ার সমীকরণ নিমুরূপ:

$$Fe^{2+} \longrightarrow Fe^{3+} + e^{-} \dots \times 5$$

$$\frac{\text{MnO}_4^- + 8\text{H}^+ + 5\text{e}^- \longrightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O}}{}$$
েযোগ করে, $5\text{Fe}^{2+} + \text{MnO}_4^- + 8\text{H}^+ \longrightarrow 5\text{Fe}^{3+} + \text{Mn}^{2+} + 4\text{H}_2\text{O}}$
5 mol 1 mol $\frac{1}{2}$ mol $\frac{$

সমীকরণ মতে, 1 mol KMnO₄ ≡ 5 mol Fe²⁺

বা, 1000 mL 1 M KMnO₄ দ্ৰবণ = 5 × 55.85 g Fe²⁺

∴ 22.5 mL 0.02 M KMnO₄ দ্ৰবণ
$$\equiv \frac{5 \times 55.85 \times 22.5 \times 0.02}{1000 \times 1}$$
 g Fe²⁺ $\equiv 0.1256625$ g Fe²⁺

প্রশ্নমতে, 25 mL প্রভূত দ্রবণে Fe(II) আয়ন আছে = 0.1256625 g

$$\therefore 100 \text{ mL}$$
 প্রস্তুত দ্রবণে Fe(II) আয়ন আছে = $\frac{0.1256625 \times 100}{25}$ g = 0.50265 g M C Jm 0001

উত্তর : 0.50265 g Fe (II) আয়ন।

সমাধানকৃত সমস্যা-৩.৭৮: 0.41 g চুনাপাথর থেকে সব CaO-কে CaC₂O₄ (ক্যালসিয়াম অক্সালেট) রূপে অধ্যক্ষিপ্ত করা হলো। সম্পূর্ণ অধ্যক্ষেপ আলাদা করে পরে ভালোভাবে ধৌত করে ${
m H}_2{
m SO}_4$ এ দ্রবীভূত করা হলো। $m CaC_2O_4$ এর এ দ্রবণকে সম্পূর্ণরূপে জারিত করতে $m 35~mL~0.04~M~KMnO_4$ দ্রবণ প্রয়োজন। ঐ চুনাপাথরে m CaOএর শতকরা পরিমাণ হিসাব করো।

সমাধান : সংশ্রিষ্ট রাসায়নিক বিক্রিয়াসমূহ নিমুরূপ :

$$CaCO_3(s) + H_2C_2O_4(aq) \longrightarrow CaC_2O_4(s) + CO_2(g) + H_2O(l) (1)$$

1 mol অক্সালিক এসিড 1 mol

$$CaC_2O_4(s) + H_2SO_4(aq) \longrightarrow H_2C_2O_4(aq) + CaSO_4(s)$$
(2)

$$2KMnO_4 + 5H_2C_2O_4 + 3H_2SO_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 10CO_2 + 8H_2O \dots (3)$$

$$2 mol$$

সমীকরণ (1), (2) ও (3) এর পারস্পরিক সম্পর্ক মতে পাই-

1 mol CaCO₃ = 1 mol CaC₂O₄ = 1 mol H₂C₂O₄ =
$$\frac{2}{5}$$
 mol KMnO₄

বা, 5 mol CaCO₃ = 5 mol CaC₂O₄ = 5 mol H₂C₂O₄ = 2 mol KMnO₄

 \therefore 2 mol KMnO₄ = 5 mol CaCO₃

∴ 35 mL 0.04 M KMnO₄ দ্ৰবণ
$$\equiv \frac{5 \times 100 \times 35 \times 0.04}{1000 \times 2}$$
 g CaCO₃ $\equiv 0.35$ g CaCO₃

আবার,
$$CaCO_3$$
 $\xrightarrow{\Delta}$ CaO + CO_2

সমীকরণ মতে, 100 g CaCO₃ থেকে 56 g CaO উৎপন্ন হয়।

$$\therefore 0.35 \text{ g CaCO}_3$$
 থেকে $\frac{56 \times 0.35}{100} \text{ g CaO}$ উৎপন্ন হয় = 0.196 g CaO

প্রদত্ত 0.41 g চুনাপাথরে CaO আছে = 0.196 g

$$\therefore 100 \text{ g}$$
 ছুনাপাথরে CaO আছে $= \frac{0.196 \times 100}{0.41} \text{ g} = 47.8 \text{ g}$ (প্রায়)।

উত্তর : 47.8% CaO

সমাধানকৃত সমস্যা-৩.৭৯: $50~\text{mL CuSO}_4$ দ্রবণে অতিরিক্ত KI যোগ করে বিমৃক্ত আয়োডিনকে টাইট্রেশন করতে $0.15~\text{M Na}_2\text{S}_2\text{O}_3$ দ্রবণের 35~mL প্রয়োজন হলে ঐ কথার সালফেট দ্রবণে Cu^{2^+} আয়নের পরিমাণ নির্ণয় করো ।

সমাধান: সংশ্রিষ্ট বিক্রিয়ার সমীকরণ নিমুরূপ:

$$2Cu^{2+}(aq) + 4I^{-}(aq) \longrightarrow Cu_2I_2(s) + I_2(aq) \dots \dots (1)$$

$$2S_2O_3^{2-}(aq) + I_2(aq) \longrightarrow S_4O_6^{2-}(sq) + 2I^-(aq) \dots \dots (2)$$

সমীকরণ (1) ও (2) হতে আমরা পাই, $2Na_2S_2O_3 \equiv I_2 \equiv 2Cu^{2+}$ আয়ন।

∴ 1000 mL 2 M $Na_2S_2O_3$ দ্ৰবণ $\equiv 2 \times 63.54$ g Cu^{2+} আয়ন

$$\therefore$$
 35 mL 0.15 M $Na_2S_2O_3$ দ্রবণ $\equiv \frac{2 \times 63.54 \times 35 \times 0.15}{1000 \times 2}$ g $Cu^{2+} \equiv 0.333585$ g Cu^{2+} আয়ন উত্তর : প্রদন্ত দ্রবণে Cu^{2+} আয়নের পরিমাণ 0.3336 g (প্রায়)

সমাধানকৃত সমস্যা-৩.৮০ : মিউনিসিপালিটি এলাকায় ওয়াসার পানিতে জীবাণুনাশকরপে ব্যবহৃত ব্লিচিং পাউডার [Ca(OCl)Cl] হলো একটি জারক পদার্থ। 3.04 g ব্লিচিং পাউডারকে পানিতে দ্রবীভূত করে 400 mL দ্রবণ তৈরি করা হলো। এ দ্রবণের 25 mL পরিমাণকে আয়োডোমিতিক পদ্ধতিতে টাইট্রেশন করতে 40 mL 0.075 M সোডিয়াম থায়োসালফেট দ্রবণ প্রয়োজন হলো।

- (क) উদ্দীপকে বর্ণিত ব্লিচিং পাউডারে সক্রিয় ক্লোরিনের পরিমাণ নির্ণয় করো।
- (খ) উদ্দীপকে আয়োডোমিতিক পদ্ধতিতে ${\rm Fe}^{3+}$ (ফেরিক আয়ন)-এর পরিমাণ নির্ণয়ের মাত্রিক সম্পর্ক প্রতিষ্ঠা করো। সমাধান : (ক) প্রথমে ব্রিচিং পাউডার ও ${\rm KI}$ এর রিডক্স বিক্রিয়ায় উৎপন্ন আয়োডিনের দ্রবণের সাথে সোডিয়াম থায়োসালফেট (${\rm Na}_2{\rm S}_2{\rm O}_3$) এর দ্রবণের বিক্রিয়ায় আয়োডিনের দ্রবণের মোলার ঘনমাত্রা নিমুরূপে বের করা যায় :

Na₂S₂O₃ দ্রবণ ও I₂ এর দ্রবণের মধ্যে রিডক্স বিক্রিয়াটি হলো :

$$2Na_2S_2O_3$$
 (aq) + I_2 (aq) $\longrightarrow Na_2S_4O_6$ (aq) + $2NaI$ (aq) 2 mol 1 mol

এক্ষেত্রে উভয় বিক্রিয়ক দ্রবণে রয়েছে। সুতরাং উভয়ের মোল সংখ্যা ও দ্রবণের আয়তনভিত্তিক সম্পর্ক মতে পাই,

$$\frac{V_1 \times M_1 \; (Na_2S_2O_3)}{V_2 \times M_2 \; (I_2)} = \frac{2 \; mol}{1 \; mol} \; ; \label{eq:v1}$$

 $\therefore V_1 \times M_1 = 2 \times V_2 \times M_2$

বা, 40 mL \times 0.075 M = 2 \times 25 mL \times M₂

প্রশ্নমতে ,
$$Na_2S_2O_3$$
 দ্রবণের আয়তন , $V_1=40\ mL$

 $Na_2S_2O_3$ দ্রবণের ঘনমাত্রা, $M_1 = 0.075 \text{ M}$

 I_2 দ্রবণের আয়তন, $V_2 = 25 \text{ mL}$

 I_2 দ্রবণের ঘনমাত্রা , $M_2=?$

বা,
$$M_2 = \frac{40 \times 0.075 \text{ M}}{2 \times 25} = 0.06 \text{ M}$$
; ∴ KI থেকে বিমুক্ত I_2 এর ঘনমাত্রা = 0.06 M

দ্রষ্টব্য : আয়োডিমিতিক পদ্ধতিতে 'জারক পদার্থ' ব্লিচিং পাউডারের $25~\mathrm{mL}$ দ্রবণে অধিক KI যোগ করে তুল্য পরিমাণ I_2 মুক্ত করা হয়েছে এবং ঐ I_2 $25~\mathrm{mL}$ দ্রবণে দ্রবীভূত আছে। তাই I_2 দ্রবণের আয়তন $\mathrm{(V_2)}$ $25~\mathrm{mL}$ ধরা হয়েছে।

ব্লিচিং পাউডার [Ca(OCI)CI]-এর রাসায়নিক নাম হলো ক্যালসিয়াম ক্লোরো হাইপোক্লোরাইট। এক্ষেত্রে হাইপো ক্লোরাইট (CIO^-) আয়নটি জারকরূপে ক্রিয়া করে। KI এর আয়োডাইড (I^-) আয়ন হলো বিজারক। উভয়ের মধ্যে রিডক্স অর্ধ-বিক্রিয়া হলো নিমুরূপ:

জারণ অর্ধ-বিক্রিয়া :
$$2\Gamma \longrightarrow I_2 + 2e^-$$
 বিজারণ অর্ধ-বিক্রিয়া : $CIO^- + 2H^+ + 2e^- \longrightarrow CI^- + H_2O$ যোগ করে , $CIO^- + 2\Gamma + 2H^- \longrightarrow I_2 + CI^- + H_2O$

যেহেতু দুটি আয়োডাইড আয়ন (I^-) থেকে দুটি ইলেকট্রন একটিমাত্র হাইপোক্লোরাইট (CIO^-) আয়ন গ্রহণ করে CIO^- আয়নের মধ্যন্থ CI এর জারণ-সংখ্যা + 1 থেকে CI^- আয়নে - 1 হয়েছে, অর্থাৎ CI এর জারণ মান 2 একক হ্রাস পেয়েছে [যেমন $CI_2 + 2e^- \longrightarrow 2CI^-]$ | তাই CIO^- আয়নটি 1 mol সক্রিয় CI_2 এর সমতুল্য | সুতরাং বিমুক্ত I_2 এর ঘনমাত্রা = সক্রিয় CI_2 এর ঘনমাত্রা = 0.06 M

মোলার দ্রবণের সংজ্ঞা মতে,

1000 mL 1 M দ্রবণে ক্লোরিন থাকে 1 mol = 71g Cl₂

$$\therefore$$
 প্রস্তুত 400 mL 0.06 M দ্রবণে Cl_2 থাকে = $\frac{71 \times 400 \times 0.06}{1000 \times 1}$ g = 1.704 g

∴ প্রদত্ত ব্লিচিং পাউডারে সক্রিয় Cl₂ এর পরিমাণ = 1.704 g (উঃ)

বিশেষ দ্রষ্টব্য কোনো কোনো লেখক ব্লিচিং পাউডার ও পানির মধ্যে আর্দ্র-বিশ্লেষণ দ্বারা Cl_2 তৈরি করে KI থেকে I_2 মুক্ত করেছেন। আর্দ্র বিশ্লেষণ উভমুখী অসম্পূর্ণ বিক্রিয়া হওয়ায় তুল্য পরিমাণ Cl_2 এর হিসাব ভুল হবে। $Ca(OCI)CI+H_2O \Longrightarrow Ca(OH)_2+Cl_2$ । আবার উৎপন্ন Cl_2 পানিসহ অসামঞ্জস্যতা বিক্রিয়াও ঘটায়। তাই এ পুস্তকে প্রদত্ত গণনাই তাত্ত্বিকভাবে সঠিক এবং নির্ভুল।

সমাধান (খ) : আয়োডোমিতিক পদ্ধতিতে Fe^{3+} আয়নের পরিমাণ নির্ণয়ের মাত্রিক সম্পর্ক প্রতিষ্ঠা :

আয়োডোমিতি: কোনো জারক পদার্থের নির্দিষ্ট পরিমাণ দ্রবণের সাথে অধিক KI দ্রবণের বিক্রিয়ায় উৎপন্ন আয়োডিনকে প্রমাণ থায়োসালফেট দ্রবণ দ্বারা টাইট্রেশন করে মুক্ত আয়োডিনের পরিমাণ নির্ধারণের পদ্ধতিকে আয়োডোমিতি বলে। এ পদ্ধতিতে নির্ধারিত আয়োডিনের পরিমাণ থেকে ব্যবহৃত জারক পদার্থের পরিমাণ নির্ণয় করা যায়। এক্ষেত্রে তুল্যমোল জারক, তুল্যমোল আয়োডিন ও তুল্যমোল থায়োসালফেট বিজারকের মধ্যে মাত্রিক সম্পর্ক থাকে। এ মাত্রিক সম্পর্ক নিম্নোক্ত বিক্রিয়ার সমীকরণ থেকে প্রতিষ্ঠা করা যায়। যেমন

প্রশ্নমতে জারক পদার্থ হলো ফেরিক আয়ন (Fe³⁺)।

(i) Fe³⁺ আয়নের সাথে KI দ্রবণে আয়োডাইড আয়ন (ি)-এর রিডক্স অর্ধ-বিক্রিয়ার সমীকরণ :

জারণ অর্ধ-বিক্রিয়া :

$$2I^- \longrightarrow I_2 + 2e^-$$

বিজারণ অর্ধ-বিক্রিয়া : $2Fe^{3+} + 2e^- \longrightarrow 2Fe^{2+}$

যোগ করে,
$$2Fe^{3+} + 2I^{-} \longrightarrow I_2 + 2Fe^{2+}$$

(ii) বিমুক্ত I_2 এর সাথে সোডিয়াম থায়োসালফেট ($Na_2S_2O_3$) এর রিডক্স বিক্রিয়ার সমীকরণ :

$$2Na_2S_2O_3 + I_2 \longrightarrow Na_2S_4O_6 + 2NaI$$

সুতরাং উভয় বিক্রিয়ার সমীকরণ মতে পাই,

 2 mol Fe^{3+} আয়ন $\equiv 1 \text{ mol I}_2 \equiv 2 \text{ mol Na}_2 S_2 O_3$

বা, 1 mol Na₂S₂O₃ \equiv 1 mol Fe³⁺ আয়ন

বা, $1000 \text{ mL } 1\text{M } \text{Na}_2\text{S}_2\text{O}_3$ দ্ৰবণ = 55.85 g Fe^{3+} আয়ন

সুতরাং টাইট্রেশনে ব্যবহৃত প্রমাণ থায়োসালফেট দ্রবণের আয়তন থেকে ${
m Fe}^{3+}$ আয়নের পরিমাণ নির্ণয় করা সম্ভব।

৩.১১। নির্দেশক (Indicators)

তোমাদের কারো কি এ দুটি অভিজ্ঞতা আছে? যেমন, (১) কারো সাদা কাপড়ে বাটা হলুদের পানি পড়েছে। এর হলুদ বর্ণ ধুয়ে ফেলতে সাবান দিয়েছো। এখন কাপড়ের হলুদ বর্ণ কী রকম হবে? নিশ্চয় বাদামি লাল বর্ণ। (২) চাকুতে জবা ফুলের রস লাগিয়ে সে চাকু দিয়ে লেবু কেটে দেখেছো? কাটা লেবুর অংশ নিশ্চয় লাল বর্ণ হয়।

তোমরা চিন্তা করে দেখো, জবাফুলের রসে থাকা রাসায়নিক পদার্থ নিজের বর্ণ-পরিবর্তন করে লেবুর রসে এসিড আছে নির্দেশ করলো। হলুদের রসে যে রাসায়নিক পদার্থ আছে তা নিজের বর্ণ পরিবর্তন করে সাবানে ক্ষার আছে নির্দেশ করলো। রসায়নের ভাষায় উদ্ভিজ্জ উভয় রাসায়নিক পদার্থের নাম হলো নির্দেশক।

নির্দেশকসমূহ মূলত দু শ্রেণিভুক্ত। যেমন—

(১) এসিড-ক্ষার নির্দেশক ও (২) জারণ-বিজারণ নির্দেশক।

এসিড-ক্ষার নির্দেশক: এসিড-ক্ষার বিক্রিয়ার প্রশমন বিন্দু বা তুশ্যতা বিন্দু জানার জন্য যেসব জৈবযৌগ ব্যবহৃত হয়, এদেরকে এসিড ক্ষার নির্দেশক বলে। এসব নির্দেশক এসিড মাধ্যমে এক ধরনের বর্ণ এবং ক্ষার মাধ্যমে অন্য ধরনের বর্ণ দেখায়। এসিড-ক্ষার নির্দেশকগুলো রাসায়নিকভাবে দুর্বল জৈব ক্ষার অথবা দুর্বল জৈব এসিড হয়ে থাকে। যেমন, মিথাইল অরেঞ্জ এসিড মাধ্যমে (pH রেঞ্জ 3.1— 4.4) লাল বর্ণ এবং ক্ষারীয় মাধ্যমে হলুদ বর্ণ দেখায়। ফেনলফথ্যালিন নির্দেশক এসিড মাধ্যমে বর্ণহীন এবং ক্ষারীয় মাধ্যমে (pH রেঞ্জ 8.2 – 9.3) লালচে বেগুনি বর্ণ হয়। নির্দেশকের বৈশিষ্ট্য:

- (১) প্রকৃতপক্ষে সব নির্দেশকই একই pH এ বর্ণ পরিবর্তন করে না।
- (২) প্রতিটি নির্দেশকের একটি pH রেঞ্জ বা পরিসর আছে, যেখানে দু'প্রকার বর্ণের সংমিশ্রণ দেখা যায়।
- (৩) pH এর মান pH রেঞ্জ থেকে কম হলে নির্দেশক ওধুমাত্র অম্প্রীয় বর্গ এবং pH এর মান এ রেঞ্জ বা পরিসর থেকে বেশি হলে নির্দেশক ওধুমাত্র ক্ষারীয় বর্গ দেখায়।
- (8) প্রতিটি নির্দেশক সামান্য pH পরিসরে বর্ণ পরিবর্তন করে।
- (৫) তাই কোনো নির্দিষ্ট অমু-ক্ষারক যুগলের টাইট্রেশনের জন্য এমন একটি নির্দিষ্ট নির্দেশক নির্বাচন করা প্রয়োজন, যার বর্ণ পরিবর্তনের pH পরিসরের মধ্যে এ টাইট্রেশনের সমাপ্তি বা তুল্যতা বিন্দুর pH অবস্থিত হয়।

নির্দিষ্ট টাইট্রেশনে উপযুক্ত নির্দেশক: কোনো টাইট্রেশনের সমাপ্তি বা তুল্যতা বিন্দুতে অর্থাৎ pH পরিসরে যে নির্দেশকের বর্ণ হঠাৎ পরিবর্তিত হয়, তা ঐ টাইট্রেশনের জন্য উপযুক্ত নির্দেশক। নিচে সারণি-৩.২-এ কয়েকটি নির্দেশকের নাম ও pH পরিসরভিত্তিক বর্ণ পরিবর্তন উল্লেখ করা হয়েছে।

কোনো টাইট্রেশনে কোনো পদার্থকে নির্দেশক হিসেবে ব্যবহার করার প্রধান বৈশিষ্ট্যপূর্ণ শর্তসমূহ নিমুরপ:

- (১) নির্দেশকের বর্ণ যথেষ্ট ছায়ী ও উচ্ছাল হতে হবে এবং অম্লীয় মাধ্যম ও ক্ষারীয় মাধ্যমের বর্ণের মধ্যে যথেষ্ট পার্থক্য থাকতে হবে। এরা বিপরীত বর্ণের হলে সবচেয়ে ভালো হয়।
- (২) নির্দেশকের বর্ণ হঠাৎ পরিবর্তিত হতে হবে । অর্থাৎ H⁺ আয়নের যে ঘনমাত্রার মধ্যে নির্দেশকের বর্ণ পরিবর্তিত হয় তার পরিসর স্বল্প হতে হবে ।
- (৩) সংশ্রিষ্ট বিক্রিয়ার প্রশমন বিন্দুতে বা টাইট্রেশনের সমাপ্তি বিন্দুতে নির্দেশকের বর্ণ পরিবর্তিত হতে হবে।

MAT

সারণি-৩.২ : কিছু গুরুত্বপূর্ণ এসিড ক্ষার নির্দেশক :

নির্দেশকের নাম	অশ্লীয় মাধ্যমে বৰ্ণ	ক্ষারীয় মাধ্যমে বর্ণ	বর্ণ পরিবর্তনে pH পরিসর
১. ফেনলফ্থ্যালিন	বৰ্ণহীন	লালচে বেগুনি	8.2 - 9.8
২. থাইমল বু (ক্ষার)	হলুদ	নীল	8.0 -9.6
৩. ক্রিসল রেড	হলুদ	লাল	7.2 - 8.8
৪. ফেনল রেড	হলুদ	नान हिंद	6.8 - 8.4
৫. ব্রোমোথাইমল রু	হলুদ	নীল	6.0 - 7.6
৬. লিটমাস	नान	নীল	6.0 - 8.0
৭. মিথাইল রেড	लाल	হলুদ	4.2 - 6.3
৮. মিথাইল অরেঞ্জ	গোলাপি-লাল	হলুদ 💴 📧	3.1 – 4.4
৯. থাইমল বু (অমু)	লাল	হলুদ	1.2-2.8

৩.১১.১। বিক্রিয়ার সমাপ্তি বিন্দু নির্ণয়ে নির্দেশকের ভূমিকা

Roles of Indicators to identify the end-point of Reactions

উপযুক্ত নির্দেশক: (১) কোনো নির্দেশক এঁসিড-ক্ষার প্রশমন বিক্রিয়ার প্রশমন-বিন্দু কীরূপে এবং (২) নির্দেশকের 2 pH পরিসরে কীরূপে বর্ণ পরিবর্তন ঘটে, তা ব্যাখ্যা করা হলো। এসিড-ক্ষার নির্দেশক সাধারণত দুর্বল জৈব এসিড ও দুর্বল ক্ষার হয়ে থাকে। দুর্বল জৈব এসিড নির্দেশক (HIn) অণু জলীয় দ্রবণে বিয়োজিত হয়ে অনুবন্ধী ক্ষারক (In) উৎপন্ন করে। অবিয়োজিত অণু HIn ও এর অনুবন্ধী ক্ষারক In আয়নের বর্ণ ভিন্ন হয়। যেমন লিটমাসের বেলায় HIn এর বর্ণ লাল এবং এর অনুবন্ধী ক্ষারক In আয়নের বর্ণ নীল হয়।

- (i) অস্প্রীয় দ্রবণে (অর্থাৎ HCI দ্রবণে যেখানে অধিক H⁺ আয়ন থাকে), উপরিউক্ত নির্দেশকের <mark>আয়নী</mark>করণ সমীকরণটির সাম্যের অবস্থান বামদিকে থাকে। তখন নির্দেশকের প্রায় সবটাই অবিয়োজিত অণু HIn হিসেবে থাকবে এবং দ্রবণের বর্ণ হবে লাল অর্থাৎ **অশ্লীয় মাধ্যমে লিটমাসের বর্ণ লাল**।
- (ii) আবার ক্ষারীয় দ্রবণে (অর্থাৎ NaOH দ্রবণে যেখানে অধিক OH আয়ন থাকে), লিটমাস দ্রবণ যোগ করলে ঐ দ্রবণের H_3O^+ আয়নসমূহ OH আয়ন দ্বারা প্রশমিত হয়ে পানি অণু হওয়ার ($H_3O^+ + OH^- \longrightarrow 2H_2O$) কারণে সাম্যের অবস্থান ডানদিকে সরে যায়। তখন HIn অণুসমূহ OH আয়নের সাথে বিক্রিয়া করে In^- আয়নের ঘনমাত্রা বৃদ্ধি করে এবং দ্রবণের বর্ণটি অনুবন্ধী ক্ষারক (In^-) এর বর্ণযুক্ত নীল বর্ণ হয়। অর্থাৎ ক্ষারীয় মাধ্যমে লিটমাসের বর্ণ নীল হয়।

উপরিউক্ত বিক্রিয়ার সাম্যাবস্থার ক্ষেত্রে বিয়োজন ধ্রুবক K_{ln} হবে নিমুরূপ :

$$K_{ln} = \frac{[H_3O^+] \times [In^-]}{[HIn]}$$
; $\exists t$, $[H_3O^+] = K_{ln} \frac{[Hln]}{[In-]}$

MCQ-3.27: NaOH দ্রবণ ও CH₃COOH এর টাইট্রেশনে উপযুক্ত নির্দেশক কোন্টি?

- (ক) মিথাইল অরেঞ্জ (খ) মিথাইল রেড
- (१) रकनलकथ्यालिन (घ) लिउँ मात्र

যখন [HIn] = [In] হয়, তখন সাম্যাবস্থায় উপরের সমীকরণ হতে আমরা নিমুরূপ পাই:

$$[H_3O^+] = K_{ln} \times \frac{[Hln]}{[In-]}$$
; $[H_3O^+] = K_{ln}$ and $pH = pK_{in}$

(21-22) 17-18) 16-18)

(12-13)

(11-12)

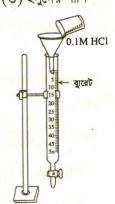
যখন $[HIn]/[In^-] \ge 10/_1$ হয়, তখন দ্ৰবণের বর্ণটি লিটমাসের বেলায় লাল হয়। আবার যদি $[HIn]/[In^-] \le {}^1/_{10}$ হয়, তখন দ্ৰবণের বর্ণটি লিটমাসের বেলায় নীল হয়। অতএব, হাইড্রোজেন আয়নের পরিবর্তনের পরিসর, $[H_3O^+] = K_{In} \times \frac{10}{1}$ থেকে $K_{In} \times \frac{1}{10}$ হলে লাল লিটমাসের বর্ণ পরিবর্তিত হয়ে নীল হয়। তখন দ্রবণের pH এর পরিসর হয় $pH = (pK_{In} + 1)$ থেকে $(pK_{In} - 1)$ অর্থাৎ প্রায় 2 pH একে পরিসরে লিটমাসের বর্ণ পরিবর্তন ঘটে থাকে।

৩.১২ ব্যবহারিক : রঙিন উদ্ভিদের রস ব্যবহার করে এসিড-ক্ষার প্রশমন বিন্দু নির্ণয়

To Determine Acid-Base Neutralisation Point with Coloured Plant Juice

রঙিন উদ্ভিদের রসে দুর্বল জৈব এসিড অথবা জৈব ক্ষার থাকে। এসব রঙিন রাসায়নিক পদার্থ বিপরীত ক্ষারীয় ও অশ্লীয় মাধ্যমে আয়নিত হয়ে ভিন্ন বর্ণ সৃষ্টি করে। তাই উদ্ভিদের রস যেমন হলুদের পানি ও জবা ফুলের রস নির্দেশকরূপে ব্যবহার করে এসিড-ক্ষার প্রশমন বিন্দু নির্ণয় করা যায়।

	ব্যবহারিক (Practical)	
শিক্ষার্থীর কাজ :		সময় : ১ পিরিয়ড
পরীক্ষা নং - ১১		
তারিখ :		
পরীক্ষার নাম : রঙিন উদ্ভিদ	্রস ব্যবহার করে এসিড-ক্ষার প্রশমন বিন্দু নির্ণয় :	


(ক) মূলনীতি : সবল এসিড ও সবল ক্ষারের প্রশমন বিন্যু p^H 7 এ থাকে। তাই যেকোনো নির্দেশক ব্যবহার করে প্রশমন বিন্দু নির্ণয় করা সহজ। আমরা জানি, 1 mol HCl এসিডকে 1 mol NaOH পূর্ণ প্রশমিত করে এবং রঙিন উদ্ভিদ হলুদের রস হলো একটি এসিড-ক্ষার নির্দেশক; এটি ক্ষারীয় মাধ্যমে বাদামি লাল এবং অশ্রীয় মাধ্যমে হাল্কা হলুদ বর্ণ হয়। তখন 20 mL 0.1 M NaOH দ্রবণে যোগ করা নির্দেশক ধর্মবিশিষ্ট হলুদের বাদামি লাল বর্ণটিকে হালকা হলুদ বর্ণে পরিণত করতে 20 mL 0.1 M HCl দ্রবণ প্রয়োজন হবে।

HCl + NaOH → NaCl + H₂O 1 mol 1 mol সমীকরণ মতে, 1 mol HCl ≡1 mol NaOH 1000 mL 0.1M HCl দ্ৰবণ ≡ 1000 mL 0.1M NaOH দ্ৰবণ 20 mL 0.1 M HCl দ্ৰবণ ≡ 20 mL 0.1M NaOH দ্ৰবণ MCQ-3.28 : মিখাইল অরেঞ্জ-এর বর্গ পরিবর্তনের pH রেঞ্জ কত? বি. বো. ২০১৫] (ক) 8.2 – 9.8 (খ) 4.2 – 6.3 (গ) 3.1 – 4.4 (ঘ) 6.0 –7.6

- (খ) প্রয়োজনীয় রাসায়নিক বছু: (১) HCl দ্রবণ (0.1 M), (২) NaOH দ্রবণ, (0.1 M), (৩) হলুদের পানি
- (গ) প্রয়োজনীয় যদ্রপাতি : (১) কনিকেল ফ্লাক্ষ, (২) ব্যুরেট, (৩) পিপেট,

(৪) বিকার, (৪) ফানেল, (৬) স্ট্যান্ড ও ক্ল্যাম্প।

- (घ) কাজের ধারা : (১) চিত্র ৩.৭ অনুসারে ব্যুরেটে 0.1 M HCI দ্রবণ পূর্ণ করো।
- (২) কনিকেল ফ্লান্ধে 20 mL 0.1 M NaOH দ্রবণ পিপেটের সাহায্যে নাও। এর মধ্যে 3–4 ফোঁটা হলুদের দ্রবণ যোগ করো। মিশ্রণটি বাদামি লাল বর্ণ হয়েছে।
- (৩) এখন কনিকেল ফ্লান্কটিকে এক টুকরা সাদা কাগজের ওপর রাখো। এবার ব্যুরেট থেকে 0.1 M HCl দ্রবণ কনিকেল ফ্লান্কে 18 mL পর্যন্ত যোগ করো। কনিকেল ফ্লান্কে বাদামি লাল বর্ণ পরিবর্তন হচ্ছে কীনা লক্ষ্য করো। সতর্কতার সাথে ফোঁটায় ফোঁটায় আরো HCl দ্রবণ যোগ করে মিশ্রণের বাদামি লাল বর্ণ হালকা হলুদ বর্ণ হলে HCl যোগ করা বন্ধ করো।

চিত্র-৩.৭ : ব্যুরেট পূর্ণ করা।

(8) এবার ব্যবহৃত HCl এর দ্রবণের আয়তন ব্যুরেট থেকে জেনে নাও। মূলনীতি অনুসারে 20 mL 0.1 M HCl ব্যবহারের পর ব্যবহৃত নির্দেশকটির বর্ণ পরিবর্তন হওয়ার কথা। কিছু ব্যবহৃত 0.1 M HCl দ্রবণ ও 0.1 M NaOH দ্রবণের মোলারিটি সঠিক না থাকলে তখন ব্যবহৃত HCl এর আয়তন 20 mL এর চেয়ে কম বেশি হবে।

সিদ্ধান্ত: এ পরীক্ষা দ্বারা রঙিন উদ্ভিদ রস এসিড-ক্ষার প্রশমন বিন্দু নির্ণয়ে নির্দেশকরূপে ভূমিকা রেখেছে।

৩.১৩ টাইট্রেশন দ্বারা অজানা ঘনমাত্রার দ্রবণে এসিড/ক্ষারের পরিমাণ নির্ণয়

To determine Molarity of an Acid or Base by Titration

আগের অনুচ্ছেদ-৩.১২ এ তোমরা রঙিন উদ্ভিদ রস ব্যবহার করে এসিড-ক্ষারের প্রশমন বিন্দু নির্ণয়ের জন্য কনিকেল ফ্লাক্ষে 20 mL 0.1 M NaOH নিয়ে ব্যুরেট থেকে 0.1 M HCl দ্রবণ ফোঁটায় ফোঁটায় যোগ করে নির্দেশকের বর্ণ পরিবর্তন পর্যন্ত HCl দ্রবণ যোগ করেছো। এ সামগ্রিক কাজটিই হলো এসিড-ক্ষার টাইট্রেশন এবং প্রশমন বিন্দুতে তুল্য মোল ক্ষারের সাথে তুল্য মোল এসিড পূর্ণ বিক্রিয়া করেছে। অর্থাৎ

 OH^- আয়ন এর মোল সংখ্যা (ফ্লান্কে নেয়া) $\equiv H^+$ আয়ন এর মোল সংখ্যা (ব্যুরেট থেকে দেয়া)। তোমরা এখন টাইট্রেশনের নিমূরপ সংজ্ঞা দিতে পারো :

<u>টাইট্রেশন : নির্দেশকের উপস্থিতিতে কোনো বিক্রিয়কের প্রমাণ দ্রবণ বা জানা ঘনমাত্রার দ্রবণ দ্বারা অপর অজানা</u> ঘনমাত্রার বিক্রিয়কের ঘনমাত্রা নির্ণয়ের পদ্ধতিকে টাইট্রেশন বলে ।

- * টাইট্রেশন প্রক্রিয়ায় তিনটি রাসায়নিক পদার্থ ব্যবহৃত হয়। যেমন—
 - (১) প্রমাণ দ্রবণ, (২) অজানা ঘনমাত্রার দ্রবণ ও (৩) নির্দেশক।
- * টাইট্রেশন কাজে তিনটি কাচযন্ত্র ব্যবহৃত হয়। যেমন,
 - (১) ব্যুরেট, (২) কনিকেল ফ্লাক্ষ ও (৩) পিপেট।

টাইট্রেশন সংশ্লিষ্ট কতগুলো 'পদ' (terms)

(১) <u>টাইট্র্যোন্ট বা টাইটার (Titrant or Titre)</u>: আয়তনিক বিশ্লেষণকালে টাইট্রেশনে ব্যবহৃত প্রমাণ দ্রবণ বা জ্ঞাত ঘনমাত্রার দ্রবণটিকে টা<u>ইট্র্যোন্ট বা টাইটার বলে। টাইট্রেশনের সময় এটিকে সাধারণত ব্যুরেটে নেয়া হয়।</u>

তিবে ক্ষারধর্মী প্রমাণ দ্রবণ যথাসম্ভব ব্যুরেটে না নেয়াই ভালো। কারণ ক্ষারধর্মী যৌগ ব্যুরেটের সিলিকেটের সাথে বিক্রিয়া করে ব্যুরেটের ক্যালিব্রেশন বা দাগগুলো নষ্ট করতে পারে।

(২) <u>টাইট্রেট বা টাইট্র্যান্ড (Titrate or Titrand)</u> : টাইট্রেশনে ব্যবহৃত অজানা ঘনমাত্রার দ্রবণটিকে অর্থাৎ যে দ্রবণের টাইট্রেশন করা হয়, তাকে টাইট্রেট বা টাইট্র্যান্ড বলে। এটিকে সাধারণত কনিকেল ফ্লাক্ষে নেয়া হয়।

তবে প্রমাণ ক্ষার দ্রবণ Na₂CO₃ দ্রবণকে কনিকেল ফ্লাক্ষে নেয়া হয়।

- (৩) টাইট্রেশনের সমাপ্তি বিন্দু বা প্রশমন বিন্দু (End Point) : টাইট্রেশনের যে অবস্থায় সংশ্লিষ্ট বিক্রিয়াটির পরিমাণগত সমাপ্তি ঘটে এবং ব্যবহৃত নির্দেশকের বর্ণ পরিবর্তন ঘটে তাকে ঐ টাইট্রেশনের সমাপ্তিক্ষণ বা সমাপ্তি বিন্দু বা প্রশমন বিন্দু বলা হয়। এসিড-ক্ষার টাইট্রেশনের লেখচিত্রে তা নির্দিষ্ট pH মানযুক্ত একটি বিন্দু হয়। যেমন সবল এসিড ও সবল ক্ষারের প্রশমন বিন্দুতে লেখচিত্রটিতে pH মান 7 হয়।
- (8) প্রমাণ দ্রবণ (Standard solution): যে দ্রবণের ঘনমাত্রা সঠিকভাবে জানা থাকে, তাকে প্রমাণ দ্রবণ বলে। যেমন $0.1 M \ Na_2 CO_3$ দ্রবণ একটি প্রমাণ দ্রবণ। কারণ এর এক লিটার দ্রবণে নির্দিষ্ট পরিমাণ যেমন $0.1 \ Na_2 CO_3$ বা, $10.6 \ g \ Na_2 CO_3$ দ্রবীভূত করা হয়েছে, তা জানা আছে।

প্রমাণ দ্রবণের প্রকারভেদ : প্রমাণ দ্রবণ দু প্রকার হতে পারে।

(১) প্রাইমারি বা মুখ্য প্রমাণ দ্রবণ ও (২) সেকেন্ডারি বা গৌণ প্রমাণ দ্রবণ।

প্রাইমারি বা মুখ্য প্রমাণ দ্রবণ : প্রাইমারি স্ট্যান্ডার্ড পদার্থ থেকে নির্দিষ্ট পরিমাণ দ্রবকে রাসায়নিক নিজিতে ওজন করে নির্দিষ্ট আয়তনের প্রস্তুত দ্রবণকে প্রাইমারি বা মুখ্য প্রমাণ দ্রবণ বলে। প্রাইমারি স্ট্যান্ডার্ড পদার্থের দ্রবণ হলো—

- (i) অনার্দ্র Na₂CO₃ এর 0.1M দ্রবণ
- (ii) অক্সালিক এসিড (C₂H₂O₄. 2H₂O) এর 0.1 M দ্রবণ
- (iii) 0.1 M K2Cr2O7 দ্রবণ ইত্যাদি।

সেকেন্ডারি বা গৌণ প্রমাণ দ্রবণ: সেকেন্ডারি স্ট্যান্ডার্ড পদার্থ থেকে প্রস্তুত যে দ্রবণের ঘনমাত্রা প্রাইমারি বা মুখ্য প্রমাণ দ্রবণের সাহায্যে টাইট্রেশন করে প্রকৃত ঘনমাত্রা নির্ণয় করা হয়, তাকে সেকেন্ডারি বা গৌণ প্রমাণ দ্রবণ বলে। যেমন HCl এসিডের তৈরি মোটামুটি 0.12 M দ্রবণকে 0.1 M Na₂CO₃ দ্রবণ দ্বারা টাইট্রেশন করে নির্ণীত ঘনমাত্রা হয় 0.105 M HCl। এটি হলো HCl এর গৌণ প্রমাণ দ্রবণ। একইভাবে 0.01 M KMnO₄ দ্রবণ তৈরি করে এটির সঠিক ঘনমাত্রা প্রমাণ 0.025 M অক্সালিক এসিড দ্বারা নির্ণয় করা হয়। [পরীক্ষা নং-১৩ দ্রষ্টব্য]।

ব্যবহারিক (Practical)

শিক্ষার্থীর কাজ:

পরীক্ষা নং - ১২

তারিখ :

পরীক্ষার নাম: 0.1M Na2CO3 দ্রবণ দ্বারা নমুনা HCl দ্রবণের ঘনমাত্রা নির্ণয়:

(ক) মূলনীতি: Na₂CO₃ ও HCl এর প্রশমন বিক্রিয়ার সমীকরণ হলো নিমুরূপ:

2 mol 1 mol

টাইট্রেশনের বেলায়, প্রশমন বিক্রিয়া শেষে প্রশমন বিন্দুতে আমরা পাই, ${\rm CO}_3^{2-}$ এর মোল সংখ্যা (ফ্লাঙ্কে) $\equiv {\rm H}^+$ এর মোল সংখ্যা (ব্যুরেট থেকে দেয়া)

- (খ) প্রয়োজনীয় রাসায়নিক বছু: (১) 0.1 M Na₂CO₃ দ্রবণ, (পরীক্ষা নং -৮ এ তৈরি করা প্রমাণ 0.1 M Na₂CO₃ দ্রবণ)
 - (২) 0.1 M HCl দ্রবণ, (পরীক্ষা নং-৯ এ তৈরি করা 0.1 M HCl দ্রবণ)
 - (৩) নির্দেশক : মিথাইল অরেঞ্জ (সবল HCI এসিডের জন্য)
 - (গ) প্রয়োজনীয় **যন্ত্রপাতি**: (১) কনিকেল ফ্লাক্ষ, (২) ব্যুরেট, (৩) পিপেট, (৪) ক্ল্যাম্পসহ স্ট্যান্ড।
- (ঘ) কাজের ধারা : (১) পরীক্ষা নং-৯-এ প্রস্তুত করা 0.1 M HCl দ্রবণ (সেকেন্ডারি এসিড দ্রবণ) অথবা নমুনা HCl দ্রবণ দ্বারা ব্যুরেটটি পূর্ণ করো এবং স্ট্যান্ডের সাথে ক্ল্যাম্প দ্বারা খাড়াভাবে আটকিয়ে নাও।

MCQ-3.29 : অস্ত্র-ক্ষার দ্রবণের টাইট্রেশনে প্রয়োজন হয়—

সময়: ১ পিরিয়ড

- (i) প্রমাণ এসিড দ্রবণ
- ii) NaOH rag
- (ii) NaOH দ্রবণ (iii) নির্দেশক
- নিচের কোনটি সঠিক?
- (ক) i ও ii

(খ) ii ও iii

(গ) i ও iii

(ঘ) i, ii ও iii

- (২) পরীক্ষা নং−৮ এ প্রস্তুত করা 0.1 M Na₂CO₃ দ্রবণ (প্রমাণ দ্রবণ) এর আয়তনিক ফ্লান্ক থেকে পিপেট দ্বারা 10 mL দ্রবণ কনিকেল ফ্লাঙ্কে নাও। কনিকেল ফ্লাঙ্কের দ্রবণে 1-2 ফোঁটা মিথাইল অরেঞ্জ যোগ করো। তখন দ্রবণের বর্ণ र्नुम रया।
- (৩) কনিকেল ফ্লাক্ষের তলায় একটি সাদা কাগজ টুকরা রাখো। ব্যুরেটে HCl এসিড দ্রবণের পাঠ নিয়ে ডাটার ছকে '১ম পাঠ'-এ রেকর্ড করো। চিত্রমতে বাম হাতে ব্যুরেটের স্টপ-কক ঘুরিয়ে ব্যুরেটের HCl দ্রবণ ফোঁটায় ফোঁটায় কনিকেল ফ্লান্ধে যোগ করো এবং ডান হাতে কনিকেল ফ্লাক্ষের মিশ্রণকে ঘূর্ণি-আবর্তে (swirled) মিশাও। যখন মিশ্রণটির মাঝখানে HCI এর ফোঁটা পড়ার সাথে মিথাইল অরেঞ্জের এসিড মাধ্যমের কমলা বর্ণ দেখা দেয়, কিন্তু মিশ্রণটি ঘোরালে কমলা বর্ণ দূর হয়, তখন প্রশমন বিক্রিয়াটি প্রায় সমাপ্তির পথে বোঝায়। শেষে 2-1 ফোঁটা এসিড দ্রবণ যোগ করলে সম্পূর্ণ মিশ্রণটি কমলা থেকে গোলাপী লাল বর্ণ হয়। এটিই টাইট্রেশনের শেষ বিন্দু। এখন ব্যুরেটে এসিড দ্রবণের পাঠ নিয়ে ডাটার ছকে '২য় পাঠ'-এ রেকর্ড করো।

Na₂CO₃ দ্রবণ টাইট্রেশন

- (৪) এরূপে তিনটি টাইট্রেশন করো। ডাটার ছকে ব্যবহৃত এসিড আয়তনের গড় আয়তন বের করে রেকর্ড করো।
- (ঙ) টাইট্রেশন ডাটা : প্রস্তুতকৃত HCI দ্রবণকে প্রমাণ Na₂CO₃ দ্রবণ দারা প্রশমন ব্যবহৃত প্রাইমারি Na₂CO₃ প্রমাণ দ্রবণের শক্তিমাত্রা = 1.02 (0.1 M) = 0.102 M

ক্ৰমিক গৃহীত Na ₂ CO ₃		ব্যুরেটে HCl দ্রবণ		ব্যবহৃত HCl mL	ব্যবহৃত HCl এর
नर	দ্ৰবণ ; mL	১ম পাঠ, mL	২য় পাঠ, mL	(২য় পাঠ-১ম পাঠ)	গড় আয়তন; mL
١ د	10	0.1	20.2	20.1	
21	10	20.2	40.3	20.1	20.1
91	10	0.0	20.1	20.1	the state of the

(চ) প্রস্তুতকৃত HCl দ্রবণের ঘনমাত্রা গণনা : সংশ্লিষ্ট প্রশমন বিক্রিয়াটি হলো—

$$2HCI(aq) + Na_2CO_3(aq) \longrightarrow 2NaCI(aq) + CO_2(g) + H_2O(l)$$

পূর্ণ প্রশামনের বেলায় ,
$$\frac{V_1 \times M_1}{V_2 \times M_2} = \frac{2 \text{ mol HCI}}{1 \text{ mol Na}_2 \text{CO}_3}$$
 ;

বা,
$$1 \times V_1 \times M_1 = 2 \times V_2 \times M_2$$

ৰা,
$$1 \times 20.1 \times M_1 = 2 \times 10 \times 0.102 \text{ M}$$

ৰা,
$$M_1 = \frac{2 \times 10 \times 0.102 \text{ M}}{20.1} = 0.1015 \text{ M}$$

নমুনা HCl দ্রবণের ঘনমাত্রা = 0.1015 M

$$M_1 = ?$$

$$M_2 = 0.102 (M)$$

ব্যবহারিক (Practical)

সময়: ১ পিরিয়ড

শিক্ষার্থীর কাজ:

পরীক্ষা নং-১২ (ক)

তারিখ:

পরীক্ষার নাম : 0.05 M অক্সালিক এসিড দ্রবণ দারা নমুনা NaOH দ্রবণের ঘনমাত্রা নির্ণয়।

- (क) মূলনীতি : সমীকরণভিত্তিতে [নিচে সমীকরণ দেয়া আছে]।
- (খ) প্রয়োজনীয় রাসায়নিক বছু: (১) নমুনা NaOH দ্রবণ, (২) অক্সালিক এসিড, (৩) ফেনলফথ্যালিন।
- (গ) প্রয়োজনীয় যন্ত্রপাতি : (১) ব্যুরেট, (২) কনিকেল ফ্লাস্ক, (৩) পিপেট, (৪) ক্ল্যাম্প-স্ট্যান্ড।
- (ঘ) কাজের ধারা:
- (১) নমুনা ক্ষার দ্রবণ (NaOH) এর প্রকৃত মোলারিটি নির্ণয়ের জন্য প্রমাণ দ্রবণ হিসেবে $0.05~{\rm M}$ অক্সালিক এসিড ব্যবহার করতে হবে। পরীক্ষা নং-৮-এর মতো ওজন পদ্ধতিতে অক্সালিক এসিডের প্রমাণ দ্রবণ তৈরি করো। অক্সালিক এসিড (COO) $_2.2{\rm H}_2{\rm O}$ এর মোলার ভর = $126~{\rm g}$
- (২) দুর্বল এসিড সবল ক্ষারের টাইট্রেশনের মতো কনিকেল ফ্লাক্ষে 10 mL অক্সালিক এসিড দ্রবণ নাও। এ দ্রবণে 1–2 ফোঁটা ফেনলফথ্যালিন যোগ করো। মিশ্রণটি বর্ণহীন থাকবে।
 - (৩) ব্যুরেটে NaOH দ্রবণ নিয়ে টাইট্রেশন করো। প্রশমন বিন্দুতে মিশ্রণটি **হালকা গোলাপি** হবে।
 - (8) টাইট্রেশন ডাটা : পরীক্ষা নং-১২ এর (৩) টাইট্রেশন ডাটা মতে টাইট্রেশন ডাটা রেকর্ড করো।
 - (৫) গণনার সমীকরণ:

 $2 \text{ NaOH} + \text{HOOC} - \text{COOH} \longrightarrow \text{Na-OOC} - \text{COO-Na} + 2\text{H}_2\text{O}.$ 2 mol 1 mol

ব্যবহারিক (Practical)

৩.১৪ জারণ-বিজারণ টাইট্রেশন দারা দ্রবণে ধাতব আয়নের পরিমাণ নির্ণয়

To determine Metal ion in Solution by Redox Titration

এসিড-ক্ষার টাইট্রেশনে আমরা প্রমাণ ক্ষার দ্রবণ দ্বারা এসিডের ঘনমাত্রা অথবা প্রমাণ এসিড দ্রবণ দ্বারা ক্ষার দ্রবণের ঘনমাত্রা নির্ণয় পদ্ধতি শিখেছি। একইভাবে রিডক্স টাইট্রেশনে জারক পদার্থের প্রমাণ দ্রবণ দ্বারা দ্রবণে বিজারক পদার্থের পরিমাণ নির্ণয় অথবা বিজারক পদার্থের প্রমাণ দ্রবণ দ্বারা দ্রবণে জারক পদার্থের পরিমাণ নির্ণয় করা হয়। এ রিডক্স টাইট্রেশনের বিশেষ গুরুত্ব রয়েছে। যেমন, পানীয় জলে আয়রনের পরিমাণ নির্ণয়, রক্তে ${\rm Ca}^{2^+}$ আয়নের পরিমাণ নির্ণয়, ফল ও সবজিতে ভিটামিন ${\rm C}$ -এর পরিমাণ নির্ণারণ বিশেষ উল্লেখযোগ্য।

আমরা জানি, রিডক্স বিক্রিয়ায় বিজারক যতটি ইলেকট্রন ত্যাগ করে জারিত হয়, জারক পদার্থ ততটি ইলেকট্রন গ্রহণ করে বিজারিত হয়। তাই সমতাযুক্ত রাসায়নিক সমীকরণভিত্তিক জারক ও বিজারকের মধ্যে তাদের মোলের সংখ্যানুপাতে (stoichiometric) জলীয় দ্রবণে বিক্রিয়া ঘটানো হয়। সুতরাং রাসায়নিক বিক্রিয়ার সংখ্যানুপাতিক সূত্র মতে আমরা পাই,

x জারক +y বিজারক \longrightarrow উৎপাদ; এখানে x ও y হলো যথাক্রমে জারক ও বিজারক পদার্থের মোল সংখ্যা।

ৰা,
$$\frac{V_1 \times M_1 \text{ (জারক)}}{V_2 \times M_2 \text{ (বিজারক)}} = \frac{x \text{ (জারকের মোল সংখ্যা)}}{y \text{ (বিজারকের মোল সংখ্যা)}}$$

জারক ও বিজারক পদার্থ দুটির দ্রবণের মধ্যে একটির ঘনমাত্রা জানা থাকে; এ দ্রবণটিকে প্রমাণ দ্রবণ বলে। এ প্রমাণ দ্রবণের সাহায্যে অপর দ্রবণের ঘনমাত্রা অথবা নির্দিষ্ট ধাতব আয়নের পরিমাণ বের করা হয়।

রিডক্স টাইট্রেশনে জারক হিসেবে পটাসিয়াম পারম্যাঙ্গানেট (KMnO₄) এর 0.02 M দ্রবণ ব্যবহৃত হয়। তবে এটি সেকেন্ডারি পদার্থ হওয়ায় এর দ্রবণকে বিজারক অক্সালিক এসিডের প্রমাণ দ্রবণ দ্বারা প্রমিতকরণ করে সঠিক মোলারিটি নির্ণয় করা হয়।

সেকেন্ডারি পদার্থ হওয়া সত্ত্বেও KMnO4 ব্যবহারে সুবিধা হলো KMnO4 দারা টাইট্রেশনে কোনো নির্দেশকের প্রয়োজন হয় না। কেননা এর বর্ণ অত্যন্ত তীব্র এবং 100 mL পানিতে 0.1 mL 0.02 M KMnO4 যোগ করলে এর সুস্পষ্ট হাল্কা পিঙ্ক বা গোলাপি বর্ণ দেখা যায়।

প্রমিত $\mathrm{KMnO_4}$ দূবণ দিয়ে পানীয় জলে Fe^{2+} আয়নের পরিমাণ নির্ণয়ের সমীকরণ ও গণনা :

 $1~{
m M~H_2SO_4}$ মিশ্রিত ${
m KMnO_4}$ দ্রবণে পারম্যাঙ্গানেট আয়ন জারকরূপে ও বিজারক ${
m Fe}^{2+}$ আয়নের মধ্যে নিমুরূপ

রিডক্স বিক্রিয়া ঘটে:

 $2MnO_4^- + 10 Fe^{2+} + 16H^+ \longrightarrow 2Mn^{2+} + 10Fe^{3+} + 8 H_2O$ সমীকরণ মতে, 2 mol KMnO₄ $\equiv 10$ mol Fe²⁺ আয়ন

∴ 1000 mL 2 M KMnO₄ দ্ৰবণ ≡ 10 × 55. 85 g Fe²⁺ আয়ন

∴ 1 mL 0.02 M KMnO₄ দ্ৰবণ $\equiv \frac{10 \times 55.85 \times 0.02}{1000 \times 2}$ g Fe²⁺ আয়ন

 $\equiv 5.585 \times 10^{-3} \,\mathrm{g \, Fe}^{2+}$ आयन

MCQ-3.30 : টাইট্রেশন কাজে ব্যবহৃত কাচযন্ত্র হলো—

(i) ব্যুরেট (ii) কনিকেল ফ্লাক্ষ

(iii) মেজারিং সিলিভার নিচের কোনটি সঠিক?

ন্টের কোনাট সাহকঃ

(ক) i ও ii (খ) ii ও iii (গ) i ও iii (ঘ) i, ii ও iii

এরপে টাইট্রেশনে ব্যবহৃত $KMnO_4$ দ্রবণের মোট আয়তন থেকে পানিতে Fe^{2+} আয়নের পরিমাণ গণনা করা হয়।

৩.১৪.১ আয়োডিনযুক্ত জারণ-বিজারণ টাইট্রেশন : আয়োডিমিতি ও আয়োডোমিতি Redox Titration involving iodine [Iodimetry and Iodometry]

আয়োডিমিতি: সরাসরি প্রমাণ আয়োডিন দ্রবণের সাহায্যে সোডিয়াম থায়োসালফেট, সালফাইট, আর্সেনাইট ইত্যাদি বিজারক পদার্থের টাইট্রেশন করার মাধ্যমে এদের পরিমাণ নির্ধারণ করার পদ্ধতিকে আয়োডিমিতি (iodimetry) বলা হয়। এক্ষেত্রে প্রমাণ আয়োডিন দ্রবণকে ব্যুরেটে নেয়া হয়। এরূপ ক্ষেত্রে রিডক্স বিক্রিয়া নিমুরূপে ঘটে।

$$2Na_2S_2O_3 + I_2 \longrightarrow Na_2S_4O_6 + 2Na1$$
 সোডিয়াম সোডিয়াম টেট্রাথায়োনেট

এদের মধ্যে সংঘটিত অর্ধবিক্রিয়া দুটি হলো : $2S_2O_3^{2-}(aq) \longrightarrow S_4O_6^{2-}(aq) + 2e^-$

 $I_2 (aq) + 2e^- \longrightarrow 2\Gamma (aq)$

আয়োডোমিতি : কোনো জারক পদার্থের নির্দিষ্ট পরিমাণ দ্রবণের নির্দিষ্ট আয়নের সাথে আয়োডাইড লবণ (যেমন (KI) এর বিক্রিয়ায় উৎপন্ন আয়োডিনকে প্রমাণ থায়োসালফেট দ্রবণ দ্বারা টাইট্রেশন করে মুক্ত আয়োডিনের পরিমাণ নির্ধারণের পদ্ধতিকে আয়োডোমিতি (iodometry) বলা হয় এবং পরীক্ষাগারে প্রমাণ থায়োসালফেট দ্রবণ দ্বারা KI ও নির্দিষ্ট পরিমাণ জারক পদার্থের দ্রবণের বিক্রিয়ায় মুক্ত আয়োডিনের পরিমাণ নির্ধারণ প্রক্রিয়াকে আয়োডোমিতি টাইট্রেশন বলে। এক্ষেত্রে প্রমাণ থায়োসালফেট দ্রবণকে ব্যুরেটে নেয়া হয়।

এ প্রক্রিয়ায় নির্ধারিত আয়োডিনের পরিমাণ থেকে ব্যবহৃত জারক পদার্থ যেমন CuSO₄, K₂Cr₂O₇, KMnO₄ ইত্যাদির পরিমাণ নির্ণয় করা যায়। যেমন্

কাজের ধারা : নির্দিষ্ট পরিমাণ জারক পদার্থ (যেমন, $CuSO_4$ এর Cu^{2+} আয়ন) এর দ্রবণ কনিকেল ফ্লাঙ্কে নিয়ে এর মধ্যে অধিক পরিমাণ KI যোগ করলে উভয়ের বিক্রিয়ায় জারক পদার্থের তুল্য পরিমাণ আয়োডিন মুক্ত হয়। পরে মুক্ত আয়োডিনকে প্রমাণ $Na_2S_2O_3$ দ্রবণ দ্বারা টাইট্রেশন করা হয়। যেমন—

 $2CuSO_4 + 4KI \rightarrow Cu_2I_2 + I_2 + 2K_2SO_4;$ $2Na_2S_2O_3 + I_2 \rightarrow Na_2S_4O_6 + 2NaI$ $4I_1 + 2I_2 + 2I_3 + 2I_4 + 2I_5 + 2I_5 + 2I_5 + 2I_5$ $4I_2 + 2I_3 + 2I_5 + 2I_5 + 2I_5 + 2I_5 + 2I_5 + 2I_5$ $4I_3 + 2I_4 + 2I_5 + 2I_$

উভয় সমীকরণ থেকে পাই, 2 mol CuSO₄ \equiv 1 mol I₂ \equiv 2 mol Na₂S₂O₃

বা, 1 mol $Na_2S_2O_3 \equiv 1 \text{ mol } CuSO_4$

আয়োডোমিতির মৃশনীতি ও প্রয়োগ : প্রমাণ সোডিয়াম থায়োসালফেট দ্রবণ বিজারক এবং রিডক্স বিক্রিয়ায় ব্যবহৃত Cu^{2+} আয়ন হলো জারক। এ প্রমাণ দ্রবণ দ্বারা মুক্ত আয়োডিনকে টাইট্রেশন করা হয় এবং বিজারক পদার্থের পরিমাণ থেকে প্রথমোক্ত জারক পদার্থ (Cu^{2+}) এর পরিমাণ নির্ণয় করা হয়। যেমন, ওপরের উভয় বিক্রিয়া থেকে পাই—

তুল্য মোল জারক = তুল্য মোল আয়োডিন = তুল্য মোল বিজারক

বা, 1 mol Na₂S₂O₃ = 1 mol Cu²⁺ ion = 63.5 g Cu²⁺ ion

বা, $1000 \text{ mL } 1\text{M Na}_2\text{S}_2\text{O}_3$ দ্ৰবণ = 63.5 g Cu^{2+} ion.

এক্ষেত্রে টাইট্রেশনে প্রাপ্ত প্রমাণ $Na_2S_2O_3$ দ্রবণের আয়তন থেকে Cu^{2^+} আয়নের পরিমাণ নির্ণয় করার পদ্ধতি হলো আয়োডোমিতির উদাহরণ ।

জেনে নাও: (১) টিংচার আয়োডিনের মৌলটি বিজারকরূপেও আচরণ করে; এর রাসায়নিক ব্যাখ্যা করো।

[য. বো. ২০১৯]

(২) আয়োভিন জারক ও বিজারক উভয়য়পে ক্রিয়া করে, ব্যাখ্যা করো।

সমাধান : (১) টিংচার আয়োডিন বা 2% টিংচার আয়োডিন হলো 100~mL প্রুফ অ্যালকোহলে অর্থাৎ 57% ইথানল ও 43% বিশুদ্ধ পানির মিশ্রণে 5.0 গ্রাম KI এবং 2.0 গ্রাম I_2 এর দ্রবণ । ইথানল ও KI এর দ্রবণে I_2 সহজে দ্রবীভূত হয়, কিন্তু এটি পানিতে অদ্রবণীয় বা , খুব কম দ্রবণীয় ।

টিংচার আয়োডিনের মৌলটি হলো আয়োডিন। আয়োডিন হ্যালোজেন সদস্য। এটি <mark>জারক হিসেবে</mark> ধনাত্মক ধাতব মৌল থেকে ইলেকট্রন গ্রহণ করে আয়োডাইড আয়নরূপে এর অষ্টক ইলেকট্রন বিন্যাস লাভ করে। শেষে আয়নিক যৌগ গঠন

$$K(19) \longrightarrow K^{+}(19) + e^{-}; \quad I(53) + e^{-} \longrightarrow \Gamma(53)$$
 $K^{+} + \Gamma \longrightarrow KI$ (আয়নিক যৌগ)

এক্ষেত্রে আয়োডিন পরমাণুতে (I) জারণ-সংখ্যা 0 (শূন্য) <mark>হয়। জারকরপে ইলেকট্র</mark>ন গ্রহণ করায় আয়োডাইড (Γ) আয়নে জারণ-সংখ্যা হ্রাস পেয়ে -1 হয়।

আয়োডিন বিজারকরপে আচরণ করলে তখন সৃষ্ট যৌগ আয়োডিনের জারণ সংখ্যা 0 (শূন্য) থেকে বৃদ্ধি পেয়ে ধনাত্মক হবে। এরপ যৌগ হলো হাইপো-আয়োডাইট (KIO) বা আয়োডেট (I) লবণ। উত্তপ্ত KOH দ্রবণ ও I_2 এর মধ্যে জারণ-বিজারণ বিক্রিয়ায় KI, হাইপো-আয়োডাইট (KIO) ও পানি উৎপন্ন হয়। এ বিক্রিয়ায় I_2 এর জারণ ও বিজারণ এক সাথে ঘটে অর্থাৎ I_2 একই সাথে জারক ও বিজারক উভয়রপে ক্রিয়া করে। ফলে I_2 এর জারণ মান KI এর বেলায় হয় -1 এবং KIO এর বেলায় +1 হয়। $2KOH + I_2 \longrightarrow KI + KIO + H_2O$

সমাধানকৃত সমস্যা—৩.৮১ : নিচের উদ্দীপকভিত্তিক সংগ্রিষ্ট প্রশ্নের উত্তর দাও :

[চ. বো. ২০১৭]

 $1.3~{
m g}$ অবিশুদ্ধ কপারকে উত্তপ্ত গাঢ় ${
m H_2SO_4}$ এসিডে দ্রবীভূত করে ১ম পাত্রে $50~{
m mL}$ দ্রবণ তৈরি করা হলো। ২য় পাত্রে অধিক গরিমাণ ${
m KI}$ দ্রবণ আছে। ৩য় পাত্রে $100~{
m mL}$ $0.2~{
m M}$ ${
m Na_2S_2O_3}$ দ্রবণ আছে।

(ক) উদ্দীপকের প্রমাণ দ্রবণটিকে কীভাবে সেন্টিমোলার দ্রবণে পরিণত করা যায়ঃ

(খ) উদ্দীপকের দ্রবণগুলো ব্যবহার করে অবিশুদ্ধ কপারে ভেজালের শতকরা পরি<mark>মাণ গণনা করো</mark>।

সমাধান: (ক) উদ্দীপকের প্রমাণ দ্রবণটি হলো 100 mL 0.2 M Na₂S₂O₃ দ্রবণ। লঘুকরণের মাধ্যমে এটিকে সেন্টিমোলার দ্রবণে পরিণত করা সম্ভব। তখন ঐ দ্রবণে পানি যোগ করে আয়তন বৃদ্ধি করতে হবে। লঘুকরণের সমীকরণ মতে,

$$V_1 \times M_1 = V_2 \times M_2$$

বা, $V_2 = \frac{V_1 \times M_1}{M_2} = \frac{100 \text{ mL} \times 0.2 \text{ M}}{0.01 \text{ M}}$
বা, $V_2 = 2000 \text{ mL}$

প্রশ্নমতে , প্রাথমিক আয়তন , $V_1=100~mL$ প্রাথমিক ঘনমাত্রা , $M_1=0.2~M$ লঘুকৃত দ্রবণের আয়তন , $V_2=?$ লঘুকৃত দ্রবণের ঘনমাত্রা , $M_2=0.01~M$

সুতরাং প্রদত্ত প্রমাণ দ্রবণে পানি মিশাতে হলো = (2000 – 100) mL = 1900 mL (উ:)

সমাধান : (খ) উত্তপ্ত গাঢ় H_2SO_4 এসিডে Cu ধাতু প্রথমে জারিত হয়ে CuO ক্ষারক এবং পরে H_2SO_4 এসিডসহ বিক্রিয়ায় $CuSO_4$ উৎপন্ন করে :

$$\begin{array}{cccc} \mathfrak{NP} & H_2SO_4 & \stackrel{\Delta}{\longrightarrow} & H_2O + SO_2 + [O] \\ Cu & + & [O] & \longrightarrow & CuO \\ CuO & + & H_2SO_4 & \longrightarrow & CuSO_4 + H_2O \end{array}$$

যোগ করে, $Cu + 2H_2SO_4$ (গাঢ়) $\xrightarrow{\Delta} CuSO_4 + SO_2 + 2H_2O$ আয়োডোমিতি পদ্ধতিতে অবিশুদ্ধ নমুনা কপারে বিশুদ্ধ কপারের পরিমাণ নিমু সমীকরণ মতে নির্ণয় করা যায়।

$$2CuSO_4 + 4 KI \longrightarrow Cu_2I_2 + \boxed{I_2} + 2K_2SO_4$$

$$2Na_2S_2O_3 + \boxed{I_2} \longrightarrow Na_2S_4O_6 + 2NaI$$

উভয় সমীকরণ থেকে পাই , $2 \text{ mol CuSO}_4 \equiv 1 \text{ mol I}_2 = 2 \text{ mol Na}_2 \text{S}_2 \text{O}_3$

বা, 1 mol Na₂S₂O₃ = 1 mol CuSO₄ = 1 mol Cu²⁺

∴ 1000 mL 1 M Na₂S₂O₃ দ্ৰবণ ≡ 1 mol Cu²⁺ ≝ 63.546 g Cu

∴ 100 mL 0.2 M Na₂S₂O₃ দ্ৰবণ
$$\equiv \frac{63.546 \times 100 \times 0.2 \text{ g Cu}}{1000 \times 1} = 1.27 \text{ g Cu}$$

∴ 1.3 g অবিশুদ্ধ কপারে ভেজাল আছে = (1.3 – 1.27) g = 0.03 g

∴ 100 g অবিভদ্ধ কপারে ভেজাল আছে =
$$\frac{(0.03 \times 100) \text{ g}}{1.3}$$
 = 2.30 g

∴ ভেজালের পরিমাণ = 2.30% (উ:)।

সমাধানকৃত সমস্যা-৩.৮২ : নিচের উদ্দীপকভিত্তিক সংশ্লিষ্ট প্রশ্নের উত্তর দাও :

[ঢা. বো. ২০১৭]

10% CuSO

- (ক) উদ্দীপকের কনিকেল ফ্লাঙ্কে গৃহীত দ্রবণধয়ের বিক্রিয়াটি আয়ন-ইলেকট্রন পদ্ধতিতে উদ্দীপক চিত্র : সমতা বিধান করো।
- (খ) উদ্দীপকে CuSO4 এর পরিবর্তে $K_2Cr_2O_7$ দ্রবণ ব্যবহার করলে টাইট্রেশন (বা অনুমাপন) প্রক্রিয়াটি আয়োডোমিতিক না আয়োডিমিতিক হবে; তা উপযুক্ত ও প্রয়োজনীয় সমীকরণসহ বিশ্লেষণ করো।

সমাধান : (ক) উদ্দীপকের কনিকেল ফ্লাঙ্কে গৃহীত দ্রবণদ্বয় হলো $CuSO_4$ দ্রবণ ও KI এর দ্রবণ। $CuSO_4$ এর জলীয় দ্রবণে জারকরূপে Cu^{2+} আয়ন এবং KI এর জলীয় দ্রবণে (অতিরিক্ত) বিজারকরূপে আয়োডাইড (I^{-1}) আয়ন থাকে। তাই কনিকেল ফ্লাঙ্কের উভয় দ্রবণের মিশ্রণে রিডক্স বিক্রিয়াকালে নিমুরূপ জারণ অর্ধ-বিক্রিয়া ও বিজারণ অর্ধ-বিক্রিয়া ঘটে। জারণ অর্ধ-বিক্রিয়ায় বিজারক আয়োডাইড আয়ন (I^{-1}) একটি ইলেকট্রন ত্যাগ করে প্রথমে আয়োডিন পরমাণু ও পরে আয়োডিন অণু তৈরি করে। অপরদিকে বিজারণ অর্ধ-বিক্রিয়ায় Cu^{2+} আয়ন একটি করে ইলেকট্রন গ্রহণ করে বিজারিত হয়ে কিউপ্রাস আয়ন (Cu^{+}) এ পরিণত হয়। পরে কিউপ্রাস আয়োডাইডের ডাইমার অণু (Cu_2I_2) গঠন করে। যেমন,

জারণ অর্ধ-বিক্রিয়া :
$$2 \ I^- \longrightarrow I_2 + 2e^-$$
বিজারণ অর্ধ-বিক্রিয়া : $2Cu^{2^+} + 2e^- \longrightarrow 2Cu^+$
যোগ করে , $2Cu^{2^+} + 2I^- \longrightarrow 2Cu^+ + I_2$
বা , $2Cu^{2^+} + 4I^- \longrightarrow 2Cu_2I_2 + I_2$

সমাধান : (খ) উদ্দীপক মতে, কনিকেল ফ্লাক্ষে জারক পদার্থ যেমন $CuSO_4$ এর Cu^{2+} আয়ন এবং বিজারক পদার্থ যেমন KI এর আয়োডাইড আয়ন (I^-) এর দ্রবণ অতিরিক্ত পরিমাণে আছে। তাই তুল্য পরিমাণ জারক ও বিজারক পদার্থের মধ্যে রিডক্স বিক্রিয়ার ফলে তুল্য পরিমাণ আয়োডিন মুক্ত হয়। সমীকরণটি হলো :

$$2Cu^{2+} + 4I^{-} \longrightarrow Cu_{2}I_{2} + I_{2}$$

উদ্দীপকের ব্যুরেটে নেয়া প্রমাণ থায়োসালফেট $(Na_2S_2O_3)$ দ্রবণ দ্বারা কনিকেল ফ্লাক্ষে উৎপন্ন বা মুক্ত আয়োডিনকে টাইট্রেশন বা অনুমাপন করে আয়োডিনের পরিমাণ নির্ধারণ করা হয়েছে। মুক্ত আয়োডিন ও $Na_2S_2O_3$ এর মধ্যে বিক্রিয়ার সমীকরণ হলো : $2Na_2S_2O_3 + I_2 \rightarrow Na_2S_4O_6 + 2NaI$ (2)

সুতরাং (1) ও (2) নং সমীকরণ থেকে পাই :
$$2CuSO_4 \equiv I_2 \equiv 2Na_2S_2O_3$$
 বা, 1 mol $Na_2S_2O_3 = 1$ mol $CuSO_4$

এক্ষেত্রে টাইট্রেশনে ব্যবহৃত প্রমাণ থায়োসালফেটের আয়তন থেকে জারক পদার্থ Cu^{2+} আয়নের পরিমাণ গণনা করা যায়।

এ টাইট্রেশন প্রক্রিয়ায় রিডক্স বিক্রিয়ায় মুক্ত ও নির্ধারিত <mark>আয়োডিনের পরিমাণ থেকে প্রমাণ থায়োসালফেট দ্রবণের</mark> মাধ্যমে জারক পদার্থের পরিমাণ নির্ণয় করা যায়; **এ পদ্ধতিকে আয়োডোমিতি বলা হয়**।

উদ্দীপক মতে, $CuSO_4$ এর পরিবর্তে জারক পদার্থরূপে প্রাইমারি স্ট্যান্ডার্ড পদার্থ $K_2Cr_2O_7$ দ্রবণ ব্যবহার করা হলে একইভাবে মুক্ত আয়োডিন প্রস্তুত করা যাবে। তাই সংশ্রিষ্ট টাইট্রেশন বা অনুমাপন প্রক্রিয়াটি সংজ্ঞা মতে আয়োডোমিতি হবে। সংশ্রিষ্ট বিক্রিয়াসমূহ নিমুরূপ হবে:

$$K_2Cr_2O_7 + 7H_2SO_4 + 6KI \longrightarrow 4K_2SO_4 + Cr_2(SO_4)_3 + 3I_2 + 7H_2O_4$$

 $6Na_2S_2O_3 + 3I_2 \longrightarrow 3Na_2S_4O_6 + 6NaI_4$

$$\therefore \text{ I mol } K_2Cr_2O_7 \equiv 3 \text{ mol } I_2 \equiv 6 \text{ mol } Na_2S_2O_3$$

বা, 6 mol Na₂S₂O₃ ≡ 1 mol K₂Cr₂O₇

অপরদিকে, আয়োডিমিতির সংজ্ঞা মতে, সরাসরি প্রমাণ আয়োডিনের দ্রবণ দ্বারা বিজারক পদার্থ যেমন সোডিয়াম থায়োসালফেট বা সালফাইট ইত্যাদির দ্রবণকে টাইট্রেশন করে বিজারক পদার্থের পরিমাণ নির্ণয় করা হয়। উদ্দীপক মতে আয়োডিমিতি প্রক্রিয়া এক্ষেত্রে জড়িত নয়।

সদৃশ প্রশ্ন : Cu²+ আয়নের পরিমাণ নির্ধারণভিত্তিক :

উদ্দীপক: (1) নং দ্রবণ: ASO4 দ্রবণ; 'A' এর পাঃ ভর = 63.5

[কু. বো. ২০১৯

- (2) নং দ্রবণ : KI দ্রবণ
- (3) নং দ্ৰবণ : 50 mL 0.02M Na₂S₂O₃ দ্ৰবণ
- (Φ) উদ্দীপকের A^{2+} আয়নের পরিমাণ নির্ণয়ে (2) নং দ্রবণের প্রয়োজন আছে কীনা তা যৌক্তিক বিক্রিয়াসহকারে বিশ্লেষণ করো।

স্থিকেত : আয়োডোমিতিক পদ্ধতিতে Cu^{2+} আয়নের পরিমাণ নির্ধারণে KI দ্রবণ প্রয়োজন । এরপর সমাধানকৃত সমস্যা ৩.৭৯ এর সমাধান (খ) অংশ বুঝে নাও ।]

ব্যবহারিক (Practical)

শিক্ষার্থীর কাজ: পরীক্ষা নং - ১৩

তারিখ :

পরীক্ষার নাম: 0.01 M KMnO4 দ্রবণ দ্বারা দ্রবণে FeSO4 এর পরিমাণ নির্ণয়:

সময় : ১ পিরিয়ড

মূলনীতি : জারকরূপে অশ্রীয় $KMnO_4$ দ্রবণ ও বিজারক Fe^{2+} আয়নের মধ্যে নিমুরূপ রিডক্স বিক্রিয়া ঘটে :

$$MnO_4^-(aq) + 5Fe^{2+}(aq) + 8H^+(aq) \longrightarrow 5Fe^{3+}(aq) + Mn^{2+}(aq) + 4H_2O(l)$$

1 mol

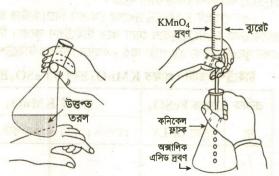
সমগ্র পরীক্ষা কাজটি চারটি অংশে বিভক্ত। যেমন—

- (১) 0.01 M KMnO4 দ্রবণ প্রস্তুতি : সাধারণ নিক্তিতে ওজন নেয়া পদ্ধতিতে ;
- (২) 0.025 M অক্সালিক এসিড দ্রবণ প্রস্তুতি : রাসায়নিক নিজিতে ওজন নেয়া পদ্ধতিতে ;
- (৩) প্রমাণ-অক্সালিক এসিড দ্রবণ দ্বারা KMnO4 দ্রবণের প্রমিতকরণ;
- (8) প্রমিত 0.01 KMnO₄ দ্রবণ দ্বারা নমুনা FeSO₄ দ্রবণ টাইট্রেশন।

তিন পিরিয়তে অর্থাৎ তিন দিনে এ পরীক্ষা কাজটি শেষ করতে হবে। প্রথম দিনে দুটি দ্রবণ প্রস্তুতিতে, ২য় দিনে KMnO₄ দ্রবণ প্রমিতকরণ এবং ৩য় দিনে রিডক্স টাইট্রেশন করতে হবে।

১ম দিনের কাজ : (ক) 0.01 M KMnO4 দ্রবণ ও 0.025 M অক্সালিক এসিড দ্রবণ প্রস্তুতি :

৪ জনের প্রতি গ্রুপের ২ জন করে শিক্ষার্থী এ দুটি দ্রবণ এক সাথে প্রস্তুত করবে।


0.01 M KMnO4 দ্রবণ প্রস্তৃতি : KMnO4 এর মোলার ভর = 158 g।

- 250 mL 0.01 M KMnO₄ দ্রবণ প্রস্তুত করার জন্য KMnO₄ প্রয়োজন = 0.40 g (প্রায়)।
- (১) সাধারণ নিক্তিতে করে কাগজের টুকরার ওপর করে প্রায় 0.40 g KMnO4 গুঁড়া ওজন করে নাও।
- (২) 250 mL ফ্লাক্ষে ফানেলের মাধ্যমে ওজন করা KMnO4 ঢেলে নাও। ওয়াস বোতলের পানি যোগ করে দ্রবণ তৈরি করো।
- 0.025 M অক্সালিক এসিড দ্রবণ প্রস্তৃতি : অক্সালিক এসিড (COOH)2. 2H2O-এর মোলার ভর =126 g। 250 mL 0.025 M অক্সালিক এসিড দ্রবণ প্রস্তুত করার জন্য অক্সালিক এসিড প্রয়োজন = 0.7875 g।
- (১) ওজন বোতলে বিশুদ্ধ অক্সালিক এসিড নিয়ে রাসায়নিক নিক্তিতে 0.7875 g অক্সালিক এসিড ওজন করে (পরীক্ষা নং-৮ এর মতো) 250 mL ফ্রান্টে প্রমাণ দ্রবণ তৈরি করো। মনে করি, প্রমাণ দ্রবণের ঘনমাত্রা = 0.025 M

২য় দিনের কাজ : (খ) প্রমাণ 0.025 M অক্সালিক এসিড দ্বারা প্রদ্ভূত 0.01 M KMnO₄ দ্রবণ প্রমিতকরণ :

কাজের ধারা : (১) ব্যরেটে KMnO4 দ্রবণ নাও এবং ব্যরেটটিকে স্ট্যান্ডের সাথে ক্ল্যাম্পসহ আটকাও।

- (২) পিপেটের সাহায্যে 10 mL 0.025 M অক্সালিক এসিড দ্রবণ কনিকেল ফ্লান্কে নাও। মেজারিং সিলিন্ডার দিয়ে 5 mL 1 M H2SO4 কনিকেল ফ্লাক্ষে যোগ করো।
- (৩) এবার কনিকেল ফ্লাক্ষের মিশ্রণটিকে অ্যাসবেস্টস তারজালির ওপর রেখে 60°-70°C তাপমাত্রায় অর্থাৎ হাতে সহনীয় তাপমাত্রায় উত্তপ্ত করো।
- (৪) এবার ব্যুরেটে নেয়া KMnO4 দ্রবণের উপরিতলের পাঠ নিয়ে ডাটার ছকে KMnO₄ দ্রবণের ১ম পাঠ-এ রেকর্ড চিত্র-৩.৯ : প্রমাণ অক্সলিক এসিড দারা KMnO₄ দ্রবণ টাইট্রেশন।

করো। এখন ব্যুরেট থেকে ফোঁটায় ফোঁটায় KMnO4 দ্রবণ কনিকেল ফ্লাঙ্কে যোগ করো এবং মিশ্রণকে ঘূর্ণি-আবর্তে মিশাও।

দ্রবণটি স্থায়ী হালকা বেশুনি বা গোলাপি বর্ণ হলে টাইট্রেশনের শেষ বিন্দু নির্দেশ করে। ব্যুরেট থেকে KMnO4 দ্রবণের '২য় পাঠ' ডাটার ছকে রেকর্ড করো।

টাইট্রেশন ডাটা : প্রমাণ 0.025 M অক্সালিক এসিড ও KMnO4 দ্রবণ

ক্রমিক নং	ফ্লাক্ষে অক্সালিক এসিড দ্ৰবণ	ব্যুরেটে নেয়া KMnO4 দ্রবণ			
	(mL)	১ম পাঠ (mL)	২য় পাঠ (mL)	mL	গড় (mL)
1.	10		4	The family of the	
2.	10	ber un ede		DE) PLA (SUP 1	(xmL)
3.	10				

গণনা : অম্বীয় KMnO4 দ্রবণ ও অক্সালিক এসিড দ্রবণের বিক্রিয়ার সমীকরণ :

 $2KMnO_4 + 3H_2SO_4 + 5H_2C_2O_4 \longrightarrow 2MnSO_4 + K_2SO_4 + 10CO_2 + 8H_2O_4 + 10CO_2 + 8H_2O_2 + 8$

সমীকরণ মতে, 2 mol KMnO₄ = 5 mol H₂C₂O₄

টাইট্রেশনের শেষ বিন্দুতে, $\frac{V_1 \times M_1 \text{ (KMnO_4)}}{V_2 \times M_2 \text{ (H₂C₂O₄)}} = \frac{2 \text{ mol}}{5 \text{ mol}}$

বা, $5 \times V_1 \times M_1$ (KMnO₄) = $2 \times V_2 \times M_2$ (H₂C₂O₄)

বা, $5 \times x \text{ mL} \times M_1 \text{ (KMnO}_4) = 2 \times 10 \text{ mL} \times 0.025 \text{ M}$

$$M_1 (KMnO_4) = \frac{2 \times 10 \times 0.025 \text{ M}}{5 \times x} = 0.0Z (M)$$

MCQ-3.31: जन्नीय Cr₂O₂- जायन ७ $\mathrm{C_2O_4^{2-}}$ আয়নের রিডক্স বিক্রিয়ায় $\mathrm{Cr_2O_7^{2-}}$ ও $C_2O_4^{2-}$ এর মোল অনুপাত কোন্টি? (ক) 1:2 (খ) 2:3 (গ) 1:3 (ঘ) 3:2 MCO-3.32 : নিচের কোন্টি জারক ও বিজারক উভয়রূপে কাজ করে? (**季**) Fe³⁺ (খ) Fe²⁺

(되) Hg²⁺

৩য় দিনের কাজ : (গ) প্রমিত 0.02 M KMnO4 দ্রুবণ দ্বারা নমুনা FeSO4 দ্রবণ টাইট্রেশন

(গ) Sn⁴⁺

প্রমাণ দ্রবণ: প্রমিত KMnO4 দ্রবণ

পরীক্ষাধীন দ্রবণ: নমুনা FeSO4 দ্রবণ; নির্দেশক: KMnO4 দ্রবণ নিজেই নির্দেশক।

কাজের ধারা : (১) ব্যুরেটে KMnO4 দ্রবণ নাও এবং স্ট্যান্ডের সাথে ক্ল্যাম্পসহ ব্যুরেটটিকে আটকাও।

(২) পিপেটের সাহায্যে $10~\mathrm{mL}$ নমুনা $\mathrm{FeSO_4}$ দ্রবণ কনিকেল ফ্লান্কে নাও। মেজারিং সিলিভার দিয়ে $20~\mathrm{mL}~1~\mathrm{M}$ H2SO4 কনিকেল ফ্লাক্ষে যোগ করো।

(৩) ব্যুরেটে KMnO4 দ্রবণের ১ম পাঠ নিয়ে ডাটার ছকে '১ম পাঠ'-এ রেকর্ড করো। এবার KMnO4 দ্রবণ কনিকেল ফ্লাক্ষে নেয়া FeSO4 দ্রবণে যোগ করে টাইট্রেশন করো। টাইট্রেশনের শেষ বিন্দুতে হালকা বেগুনি বা গোলাপি বর্ণ হবে। এখন ব্যুরেট থেকে '২য় পাঠ' নাও। এভাবে তিনবার টাইট্রেশন করে ব্যবহৃত KMnO4 দ্রবণের আয়তনের গড় করো।

টাইটেশন ডাটা : প্রমিত KMnO4 দ্রবণ ও FeSO4 দ্রবণ

ক্রমিক	क्वांट्क FeSO4 व्यादति ।		ব্যুরেটে KMnO4		ব্যবহৃত KMnO4
নং	দ্রবণ (mL)	১ম পাঠ (mL)	২য় পাঠ (ml_)	দ্ৰবণ (mL)	দ্রবণের গড় (mL)
1.	10		- Brancos		THE STATE WHILE A
2.	10	do astan man	2 54 ""(35)	AN SCHOOL D	x mL (মনে করি)
3.	10	SPECIFIC PRINTS	THE WEST PAR	10-11 " 15-15-15-15-15-15-15-15-15-15-15-15-15-1	F ETH GENERAL

গণনা : সংশ্রিষ্ট অম্প্রীয় KMnO4 ও FeSO4 এর রিডক্স বিক্রিয়ার সমীকরণ :

 $2KMnO_4 + 8 H_2SO_4 + 10FeSO_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 5 Fe_2(SO_4)_3 + 8H_2O_4$

∴ সমীকরণ মতে, 2 mol KMnO₄ = 10 mol FeSO₄

1000 mL 2 M KMnO₄ দ্ৰবণ = 10 × 151.91 g FeSO₄

∴ $x \text{ mL } 0.01 \text{ M KMnO}_4$ দ্ৰবণ $\equiv \frac{10 \times 151.91 \text{ g} \times 0.01 \times \text{x}}{1000 \times 2} \equiv 7.5955 \times \text{x} \times 10^{-3} \text{ g FeSO}_4$

শিক্ষার্থী নিজে করো-৩.১৩ : রিডক্স বিক্রিয়াভিত্তিক গণনা :

সমস্যা-৩.৬৫(ক): 5 g বিশুদ্ধ ফেরাস সালফেটকে সম্পূর্ণ জারিত করতে কত গ্রাম KMnO4 প্রয়োজন হবে?

জি: 1.047 g] মাদ্রাসা বো. ২০১৭]

সমস্যা-৩.৬৫(খ) : 5 g বিশুদ্ধ $FeSO_4$ কে সম্পূর্ণ জারিত করতে কত গ্রাম $K_2Cr_2O_7$ প্রয়োজন হবে? ডি: 1.6145 g] সমস্যা- ৩.৬৬(ক) : এক টুকরা লোহার তারকে লঘু H_2SO_4 এসিডে দ্রবীভূত করে প্রাপ্ত দ্রবণকে সম্পূর্ণ জারিত করতে 0.03 M $KMnO_4$ দ্রবণের 27.5 mL প্রয়োজন হয়। লোহার তারটির ভর কত? ডি: 0.2304 g]

সমস্যা- ৩.৬৬(খ) : 0.36~g এক টুকরা লোহাকে লঘু H_2SO_4 এ দ্রবীভূত করে প্রাপ্ত দ্রবণকে সম্পূর্ণ জারিত করতে $0.025~M~KMnO_4$ -এর 48.5~mL প্রয়োজন হয়। ঐ লোহাতে ভেজাল পদার্থের % পরিমাণ কত? $\cbox{\centsurflew}$ $\cbox{\centsurflew}$ $\cbox{\centsurflew}$ \cdots \cdot

সমস্যা-৩.৬৬(গ) : একটি নমুনা লোহার 2~g পরিমাণের টুকরাকে লঘু H_2SO_4 এসিডে দ্রবীভূত করা হলো। ঐ দ্রবণকে সম্পূর্ণরূপে জারিত করতে H_2SO_4 মিশ্রিত 50~mL 0.1~M $K_2Cr_2O_7$ দ্রবণ প্রয়োজন হয়। ঐ নমুনা লোহাটি বিশুদ্ধ কীনা গাণিতিকভাবে বিশ্বেষণ করো।

উি: ঐ লোহায় 0.324 g ভেজাল আছে

[সমাধানকৃত সমস্যা-৩.৭০ দেখো]

সমস্যা- ৩.৬৭ : লঘু H_2SO_4 মিশ্রিত 15~mL $0.3~M~KMnO_4$ দ্রবণ দ্বারা 25~mL H_2O_2 এর কোনো নমুনাকে জারিত করা যায় । ঐ H_2O_2 এব মোলারিটি কত?

সমস্যা- ৩.৬৮ : $1.5~{
m g}$ লোহার আকরিককে লঘু ${
m H_2SO_4}$ এ দ্রবীভূত করে $100~{
m mL}$ করা হয়। ঐ দ্রবণের $25~{
m mL}$ কে টাইট্রেশন করতে $22.5~{
m mL}$ $0.02~{
m M~KMnO_4}$ প্রয়োজন হয়। ঐ আকরিকে ${
m Fe}~(11)$ এর পরিমাণ কত?

[উ: 0.50265 g]

সমস্যা-৩.৬৯ : বাংলাদেশ স্টিল কারখানার রসায়নবিদেরা দুটি দেশ থেকে সংগ্রহ করা নমুনা A ও B স্টিল নিয়ে প্রত্যেকটির 4 g কে লঘু H_2SO_4 এ দ্রবীভূত করে 250~mL করে দ্রবণ তৈরি করেন। প্রত্যেক নমুনা দ্রবণের 25~mL কে টাইট্রেশন করতে যথাক্রমে 0.05~M $KMnO_4$ ও $K_2Cr_2O_7$ দ্রবণের 28~mL ও 20~mL প্রয়োজন হয়। পদ্মা সেতু নির্মাণে কোন্ নমুনার স্টিলটি ব্যবহারে ভালো হবে তা গাণিতিকভাবে মূল্যায়ন করো।

ডি: A নমুনায় 3.9 g ও B নমুনায় 3.35 g Fe আছে। A নমুনা ভালো হবে।]

সমস্যা-৩.৭০(本): 'A' পাত্রে 25 mL 0.1 M H₂C₂O₄ দ্রবণ, 'B' পাত্রে 15 mL KMnO₄ দ্রবণ এবং 'C' পাত্রে 12 mL অম্লীয় FeSO₄ দ্রবণ আছে। A ও B পাত্রের দ্রবণ ব্যবহার করে C পাত্রের দ্রবণে লোহার পরিমাণ বের করো। উ: 0.28 g Fe] [কু. বো. ২০১৫]

সমস্যা-৩.৭০(খ): $1.5~{
m g}$ অবিশুদ্ধ লোহাকে লঘু ${
m H}_2{
m SO}_4$ এ দ্রবীভূত করে ঐ দ্রবণকে জারিত করতে $0.3{
m M}$ ${
m KMnO}_4$ দ্রবণের $15~{
m mL}$ প্রয়োজন হয়। লোহার নমুনাটিতৈ ভেজালের শতকরা পরিমাণ নির্ণয় করা যায় কীনা তা গাণিতিকভাবে বিশ্লেষণ করো। [উ: ভেজাল = 16.227%] [সমাধানকৃত সমস্যা-৩.৭১ দেখো।] [রা. বো. ২০১৯]

(ii) acidified $\operatorname{Cr}_2\operatorname{O}_7^{2-} + \operatorname{O}_2^{2-} \longrightarrow \operatorname{Cr}^{3+} + \operatorname{O}_2 + \operatorname{H}_2\operatorname{O}$ [য. বো. ২০১৬] উপরোক্ত সমীকরণে ${\rm Fe}^{2+}$ আয়নকে জারিত করতে $20~{
m mL}~0.02~{
m M~KMnO_4}$ প্রয়োজন হয়। (ক) উদ্দীপক মতে (i) নং বিক্রিয়ায় লোহার পরিমাণ নির্ণয় করো। ডি: 0.1117 g] (খ) উদ্দীপকের (ii) নং বিক্রিয়াটি সমমোলার অবস্থায় সম্পন্ন হবে কীনা মূল্যায়ন করো। [সমাধানকৃত সমস্যা-৩.৬৭ দেখো।] ডিঃ হবে না, $\operatorname{Cr}_2\operatorname{O}_7^{2-}$ ঃ $\operatorname{O}_7^{2-}=1$ ঃ 3 mol] সমস্যা-৩.৭০(ঘ) : এক টুকরা লোহাকে লঘু H_2SO_4 এসিডে দ্রবীভূত করা হলো। ঐ দ্রবণের বিজারককে জারিত রা বো ২০১৬ করতে 60 mL ডেসিমোলার KMnO4 দ্রবণ প্রয়োজন হয়। (ক) উদ্দীপকের লোহার ভর নির্ণয় করো। ডি: 1.6755 g] (খ) উদ্দীপকে জারক হিসেবে $K_2 Cr_2 O_7$ ব্যবহার করে ইলেকট্রন স্থানান্তর পদ্ধতিতে অর্ধ-বিক্রিয়াসহ রিডক্স বিক্রিয়া সিমাধানকত সমস্যা-৩.৬৬ দেখো। দেখাও। সমস্যা-৩.৭০(ঙ) : $\boxed{\text{নমুনা (A) critical proof of }} \rightarrow \boxed{\text{reg } H_2SO_4 \ \text{u} \ \text{দ্রবীভূত}} \rightarrow \boxed{\text{KMnO}_4 \ \text{দ্রবণ দ্বারা সম্পূর্ণ জারিতকরণ}}$ (ক) উদ্দীপকের বিক্রিয়ার সমীকরণে জারণ-বিজারণ সমতা বিধান করো অর্ধবিক্রিয়াসহ। (খ) উদ্দীপকের রিডক্স বিক্রিয়ায় ${
m KmO_4}$ এর ছলে ${
m K_2Cr_2O_7}$ ব্যবহার করে কীভাবে আয়রনের পরিমাণ নির্ণয় করা [সমাধানকৃত সমস্যা-৩.৬৮ দেখো।] যায়; তা ব্যাখ্যা করো। সমস্যা-৩.৭০(চ) : ১ম পাত্রে 20 mL 0.1 M H₂C₂O₄ দ্রবণ; ২য় পাত্রে 10 mL তুল্য ঘনমাত্রার K₂Cr₂O₇ দ্রবণ এবং ৩য় পাত্রে তুল্য পরিমাণ অম্লীয় FeSO4 দ্রবণ আছে। (ক) উদ্দীপকের ২য় ও ৩য় পাত্রের দ্রবণের মিশ্রণে সংঘটিত বিক্রিয়াটি আয়ন-ইলেক্ট্রন পদ্ধতিতে সমতা বিধান করো। (খ) ১ম ও ২য় দ্রবণের সাহায্যে ৩য় দ্রবণের Fe এর পরিমাণ নির্ণয় করো। (5: 0.2235 g Fe) [সমাধানকৃত সমস্যা-৩.৬৯ দেখো।] সমস্যা-৩.৭১(ক) : এক টুকরা লোহাকে লঘু H_2SO_4 এসিডে দ্রবীভূত করে প্রাপ্ত দ্রবণকে সম্পূর্ণ জারিত করতে 0.01M KMnO4 দ্রবণের 95 mL প্রয়োজন হয়। ঐ লোহার টুকরার ভর কত? ডি: 0.2653 g] সমস্যা-৩.৭১(খ) : এক টুকরা লোহার তারকে লঘু H_2SO_4 এসিডে দ্রবীভূত করে প্রাপ্ত দ্রবণকে সম্পূর্ণ জারিত করতে 0.03 M KMnO4 দ্রবণের 45.02 mL প্রয়োজন হয়। লোহার তারটির ভর কত? ডি: 0.3772 g] সমস্যা-৩.৭২(ক) : লঘু H₂SO₄ মিশ্রিত 25 mL 0.2 M FeSO₄ দ্রবণকে সম্পূর্ণ জারিত করতে 0.1 M ডি: 10 mL] KMnO₄ দ্রবণের কত আয়তন দরকার? সমস্যা-৩.৭২(খ) : অস্ত্রীয় মাধ্যমে 0.01 M KMnO4দ্রবণ দ্বারা 0.02 M আয়রন (II) অক্সালেট দ্রবণের 50 mL পরিমাণকে জারিত করতে ঐ KMnO4 দ্রবণের কত আয়তন দরকার হবে? [এক্ষেত্রে Fe²⁺ ও অক্সালেট উভয়ই বিজারক] ডি: 60 mL] সমস্যা-৩.৭৩(ক) : লঘু H₂SO₄ মিশ্রিত 0.003 M H₂O₂ এর 25 mL দ্রবণকে জারিত করতে 10 mL KMnO₄ ডি: 0.003 M] দ্রবণ প্রয়োজন হয়। ঐ KMnO4 দ্রবণের মোলার ঘনমাত্রা কত? সমস্যা-৩.৭৩(খ): 0.103 g সোডিয়াম অক্সালেটের অদ্রীয় দ্রবণকে টাইট্রেশন করতে KMnO4 দ্রবণের 24.3 mL ডি: 0.01263 M] প্রয়োজন হয়। ঐ KMnO4 দ্রবণের ঘনমাত্রা কত? সমস্যা-৩.৭8 : রক্তশূন্যতায় ব্যবহৃত আয়রন ট্যাবলেটে আয়রন (II) সালফেট থাকে। যদি 0.20 g ভরের একটি আয়রন ট্যাবলেট লঘু $m H_2SO_4$ এসিডে দ্রবীভূত করে প্রাপ্ত দ্রবণকে টাইট্রেশন করতে $m 0.01~M~K_2Cr_2O_7$ দ্রবণের 11.5 mL পরিমাণ দরকার হয়। তবে ঐ ট্যাবলেটে FeSO4 এর শতকরা পরিমাণ কত?

সমস্যা-৩.৭৫(ক) : 1.5~g লোহার আকরিক লঘু H_2SO_4 এসিডে দ্রবীভূত করে 100~mL করা হলো। ঐ দ্রবগথেকে 25~mL নিয়ে টাইট্রেশন করতে 0.02~M 22.5~mL $K_2Cr_2O_7$ প্রয়োজন হলো। ঐ আকরিকে লোহার শতকরা পরিমাণ কত?

সমস্যা-৩.৭৫ (খ) : $2.5~{\rm g}$ ভরের লোহার আকরিকের সমন্ত ${\rm Fe_2O_3}$ কে লঘু ${\rm H_2SO_4}$ এসিডে দ্রবীভূত করে বিজারকের সাহায্যে ${\rm Fe}^{2^+}$ আয়নে পরিণত করা হলো। প্রাপ্ত ${\rm Fe}^{2^+}$ আয়নের দ্রবণকে টাইট্রেট করতে $0.05~{\rm M}$ ${\rm K_2Cr_2O_7}$ দ্রবণের $30~{\rm mL}$ প্রয়োজন হয়। ঐ আকরিকে ${\rm Fe_2O_3}$ এর শতকরা পরিমাণ কত? ${\rm [\overline{6}:}\ 28.8\%]$

সমস্যা-৩.৭৫ (গ) : X ও Y কোম্পানির 10 mL টিংচার আয়োডিন দ্রবণের টাইট্রেশনে যথাক্রমে 15 mL 2.48% Na₂S₂O₃ এবং 10 mL 2.68% Na₂S₂O₃ দ্রবণ ব্যবহৃত হয়।

(i) কোন কোম্পানির নমুনায় অধিক ঘনমাত্রার আয়োডিন আছে, তা গাণিতিকভাবে বিশ্লেষণ করো। [য. বো. ২০১৯] টি: 'X' নমুনায় $0.00235~{
m mol~Na}_2S_2O_3$ এবং 'Y' নমুনায় $0.00169~{
m mol~Na}_2S_2O_3$ ব্যবহৃত হয়েছে। তাই 'X' নমুনায় I_2 এর ঘনমাত্রা বেশি।]

সমস্যা-৩.৭৫ (घ) : 60 mL ডেসিমোলার $KMnO_4$ দ্রবণ দ্বারা লঘু H_2SO_4 দ্রবণে দ্রবীভূত এক টুকরা লোহার দ্রবণকে পূর্ণ জারিত করা হলো। ঐ লোহার ভর গণনা করো। $[\overline{\mathbf{b}}: 1.676 \text{ g}]$ [রা. বো. ২০১৬]

সমস্যা-৩.৭৬ (ক) : অপ্রমিশ্রিত $1/60~M~K_2Cr_2O_7$ দ্রবণের 25~mL পরিমাণকে অতিরিক্ত KI দ্রবণে যোগ করে মুক্ত আয়োডিনকে পূর্ণ টাইট্রেশন করতে কোনো $Na_2S_2O_3$ দ্রবণের 29~mL প্রয়োজন হয়। ঐ $Na_2S_2O_3$ দ্রবণের ঘনমাত্রা কত?

সমস্যা-৩.৭৬(খ) : নিচের উদ্দীপক বিক্রিয়াভিত্তিক সংশ্লিষ্ট প্রশ্নের উত্তর দাও।

[সমাধানকৃত সমস্যা-৩.৮২ দেখো ।]

সমস্যা-৩.৭৬(গ): 3.04 g ব্লিচিং পাউডারকে পানিতে দ্রবীভূত করে 400 mL দ্রবণ তৈরি করা হয়। এ দ্রবণের 25 mL পরিমাণকে আয়োডোমিতিক পদ্ধতিতে টাইট্রেশন করতে 40 mL 0.075 M সোডিয়াম থায়োসালফেট দ্রবণ প্রয়োজন হয়।

(ক) উদ্দীপকে বর্ণিত ব্লিচিং পাউডারে সক্রিয় Cl2 এর পরিমাণ নির্ণয় করো।

ডি:1.704 g]

(খ) উদ্দীপকের আয়োডোমিতিক পদ্ধতিতে Fe³⁺ আয়নের পরিমাণ নির্ণয়ের মাত্রিক সম্পর্ক প্রতিষ্ঠা করো। [সমাধানকত সমস্যা-৩.৮০ দেখো]

সমস্যা-৩.৭৬(ঘ) : 1.3~g অবিশুদ্ধ কপারকে উত্তপ্ত গাঢ় H_2SO_4 এসিডে দ্রবীভূত করে ১ম পাত্রে 50~mL দ্রবণ তৈরি করা হলো। ২য় পাত্রে অধিক পরিমাণ KI দ্রবণ আছে। ৩য় পাত্রে 100~mL 0.2~M $Na_2S_2O_3$ দ্রবণ আছে।

[চ. বো. ২০১৭]

(क) উদ্দীপকের প্রমাণ দ্রবণটি কীভাবে সেন্টিমোলার দ্রবণে পরিণত করা যায়। $\$ । $\$

(খ) উদ্দীপকের দ্রবণগুলো ব্যবহার করে অবিশুদ্ধ কপারে ভেজালের

শতকরা পরিমাণ গণনা করো।

[সমাধানকৃত সমস্যা-৩.৮১ দেখো] ডি: ভেজাল = 2.30%]

সমস্যা-৩.৭৬(ঙ) : 5.0 g তুঁতের 100 mL দ্রবণ তৈরি করা হলো। এ দ্রবণের অর্ধেকের মধ্যে অতিরিক্ত KI দ্রবণ যোগ করা হলো। এ মিশ্র দ্রবণটি সম্পূর্ণভাবে রিডক্স বিক্রিয়া ঘটাতে 50 mL 0.2M Na₂S₂O₃ দ্রবণ প্রয়োজন হয়। এসব তথ্য থেকে তুঁতের নমুনাটি বিশুদ্ধ কীনা—গাণিতিকভাবে বিশ্লেষণ করো। সমাধানকৃত সমস্যা-৩.৮১ এর অনুরূপ। বিশুদ্ধ তুঁতে $(CuSO_4.5H_2O)$ এর গ্রাম আ. ভর = 249. 546 g এর মধ্যে Cu থাকে 63.546 g 1.5 g তুঁতে Cu থাকে 1.27 g 1 প্রদত্ত প্রশ্নমতে নির্ণীত Cu = 1.27 g 1 সূতরাং তুঁতের নমুনাটি বিশুদ্ধ 1 (উত্তর)

সমস্যা-৩.৭৬(চ) : নিচের উদ্দীপকের আলোকে সংশ্রিষ্ট প্রশ্নের উত্তর দাও।

যি, বো. ২০১৫]

(i)
$$Cu^{2+} + \Gamma \longrightarrow Cu^{+} + I_2$$
; (ii) $I_2 + S_2O_3^{2-} \longrightarrow S_4O_6^{2-} + \Gamma$

- (১) (i) নং বিক্রিয়া একটি রিডক্স বিক্রিয়া; ব্যাখ্যা করো।
- (২) উদ্দীপকের উভয় সমীকরণের আলোকে ${
 m Cu}^{2+}$ আয়নের পরিমাণ নির্ণয়ের মাত্রিক সম্পর্ক প্রতিষ্ঠা করো।

৩.১৫ দ্রবণের ঘনমাত্রা নির্ণয়ে বিয়ার-ল্যাম্বার্ট সূত্রের ব্যবহার

Use of Beer-Lambert's Law to determine Molarity of a Solution

যখন কোনো একবর্ণী আলোক রশ্মি একটি সমসত্ত্ব একই পদার্থ অথবা দ্রবণের ওপর আপতিত হয়, তখন সে রশ্মির কিছু অংশ প্রতিফলিত (I_r) হয়; কিছু অংশ শোষিত হয় (I_a) এবং বাকি অংশ পদার্থের মধ্যদিয়ে প্রতিসরিত (I_t) হয়ে বের হয়ে পড়ে। মূল রশ্মির তীব্রতা I_o হলে, তখন $I_o = I_r + I_a + I_t$

দুটি একই কোষ বা সেলে দ্রাবক ও দ্রবণ রেখে এদের ভেতর দিয়ে একবর্ণী আলোক রশ্মি প্রবাহিত করলে উভয় ক্ষেত্রে প্রতিফলিত রশ্মির পরিমাণ (I_r) একই হয়। তখন আলোক শোষণে দ্রাবক ও দ্রবণের ক্ষেত্রে তুলনার বেলায় পাই—

$$I_0 = I_a + I_t$$

বিজ্ঞানী ল্যাম্বার্ট (1760 খ্রিষ্টাব্দে) কোনো ম্বচ্ছ মাধ্যমের মধ্যদিয়ে আপতিত নির্দিষ্ট তরঙ্গদৈর্ঘ্যের একবর্ণী আলোক রশ্মির তীব্রতার (I_0) সাথে এর প্রতিসরিত রশ্মির (I_t) তুলনাভিন্তিক নিচের সূত্র উপস্থাপন করেন।

ল্যাম্বার্টের সূত্র : 'কোনো ম্বচ্ছ মাধ্যমের মধ্যদিয়ে কোনো একটি নির্দিষ্ট তরঙ্গদৈর্ঘ্যের আলোক রশ্মি প্রবাহিত করলে মাধ্যমের পুরুত্ত্বের (Thickness এর) সাথে আলোকের তীব্রতা হ্রাসের হার $\left(\frac{-\mathrm{d}\,\mathrm{I}}{\mathrm{d}\,l}\right)$ আলোকের তীব্রতার সমানুপাতিক হয়।

অর্থাৎ ,
$$\frac{-dI}{dl}$$
 α I; বা , $\frac{-dI}{dl}$ = k × I; বা , $\frac{-dI}{I}$ = k × d l

আলোর তীব্রতা হ্রাসের ক্ষেত্রে স্বচ্ছ মাধ্যমের লিমিট ০ (শ্ন্য) থেকে l এবং আলোর তীব্রতা যথাক্রম I_0 থেকে I_l ধরে উভয় দিকে সমাকলন করে পাই, তখন l=0 হলে $I=I_0$ হয় এবং l দূরত্ত্বে জন্য $I=I_l$ হয়। এই মান বসিয়ে পাই,

$$-\int_{I_o}^{I_l} \frac{dI}{I} = k \int_o^l dl$$
; বা, $-\ln \frac{I_l}{I_o} = k \times l$, বা, $I_l = I_o \times e^{-kl}$ একেতে, $e = 2.71828$; $\log e = 0.4343$

ওপরের সমীকরণে সাধারণ লগারিদমের মান বসিয়ে পাই,

$$I_l = I_0 \times 10^{-0.4343kl}$$

বা, $I_l = I_0 \times 10^{-k'l}$... (1)
এখানে $k' = 0.4343 k = ২্য প্ৰেক$

এখানে, I = আলোক রশ্মির তীব্রতা,

l = স্বচ্ছ মাধ্যমের পুরুত্ব

k = সমানুপাতিক ধ্রুবক

চিত্র-৩.১০: আলো শোষণকারী স্বচ্ছ মাধ্যম

সমীকরণ (1) হলো ল্যামার্টের সমীকরণ। এক্ষেত্রে k' ধ্রুবকটিকে হ্রাস গুণাঙ্ক (extinction coefficient) বলে।

ওপরের সমীকরণ (1) থেকে জানা যায়, $I_l=\frac{I_0}{10}$ হতে হলে k'l=1 হয়; বা $k'=\frac{1}{l}$ হয়। তখন স্বচ্ছ মাধ্যমে আপতিত আলোক রশ্মির তীব্রতা এক-দশমাংশ হ্রাস করতে ঐ মাধ্যমের যে পুরুত্ব প্রয়োজন হয়; এর ব্যস্তানুপাতিক মানকে হ্রাস গুণাঙ্ক বা এক্সটিঙ্কশন শুণাঙ্ক বলে। CGS এককে এর একক হলো cm^{-1} .

বিয়ারের সূত্র (Beer's Law): ল্যাম্বার্ট মাধ্যমের পুরুত্ব ও একবর্ণী আলোক রশ্মির তীব্রতা হ্রাসের সম্পর্কভিত্তিক যে সূত্র প্রদান করেন; বিজ্ঞানী বিয়ার (1852 খ্রিষ্টাব্দে) অনুরূপভাবে দ্রবের দ্রবণের ঘনমাত্রা ও একবর্ণী আলোক রশ্মির তীব্রতা হ্রাস সম্পর্কিত নিমুরূপ সূত্র প্রতিষ্ঠিত করেন।

বিয়ারের সূত্র : 'কোনো দ্রবের দ্রবণের মধ্যদিয়ে একবর্ণী আলোক তরঙ্গ প্রবাহিত করলে দ্রবণের ঘন্যাত্রার সাথে

আলোকের তীব্রতা ফ্রাসের হার $\left(rac{-dI}{dc} ight)$ আলোকের তীব্রতার সমানুপাতিক হয়। অর্থাৎ

আলোর তীব্রতা হ্রাসের ক্ষেত্রে লিমিট o থেকে l এবং দ্রবণের ঘনমাত্রার ক্ষেত্রে o থেকে c ধরে উভয় দিকে সমাকলন করে এবং c=0 হলে $I=I_o$ হয়। এখন মান বসিয়ে পাই ,

$$-\int_{o}^{l} \frac{dI}{I} = k_{1} \int_{o}^{c} dc$$
বা, $-\ln \frac{I_{l}}{I_{o}} = k_{1} \times c$ বা, $I_{l} = I_{o} \times e^{-k_{1}c}$
ওপরের সমীকরণে সাধারণ লগারিদমের মান বসিয়ে পাই, $I_{l} = I_{o} \times 10^{-0.4343} k_{1}c$
বা, $I_{l} = I_{o} \times 10^{-k_{2}c}$... (2)

$$MCQ-3.33: H_2O_2$$
 যৌগে O এর জারণ মান কত? $[কু. বো. ২০১৫]$ $(ক)-1 (খ)-2 (গ)+1 (ঘ)+2$ $MCQ-3.34:$ নিচের বিক্রিয়ার বিজারক কোনটি? $[a. বো. ২০১৫]$ $2CuSO_4+2K1 \longrightarrow Cu_2I_2+I_2+K_2SO_4$ $(ক) Cu^{2+} (খ) I_2 (গ) K^+ (ঘ) \Gamma$

এখানে $k_2 = 0.4343k_1$; সমীকরণ (2) হলো বিয়ারের সমীকরণ।
এখন ল্যাম্বার্টের সমীকরণ (1) ও বিয়ারের সমীকরণ (2) কে সমন্থিত করে বিয়ার-ল্যাম্বার্টের সমীকরণ পাওয়া যায়। $I_l = I_0 \times 10^{-k'k_2cl} = I_0 \times 10^{-\varepsilon cl} \; ;$ এখানে $k'k_2 = \varepsilon$ ধ্রুবক (এক্সটিস্কশন গুণাঙ্ক) $I_l = I_0 \times 10^{-\varepsilon cl} \; ;$ এখানে $k'k_2 = \varepsilon$ ধ্রুবক (এক্সটিস্কশন গুণাঙ্ক) $I_l = I_0 =$

দ্রবের দ্রবণের ঘনমাত্রা, c কে mol/L এককে এবং কোষ বা সেলের দৈর্ঘ্য (l) এর একক cm হলে এক্সটিস্কশন গুণাঙ্ক, ϵ এর একক হয় $L \ mol^{-1} \ cm^{-1}$ । তখন ϵ কে মোলার শোষণ সহগ বা, মোলার অ্যাবন্ধর্পটিভিটি (absorptivity) বলে।

[
$$\epsilon$$
 এর একক = $k'k_2$ এর একক = $\frac{1}{l} \times \frac{1}{c} = \frac{1}{cm} \times \frac{1}{mol \ L^{-1}} = L \ mol^{-1} \ cm^{-1}$]

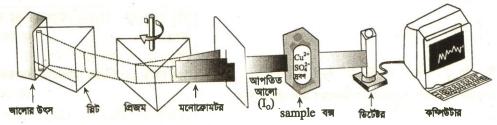
 $\log \frac{I_0}{I}$ কে দ্ৰবণের বিশোষণ মাত্রা বা Absorbance বলা হয় এবং A দ্বারা প্রকাশ করা হয়। [Absorbance is the common logarithm of the ratio of incident to transmitted radiant light through a material]

আহাৎ
$$\log \frac{I_0}{I_l} = A = \varepsilon c l$$
 ... (4)

বিয়ার শ্যামার্টের সূত্র : কোনো দ্রবের দ্রবণের মধ্যদিয়ে নির্দিষ্ট তরঙ্গদৈর্ঘ্যের বা একবর্ণী আলোক রশ্মি প্রবাহিত করলে ঐ দ্রবণ দ্বারা আলোক রশ্মির বিশোষণ মাত্রা (A) ঐ দ্রবের মোলার শোষণ সহগ (ϵ) , দ্রবটির ঘনমাত্রা (c) ও মাধ্যমের (cell-এর) দৈর্ঘ্য (I) এর গুণফলের সমান হয়। অর্থাৎ, $A = \epsilon c I$

সহজভাবে, বিয়ার-ল্যাম্বার্ট সমীকরণটিকে নিম্মরূপেও লেখা হয়:

বিশোষণ মাত্রা, A=abc; এখানে, $A=\log{(I_0/I_l)},~a=\epsilon$ (মোলার শোষণ সহগ), b=l (সেল বা কোষের দৈর্ঘ্য), c= দ্রবণের ঘনমাত্রা, $molL^{-l}$


বর্ণালিমিতির মূলনীতি এ বিয়ার-ল্যাম্বার্ট সূত্রের ওপর প্রতিষ্ঠিত। স্পেক্ট্রোমিটারে গ্লাস সেলের দৈর্ঘ্য (l) , দ্রবণের বিশোষণ মাত্রা (A, Absorbance) ও দ্রবের মোলার শোষণ সহগ (ɛ) জেনে অতি সহজেই, অল্প সময়ে দ্রবণের ঘনমাত্রা জানা যায়।

সমাধানকৃত সমস্যা—৩.৮৩: স্পেকট্রোমিটারে $1~{
m cm}$ দৈর্ঘ্যবিশিষ্ট একটি সেলে একটি দ্রবণ রেখে এর বিশোষণ মাত্রা 0.156 পাওয়া গেল। দ্রবের মোলার শোষণ সহগ $1.2 \times 10^4~{
m L~mol}^{-1}~{
m cm}^{-1}$ হলে দ্রবণটির ঘনমাত্রা কত হবে?

সমাধান : আমরা জানি, $A = \varepsilon c l$; এখানে দ্রবণের বিশোষণ মাত্রা, A = 0.156, দ্রবের মোলার শোষণ সহগ , $\varepsilon = 1.2 \times 10^4 \ \mathrm{L \ mol}^{-1} \ \mathrm{cm}^{-1}$; সেলের দৈর্ঘ্য $l = 1 \ \mathrm{cm}$

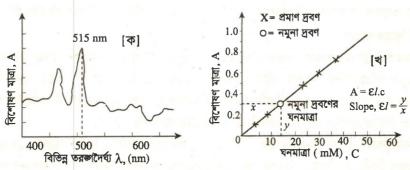
$$\therefore c = \frac{A}{\epsilon l} = \frac{0.156}{1.2 \times 10^4 \text{ Lmol}^{-1} \text{ cm}^{-1} \times 1 \text{ cm}} ; \text{ } \text{ } \text{ft, } c = 1.3 \times 10^{-5} \text{ } \text{mol} \text{L}^{-1}$$

স্পেকট্রোমিটারের বিভিন্ন অংশের পরিচয় নিমুরূপ:

চিত্র-৩.১১ : স্পেক্ট্রোমিটারের বিভিন্ন অংশ।

ব্রিয়ার-ল্যাম্বার্ট সূত্র প্রয়োগে স্পেকট্রোমিটারে দ্রবণের ঘনমাত্রা নির্ণয় :

প্রয়োজনীয় উপকরণ:


- (১) UV-Vis স্পেকট্রোমিটার,
- (২) পরীক্ষণীয় অজানা ঘনমাত্রার দ্রবণ [পরীক্ষণীয় দ্রবণটি UV Vis আলো শোষণকারী হতে হয়।],
- (৩) পরীক্ষণীয় বস্তুর জানা ঘনমাত্রার 4 5টি দ্রবণ যেমন CuSO₄ এর অজানা ঘনমাত্রার দ্রবণসহ 4 5টি জানা ঘনমাত্রার দ্রবণ।

কার্য পদ্ধতি: নিমোক্ত ধাপে স্পেকট্রোমিটারে দ্রবণের ঘনমাত্রা নির্ণয় করা হয়:

- ১। যে যৌগটির দ্রবণের অজানা ঘনমাত্রা নির্ণয় করতে হবে, এর কয়েকটি প্রমাণ দ্রবণ তৈরি করা হলো; যেমন CuSO4 দ্রবণের 1 m M, 0.8 m M, 0.6 m M, 0.4 m M, 0.2 m M ঘনমাত্রার প্রমাণ দ্রবণ। [mM = মিলি মোল]
- ২। স্পেকট্রোমিটারের গ্লাস সেলে একটি প্রমাণ দ্রবণ নিয়ে আলোর বিভিন্ন তরঙ্গদৈর্ঘ্যে ঐ দ্রবণের বিশোষণ মাত্রা (absorbance) বা আলোক ঘনত্ব (optical density) মাপা হলো। স্পেকট্রোমিটারের কম্পিউটার থেকে কোন্ তরঙ্গদৈর্ঘ্যে বিশোষণ মাত্রা সবচেয়ে বেশি তা নির্ণয় করা হলো চিত্র-৩.১২(ক) কম্পিউটার দ্রিনে প্রদর্শিত।

৩। এখন নির্ণীত সর্বোচ্চ বিশোষণ মাত্রার এ নির্দিষ্ট তরঙ্গদৈর্ঘ্যের আলোতে প্রমাণ দ্রবণসমূহ ও নমুনা দ্রবণের বিশোষণ মাত্রা মাপা হলো।

8। এবার গ্রাফ পেপারে বিশোষণ মাত্রা (Y-অক্ষ) বনাম দ্রবণের ঘনমাত্রা (X-অক্ষ) লেখচিত্র অঙ্কন করা হলো। লেখচিত্রে নমুনা দ্রবণের বিশোষণ বিন্দুর মাত্রা সাপেক্ষে X অক্ষের মান হলো নমুনা দ্রবণের ঘনমাত্রা [চিত্র-৩.১২ (খ)]।

চিত্র-৩.১২ (ক, খ): অজ্ঞাত দ্রবণের ঘনমাত্রা নির্ণয়।

বর্ণালিমিতির ক্ষেত্রে আলোর বিশোষণ মাত্রা (A, Absorbance) ও ট্রান্সমিটেন্স (T, % Transmitance) রাশিদ্বয়ের মধ্যে সম্পর্ক হলো : $A = \log_{10} (^1/T) = -\log_{10} T$ ।

আবার আলোর নির্গত রশ্মি (I_l) ও আপতিত রশ্মি (I_o) দ্বয়ের তীব্রতার অনুপাতকে প্রবাহতা বা , ট্রান্সমিটেন্স (T) মান ধরা হয়। আবার নির্গত রশ্মি (I_l) আপাতিত রশ্মি (I_o) দ্বয়ের বিস্তার (amplitude) এর বর্গের অনুপাত (a^2_l/a^2_o) থেকে ট্রান্সমিটেন্স (T) বের করা যায়। amplitude এর একক হলো cm।

অর্থাৎ
$$T = (I_1/I_0) = (a^2_I/a^2_o)$$
; আবার $\log \frac{I_0}{I_l} = A$; বা, $-\log \frac{I_l}{I_o} = A$ বা, $A = -\log T$ ।
$$\therefore \log \frac{I_o}{I_l} = \varepsilon cl = A = -\log T = -\log (I_l/I_o) = -\log (a^2_I/a^2_o)$$

দ্রবণের ঘনমাত্রার পরিবর্তনের সাথে বিশোষণ মাত্রা (A) ও ট্রান্সমিটেন্সের (T) মধ্যে বিপরীত সম্পর্ক আছে। দ্রবণে আলোর বিশোষণ মাত্রা (A) দ্রবণের ঘনমাত্রা বৃদ্ধির সাথে বৃদ্ধি পায় (বিয়ারের সূত্র); কিন্তু নির্গত ও আপতিত আলোর মাত্রার অনুপাত বা ট্রান্সমিটেন্স মাত্রা (T) জ্যামিতিক হারে (exponentially) হ্রাস পায়। (চিত্র-৩.১৩)

ঘনমাত্রা	বিশোষণ	ট্রান্সমিটেন
0.001	0.001	3.0000
0.10	0.10	2.0000
0.050	0.050	1.3010
0.100	0.100	1.0000
0.200	0.200	0.6990
0.300	0.300	0.5220
0.400	0.400	0.3979
0.500	0.500	0.3010
0.600	0.600	0.2218
0.700	0.700	0.1549
	0.800	0.800
0.800	0.900	0.0969
0.900	1000	0.0458

ঘনমাত্রার বিপরীতে আলোর বিশোষণ ও ট্রান্সমিটেন্স

	আলে	ার শোষণ	ও দ্বাসাম	চন বের	
3.0					
2.5					
2.0	_	– বিশোষ	ণ	5112110	
P.		– ট্রান্সমিটে			
1.5		MI-II-C	J-1	,	
1.0					-
	8	O R Z	-	-	
0.5					
0.0			-	U	
0.0	0.2	0.4	0.6	0.8	1.

ট্রান্সমিটেন্স জ্যামিতিক হারে ব্রাস' পায় বলতে বোঝায় যে, l cm দ্রবণে যদি 100% আপতিত রশ্মি (I_0) এর ১ম 20% আলো শোষিত হয় তবে ২য় l cm দ্রবণে পূর্বের অবশিষ্ট 80% আলোর 20% শোষিত হয়ে 64% থাকে। এরূপে ৩য় l cm দ্রবণে 64% আলোর 20% আলোর 20% আলোর পত্য যালোর পত্য আলোর শোষিত হয়ে ব্রাস পেতে থাকে।

চিত্র-৩.১৩ : আলোর শোষণ ও ট্রান্সমিটেন্স

বিয়ার-ল্যাম্বার্ট সূত্রের সীমাবদ্ধতা:

- (১) দ্রবণের ঘনমাত্রা $0.001~{
 m M}-0.01~{
 m M}$ মধ্যে বিয়ার-ল্যাম্বার্ট সূত্র সঠিকভাবে কার্যকর হয়। দ্রবণের ঘনমাত্রা $0.1~{
 m M}$ এর বেশি হলে তখন এ সূত্র প্রযোজ্য হয় না
- (২) দ্রবণে উপাদানের মধ্যে সংযোজন, বিয়োজন ঘটলে তখন এ সূত্র প্রযোজ্য নয়।
- (৩) একবর্ণী আলো (monochromatic) ব্যবস্থত না হলে বিশোষণমাত্রা ঘটলে এ সূত্র প্রযোজ্য হবে না।
- (৪) দ্রবণ দ্বারা আলোর শোষণের পূর্বে আলোর প্রতিফলন বা বিচ্ছুরণ ঘটলে এ সূত্র প্রযোজ্য হবে না।

বিয়ার-শ্যামার্ট সূত্রের প্রয়োগ:

ম্যাক্রো পদ্ধতির টাইট্রেশন প্রক্রিয়ার পরিবর্তে বর্তমানে বিয়ার-ল্যাম্বার্ট সূত্রের প্রয়োগে বিভিন্ন উচ্চক্ষমতাসম্পন্ন যন্ত্রের মাধ্যমে যেমন— (১) পারমাণবিক শোষণ বর্ণালি (AAS), (২) UV-Vis বর্ণালি, (৩) উচ্চদক্ষতাসম্পন্ন তরল ক্রোমাটোগ্রাফি (HPLC), (৪) গ্যাস ক্রোমাটোগ্রাফি (GC) ইত্যাদির সাহায্যে মৌলিক পদার্থ ও জৈবযৌগের শনাক্তকরণ, পরিমাণ নির্ধারণ এবং বর্ণযুক্ত দ্রবণের ঘনমাত্রা নির্ণয় ইত্যাদি সহজেই করা যায়। যেমন,

- (১) পারমাণবিক শোষণ বর্ণালি (AAS) দ্বারা : এ (AAS) পদ্ধতিতে দ্রবণ বা কঠিন নমুনায় (১) 60-70টি মৌলের শনাক্তকরণ ও পরিমাণ নির্ণয় করা যায়। (২) এ পদ্ধতি ব্যবহৃত হয় ফার্মাকোলজিতে ধাতব অপদ্রব্য শনাক্তকরণে; (৩) বায়োফিজিক্সে trace elements যেমন Ca, Fe, Cu, Mg ইত্যাদি শনাক্তকরণে; (৪) টক্সিকোলজি ও খাদ্য রসায়নে বিষাক্ত As, Cr, Pb, Cd ইত্যাদি শনাক্তকরণে ও ৫০ বিভিন্ন রাসায়নিক ল্যাবরেটরিতে উৎপাদ পদার্থের বিশুদ্ধতা ও পরিমাণ নির্ধারণ কাজে। (AAS) পদ্ধতিতে নমুনায় উপস্থিত মৌল ও আয়নের ঘনমাত্রা ppm (mgL⁻¹) অথবা ppb (µgL⁻¹) এককে জানা যায়।
- (২) UV-Vis বর্ণালি দারা : এ UV-Vis বর্ণালি পদ্ধতিতে দ্রবণ ও কঠিন নমুনায় (১) অবস্থান্তর রাজন আয়ন শনাক্তকরণ ও ঘনমাত্রা নির্ণয়, (২২) একান্তর দ্বিবন্ধন বা কনজুগেটেড দ্বিবন্ধনযুক্ত জৈবযৌগ শনাক্তকরণ ও পরিমাণ নির্ণয়; (৬) বায়োলজিকেল ম্যাক্রো-অণু যেমন, প্রোটিন, লিপিড, গ্লুকোজ, সুক্রোজ ইত্যাদির শনাক্তকরণ ও পরিমাণ নির্ণয় করা হয়।
- (৩) HPLC বা উচ্চদক্ষতার তরল ক্রোমাটোগ্রাফি দারা : এ HPLC পদ্ধতি দারা যৌগের তরল মিশ্রণ থেকে উপাদান যৌগের পৃথকীকরণ, বিশুদ্ধকরণ, শনাক্তকরণ ও পরিমাণ নির্ণয় করা হয়। (৪) অ্যারোমেটিক যৌগ, অ্যামিন, প্রোটিন অ্যামাইনো এসিড, লিপিড, সুগার, প্রাকৃতিক উদ্ভিদের নির্যাস (কফি থেকে ক্যাফেইন) ইত্যাদি শনাক্তকরণ ও এদের পরিমাণ নির্ণয়, (৫) ফরেনসিক (Forensic) বিজ্ঞানে DNA- এর জারিত পদার্থের শনাক্তকরণ HPLC দ্বারা করা যায়।
- (8) GC বা গ্যাস ক্রোমাটোয়াফি দ্বারা : এ গ্যাস ক্রোমাটোয়াফি পদ্ধতি দ্বারা তাপে উদ্বায়ী (volatile), কিন্তু অবিয়োজিত থাকে এসব যৌগের মিশ্রণের উপাদান যৌগ শনাক্তকরণ ও পরিমাণ নির্ণয় করা হয়। (১) শিল্পক্ষেত্র হাইড্রোকার্বন (C2 C40) মিশ্রণ থেকে উপাদান যৌগ শনাক্তকরণ ও পৃথকীকরণ করা হয়। এক্ষেত্রে ক্যুটনাঙ্কের খুব কম ব্যবধানের জৈবযৌগ যেমন বেনজিন C6H6(b.p = 80.1°C) ও সাইক্রোহেক্সেন C6H12(b.p = 80.8°C) এর মিশ্রণ পৃথকীকরণ GC পদ্ধতিতে সহজ, কিন্তু আংশিক পাতন দ্বারা তা অসম্ভব। (২) প্রাকৃতিক উদ্ভিদ- নির্যাসে বিভিন্ন উপাদান যেমন essential oils (সুগন্ধি বন্তু) পৃথকীকরণ, (৩) পরিবেশ রসায়নে বিভিন্ন বিষাক্ত পদার্থ যেমন কীটনাশকের পরিমাণ নির্ণয়, (৪) কসমেটিকে ব্যবহৃত উপাদান নির্ণয়, (৫) ফরেনসিক বিজ্ঞানে যেমন রক্তে অ্যালকোহল এর শনাক্তকরণ ও পরিমাণ নির্ণয় GC পদ্ধতিতে করা হয়।

সমাধানকৃত সমস্যা-৩.৮৪ः স্পেকট্রোমিটারের $10~\mathrm{mm}$ দৈর্ঘ্যবিশিষ্ট একটি সেলে কোনো দ্রবের $1.4 \times 10^{-5}~\mathrm{mol}~\mathrm{L}^{-1}$ ঘনমাত্রার দ্রবণ রেখে এর বিশোষণ মাত্রা পাওয়া গেল 0.155। ঐ দ্রবণে দ্রবের মোলার শোষণ সহগ নির্ণয় করো।

সমাধান : আমরা জানি , কোনো দ্রবের দ্রবণের বিশোষণ মাত্রা , $A = \varepsilon cl$

$$\therefore \varepsilon = \frac{A}{cl};$$

বা,
$$\varepsilon = \frac{0.155}{1.4 \times 10^{-5} \text{ mol L}^{-1} \times 1.0 \text{ cm}}$$

বা,
$$\varepsilon = 1.107 \times 10^4 \, \text{L mol}^{-1} \, \text{cm}^{-1}$$

এখানে, বিশোষণ মাত্রা, A = 0.155

দ্রবের দ্রবণের ঘনমাতা; $c = 1.4 \times 10^{-5} \text{ mol L}^{-1}$

সেলের দৈর্ঘ্য . l = 10 mm = 1.0 cm

দ্রবের মোলার শোষণ সহগ, $\epsilon = ?$

সমাধানকৃত সমস্যা-৩.৮৫: কোনো স্পেকট্রোমিটারের 1.0~
m cm দৈর্ঘ্যবিশিষ্ট সেলে কোনো দ্রবের $1.6 imes 10^{-5}~
m mol~L^{-1}$ ঘনমাত্রার দ্রবণ রেখে নির্দিষ্ট তরঙ্গদৈর্ঘ্যের একবর্ণী আলো প্রবাহিত করা হলো। এক্ষেত্রে দ্রবের মোলার শোষণ সহগ $1.3 imes 10^{-2}
m L~mol^{-1}~cm^{-1}$ হলে আলোর প্রবাহতা বা ু ট্রান্সসিটেন্স কত হবে তা নির্ণয় করো।

সমাধান : আমরা জানি, $\varepsilon cl = A = -\log T$

$$\therefore -\log T = \varepsilon cl$$

বা, $-\log T = 1.3 \times 10^{-2} \,\mathrm{L \ mol}^{-1} \,\mathrm{cm}^{-1} \times 1.6$

$$\sqrt{1000} T = 2.08 \times 10^{-7}$$
;

বা,
$$\log T = -2.08 \times 10^{-7}$$

বা, T = antilog
$$(-2.08 \times 10^{-7}) = 0.999$$

এখানে, মোলার

শোষণ সহগ , $\varepsilon = 1.3 \times 10^{-2} \, \text{L mol}^{-1} \, \text{cm}^{-1}$

 $\times 10^{-5} \, \text{mol L}^{-1} \, 1.0 \, \text{cm}$ দ্রবের দ্রবণের ঘনমাত্রা, $c = 1.6 \times 10^{-6} \, \text{mol L}^{-1}$

সেলের দৈর্ঘ্য . l = 1.0 cm

আলোর ট্রান্সমিটেন, T = ?

সমাধানকৃত সমস্যা-৩.৮৬ : কোনো নমুনার লঘু দ্রবণের spectroscopic বিশ্লেষণকালে 16 mm দৈর্ঘ্যের সেলটির মধ্যে একবর্ণী আলোর অতিক্রমকালে ঐ আলোর আপতিত রশ্মির বিষ্ণার (amplitude) 0.5 cm এবং নির্গত (transmitted) রশ্মির বিভার $0.3~{
m cm}$ হয়। নমুনাটির মোল প্রতি শোষণ সহগ $2.0~{
m L~g^{-1}~cm^{-1}}$ হলে, এর ঘনমাত্রা

সমাধান: আমরা জানি, $\varepsilon cl = A = -\log T = -\log (I_l/I_o) = -\log (a^2_l/a^2_o)$

বা,
$$\varepsilon cl = -\log(a^2l/a^2o)$$

বা,
$$\varepsilon cl = -\log (3/5)^2 = -\log 0.36$$

ৰা,
$$\varepsilon cl = 0.44369$$
; ৰা, $\varepsilon = \frac{0.44369}{\varepsilon l}$

ৰা, c = $\frac{0.44369}{2.0 \text{ L g}^{-1} \text{ cm}^{-1} \times 1.6 \text{ cm}} = 0.13865 \text{ gL}^{-1}$

এখানে, নমুনার শোষণ সহগ, $\varepsilon = 2.0 \text{ Lg}^{-1} \text{ cm}^{-1}$ সেলের দৈর্ঘ্য, $l=16~\mathrm{mm}=1.6~\mathrm{cm}$

নির্গত ও আপতিত রশার বিস্তারের অনুপাত, $\frac{a_1}{a_2} = \frac{0.3}{0.5}$

শিক্ষার্থী নিজে করো-৩.১৪ : বিয়ার-ল্যাম্বার্ট সূত্রের প্রয়োগভিত্তিক গণনা :

সমস্যা-৩.৭৭ : স্পেক্ট্রোমিটারের $1.0~{
m cm}$ দৈর্ঘ্যের একটি সেলে রাখা দ্রবণের মোলার শোষণ সহগ $1.0 imes 10^5~{
m L}$ $\mathrm{mol}^{-1}\,\mathrm{cm}^{-1}$ এবং বিশোষণ মাত্রা বা অ্যাবজর্ব্যান্স হলো 1.0। ঐ দ্রবণটির ঘনমাত্রা কত? $\overline{\hspace{1.5pt}}$ $\overline{\hspace{1.5pt}}$

সমস্যা- ৩.৭৮: স্পেকট্রোমিটারের 1.0 cm দৈর্ঘ্যের একটি সেলে রাখা একটি নমুনা দ্রবণ কোনো নির্দিষ্ট তরঙ্গ দৈর্ঘ্যের আলোর 80% ট্রান্সমিট বা প্রেরণ করে। ঐ আলোর তরঙ্গদৈর্ঘ্যে নমুনা দ্রবণের মোলার শোষণ সহগ 2.0 হলে ডি: 0.048 molL 1 নমুনার মোলার ঘনমাত্রা কত?

সমস্যা-৩.৭৯ : স্পেকট্রোমিটারের 1.0 cm সেলে রাখা 4.48 ppm ঘনমাত্রার KMnO4 এর দ্রবণ 520 nm তরঙ্গদৈর্ঘ্যের আলোর 0.309 ট্রান্সমিটেন্স দেয়। KMnO4 দ্রবের মোলার শোষণ সহগ কত?

 $[KMnO_4 = 158 \text{ g mol}^{-1}]$

ডি: 1.8 × 10⁴ cm⁻¹mol⁻¹L]

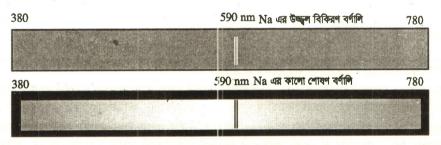
দ্রষ্টব্য : যেহেতু ϵ এর একক $L \text{ mol}^{-1}$ cm $^{-1}$ হয়, সেহেতু ঘনমাত্রা c=4.48 ppm কে $\text{mol } L^{-1}$ এ পরিণত

করতে হবে। তখন c = 4.48 ppm = $4.48 \times 10^{-3} \text{ gL}^{-1} = \frac{4.48 \times 10^{-3} \text{ gL}^{-1}}{158 \text{ g mol}^{-1}} = 2.835 \times 10^{-5} \text{ mol L}^{-1}$]

সমস্যা- ৩.৮০ : স্পেকট্রোমিটারের $2.0~{
m cm}$ সেলে রাখা $3.85 \times 10^{-4}~{
m mol~L}^{-1}$ ঘনমাত্রার কোনো রঞ্জকের দ্রবণ $550~{
m nm}$ তরঙ্গদৈর্ঘ্যের বিকিরণের বিশোষণ মাত্রা বা অ্যাবজর্ব্যাঙ্গ $0.78~{
m cm}$ হলে ঐ দ্রবের মোলার শোষণ সহগ বা অ্যাবজর্পটিভিটি কত হবে? [উ: $1.01298 \times 10^3~{
m Lmol}^{-1}~{
m cm}^{-1}$]

সমস্যা-৩.৮১ : স্পেকট্রোমিটারের $2~{
m cm}$ সেলে রাখা $3.75 \times 10^{-4}~{
m M}$ ঘনমাত্রার কোনো রঞ্জক পদার্থের দ্রবণের $570~{
m nm}$ তরঙ্গদৈর্ঘ্যের বিকিরণ থেকে দ্রবের মোলার অ্যাবজর্পটিভিটি $1.0 \times 10^3~{
m Lmol}^{-1}{
m cm}^{-1}$ হলে ঐ দ্রবণের বিশোষণ মাত্রা বা অ্যাবজর্ব্যাঙ্গ কত হবে?

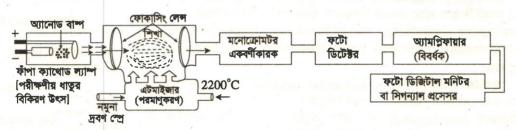
৩.১৬ পারমাণবিক শোষণ বর্ণালি


Atomic absorption spectroscopy (AAS)

পারমাণবিক শোষণ বর্ণালি নির্দিষ্ট মৌলিক পদার্থ (60 টিরও বেশি মৌল) শনাক্তকরণে ও ঘনমাত্রা বা পরিমাণ নির্ণয়ে ব্যবহৃত একটি উন্নত বিশোষণ বর্ণালি পদ্ধতি। এটি ফার্মাকোলজি (ধাতব অপদ্রব্য শনাক্তকরণ), বায়োফিজিক্স (trace element শনাক্তকরণ) ও টক্সিকোলজি (As, Cr ইত্যাদি শনাক্তকরণ) গবেষণায় ব্যবহৃত হয়।

মূলনীতি: পারমাণবিক শোষণ বর্ণালির মূল ভিত্তি হলো স্পেকট্রোমিটারের এটমাইজার (atomizer)-এ নির্দিষ্ট মৌলের পরমাণুসমূহের ইলেকট্রন নির্দিষ্ট তরঙ্গদৈর্ঘ্যের শক্তি শোষণ করে উদ্দীপিত অবস্থায় (excited state-এ) উচ্চতর অরবিটালে স্বল্প সময়ের (ন্যানো সেকেন্ডস্) জন্য স্থানান্তরিত হয়। বিশোধণের মাত্রা মৌলের বাষ্পে বিদ্যমান নিম্নতম শক্তিন্তরের পরমাণুর ঘনমাত্রার সমানুপাতিক হয়। ফলে কালো রেখা বর্ণালি সৃষ্টি হয় এবং একে পারমাণবিক শোষণ বর্ণালি বলে।

প্রত্যেকটি মৌলের পরমাণুর ইলেকট্রনের শক্তিন্তর সুনির্দিষ্ট। তাই ইলেকট্রন দ্বারা শক্তি শোষণ নির্দিষ্ট তরঙ্গদৈর্ঘ্যের শক্তি থেকে হয়। সৃষ্ট বর্ণালির রেখা কয়েক পিকোমিটার (pm) প্রশন্ত হয়। স্পেকট্রোমিটারে বিয়ার-ল্যাম্বার্ট সূত্রভিত্তিক ডিটেক্টরের সাহায্যে নির্দিষ্ট তরঙ্গদৈর্ঘ্যের আলোর বিশোষণ মাত্রা বা আলোক ঘনত্ব পরিমাপের মাধ্যমে মৌলের পরমাণুর পরিমাণ বা ঘনমাত্রা নির্ণয় করা হয়।

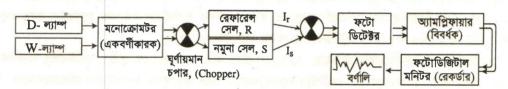

পারমাণবিক শোষণ বর্ণালি-মিটারে ধাতুর শিখা পরীক্ষায় সৃষ্ট উজ্জ্বল বিকিরণ বর্ণালি ও কালো শোষণ বর্ণালি একই তরঙ্গদৈর্ঘ্যের (যেমন-Na পরমাণুর বেলায় $\lambda=590~\mathrm{nm}$) হয়। Na-পরমাণুর উভয় প্রকার বর্ণালি নিচে দেখানো হলোঃ

চিত্র-৩.১৪ : Na পরমাণুর উজ্জ্বল বিকিরণ বর্ণালি ও কালো শোষণ বর্ণালি

বিয়ার-ল্যাম্বার্ট সূত্রের মূলনীতিভিত্তিক পারমাণবিক শোষণ বর্ণালিমাপক যন্ত্রটির গঠন নিমুরূপ তিন অংশে বিভক্ত :

- (১) ফাঁপা ক্যাথোড ল্যাম্প: এটি পরীক্ষিত মৌল দ্বারা নির্মিত ফাঁপা ক্যাথোড ল্যাম্প, যা থেকে বৈশিষ্ট্যপূর্ণ একবর্ণী বিকিরণ রশ্মি বার্নারের শিখায় ছড়ানো পরমাণু সমাবেশে প্রবেশ করে।
 - (২) নমুনা এটমাইজার (atomizer) সেল: যা থেকে মৌলটির গ্যাসীয় পরমাণু প্রবাহ শিখায় প্রবেশ করে।
- (৩) ফটোডিটেক্টর: এ ৩য় অংশটি হলো বিয়ার-ল্যাম্বার্ট সূত্রভিত্তিক গ্যাসীয় পরমাণু দারা শোষিত একবর্ণী বিকিরণের পরিমাণ নির্ধারণের যন্ত্র।

চিত্র-৩ ১৫ : পার্মাণবিক শোষণ বর্ণালি মাপক-এর বক্চিত্র


এক্ষেত্রে ফাঁপা ক্যাথোড ল্যাম্পটিতে পরীক্ষণীয় ধাতুর অ্যানোডীয় বাষ্প থাকে। নমুনার দ্রবণকে ট্যাপনলের তৈরি নেবুলাইজারের সাহায্যে বার্নারের মধ্যে স্প্রে করা হয়। বার্নারের জ্বালানিরূপে অক্সি-অ্যাসিটিলিন মিশ্রণের দহনে 2200°C তাপমাত্রার শিখা সৃষ্টি হয়। ঐ শিখায় নমুনা মৌলের সৃষ্ট পারমাণবিক বাষ্প ক্যাথোড ল্যাম্প থেকে প্রবাহিত বিকিরণের নির্দিষ্ট তরঙ্গ শক্তি শোষণ করে। শোষণের মাত্রা বাষ্পে বিদ্যমান নিমুত্ম শক্তিস্করের পরমাণুর পরিমাণ বা ঘনমাত্রার সমানুপাতিক হয়।

৩.১৭ UV-দৃশ্যমান স্পেক্ট্রোকোপি (UV-Vis)

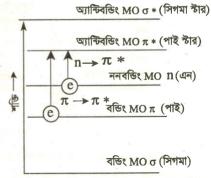
UV-Visible Absorption Spectroscopy

মৃশনীতি : UV-Vis বর্ণালি অর্থাৎ UV-দৃশ্যমান আলো শোষণ বর্ণালি পাই (π) বন্ধন ইলেকট্রন অথবা নন্-বিভং ইলেকট্রনযুক্ত যৌগ অণুর বেলায় ঘটে। আণবিক অরবিটালের এসব ইলেকট্রন দৃশ্যমান আলো 380~nm -780~nm এবং এর পার্শ্ববর্তী UV-রশ্মি বিশেষত near-UV-রশ্মি 200~nm -379~nm শোষণ করে উদ্দীপিত অবস্থায় উচ্চতর অ্যান্টিবিভিং আণবিক অরবিটালে স্বল্প সময়ের (ন্যানো সেকেন্ড বা , $10^{-8} \sim 10^{-9}~\text{s}$) জন্য স্থানান্তরিত হয়। এর ফলে শোষণ বর্ণালি সৃষ্টি হয়। জৈবযৌগের পাই (π) বন্ধন ইলেকট্রন অথবা নন্-বিভং ইলেকট্রন দ্বারা অতিবেশুনি (UV) ও দৃশ্যমান আলোর শোষণে সৃষ্ট এরূপ বর্ণালিকে ইলেকট্রনিক বর্ণালিও বলে। এক্ষেত্রে বিয়ার ল্যাম্বার্ট সমীকরণ , $\Lambda = \epsilon c l$ সম্পর্ক প্রযোজ্য হয়।

কার্যপ্রণালি : UV-Vis স্পেকট্রোন্ধোপ যন্ত্রটি হলো দ্বৈতরশ্মি বর্ণালিমাপক। এতে UV-আলো রশ্মির উৎসরূপে ডিউটেরিয়াম ${}_{1}D, {}_{1}^{2}H)$ ল্যাম্প ও ${}_{2}V_{1}$ থানে আলো রশ্মির উৎসরূপে টাংস্টেন ফিলামেন্ট ${}_{3}V_{2}$ ব্যবহৃত হয়। উভয় রশ্মি- মনোক্রোমটর বা একবর্ণীকারক যন্ত্রাংশে প্রবেশ করে। নির্গত উভয় রশ্মির মিশ্রণটি ঘূর্ণায়মান চপার (rotating chopper) দ্বারা সমান দু' অংশে বিভক্ত হয়ে একটি অংশ বিশুদ্ধ দ্রাবক ভর্তি রেফারেন্স সেলে ${}_{3}V_{2}$ ও অপর অংশ পরীক্ষাধীন যৌগের দ্রবণ ভর্তি নমুনা সেলে ${}_{3}V_{2}$ প্রবেশ করে। ${}_{3}V_{2}$ ও সেল থেকে নির্গত রশ্মি ${}_{3}V_{2}$ দ্বিতীয় ঘূর্ণায়মান চপারে পতিত হওয়ার পর ফটোডিটেক্টরের প্রবেশ করে এবং পরে অ্যামপ্রিফায়ারে বহু গুণ বিবর্ধিত হয়ে ফটোডিজিটাল মনিটরে উপযুক্ত বর্ণালি তৈরি করে।

চিত্র-৩.১৬ : UV-Vis দৈতরশ্মি বর্ণালিমাপক এর ব্লকচিত্র

বর্ণালিমাপক থেকে পরীক্ষাধীন দ্রবণের বিশোষণ মাত্রা (A), মোলার শোষণ সহগ (ɛ) ও সেল বা কোষের দৈর্ঘ্য (l, সাধারণত 1.0 cm) জানা যায়। তাই এসব মান বিয়ার-ল্যাম্বার্ট সমীকরণে (A = ɛlc-এ) বসিয়ে নমুনা দ্রবণের ঘনমাত্রা সহজে নির্ণয় করা যায়।



UV-Vis স্পেকটোকোপের ব্যবহার: (১) প্রধানত নমুনা দ্রবণের ঘনমাত্রা নির্ণয়, (২) জৈবযৌগে কার্যকরী মূলক

(৩) কার্বন শিকলে থাকা একান্তর দ্বিবন্ধন বা কনজুগেটেড দ্বিবন্ধন নির্ণয়, (৪) কার্বন শিকলের একান্তর দ্বিবন্ধনে থাকা প্রতিস্থাপক ও এদের সংখ্যা নির্ণয় এবং

(৫) অ্যারোমেটিক যৌগের চক্রে উপস্থিত দ্বিবন্ধন সংখ্যা এ পদ্ধতিতে নির্ণয় করা যায়।

আণবিক অরবিটাল (MO, molecular orbital) মতবাদ অনুসারে UV-Vis বর্ণালির ব্যাখ্যা : পরমাণুসমূহের পারমাণবিক অরবিটালের অধিক্রমণে (overlapping) সৃষ্ট যৌগ অণুতে (১) ত-বন্ডিং আণবিক অরবিটাল (MO, σ), (২) σ –অ্যান্টিবন্ডিং আণবিক অরবিটাল (MO, σ *), (৩) π -বন্ডিং আণবিক অরবিটাল (MO, π), (৪) π অ্যান্টিবন্ডিং আণবিক অরবিটাল (MO, π *), (৫) নন্বন্ডিং (lone-pair) আণবিক অরবিটাল (MO, n) থাকে। এদের মধ্যে শক্তির পার্থক্য হলো $\sigma < \pi < n < \pi^* < \sigma^*$ [চিত্র ৩.১৭]।

চিত্র-৩.১৭ : যৌগ অণুতে বিভিন্ন MO

UV-Vis রশ্মি শোষণ করে π -বন্ধনের MO ও নন্বভিং MO-এর ইলেকট্রন উদ্দীপিত হয়ে ন্যানো সেকেন্ডের জন্য অ্যান্টিবভিং (MO, π^*) এ ছানান্তরিত হতে পারে (যেমন, $\pi \longrightarrow \pi^*$, পাই স্টার ও $n \longrightarrow \pi^*$)। তখন UV -Vis বর্ণালি সৃষ্টি হয়।

জেনে রাখো : বন্ডিং MO ও অ্যান্টিবন্ডিং MO কী?

রাসায়নিক বন্ধন ব্যাখ্যায় অধিকতর সফল কিন্তু জটিল আণবিক অরবিটাল (MO) মতবাদ মতে, যৌগ অণুতে বিভিন্ন পরমাণুর নিউক্লিয়াসগুলোর চারদিকের এলাকায় ইলেকট্রনগুলো সঞ্চরণশীল (delocalised) থাকে, ইলেকট্রনের ঐ সব এলাকাকে আণবিক অরবিটাল (MO) বলে। কিন্তু যোজনী বন্ধন (VB) মতবাদ মতে, দুটি পরমাণুর যোজ্যতা স্তরের পারমাণবিক অরবিটালের অধিক্রমণ এলাকায় উভয় নিউক্লিয়াসের মধ্যবর্তী এলাকায় বন্ধন ইলেকট্রন যুগল আবদ্ধ (localised) থাকে। পরমাণুতে থাকে নির্দিষ্ট শক্তির ও আকৃতির পারমাণবিক অরবিটাল (AOs)। অনুরূপভাবে অণুতে থাকে নির্দিষ্ট শক্তির ও আকৃতির আণবিক অরবিটাল (MOs)। দুটি পারমাণবিক অরবিটাল (AOs) এর তরঙ্গ-সংযোজন (wave addition) ও তরঙ্গ-বিয়োজন (wave subtraction) প্রক্রিয়ায় ঐ AOs এর শক্তির চেয়ে যথাক্রমে কমশক্তির (অধিক ছায়ী) বন্ডিং MO ও বেশি শক্তির (কম ছায়ী) অ্যান্টিবন্ডিং MO সৃষ্টি হয়। আবার বন্ধনবিহীন নিঃসঙ্গ-ইলেকট্রন (lone pair) থেকে সৃষ্ট ননবন্ডিং MO এর শক্তি পূর্বের একক পারমাণবিক অরবিটালের মধ্যে দুভাবে অধিক্রমণ ঘটে। উদাহরণস্বরূপ, দুটি H-পরমাণু নিকটে আসলে তাদের দুটি পারমাণবিক 1s¹ অরবিটালের মধ্যে দুভাবে অধিক্রমণ ঘটে। যেমন,

- (১) অরবিটাল তরঙ্গ-সংযোজন প্রক্রিয়ায় AOs এর চেয়ে কম শক্তির (অধিক ছায়ী) বিভিং আণবিক অরবিটাল (MO) সৃষ্টি হয়। তখন দৃটি H-পরমাণুর 1s¹ অরবিটাল ইলেকট্রনদ্বয়ের তরঙ্গ একই দশায় (phase-এ) সংযোজন বা অধিক্রমণ ঘটে। ফলে, উভয় নিউক্লিয়াসের মধ্যবর্তী অঞ্চলে এ বিভিং আণবিক অরবিটালে সর্বাধিক ইলেকট্রন ঘনত্ব সর্বাধিক সময় থেকে সিগমা (σ) বন্ধন দ্বারা উভয় নিউক্লিয়াসকে আবদ্ধ রাখে [চিত্র-৩.১৮]।
- (২) অরবিটাল তরঙ্গ-বিয়োজন প্রক্রিয়ায় AOs এর চেয়ে অধিক শক্তির (কম ছায়ী) অ্যান্টিবন্ডিং আণবিক অরবিটাল সৃষ্টি হয়। তখন দুটি H পরমাণুর $1s^1$ অরবিটাল ইলেকট্রনদ্বয়ের তরঙ্গ ভিন্ন দশায় অরবিটালের অধিক্রমণ ঘটে। ফলে উভয় নিউক্লিয়াসের মধ্যবর্তী অঞ্চলে প্রায় ইলেকট্রন ঘনত্ব শূন্য সিগমা স্টার (σ^*) অ্যান্টিবন্ডিং MO সৃষ্টি হয়। ইলেকট্রন ঘনত্ব শূন্য উভয় নিউক্লিয়াসের মধ্যবর্তী অঞ্চলকে অ্যান্টিবন্ডিং অরবিটালের নোড (node) অঞ্চল বলে।

চিত্র-৩.১৮ : ইলেকট্রনের তরঙ্গ সংযোজন ও বিয়োজন দ্বারা H_2 অণুতে বন্ডিং MO, σ_{1s} এবং অ্যান্টিবন্ডিং MO, σ_{1s}

যৌগের σ বন্ধন UV-Vis বর্ণালি দেয় না; কারণ UV-Vis বর্ণালির পরিসর 200~nm -780~nm তরঙ্গদৈর্ঘ্য (λ) এর মধ্যে ঘটে এবং এর শোষণ শক্তি 586-570~kJ/mol এর মধ্যে থাকে। কিন্তু সিগমা (σ) বন্ধন ইলেকট্রন নিউক্লিয়াস কর্তৃক অধিকতর আকৃষ্ট থাকে। তাই σ -বন্ধন ইলেকট্রন এ পরিসরের তরঙ্গশক্তি দ্বারা উদ্দীপিত হতে পারে না। σ -বন্ধনের ইলেকট্রনকে উদ্দীপিত করতে শক্তি তরঙ্গের দৈর্ঘ্য (λ) এর মান 200~nm-এর কম হতে হয়।

UV-Vis বর্ণালি সৃষ্টির শর্ত: জৈবযৌগে একান্তর দ্বিবন্ধন ও একক বন্ধন থাকলে অর্থাৎ কনজুগেটেড পলি-ইন যৌগে দীর্ঘ তরঙ্গদৈর্ঘ্য-রিশ্মি সর্বাধিক শোষিত হয়। ফলে দৃশ্যমান আলোর পরিসরে এ শোষণ ঘটে। তাই অনেক জৈবযৌগ বর্ণযুক্ত দেখায়। জৈবযৌগের অণুষ্থিত যেসব π -বন্ধন যুক্ত কার্যকরী মূলক দৃশ্যমান আলোর পরিসরের শক্তি-তরঙ্গ শোষণ করে এবং যৌগকে বর্ণযুক্ত দেখায়, <u>এদেরকে কোমোফোর (chromophore) বলে। যেমন নাইট্রোমূলক,</u>

$$\begin{pmatrix} + \\ -N=O \\ 0 \end{pmatrix}$$
, নাইট্রোসোমূলক $(-N=O)$, অ্যাজোমূলক $(-N=N-)$ যুক্ত জৈবযৌগ বর্ণযুক্ত হয়। বেনজিনের বেলায় সর্বাধিক

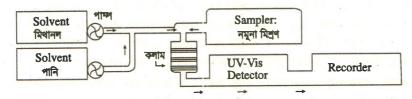
শোষণ তরঙ্গ $\lambda_{max}=255~\mathrm{nm}$ এবং এটি UV-রশ্মির পরিসরে হওয়ায়, বেনজিন বর্ণহীন কিন্তু কনজুগেটেড π বন্ধনযুক্ত β - ক্যারোটিন (গাজরে থাকা ভিটামিন-A এর উৎস) এর বেলায় $\lambda_{max}=451~\mathrm{nm}$ এবং এটি দৃশ্যমান আলোর পরিসরে হওয়ায় গাজর কমলা বর্ণ হয়।

চিত্র-৩.১৯ : β ক্যারোটিন।

MCQ-3.35 : বিয়ার-ল্যাম্বার্ট সূত্রের প্রয়োগ হলো—

- (i) দ্রবণের ঘনমাত্রা নির্ণয় (ii) অণুর আকৃতি জানা
- (iii) জৈবযৌগের গঠন নির্ণয়
- [চ. বো. ২০১৫]
- নিচের কোনটি সঠিক?
- (ক) i ও ii (খ) ii ও iii (গ) i ও iii (ঘ) i, ii ও iii

৩.১৮ উচ্চদক্ষতাসম্পন্ন তরল ক্রোমাটোগ্রাফি


High Performance Liquid Chromatography (HPLC)

উচ্চদক্ষতাসম্পন্ন তরল ক্রোমাটোগ্রাফি বা HPLC হলো কলাম ক্রোমাটোগ্রাফির একটি অত্যাধুনিক বহুল ব্যবহৃত বিশ্রেষণ পদ্ধতি। বর্তমানে HPLC পদ্ধতিটি বিশ্রেষণীয় রসায়নে ও বায়োকেমিস্ট্রিতে একাধিক যৌগের মিশ্রণের উপাদান যৌগের পৃথকীকরণ, বিশুদ্ধিকরণ, শনাক্তকরণ ও পরিমাণ নির্ণয়ে ব্যবহৃত হয়।

HPLC-এর গঠনগত বৈশিষ্ট্য:

- Υ) HPLC-এর বেলায় 'সক্রিয় শোষক কলামটি' সৃক্ষ কণাবন্তু যেমন 2–50 মাইক্রোমিটার (μm) সাইজের সিলিকা ব্যুপলিমার বন্তু (আয়ন বিনিময় রেজিন) দ্বারা তৈরি করা হয়।
- (X) কলামটির ব্যাস 2.1– 4.6 mm এর এবং কলামের দৈর্ঘ্য 30 –250 mm হয়।

- সাধারণ কলাম-তরল ক্রোমাটোগ্রাফির সচল মাধ্যম তরলটি মাধ্যাকর্ষণের প্রভাবে ধীরে চলে। কিন্তু <u>HPLC-এর</u> ব্রেক্স্মার্ড উচ্চচাপ যেমন 50 –350 bar চাপে সচল মাধ্যম অধিক সচল থাকে।
- তরল দ্রাবকরপে বিশুদ্ধ পানি ও মিথানল অথবা অ্যাসিটোনাইট্রাইল-এর মিশ্রণ ব্যবহৃত হয় [চিত্র-৩.২০]। এ অবস্থায় নমুনা মিশ্রণের উপাদান যৌগসমূহের কার্যকর পৃথকীকরণ নির্ভর করে:
 - (১) ছির মাধ্যমের সূক্ষ্মকণা বন্ধু দ্বারা উপাদান যৌগের বিভিন্ন শোষণ মাত্রা এবং
 - (২) বিপরীতভাবে ঐ উপাদান যৌগের সচল মাধ্যমে দ্রাব্যতার ওপর।
 - (৩) সচল মাধ্যমের সংযুক্তি ও তাপমাত্রার ওপর ছির মাধ্যমে শোষিত যৌগের দ্রাব্যতা নির্ভর করে।
 - (8) উপাদান যৌগের সাথে ছির মাধ্যম এবং সচল মাধ্যমের আকর্ষণ বা বিকর্ষণ নির্ভর করে ডাইপোল-ডাইপোল, আয়নিক-ডাইপোল অথবা হাইড্রোফোবিক ভৌত বৈশিষ্ট্যের ওপর।

চিত্র-৩.২০ : উচ্চক্ষমতাসম্পন্ন তরল ক্রোমাটোগ্রাফি (HPLC)।

HPLC-এর মূলনীতি: HPLC-এর যান্ত্রিক বিন্যাস মতে (১) সচল মাধ্যমের (solvent-এর) একাধিক পাম্প (pumps), (২) নমুনা মিশ্রণের পাত্র (sampler), (৩) ছির মাধ্যম কলাম (column) ও (৪) ডিটেক্টর (detector) থাকে। একাধিক pump উৎস থেকে নির্দিষ্ট সংযুক্তির দ্রাবকের সচল মাধ্যম নির্দিষ্ট চাপে যখন 'ছির মাধ্যম কলামের' প্রবেশ মুখে আসে, তখন 'sampler' থেকে নমুনা যৌগের মিশ্রণটিকে সচল মাধ্যমে 'স্প্রে' (spray) করা হয়। নমুনা মিশ্রণ নিয়ে সচল মাধ্যমিটি ছির মাধ্যম কলামে প্রবেশ করে। তখন কলামের উপাদানে নমুনা মিশ্রণের যৌগসমূহের শোষণ-মাত্রার ভিন্নতা এবং সচল মাধ্যম-মিশ্র দ্রাবকের উপাদানে এদের দ্রাব্যতা অনুনারে কলামে পৃথক স্তরে বিভক্ত হয়ে যৌগসমূহ কলাম থেকে নির্গত হয়। তখন UV-Vis ডিটেক্টরে বিয়ার-ল্যাম্বার্ট সূত্র মতে নির্গত যৌগের শনাক্তকরণ ও যৌগের পরিমাণ রেকর্ড হয়ে থাকে।

৩.১৯ গ্যাস ক্রোমাটোগ্রাফি

Gas Chromatography (GC)

গ্যাস ক্রোমাটোগ্রাফি ও কলাম ক্রোমাটোগ্রাফির সাদৃশ্য ও বৈসাদৃশ্য : গ্যাস ক্রোমাটোগ্রাফির অপর নাম গ্যাস-তরল-পার্টিশন (Partition) ক্রোমাটোগ্রাফি (GLPC)। গ্যাস ক্রোমাটোগ্রাফির মূলনীতি কলাম ক্রোমাটোগ্রাফির অথবা HPLC এর অনুরূপ। তবে গ্যাস ক্রোমাটোগ্রাফির গঠনগত পার্থক্য হলো :

(১) এক্ষেত্রে **ছির মাধ্যম হলো** তরল পদার্থ এবং **সচল মাধ্যম হলো** নি**দ্রি**য় হিলিয়াম অথবা ক্রিয়াহীন N_2 গ্যাস।

এছাড়া সচল গ্যাস মাধ্যমকে উত্তপ্ত রাখার জন্য ছির মাধ্যম-এর কলামটিকে ওভেন (oven) এর মধ্যে রাখা হয়; যা কলাম ক্রোমাটোগ্রাফিতে থাকে না। পরীক্ষাধীন যৌগসমূহের নমুনা মিশ্রণটিকে অবিযোজিত ও বাষ্পীয় অবস্থায় বাহক গ্যাস বা সচল মাধ্যমসহ ছির মাধ্যমের কলামে চালনা করা হয়।

্রে) তৃতীয়ত গ্যাসীয় যৌগের ঘনমাত্রার সাথে এটির আংশিক চাপের সম্পর্ক আছে।

চিত্র ৩.২১: গ্যাস ক্রোমাটোগ্রাফি যন্ত্রের বিভিন্ন অংশ

(৪) যৌগের পৃথকীকরণ এদের স্কুটনাঙ্কের (বা বাষ্পীয় চাপের) পার্থক্যের ওপর নির্ভর করে বলে গ্যাস ক্রোমাটোগ্রাফি আংশিক পাতনের সমতুল্য।

গ্যাস ক্রোমাটোখাফির মূলনীতি : গ্যাস ক্রোমাটোখাফির মূলনীতির ব্যাখ্যা করার জন্য কলামটির গঠন এবং বিভিন্ন অংশকে নিচের চিত্রে সহজভাবে দেখানো হলো:

চিত্র-৩.২২: গ্যাস ক্রোমাটোগ্রাফির প্রবাহ চিত্র

* কলামটির গঠন বৈশিষ্ট্য: কলামটি গ্লাস অথবা ধাতুর চক্রাকার টিউবের ভেতর দেওয়ালে (Walls) ক্রিয়াহীন কঠিন পদার্থের সৃষ্ম কণার আন্তরণে (C) ধারণকৃত অনুদ্বায়ী তরল পদার্থের পাতলা স্তর (B) স্থির মাধ্যমরূপে থাকে। আন্তরণ কণাসমূহের ফাঁকে ফাঁকে বিদ্যমান স্থানগুলোকে A স্তররূপে ওপরের কলামে দেখানো হলো।

* বাহক গ্যাসের বৈশিষ্ট্য: বাহক গ্যাসসহ নমুনা মিশ্রণের যৌগসমূহ কলামের ভেতর যখন ছির তরল মাধ্যমের সংস্পর্শে আসে তখন মিশ্রণের উপাদান যৌগসমূহ এদের দ্রাব্যতা অনুসারে ছির মাধ্যমে দ্রবীভূত হয়ে নিম্নরূপে বাহক গ্যাস বা সচল মাধ্যমের সাথে সাম্যাবছা সৃষ্টির প্রাথমিক অবছায় থাকে। যেমন,

বাহক গ্যাস বা সচল মাধ্যমে উপাদান যৌগসমূহ — 👄 ছির মাধ্যমে উপাদান যৌগসমূহ। এরূপ অনেকগুলো আংশিক সাম্যাবছায় (— 🖚) এবং পরে ছির মাধ্যম ও সচল মাধ্যমে উপাদান যৌগসমূহ পূর্ণ সাম্যাবছায় থাকে। যেমন—

বাহক গ্যাসে উপাদান যৌগসমূহ 👄 দ্বির মাধ্যমে উপাদান যৌগসমূহ

পরে প্রত্যেক উপাদান যৌগ বিভাজন সহগের (retention time) ওপর ভিত্তি করে ভিন্ন ভিন্ন গতিবেগে কলাম থেকে নির্গত হয়।

উপাদান যৌগের গতিবেগ = বাহক গ্যাসের গতিবেগ × মোট সময়ের যত অংশ উপাদান যৌগ সচল মাধ্যমে ছিল। য়েই উপাদান যৌগ স্থির মাধ্যমে কম আকৃষ্ট হয়, সেটির গতিবেগ বেশি হয় এবং বাহক গ্যাসের সাথে কলাম থেকে প্রথমে নির্গত হয়। তখন কলামের প্রান্তে স্বয়ংক্রিয় ডিটেক্টর (UV-Vis) যৌগের শনাক্তকরণ সংকেত দেয় এবং সংকেতের তীক্ষ্ণতা অনুসারে যৌগের পরিমাণ ঘনমাত্রা জানা যায়।

এ অধ্যায়ের সার-সংক্ষেপ (Recapitulation)

*মোলার আয়তন : গ্যাসের গ্রাম-আণবিক ভরকে এক মোল গ্যাস বলা হয়। এক মোল গ্যাস প্রমাণ তাপমাত্রা ও চাপে যে আয়তন লাভ করে একে গ্যাসটির মোলার আয়তন বলে। STP তে যেকোনো গ্যাসের মোলার আয়তন 22.414 L হয়। 20°C ও 1 atm চাপে 24.04 L এবং SATP বা 25°C (1 atm) অবস্থায় 24.789 L ধরা হয়।

শিমিটিং বিক্রিয়ক: বাস্তবে কোনো বিক্রিয়ায় দুটি বিক্রিয়কের মধ্যে সঠিক মোলার অনুপাতে খুব কম ক্ষেত্রে ব্যবহৃত হয়। প্রায় ক্ষেত্রে কোনো একটি বিক্রিয়ক কম বা বেশি মিশানো থাকে। যেটি কম পরিমাণ মিশান্যে থাকে, ঐ বিক্রিয়কের পরিমাণের ওপর মোট উৎপাদ উৎপন্ন হয় এবং সেটিকে লিমিটিং বিক্রিয়ক বলে।

মোলারিটি: ছির তাপমাত্রায় প্রতি লিটার দ্রবণে দ্রবীভূত থাকা দ্রবের মোল সংখ্যাকে মোলারিটি বলে।

প্রাইমারি স্ট্যান্ডার্ড পদার্থ : যেসব পদার্থ বিশুদ্ধ অবস্থায় প্রস্তুত করা যায়, বাতাসের সংস্পর্শে বাতাসের জলীয়বাষ্প বা কোনো উপাদানের সাথে বিক্রিয়া করে না, ওজনকালে রাসায়নিক নিক্তির ক্ষয় করে না এবং উৎপন্ন দ্রবণের ঘনমাত্রা দীর্ঘদিন অপরিবর্তিত থাকে, সেসব পদার্থকে প্রাইমারি স্ট্যান্ডার্ড পদার্থ বলে। যেমন Na_2CO_3 , $K_2Cr_2O_7$ ।

সেকেন্ডারি স্ট্যান্ডার্ড পদার্থ : প্রাইমারি পদার্থের চারটি বৈশিষ্ট্যের মধ্যে কোনো বৈশিষ্ট্যের <mark>অভাব ঘটলে সে</mark>সব রাসায়নিক পদার্থকে সেকেন্ডারি পদার্থ বলে । যেমন , গাঢ় H_2SO_4 , NaOH ট্যাবলেট , $KMnO_4$ ।

প্রমাণ দ্রবণ: যে দ্রবণের সঠিক ঘনমাত্রা জানা থাকে, একে প্রমাণ দ্রবণ বলে। প্রমাণ দ্রবণ তৈরিতে প্রাইমারি স্ট্যান্ডার্ড পদার্থ ব্যবহৃত হয়। যেমন, 0.1 M Na₂CO₃ দ্রবণ।

শতকরা ভর : প্রতি 100 ভাগ ভরের দ্রবণে দ্রবীভূত থাকা দ্রবের ভরের পরিমাণকে শতকরা ভর বলে। অর্থাৎ

দ্রবের শতকরা ভর = $\frac{দ্রবের ভর \times 100}{(দ্রবের ভর + দ্রাবকের ভর)}$

ppm ঘনমাতা : এর পুরো নাম parts per million. ঘনমাতার ppm এককে দ্রবের পরিমাণকে দ্রবণে বা মিশ্রণে দশ লক্ষ (10^6) এর অংশরূপে প্রকাশ করা হয়।

, মোল ভগ্নাংশ : দ্রবের মোল ভগ্নাংশ হলো দ্রবণে থাকা দ্রবের মোল সংখ্যা ও দ্রবণের উপাদানদ্বয়ের মোট মোল সংখ্যার অনুপাত। দ্রাবকের মোল সংখ্যা ও দ্রবণের মোট মোল সংখ্যার অনুপাত হলো দ্রাবকের মোল ভগ্নাংশ।

প্রশমন বিক্রিয়া: তুল্য পরিমাণ এসিড ও তুল্য পরিমাণ ক্ষারের বিক্রিয়ায় নিরপেক্ষ বস্তু লবণ ও পানি উৎপন্ন হয় এবং এসিড ও ক্ষারের ধর্ম পরস্পর বিক্রিয়ায় বিনষ্ট হয়। এরূপ বিক্রিয়াকে এসিড-ক্ষার প্রশমন বিক্রিয়া বলে।

রিজক্স বিক্রিয়া: যে বিক্রিয়ায় বিক্রিয়কের মধ্যে ইলেকট্রন আদান-প্রদান ঘটে, একে রিজক্স বিক্রিয়া বলে। দর্শক আয়ন: রিজক্স বিক্রিয়ায় যেসব আয়নের জারণ সংখ্যা অপরিবর্তিত থাকে, এদেরকে দর্শক আয়ন বলে। নির্দেশক: যেসব জৈবযৌগ এসিড ও ক্ষার মাধ্যমে ভিন্ন বর্ণ সৃষ্টি করে, এদেরকে এসিড-ক্ষার নির্দেশক বলে।

টাইট্রেশন : কোনো বিক্রিয়কের প্রমাণ দ্রবণ দ্বারা অপর বিক্রিয়কের দ্রবণের ঘনমাত্রা ও পরিমাণ নির্ণয়ের যান্ত্রিক পদ্ধতিকে টাইট্রেশন বলে।

ক্রোমাটোখ্রাফি: যে পদ্ধতিতে জৈবযৌগের দুই বা ততোধিক উপাদানের কোনো মিশ্রণকে একটি স্থির মাধ্যমে রেখে এবং অপর একটি সচল মাধ্যমকে উক্ত স্থির মাধ্যমের সংস্পর্শে প্রবাহিত করে মিশ্রণের উপাদানগুলোর অধিশোষণ মাত্রার ওপর ভিত্তি করে এদেরকে বিভিন্ন স্তরে পৃথক করার পদ্ধতিকে ক্রোমাটোগ্রাফি বলা হয়।

MCO-এর উত্তরমালা :

3.1 (划), 3.2 (利) 3.3 (利), 3.4 (本), 3.5 (利), 3.6 (刊), 3.7 (利), 3.8 (刊), 3.9 (划), 3.10 (划), 3.11 (利), 3.12 (划), 3.13 (本), 3.14 (划), 3.15 (利), 3.16 (利), 3.17 (刊), 3.18 (利), 3.19 (本), 3.20 (利), 3.21 (划), 3.22 (划), 3.23 (划), 3.24 (本), 3.25 (本), 3.26 (本), 3.27 (利), 3.28 (利), 3.29 (刊), 3.30 (本), 3.31 (利), 3.32 (划), 3.33 (本), 3.34 (刊), 3.35 (利)।

অনুশীলনী-৩: পরিমাণগত রসায়ন

(ক) বিভাগ: জ্ঞানম্ভরভিত্তিক প্রশ্নাবলি (একনজরে)

- (১) উৎপাদ গ্যাসসংক্রান্ত প্রশ্নাবলি :
- ১। গে-লুসাকের গ্যাস আয়তন সূত্র কী?
- ২। মোল কী?
- ৩। গ্যাসের মোলার আয়তন কী?

দি, বো. ২০২৩

- ৪। STP-তে মোলার আয়তন কত?
- ৫। 20°C-এ মোলার আয়তন কত?
- ৬। SATP-এ মোলার আয়তন কত?
- ৭। গ্যাসের মোল সংখ্যা বের করতে কোনু সমীকরণ ব্যবহৃত হয়?
- ৮। লিমিটিং বিক্রিয়ক কী?

(২) দ্রবণের ঘনমাত্রা সংক্রান্ত প্রশ্নাবলি : মোলারিটি কী? [চ. বো. ২০২৩; রা. বো. ২০২১; য. বো. ২০২৩; সি. বো. ২০২২: মা. বো. ২০১৯] মোলার দ্রবণ কাকে বলে? [त. ता. २०२); ता. ता. २०১৯, २०२२; पि. ता. २०२১] মোলার দ্রবণের একক কী? প্রাইমারি স্ট্যান্ডার্ড পদার্থ কী? [ঢা. বো. ২০১৫; কু. বো. ২০১৬, ২০২২; সি. বো. ২০১৭; দি. বো. ২০১৬] সেকেন্ডারি স্ট্যান্ডার্ড পদার্থ কী? যি, বো. ২০২২ ঘনমাত্রার শতকরা ভর% (w/w) কী? 5% (w/v) HCl দ্ৰবণ কী? ৮। ডেসিমোলার দ্রবণ কী? ৯। সেমিমোলার দ্রবণ কী? কু. বো. ২০২৩; ব. বো. ২০১৯] ১০। ঘনমাত্রার ppm পদ্ধতি কী? [ঢা. বো. ২০২১; সি. বো. ২০২১; রা. বো. ২০১৬; য. বো. ২০১৯, ২০২১; দি. বো. ২০২২] ১১। ঘনমাত্রার ppb পদ্ধতি কী? ১২। মোল ভগ্নাংশ কী? কু. বো. ২০২৩; রা. বো. ২০২৩] ১৩। দ্রবণের শতকরা মোল ভগ্নাংশ কী? রা. বো. ২০১৭; সি. বো. ২০১৬; ম. বো. ২০২২; মা. বো. ২০২৩] ১৪। প্রমাণ দ্রবণ কী? ১৫। দ্রবণের লঘুকরণ কী? (৩) এসিড ক্ষারক প্রশমন সংক্রোন্ত প্রশ্লাবলি: প্রশমন বিক্রিয়া কী? ২। প্রশমন বিক্রিয়ার আয়নিক সমীকরণ লেখ। ৩। প্রশমন বিন্দু কী? ৪। দর্শক আয়ন কী? দি. বো. ২০২৩; ঢা. বো. ২০২১, ২০২২; চ. বো. ২০১৬; সি. বো. ২০১৬] ৫। নির্দেশক কী? ঢো. বো. ২০২২; ব. বো. ২০২১; রা. বো. ২০১৯; য. বো. ২০২৩; সি. বো. ২০২১; ম. বো. ২০২৩; দি. বো. ২০২২ টাইট্র্যান্ট বা টাইটার কী? সি. বো. ২০২৩ টাইট্যাড কী? ৮। টাইট্রেশন কী? [চ. বো. ২০২১; কু. বো. ২০২২; দি. বো. ২০২১; ম. বো. ২০২২; মা. বো. ২০২৩] ৯। আয়োডোমিতি টাইট্রেশন কী? ১০। মুখ্য প্রমাণ দ্রবণ কী? ১১। গৌণ প্রমাণ দ্রবণ কী? ১২। সবল এসিড কী? ১৩। দুৰ্বল এসিড কী? ১৪। সবল ক্ষার কী?

রসায়ন-২য় (হাসান) -৩৪(ক)

১৫। দুর্বল ক্ষার কী?

১৬। HCl ও NaOH দ্রবণের টাইট্রেশন প্রশমন বিন্দুতে pH কত?

১৯। মিথাইল অরেঞ্জ-এর বর্ণ পরিবর্তনের pH পরিসর কত? ২০। ফেনলফথ্যালিন-এর বর্ণ পরিবর্তনের pH পরিসর কত?

১৭। CH₃COOH ও NaOH দ্রবণের টাইট্রেশন প্রশমন বিন্দুতে pH কত? ১৮। HCl ও NH₄OH দ্রবণের টাইট্রেশনে প্রশমন বিন্দুতে pH কত?

(৪) জারণ-বিজারণসংক্রান্ত প্রশ্নাবলি:

১। জারক কী?

[কু. বো. ২০২৩; মা. বো. ২০১৯]

২। বিজারক কী?

৩। Redox বিক্রিয়া কী?

[সি. বো. ২০২৩; ম. বো. ২০২৩; য. বো. ২০২১]

৪। জারণ সংখ্যা কী?

[রা. বো. ২০২৩; ঢা. বো. ২০২৩; সি. বো. ২০১৯; ম. বো. ২০২২; মা. বো. ২০১৯]

ে। জারণ অর্ধবিক্রিয়া কী?

৬। বিজারণ অর্ধবিক্রিয়া কী?

৭। স্বতঃজারণ-বিজারণ বিক্রিয়া কী?

৮। অসামঞ্জস্যতা বিক্রিয়া কী?

চি. বো. ২০১৯, ২০২২]

৯। সামঞ্জস্যতা বিক্রিয়া কী?

১০। ব্লিচিং বিক্রিয়া কী?

১১। K4[Fe(CN)6] যৌগে Fe এর জারণ সংখ্যা কত?

১২। Fe₃O₄ এ Fe-এর জারণ সংখ্যা কত?

১৩। CH2Cl2 যৌগে C এর জারণ সংখ্যা কত?

১৪। আয়োডিমিতি কী?

১৫। আয়োডোমিতি কী?

যি. বো. ২০১৭

(৫) বিয়ার-ল্যাম্বার্ট সূত্রসংক্রান্ত প্রশ্নাবলি :

১। ল্যাম্বার্টের সূত্রটি লেখ।

[দি. বো. ২০১৭]

২। বিয়ারের সূত্রটি কী?

ত। বিয়ার-ল্যামার্টের সূত্র কী?

ঢা. বো. ২০১৯: কু. বো. ২০১৯; অভিন্ন প্রশ্ন ২০১৮; রা. বো. ২০১৭; কু. বো. ২০১৭

৪। বিশোষণ মাত্রা বা অ্যাবজরব্যান্স কী?

৫। ট্রান্সমিটেন্স কী?

৬। মোলার অ্যাবজর্পটিভিটি বা মোলার শোষণ সহগ কী?

৭। একবর্ণী আলো কী?

৮। UV-Vis বর্ণালি কোন শ্রেণির যৌগের বেলায় সৃষ্টি হয়?

৯। ইলেকট্রনিক বর্ণালি কী?

১০। ক্রোমোফোর কী?

১১। HPLC এর পুরো নাম কী?

কু. বো. ২০১৯

১২। HPLC কলামের ব্যাস ও দৈর্ঘ্য কত?

১৩। HPLC কলামের সৃক্ষ কণার সাইজ কত?

১৪। GC এর সচল মাধ্যম কী?

১৫। বিয়ার-ল্যাম্বার্টের সূত্র কোন্ ক্ষেত্রে ব্যবহৃত হয়?

(খ) বিভাগ: অনুধাবনন্তর্তিত্তিক প্রশ্নাবলি (একনজরে)

(১) রাসায়নিক সমীকরণভিত্তিক গণনা:

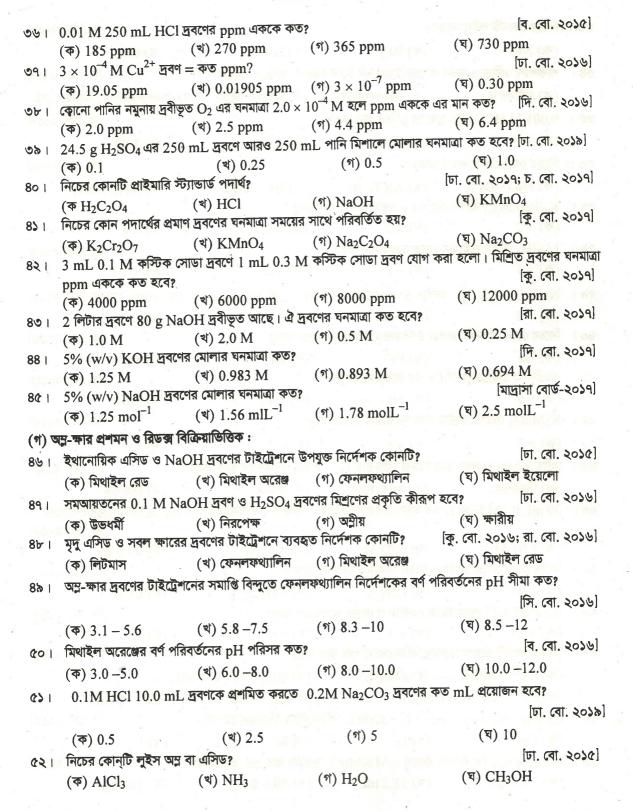
১। রাসায়নিক সমীকরণ থেকে উৎপাদ গ্যাসের আয়তন কীভাবে নির্ণয় করা হয়?

২। 450 g Fe ও 150 g স্টিম থেকে উৎপন্ন H₂-এর পরিমাণ গ্রাম এককে ও 20°C-এ লিটার এককে গণনা করো।

· · · · · · · · · · · · · · · · · · ·	
(২) দ্রবণের ঘনমাত্রাভিত্তিক প্রশ্নাবলি:	
১। প্রাইমারি স্ট্যান্ডার্ড পদার্থের বৈশিষ্ট্যসমূহ লেখ।	
২। (ক) Na ₂ CO ₃ কে প্রাইমারি পদার্থ বলা হয় কেন?	মা. বো. ২০১৮]
(খ) $\mathrm{C_2H_2O_4}$ একটি প্রাইমারি স্ট্যান্ডার্ড পদার্থ; ব্যাখ্যা কে	রা। ম. বো. ২০২২]
্রেগ) Na ₂ S ₂ O ₃ একটি সেকেন্ডারি পদার্থ; ব্যাখ্যা করো।	[ব. বো. ২০২৩]
৩। KMnO4 কে প্রাইমারি স্ট্যান্ডার্ড পদার্থ বলা হয় না কেন?	[কু. বো. ২০২৩; অভিন্ন প্রশ্ন ২০১৮]
8। গাঢ় H ₂ SO ₄ প্রাইমারি স্ট্যান্ডার্ড পদার্থ নয়; ব্যাখ্যা করো।	
ে। সেকেভারি স্ট্যাভার্ড পদার্থের বৈশিষ্ট্যসমূহ লেখ।	সম্ভান্ত নিৰ্ভান কৰে।
৬। K ₂ Cr ₂ O ₇ প্রাইমারি না সেকেন্ডারি পদার্থ তা ব্যাখ্যা করে	
৭। NaOH সেকেন্ডারি স্ট্যান্ডার্ড পদার্থ ব্যাখ্যা করো।	[মা. বো. ২০২৩; ব. বো. ২০১৯]
৮। 500 mL 0.1 M Na ₂ CO ₃ দ্রবণ তৈরিতে কত গ্রাম Na ₂	
৯। (ক) 0.1 M Na ₂ CO ₃ দ্রবণ একটি প্র <mark>মাণ দ্রবণ</mark> ; ব্যাখ্যা ক	
(খ) 0.1 M Na ₂ CO ₃ দ্রবণ বলতে কী বোঝায়; ব্যাখ্যা ক	রো। যি. বো. ২০২২]
১০। (ক) মোলার দ্রবণ হলো একটি প্রমাণ দ্রবণ, ব্যাখ্যা করো।	[অভিন্ন প্রশ্ন ২০১৮; সি. বো. ২০১৬; ব. বো. ২০১৫]
(খ) ডেসিমোলার দ্রবণ একটি প্র <mark>মাণ দ্রবণ; ব্যাখ্যা করো</mark> ।	দি. বো. ২০২৩; চ. বো. ২০২২; য. বো. ২০২১;
	মা. বো. ২০২২
১১। মোলার দ্রবণের ঘনমাত্রা তাপমাত্রা নির্ভরশীল; ব্যাখ্যা করে।	
১২। (ক) মোলারিটি ও মোলালিটির মধ্যে কোনটি তাপমাত্রার ও	
	२०२५, २०२२; সि. त्वा. २०२ <mark>५; त्</mark> ञा. त्वा. २०२५, २०२२]
(খ) মোলারিটি তাপমাত্রার ওপর নির্ভরশীল কেন?	[ঢা. বো. ২০২৩; কু. বো. ২০২৩; ম. বো. ২০২৩]
(গ) ppm ঘনমাত্রা তাপমাত্রার ওপর নির্ভরশীল কীনা ব্যা	
১৩। দ্রবণের মোলারিটিকে শতকরা হারে রূপান্তরের সুমীকরণ বে	
১৪। দ্রবণের মোলারিটিকে ppm এককে রূপান্তরের সমীকরণ বে	র করো।
১৫। 12 M HCl থেকে 500 mL 0.1 M HCl দ্রবণ কীরূপে	
১৬। 0.15M HCl দ্রবণের ঘনমাত্রা ppm এককে নির্ণয় করো।	বি. বো. ২০১৬] কু. বো. ২০২২]
১৭। (ক) 1.5% NaOH দ্রবণের মোলারিটি কত?	জু: 1.02 M] রা. বো. ২০২৩]
(খ) 10% (w/v) H ₂ SO ₄ দ্রবণের মোলারিটি কত?	
১৮। 5 mol চির্নি ও 10 mol পানির মিশ্রণে চিনির মোল ভগ্নাং	[0. 0.55] [01. 441. 404.0]
(৩) এসিড-ক্ষার প্রশমনভিত্তিক প্রশ্নাবলি:	F MES A
১। কস্টিক সোডা ও H ₂ SO ₄ এর প্রশমন বিক্রিয়ার গণনাভিত্তি	
২। অনু ক্ষার টাইট্রেশনে কোনো পদার্থকে নির্দেশকরূপে ব্যবহা	ারের শত কা?
	ার করা হয়; ব্যাখ্যা করো।[চ. বো. ২০২২; কু. বো. ২০১৯]
(৪) জারণ-বিজারণভিত্তিক প্রশ্নাবলি :	100 60 1000 0 50 1000 0 4 11 8 4 12 6 1
১। রিডক্স বিক্রিয়ায় ইলেকট্রনের স্থানান্তর ঘটে, ব্যাখ্যা করো।	[দি. বো. ২০২১; মা. বো. ২০১৮, ২০১৯]
২। জারণ সংখ্যা ও যোজনীর মধ্যে ২টি পার্থক্য লেখ।	[কু. বো. ২০২২] [রা. বো. ২০২১; য. বো. ২০২২; দি. বো. ২০২২]
ও। K ₂ Cr ₂ O ₇ একটি জারক পদার্থ, ব্যাখ্যা করো। ৪। অম্লীয় KMnO ₄ একটি জারক; ব্যাখ্যা করো।	্রা. ঝো. ২০২১; ব. ঝো. ২০২২; দা. ঝো. ২০২২) সি. রো. ২০২৩; কু. রো. ২০২১ ; চা. রো. ২০১৫]
	[চ. রো. ২০২১; ম. রো. ২০২২]
ে। H ₂ O ₂ জারক ও বিজারক উভয়রূপে ক্রিয়া করে কেন?	[8, 641, 4080) 4, 641, 4044]

	404	7-11-15-14 July	
,	় ৬।	(ক) Fe ³⁺ আয়ন একটি জারক পদার্থ, ব্যাখ্যা করো।	. ২০২৩; রা. বো. ২০১৯]
		(খ) Fe^{2+} আয়ন জারক ও বিজারক উভয়রূপে ক্রিয়া করে কেন? ব্যাখ্যা করো। $[$ ঢা. বো.	
		(গ) FeO জারক ও বিজারক উভয়রূপে ক্রিয়া করে; ব্যাখ্যা করো	[চ. বো. ২০২৩]
	91	${\rm Sn}^{2+}$ আয়ন জারক ও বিজারক উভয়রূপে ক্রিয়া করে, ব্যাখ্যা করো। $$. ২০১৯; সি. বো. ২০২২]
	ף ו	$ m I_2$ জারক ও বিজারক উভয়রূপে ক্রিয়া করে, ব্যাখ্যা করো।	[য. বো. ২০১৯]
	ने ।	(ক) অর্ধ-বিক্রিয়ার সাহায্যে $FeSO_4$ ও $K_2Cr_2O_7$ এর রিডক্স বিক্রিয়া লেখ।	[কু. বো. ২০২৩]
		(খ) লোহার আকরিক এবং লঘু ${ m H_2SO_4}$ এর দ্রবণের সাথে ${ m KMnO_4}$ এর বিক্রিয়াটি জ	নায়ন-ইলেকট্রন পদ্ধতিতে
		সমতা বিধান করো।	[ঢা. বো. ২০২৩]
	301	অর্ধ-বিক্রিয়ার সাহায্যে KI ও K ₂ Cr ₂ O ₇ -এর রিডক্স বিক্রিয়া লেখ।	
9	33 ($(f lpha)$ অর্ধ-বিক্রিয়ার সাহায্যে অক্সালিক এসিড $(m H_2C_2O_4)$ ও $ m KMnO_4$ এর রিডক্স বিক্রিয়া লে	খ। [য. বো. ২০২৩]
		(খ) $H_2SO_4 + H_2O_2 + KMnO_4 \rightarrow O_2 + MnSO_4 +$ এ বিক্রিয়াটি অর্ধ-বিক্রিয়া	সহ লেখ।
			[চ. বো. ২০২৩]
	150	অর্ধ-বিক্রিয়ার সাহায্যে Na ₂ S ₂ O ₃ ও আয়োডিনের রিডক্স বিক্রিয়া লেখ।	
	101	রিডক্স টাইট্রেশনে KMnO4 দ্রবণ জারকরূপে ব্যবহারে সুবিধা কী? ব্যাখ্যা করো।	IT SHE SCHOOL IN
	186	$ m K_2Cr_2O_7$ যৌগে $ m Cr$ এর জারণ-সংখ্যা নির্ণয় করো।	[ঢা. বো. ২০১৬]
	1 36	$ m Na_2S_2O_3$ যৌগে $ m S$ এর জারণ-সংখ্যা নির্ণয় করো।	[ব. বো. ২০১৬]
	१७।	Na ₂ S ₄ O ₆ যৌগে S এর জারণ-সংখ্যা গণনা করো।	E
		HClO4 যৌগে কেন্দ্রীয় পরমাণুর জারণ-সংখ্যা বের করো।	[রা. বো. ২০১৬]
		$K_4[Fe(CN)_6]$ এর কেন্দ্রীয় পরমাণুর জারণ সংখ্যা বের করো।	[য. বো. ২০২৩]
	(e) f	বিয়ার-ল্যাম্বার্ট সমীকরণভিত্তিক প্রশ্নাবলি :	a topic in to the
	1 6	বিয়ার-ল্যাম্বার্টের সমীকরণটি লেখ ও প্রত্যেক পদের পরিচয় দাও।	[য. বো. ২০১৫]
		বিয়ার-ল্যাম্বার্টের সমীকরণের প্রয়োগসমূহ লেখ।	
,		পারমাণবিক শোষণ বর্ণালির মূলনীতি লেখ।	
		সিগমা (ত) বন্ধন UV-Vis বৰ্ণালি সৃষ্টি করে না কেন?	
-		HPLC এর বৈশিষ্ট্য কী?	
1	७।	GC ও HPLC এর মধ্যে পার্থক্যসমূহ কী কী?	or had how see
		গ-বিভাগ : বহুনির্বাচনি প্রশ্ন (MCQ)	
	্ৰ সা	ধারণ বহুনির্বাচনি প্রশ্ন :	
1	(ক)	রাসায়নিক সমীকরণভিত্তিক গণনা সংশ্লিষ্ট :	
	۱ د	STP-তে 22.4 L অক্সিজেন প্রস্তুত করতে কত গ্রাম পটাসিয়াম ক্লোরেট প্রয়োজন?	[চ. বো. ২০১৬]
		(학) 56.23 g (학) 57.16 g (학) 60.16 g (학) 8	81.73 g
1	21	STP-তে 65 g O ₃ গ্যাসের আয়তন কত?	[দি. বো. ২০১৬]
			89.6 L
	01	50 g CaCO ₃ এর তাপীয় বিযোজনে উৎপন্ন CO ₂ এর ভর কত?	[দি. বো. ২০১৬]
			0.0

(গ) 44 g

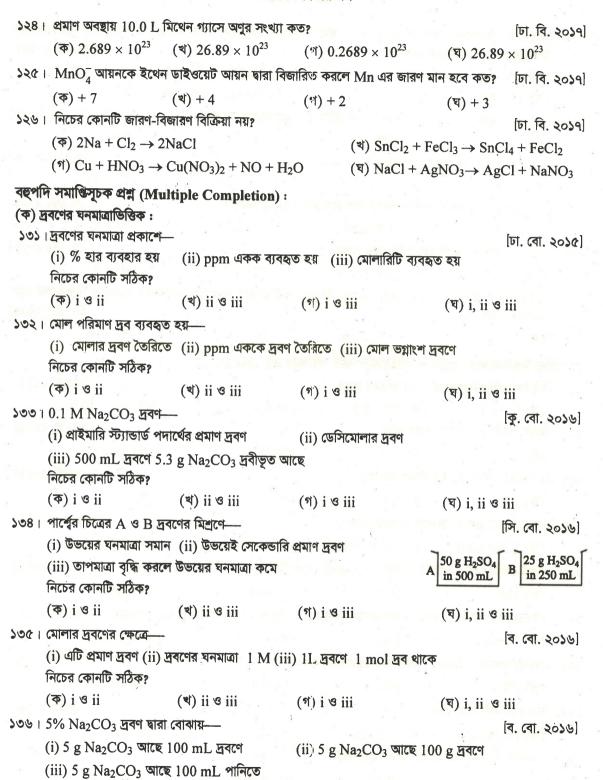

(খ) 22 g

(**季**) 11 g

(ঘ) 88 g

81	SATP-তে গ্যাসের মোলার	আয়তন কত?		[চ. বো.	२०५७]
	(季) 22.4 L	(킥) 22.8 L	(গ) 24.4 L	(되) 24.8 L	
41	- 273°C এ N₂ এর মোলা	র আয়তন কত dm ³ ?	White Ages are	দি. বো.	२०५७]
	(季) 0	(박) 6.023	(গ) 22.4	(য) 48.789	
७।	10 g CaCO ₃ থেকে 2 × 1	0^{29} টি অণু সরিয়ে নিলে	কী পরিমাণ CaCO3 অবশিষ্ট	থাকবে? সি. বো.	२०५७]
	(季) 9.550 g	(খ) 9.669 g	(গ) 9.881g	(되) 9.966 g	
91	এক মিলি মোল H ₂ SO ₄ -এ	র ভর কত?		[স্থি. বো.	२०১७]
	(季) 98 g	(킥) 9.8 g	(গ) 0.98 g	(되) 0.098 g	
ኮ , I	কত গ্রাম KClO3 কে উত্তপ্ত	করলে STP-তে 17 L	O ₂ পাওয়া যায়?	[ব. বো.	२०५७]
	(季) 32 g	(뉙) 62 g	(গ) 85 g	(되) 96 g	
৯।	Fe ₂ O ₃ এর অমুত্ব কত?			[ঢা. বো.	२०४१]
	(季) 4	(খ) 5	(গ) 6	(ঘ) 7	
201	5 g CO ₂ এর অণুর সংখ্যা-			[রা. বো.	२०५१
	$(\overline{\Phi}) 5.85 \times 10^{21}$		(す) 7.02 × 10 ²³	$(\overline{4}) 7.17 \times 10^{23}$	
22.1	কোনটি milk of lime?	(1) 0.01 1.10	(1) 7.02 7.10	[দি. বো.	2029]
	(季) NaOH.CaO	(a) Co(OH) + Mg	(a) CoCOo	(可) CAO	700 11
(at) E	বণের ঘনমাত্রাভিত্তিক :	(4) Ca(O11)2 1 11114	(1) CaCO3	(N) CAO	
321	10% Na ₂ CO ₃ দ্রবণের মো	লাব ঘুনুমারো ক্রড়ে হবেও	हि दो	২০১৭; য. বো. ২০১৫,	2020]
241			(গ) 10 molL ⁻¹ (ঘ) 9.43		402-1
201	5% Na ₂ CO ₃ দ্রবণের মোল		(1) TO MOIL (1) 9.42	্ঢা. বো.	Sosel
	(季) 0.74 M		(গ) 0.89 M	(되) 0.98 M	10001
186	দ্রবণের মোলারিটির একক বে			[রা. বো.	२०১७]
	(季) N/V		(গ) g/L	(₹) mol/L	
301	20 mL দ্রবণে 0.212 g Na	1 ₂ CO ₃ আছে। ঐ দ্রবণে	র ঘনমাত্রা কত?	[রা. বো.	२०५७]
	(季) 1.0 M	(খ) 0.01M	(গ) 0.001M	(町) 0.1M	
201	250 c.c 0.1M H ₂ SO ₄ 5	বণে কত গ্রাম H ₂ SO ₄ ৭	शांदक?	চি. বো.	২০১৬]
	(本) 2.45 g	খ) 2.98 g	(গ) 4. 52 g	(되) 5.42 g	
196	100 mL 0.1 M Na ₂ CO ₃	দ্রবণের জন্য কত গ্রাম 🏾	Na ₂ CO ₃ প্রয়োজন?	o depriva	
	(季) 1.06 g	খ) 1.22 g	(গ) 1.57 g	(되) 1.84 g	
721	5% NaOH এর 1000 mL			রা. বো.	२०५७
	(季) 5 g			(된) 50 g	
186	1.89 g HNO ₃ 200 mL			কু. বো	२०১৯]
	(क) 0.1 M	(খ) 0.15 M	(গ) 0.2 M	(직) 0.25 M	

201	3.5% NaHCO ₃ এর ঘন	মোত্রা কত মোলার?	the state of the s	[দি. বো. ২০১৫]
	(ক) 0.3301	(박) 0.4167	(গ) 0.5267	(ঘ) 0.8132
२३।	10 mL 0.1 M NaOH	দ্ৰবণে কত গ্ৰাম NaOH গ	थात्क?	[কু. বো. ২০১৫]
	(季) 0.004 g	(박) 0.04 g	(গ) 0.4 g	(ঘ) 4.0 g
२२ ।	500 mL ডেসিমোলার দ্রব	ণে কত গ্রাম Na ₂ CO ₃ ৎ	াকে?	
	(季) 2.65 g	(박) 5.30 g	(গ) 6.30 g	(되) 10.60 g
२७।	500 mL 0.5 M NaOH	I দ্ৰবণ থেকে কত mL ডে	র্গিমোলার দ্রব <mark>ণ তৈরি করা</mark> য	पारा?
	(季) 2,500 mL	(박) 2000 mL	(গ) 5000 mL	(되) 1350 mL
२8।	প্রমাণ দ্রবণ কোনটি?			[রা. বো. ২০১৬]
	(季) 1.0 M Na ₂ CO ₃	(박) 1.0 g H ₂ SO ₄	(গ) 1.0 mL H ₂ SO ₄	(킥) 1.0 mol H ₂ SO ₄
201	কোনটি প্রাইমারি স্ট্যান্ডার্ড	পদার্থ?	[রা. বো. '১৬; য. বো. '	১৬; সি. বো. '১৬; রা. বো. ২০১৯]
	(本) HCl	(₹) H ₂ SO ₄	(গ) K ₂ Cr ₂ O ₇	(되) KMnO ₄
201	নিচের কোনটি প্রাইমারি স্ট	ট্যান্ডার্ড পদার্থ?		[ব. বো. ২০১৬; সি. বো. ২০১৭]
	(本) Na ₂ CO ₃	(*) Na ₂ S ₂ O ₃	(গ) H ₂ SO ₄	(ঘ) KMnO ₄
२१।	নিচের কোনটি সেকেভারি	স্ট্যান্ডার্ড পদার্থ?		[ঢা. বো. '১৫; চ. বো. '১৫]
	*		5	্লে) কমিন মেটার
	(ক) সোডিয়াম অক্সালেট	(খ) পঢ়াসয়াম ডাহকে	মেট (গ) অক্সালিক এসিও	व (य) कार्यक त्यांवा
२४।	(ক) সোডিয়াম অক্সালেট কোনটি সেকেন্ডারি স্ট্যান্ডা			. বো. ২০১৫; মাদ্রাসা. বো. ২০১৭]
२৮।		র্ড পদার্থ?		. বো. ২০১৫; মাদ্রাসা. বো. ২০১৭]
ras	কোনটি সেকেন্ডারি স্ট্যান্ডা	র্ড পদার্থ? (খ) H ₂ C ₂ O ₄	্য (গ) HNO ₃	. বো. ২০১৫; মাদ্রাসা. বো. ২০১৭]
ras	কোনটি সেকেভারি স্ট্যাভা (ক) Na ₂ CO ₃ নিচের কোনটি সেকেভারি	র্ড পদার্থ? (খ) H ₂ C ₂ O ₄ স্ট্যান্ডার্ড পদার্থ?	্য (গ) HNO ₃	. বো. ২০১৫; মাদ্রাসা. বো. ২০১৭] (ঘ) K ₂ Cr ₂ O ₇ '১৫; ব. বো. '১৫; দি. বো. ২০১৭]
২৯।	কোনটি সেকেভারি স্ট্যাভা (ক) Na ₂ CO ₃ নিচের কোনটি সেকেভারি (ক) Na ₂ CO ₃	র্ড পদার্থ? (খ) H ₂ C ₂ O ₄ স্ট্যান্ডার্ড প <mark>দার্থ?</mark> (খ) K ₂ Cr ₂ O ₇	্য (গ) HNO ₃ কু. বো. (গ) H ₂ C ₂ O ₄ .2H ₂ O	. বো. ২০১৫; মাদ্রাসা. বো. ২০১৭] (ঘ) K ₂ Cr ₂ O ₇ '১৫; ব. বো. '১৫; দি. বো. ২০১৭]
২৯।	কোনটি সেকেভারি স্ট্যাভা (ক) Na ₂ CO ₃ নিচের কোনটি সেকেভারি	র্ড পদার্থ? (খ) H ₂ C ₂ O ₄ স্ট্যান্ডার্ড প <mark>দার্থ?</mark> (খ) K ₂ Cr ₂ O ₇ বু K ₂ Cr ₂ O ₇ থাকলে দ্রবণ	্য (গ) HNO ₃ কু. বো. (গ) H ₂ C ₂ O ₄ .2H ₂ O	. বো. ২০১৫; মাদ্রাসা. বো. ২০১৭] (ঘ) K ₂ Cr ₂ O ₇ '১৫; ব. বো. '১৫; দি. বো. ২০১৭] (ঘ) KMnO ₄
২৯। ৩০়।	কোনটি সেকেভারি স্ট্যাভা ক) Na ₂ CO ₃ নিচের কোনটি সেকেভারি ক) Na ₂ CO ₃ 250 mL দ্রবণে 12.75 g	র্ড পদার্থ? (খ) H ₂ C ₂ O ₄ স্ট্যান্ডার্ড পদার্থ? (খ) K ₂ Cr ₂ O ₇ g K ₂ Cr ₂ O ₇ থাকলে দ্রবণ (খ) 1.04 M	্য (গ) HNO ₃ (কু. বো. (গ) H ₂ C ₂ O ₄ .2H ₂ O টির মোলারিটি কত?	. বো. ২০১৫; মাদ্রাসা. বো. ২০১৭] (ঘ) K ₂ Cr ₂ O ₇ '১৫; ব. বো. '১৫; দি. বো. ২০১৭] (ঘ) KMnO ₄ [সি. বো. ২০১৫]
২৯। ৩০়।	কোনটি সেকেভারি স্ট্যাভা ক) Na ₂ CO ₃ নিচের কোনটি সেকেভারি ক) Na ₂ CO ₃ 250 mL দ্রবণে 12.75 g ক) 1.7 M	র্ড পদার্থ? (খ) $H_2C_2O_4$ স্ট্যান্ডার্ড পদার্থ? (খ) $K_2Cr_2O_7$ $K_2Cr_2O_7$ থাকলে দ্রবণ (খ) $1.04 M$ ওপর নির্ভরশীল?	্য (গ) HNO ₃ (কু. বো. (গ) H ₂ C ₂ O ₄ .2H ₂ O টির মোলারিটি কত?	. বো. ২০১৫; মাদ্রাসা. বো. ২০১৭] (ঘ) K ₂ Cr ₂ O ₇ '১৫; ব. বো. '১৫; দি. বো. ২০১৭] (ঘ) KMnO ₄ [সি. বো. ২০১৫] (ঘ) 0.028 M
२क । ७० । ७১ ।	কোনটি সেকেভারি স্ট্যাভা (ক) Na ₂ CO ₃ নিচের কোনটি সেকেভারি (ক) Na ₂ CO ₃ 250 mL দ্রবণে 12.75 g (ক) 1.7 M নিচের কোনটি তাপমাত্রার	র্ড পদার্থ? (খ) $H_2C_2O_4$ স্ট্যান্ডার্ড পদার্থ? (খ) $K_2Cr_2O_7$ $K_2Cr_2O_7$ থাকলে দ্রবণ (খ) 1.04 M ওপর নির্ভরশীল? (খ) মিলিমোল/লিটার	[য (গ) HNO ₃ [কু. বো. (গ) H ₂ C ₂ O ₄ .2H ₂ O টির মোলারিটি কত? (গ) 0.17 M	. বো. ২০১৫; মাদ্রাসা. বো. ২০১৭] (ঘ) K ₂ Cr ₂ O ₇ '১৫; ব. বো. '১৫; দি. বো. ২০১৭] (ঘ) KMnO ₄ [সি. বো. ২০১৫] (ঘ) 0.028 M [চ. বো. ২০১৫] (ঘ) মাইক্রেফাম/মির্লিফাম
२%। ७०। ७३।	কোনটি সেকেভারি স্ট্যাভা (ক) Na ₂ CO ₃ নিচের কোনটি সেকেভারি (ক) Na ₂ CO ₃ 250 mL দ্রবণে 12.75 g (ক) 1.7 M নিচের কোনটি তাপমাত্রার (ক) মিলিগ্রাম/কেজি 100 mL 0.15 M Na ₂ S (ক) 2.37	র্ড পদার্থ? (খ) $H_2C_2O_4$ স্ট্যান্ডার্ড পদার্থ? (খ) $K_2Cr_2O_7$ রু $K_2Cr_2O_7$ থাকলে দ্রবণ (খ) 1.04 M ওপর নির্ভরশীল? (খ) মিলিমোল/লিটার S_2O_3 দ্রবণের ppm ঘন্য (খ) 23.7	্য (গ) HNO ₃ [কু. বো. (গ) H ₂ C ₂ O ₄ .2H ₂ O টির মোলারিটি কত? (গ) 0.17 M (গ) মাইক্রোগ্রাম/কেজি মাত্রা কত? (গ) 23700	. বো. ২০১৫; মাদ্রাসা. বো. ২০১৭] (ঘ) K ₂ Cr ₂ O ₇ '১৫; ব. বো. '১৫; দি. বো. ২০১৭] (ঘ) KMnO ₄ [সি. বো. ২০১৫] (ঘ) 0.028 M [চ. বো. ২০১৫] (ঘ) মাইক্রেছাম/মিলিছাম [ঢা. বো. ২০১৯] (ঘ) 237000
२%। ७०। ७३।	কোনটি সেকেভারি স্ট্যাভা (ক) Na ₂ CO ₃ নিচের কোনটি সেকেভারি (ক) Na ₂ CO ₃ 250 mL দ্রবণে 12.75 g (ক) 1.7 M নিচের কোনটি তাপমাত্রার (ক) মিলিগ্রাম/কেজি 100 mL 0.15 M Na ₂ S (ক) 2.37	র্ড পদার্থ? (খ) H ₂ C ₂ O ₄ স্ট্যান্ডার্ড পদার্থ? (খ) K ₂ Cr ₂ O ₇ র K ₂ Cr ₂ O ₇ থাকলে দ্রবণ (খ) 1.04 M ওপর নির্ভরশীল? (খ) মিলিমোল/লিটার S ₂ O ₃ দ্রবণের ppm ঘন্য (খ) 23.7 নমাত্রা ppm এককে কত স	্য (গ) HNO ₃ কু. বো. (গ) H ₂ C ₂ O ₄ .2H ₂ O টির মোলারিট কত? (গ) 0.17 M (গ) মাইক্রোগ্রাম/কেজি মাত্রা কত? (গ) 23700	. বো. ২০১৫; মাদ্রাসা. বো. ২০১৭] (ঘ) K ₂ Cr ₂ O ₇ '১৫; ব. বো. '১৫; দি. বো. ২০১৭] (ঘ) KMnO ₄ [সি. বো. ২০১৫] (ঘ) 0.028 M [চ. বো. ২০১৫] (ঘ) মাইক্রেছাম/মির্লিছাম [ঢা. বো. ২০১৯] (ঘ) 237000 [কু. বো. ২০১৬]
২৯। ৩০। ৩১। ৩২।	কোনটি সেকেভারি স্ট্যাভা ক) Na ₂ CO ₃ নিচের কোনটি সেকেভারি ক) Na ₂ CO ₃ 250 mL দ্রবণে 12.75 g ক) 1.7 M নিচের কোনটি তাপমাত্রার ক) মিলিগ্রাম/কেজি 100 mL 0.15 M Na ₂ S ক) 2.37 0.25 M H ₂ SO ₄ এর ঘর্ণ ক) 24300 ppm	র্ড পদার্থ? (খ) H ₂ C ₂ O ₄ স্ট্যান্ডার্ড পদার্থ? (খ) K ₂ Cr ₂ O ₇ র K ₂ Cr ₂ O ₇ থাকলে দ্রবণ (খ) 1.04 M ওপর নির্ভরশীল? (খ) মিলিমোল/লিটার S ₂ O ₃ দ্রবণের ppm ঘন্য (খ) 23.7 নমাত্রা ppm এককে কত স্ব	্য (গ) HNO ₃ [কু. বো. (গ) H ₂ C ₂ O ₄ .2H ₂ O টির মোলারিটি কত? (গ) 0.17 M (গ) মাইক্রোগ্রাম/কেজি মাত্রা কত? (গ) 23700 হবে? (গ) 24500 ppm	. বো. ২০১৫; মাদ্রাসা. বো. ২০১৭] (ঘ) K ₂ Cr ₂ O ₇ '১৫; ব. বো. '১৫; দি. বো. ২০১৭] (ঘ) KMnO ₄ [সি. বো. ২০১৫] (ঘ) 0.028 M [চ. বো. ২০১৫] (ঘ) মাইক্রোফাম/মিলিফাম [ঢা. বো. ২০১৯] (ঘ) 237000 [কু. বো. ২০১৬] (ঘ) 24600 ppm
২৯। ৩০। ৩১। ৩২।	কোনটি সেকেভারি স্ট্যাভা ক) Na ₂ CO ₃ নিচের কোনটি সেকেভারি ক) Na ₂ CO ₃ 250 mL দ্রবণে 12.75 g ক) 1.7 M নিচের কোনটি তাপমাত্রার ক) মিলিগ্রাম/কেজি 100 mL 0.15 M Na ₂ S ক) 2.37 0.25 M H ₂ SO ₄ এর ঘর্ণ ক) 24300 ppm 0.1 M Na ₂ CO ₃ দ্রবণের	র্ড পদার্থ? (খ) H ₂ C ₂ O ₄ স্ট্যান্ডার্ড পদার্থ? (খ) K ₂ Cr ₂ O ₇ রু K ₂ Cr ₂ O ₇ থাকলে দ্রবণ (খ) 1.04 M ওপর নির্ভরশীল? (খ) মিলিমোল/লিটার S ₂ O ₃ দ্রবণের ppm ঘন্য (খ) 23.7 সমাত্রা ppm এককে কত স্ব (খ) 24400 ppm রু ঘন্যাত্রা ppm এককে ব	্য (গ) HNO ₃ [কু. বো. (গ) H ₂ C ₂ O ₄ .2H ₂ O টির মোলারিটি কত? (গ) 0.17 M (গ) মাইক্রোহাম/কেজি মাত্রা কত? (গ) 23700 হবে? (গ) 24500 ppm	. বো. ২০১৫; মাদ্রাসা. বো. ২০১৭] (ঘ) K ₂ Cr ₂ O ₇ '১৫; ব. বো. '১৫; দি. বো. ২০১৭] (ঘ) KMnO ₄ [সি. বো. ২০১৫] (ঘ) 0.028 M [চ. বো. ২০১৫] (ঘ) মাইক্রেফাম/মিশিগ্রাম [ঢা. বো. ২০১৯] (ঘ) 237000 [কৃ. বো. ২০১৬] (ঘ) 24600 ppm [ব. বো. ২০১৬]
23 90 93 92 98	কোনটি সেকেভারি স্ট্যাভা ক) Na ₂ CO ₃ নিচের কোনটি সেকেভারি ক) Na ₂ CO ₃ 250 mL দ্রবণে 12.75 g ক) 1.7 M নিচের কোনটি তাপমাত্রার ক) মিলিগ্রাম/কেজি 100 mL 0.15 M Na ₂ S ক) 2.37 0.25 M H ₂ SO ₄ এর ঘর্ক ক) 24300 ppm 0.1 M Na ₂ CO ₃ দ্রবণের ক) 106 ppm	র্ড পদার্থ? (খ) H ₂ C ₂ O ₄ স্ট্যান্ডার্ড পদার্থ? (খ) K ₂ Cr ₂ O ₇ র K ₂ Cr ₂ O ₇ থাকলে দ্রবণ (খ) 1.04 M ওপর নির্ভরশীল? (খ) মিলিমোল/লিটার S ₂ O ₃ দ্রবণের ppm ঘন্য (খ) 23.7 নমাত্রা ppm এককে কত র (খ) 24400 ppm র ঘনমাত্রা ppm এককে ব (খ) 1060 ppm	্য (গ) HNO ₃ [কু. বো. (গ) H ₂ C ₂ O ₄ .2H ₂ O টির মোলারিটি কত? (গ) 0.17 M (গ) মাইক্রোগ্রাম/কেজি মাত্রা কত? (গ) 23700 হবে? (গ) 24500 ppm চত? (গ) 5300 ppm	. বো. ২০১৫; মাদ্রাসা. বো. ২০১৭] (ঘ) K ₂ Cr ₂ O ₇ '১৫; ব. বো. '১৫; দি. বো. ২০১৭] (ঘ) KMnO ₄ [সি. বো. ২০১৫] (ঘ) 0.028 M [চ. বো. ২০১৫] (ঘ) মাইক্রোফাম/মিলিফাম [ঢা. বো. ২০১৯] (ঘ) 237000 [কু. বো. ২০১৬] (ঘ) 24600 ppm [ব. বো. ২০১৬] (ঘ) 10600 ppm
23 90 93 92 98	কোনটি সেকেভারি স্ট্যাভা ক) Na ₂ CO ₃ নিচের কোনটি সেকেভারি ক) Na ₂ CO ₃ 250 mL দ্রবণে 12.75 g ক) 1.7 M নিচের কোনটি তাপমাত্রার ক) মিলিগ্রাম/কেজি 100 mL 0.15 M Na ₂ S ক) 2.37 0.25 M H ₂ SO ₄ এর ঘর্ণ ক) 24300 ppm 0.1 M Na ₂ CO ₃ দ্রবণের	র্ড পদার্থ? (খ) H ₂ C ₂ O ₄ স্ট্যান্ডার্ড পদার্থ? (খ) K ₂ Cr ₂ O ₇ র K ₂ Cr ₂ O ₇ থাকলে দ্রবণ (খ) 1.04 M ওপর নির্ভরশীল? (খ) মিলিমোল/লিটার S ₂ O ₃ দ্রবণের ppm ঘন্য (খ) 23.7 নমাত্রা ppm এককে কত র (খ) 24400 ppm র ঘনমাত্রা ppm এককে ব (খ) 1060 ppm	্য (গ) HNO ₃ [কু. বো. (গ) H ₂ C ₂ O ₄ .2H ₂ O টির মোলারিটি কত? (গ) 0.17 M (গ) মাইক্রোগ্রাম/কেজি মাত্রা কত? (গ) 23700 হবে? (গ) 24500 ppm চত? (গ) 5300 ppm	েবো. ২০১৫; মাদ্রাসা. বো. ২০১৭] (ঘ) K ₂ Cr ₂ O ₇ '১৫; ব. বো. '১৫; দি. বো. ২০১৭] (ঘ) KMnO ₄ [সি. বো. ২০১৫] (ঘ) 0.028 M [চ. বো. ২০১৫] (ঘ) মাইক্রেছাম/মিলিছাম [ঢা. বো. ২০১৯] (ঘ) 237000 [কু. বো. ২০১৬] (ঘ) 24600 ppm [ব. বো. ২০১৬] (ঘ) 10600 ppm



(७)	নিচের কোনটি লুইস ক্ষ	ারক?	THE CAME IN CO.	[কু. বো. ২০১৭]
	(本) NF ₃	(খ) BF ₃	(গ) AlCl ₃	(₹) CO ₂
681				টি? [য. বো. ২০১৭]
		4		(ঘ) ফেনলফথ্যালিন, মিথাইল রেড
661		দ্রবণের p ^H এর মান কত?		[য. বো. ২০১৭]
	(季) 3.10	(খ) 2.97	(গ) 2.07	(ঘ) 3.00
৫৬।	নিচের কোন জোড়া লুই			[সি. বো. ২০১৭]
7.50	(季) H ₂ O, AlCl ₃	(খ) AlCl ₃ , BF ₃	(গ) BF ₃ , NH ₃	(ম) NH3, AlCl3
¢91		যৌগে Fe এর জারণ সংখ্যা		
	(季) + 2	(খ) + 3	(গ) + 4	(1) + 6
				[ঢা. বো. ২০১৬]
	$(\overline{\Phi}) + 1$	জেনের জারণ মান কত? (খ) – 1	(গ) + 2	(ঘ) + 3
। রগ	Na ₂ S ₄ O ₆ বা S ₄ O ₆ ²⁻	আয়নে S এর জারণ মান ব	চত? [রা. বো. ২০১৬;	কু. বো. ২০১৭; মাদ্রাসা বোর্ড ২০১৯]
				(V) + 3.5
		ারক ও বিজারক উভয়রূপে		[mar. 1.1]
	(季) Na ⁺	(খ) Fe ²⁺	(গ) Al ³⁺	্ষ্ (মৃ) Sn ⁴⁺
७५।	পটাসিয়াম ডাইক্রোমেটে	Cr এর জারণ-সংখ্যা কত	Partie of the state of the stat	[চ. বো. ২০১৬]
	$(\overline{\Phi})$ – 6	(খ) + 3	(গ) + 12	(V) + 6
७२ ।	K_2MnO_4 যৌগে কেন্দ্র	ায় পরমাণুর জারণ সংখ্যা ক	ত?	[ব. বো. ২০১৬]
		(খ) + 6		(ঘ) + 4
७७।	অশ্লীয় KMnO4 দ্ৰবণ ছ	নারা রিডক্স বিক্রিয়ায় Fe ²⁺	আয়ন কী হিসাবে কাজ ক	রে? [রা. বো. ২০১৫]
		(খ) দর্শক আয়ন		
७8।	30 mL 0.1M FeSO	4 এর অশ্লীয় দ্রবণকে টাইট্রে	শন <mark>করতে কত ঘনমা</mark> ত্রার	30 mL KMnO ₄ দ্রবণ লাগবে?
				[রা. বো. ২০১৫]
		(뉙) 0.02 M		(된) 0.06 M
৬৫।		নের জারণ সংখ্যা ও যোজনী		[চ. বো. ২০১৫]
		(খ) CHCl ₃		(된) CC14
৬৬।	[Co(NH ₃) ₆] ³⁺ আয়ন	টতে কেন্দ্রীয় পরমাণুর জার	ণ মান কত?	[সি. বো. ২০১৫]
	(**) + 15	(খ) + 3	(গ) + 5	(ঘ) + 9
७९।		জারণ বিক্রিয়ারূপে গণ্য কর		
	$(\overline{\Phi}) \text{ Cu}^2 + 4\text{NH}_3 -$	\rightarrow [Cu(NH ₃) ₄] ²⁺	(খ) NH ₃ + H' \longrightarrow	NH ₄ '
		· CaF ₂		100
७४।		u ₂ I ₂ + I ₂ + K ₂ SO ₄ বিভি		
		(박) I ₂		
। রে	9.5 g FeSO ₄ কে জারি	ত করতে 1 M KMnO ₄	দ্রবণের কত mL প্রয়োজ	নঃ [ব. বো. ২০১৫]
	(4) 12.5 mL	(박) 11.2 mL	' (키) 10.6 ml	(ঘ) 7.5 ml.

901	নিচের কোনটি সবচেয়ে	শক্তিশালী বিজারক?		[সি. বো. ২০১৫]
	(季) Al		(গ) Fe	(ম) Li
951	বিক্রিয়াকালে K ₂ Cr ₂ O ₇	কয়টি ইলেকট্রন গ্রহণ ব	নরে?	[य. ता. २०४৫; मि. ता. २०४৫]
	(ক) 4	(খ) 5	(গ) 6	(ঘ) 7
१२।	$IO_3^- + 5\Gamma + 6H^+$	→ 3I ₂ + 3H ₂ O; এখাৰে	ন কোনটির জারণ ঘটেছে?	[ব. বো. ২০১৯; রা. বো. ২০১৫]
	(季) IO ₃	(খ) Г	(গ) H ⁺	(ঘ) IO3 31 উভয়ের
901	অন্নীয় মাধ্যমে KMnO4	কয়টি ইলেকট্রন গ্রহণ ক	নরে?	[ব. বো. ২০১৯; কু. বো. ২০১৬]
	(本) 3	(খ) 4	(গ) 5	(ঘ) 6
98	ক্ষারীয় মাধ্যমে KMnO	4 কয়টি ইলেকট্রন গ্রহণ	করে?	[সি. বো. ২০১৬]
	(季) 3	(খ) 4	(গ) 5	(ঘ) 6
१৫।	$SnCl_2 + 2HgCl_2$ —	→ SnCl ₄ + 2HgCl; و	্ব বিক্রিয়ায় কোনটি জারিত হ	য়ছে? সি. বো. ২০১৬]
	(季) Sn ²⁺	(খ) Hg ²⁺	(গ) Cl	(되) Sn ⁴⁺
961	নিচের কোনটি জারণ-বি	জারণ বিক্রিয়া?		[ঢা. বো. ২০১৬]
	$(\overline{\Phi})$ CaCO ₃ $\xrightarrow{\Delta}$ C	$aO + CO_2$	(₹) 2H ₂ S + SO ₂ —	\rightarrow 2H ₂ O + 3S
100	` '		(ব) NaCl + AgNO3	→ AgCl + NaNO ₃
99	নিচের কোনটি জারক ও	বিজারক উভয়ই রূপে ক	াজ করে?	[ঢা. বো. ২০১৬]
	(季) KI	(박) H ₂ C ₂ O ₄	(গ) Na ₂ S ₂ O ₃	(₹) H ₂ O ₂
96 ।	10g FeSO ₄ কে জারিৎ	ত করতে কত গ্রাম K ₂ Cı	₂ O ₇ লাগবে?	
	(季) 3.22 g	(খ) 3.87 g	(গ) 4.12 g	(되) 6.44 g
ବର ।	$K_2Cr_2O_7 + FeSO_4 -$	$+ H_2SO_4 \longrightarrow Fe_2(S$	$O_4)_3 + Cr_2(SO_4)_3 + K_2$	SO ₄ + H ₂ O এ বিক্রিয়ায় জারক খ
	বিজারকের মোল সংখ্যার		filter and agon must be	[দি. বো. ২০১৬]
	(ক) 1 ঃ 6	(খ) 6 ঃ 1	(গ) 7 ঃ 1	(ঘ) 7 ঃ 6
po 1	$MnO_4^- + C_2O_4^{2-} + I$	$H^+ \longrightarrow Mn^{2+} + CO_2$	+ H ₂ O; এ বিক্রিয়ায় জারক	ও বিজারকের মোল সংখ্যার অনুপাত
	কত?	the second of		[সি. বো. ২০১৫]
	(季) 1:5	(খ) 2:5	(গ) 5 ঃ 2	(ঘ) 1 ঃ 6
471	[Co(CN) ₆] ³⁻ আয়নে	Co এর জারণ মান কত?	1	[ঢা. বো. ২০১৭]
	(季) − 6	(₹) − 3	$(\mathfrak{I})+3$	(1) + 6
४२ ।	নিচের কোনটি জারক ও	বিজারক উভয়রূপে ক্রিয়	করে?	[ঢা. বো. ২০১৭]
	(季) H ₂ O ₂	(খ) CuSO ₄	(গ) SO ₃	(可) KMnO ₄
७७ ।	নিচের কোনটিতে Cl এর			[চ. বো. ২০১৭]
	(ক) HClO	(খ) HClO ₂	(গ) HClO ₃	(可) HClO ₄
৮8 ।	Br ₂ + NaOH (conc)	\triangle BrO ₃ + Na ⁺	+ H ₂ O; এ বিক্রিয়ায় Br এর	জারণ-সংখ্যার পরিবর্তন কোনটি?
			en av spide role . I	[ব. বো. ২০১৭]
	(ক) 0 থেকে + 5	(খ) 0 থেকে – 3	(গ) + 1 থেকে + 5	(ঘ) – 1 থেকে + 5
४ ७ ।	$NaOH + Cl_2 \longrightarrow N$	aCl + NaClO + H ₂ C), এ বিক্রিয়াটিতে কী ঘটে?	[রা, বো. ২০১৭]
			(গ) ডিসপ্রোপোরশন	

७७ ।	নিচের কোনটি বিজারক?		[সি. বো. ২০১৭]
	• (ক) বেনজোয়িক এসিড (খ) মিখানোয়িক এসিড	(গ) ইথানোয়িক এসিড	(ঘ) ক্লোরো ইথানোয়িক এসিড
b91	নিচের কোনটির বেলায় সচল মাধ্যমরূপে হিলিয়াম ব		
	(ক) TLC (খ) HPLC	(গ) GLPC	(য) CC
ושש	মোলার শোষণ সহগ এর একক কোনটি?		[ঢা. বো. ২০১৬]
	$(\overline{\Phi}) \operatorname{Lmol}^{-1} \operatorname{cm}^{-1}$ (খ) $\operatorname{molL}^{-1} \cdot \operatorname{cm}^{-1}$	(গ) L. mol ⁻¹ m ⁻¹	(되) L. mol. cm ⁻¹
ו מע	বিয়ার-ল্যাম্বার্ট সূত্র কোন মোলার দ্রবণের ক্ষেত্রে অধি		[সি. বো. ২০১৬]
	(화) 0.01 M (박) 0.1 M	(গ) 0.5 M	(되) 1.0 M
५०।	HPLC-এর পূর্ণ নাম কোনটি?		[ব. বো. ২০১৬]
	(ক) High Pressure Liquid Chromatograph	hy	
	(খ) High Performance Liquid Chromatog		
	(গ) High Power Liquid Chromatography	Fra Date , the	
	(ম) High Plant Liquid Chromatography		
166	HPLC তে সচল মাধ্যম হিসাবে কোনটি ব্যবহৃত হ	য়?	[দি. বো. ২০১৬]
	(ক) N ₂ গ্যাস (খ) মিথানল + পানি	(গ) অ্যালুমিনা জেল	(ঘ) সিলিকা জেল
৯২।	A = &cl মতে নিচের কোনটি সঠিক?		[য. বো. ২০১৬]
	(ক) A = শোষণাঙ্ক	(খ) ৪ = দ্রবণের ঘনমাত্রা	
	(\mathfrak{I}) $l=$ সেলের পুরুত্ব	(ঘ) c = শোষণ	
৯৩।	নিচের চিত্রটি কোন সূত্রকে সমর্থন করে?	রা. বো. ২০১৫	A
	(ক) বয়েশের সূত্র	(খ) চার্লসের সূত্র	A = ज्यांत्रकार्त्व
	(গ) বিয়ার-ল্যামার্টের সূত্র	(ঘ) ফ্যারাডের সূত্র	C = 64 4 44 4 4
৯৪।	গ্যাস ক্রোমাটোগ্রাফিতে ব্যবহারযোগ্য বাহক গ্যাস বে	কানটি? [ব. বো. ২০১৯	→ c
	(화) O ₂ (박) Cl ₂	(91) N ₂	(ঘ) H ₂
136	ক্রোমাটোগ্রাফির ক্ষেত্রে কোনটি সঠিক?	6 -00 - 5.4-	[য. বো. ২০১৭]
	(ক) একাধিক সচল দশা থাকতে হয়	(খ) দুটি সচল দশা ও তিৰ	াটি ছির দশা থাকে
	(গ) ছির দশা থাকার প্রয়োজন নেই	(ঘ) কমপক্ষে ১টি করে সা	
৯৬।	একটি নাইট্রোজেন অণুর ভর কত?		[অভিন্ন প্রশ্ন ২০১৮]
	($\overline{\Phi}$) 2.32 × 10 ⁻²⁶ kg ($\overline{\Psi}$) 2.32 × 10 ⁻²³ kg	(1) $4.65 \times 10^{-26} \mathrm{kg}$	$(\triangledown) 4.65 \times 10^{-23} \mathrm{kg}$
201	0.025 M KOH দ্রবণে KOH এর ভর কত?		[অভিন্ন প্রশ্ন ২০১৮]
	(ক) 1.0 g (박) 1.4 g	(st) 10.0 g	
S L 1	প্রমাণ KMnO ₄ দ্রবণের সাহায্যে আয়রন (II) আয়		
וטמ	WALL KIND 4 GACIN ALCON ALMAN (II) ALM	0-1A 11A-41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	[অভিন্ন প্রশ্ন ২০১৮]
	(ক) পটাসিয়াম পারম্যাঙ্গানেট (খ) মিথাইল অরেঞ্জ	(গ) ফেনলফথ্যালিন (য) আয়রন (II) দ্রবণ
। हत	5 g Na ₂ CO ₃ শুঁড়াকে 100 g দ্রাবকে দ্রবীভূত করে		
	হয়?		[অভিন্ন প্রশ্ন ২০১৮]
	(ক) % (w/v) খে) % (v/w)	(গ) % (w/w)	(₹) % (v/v)

১০০। <mark>জারক</mark> ও বিজারকের ৫ টা ইট্রেশনের মূল সমীক	মাল সংখ্যা x ও y, আয়ত রণ কোনটি?	চন Vo ও VR এবং ঘনমাত্রা	M _o ও M _R হলে জারণ-বিজারণ [অভিন্ন প্রশ্ন ২০১৮]
$(\overline{\Phi}) \times V_0 M_R = y V$	$V_R M_o$	$(\forall) y V_0 M_0 = x V_R N$	$M_{\rm R}$
(গ) $\times V_0 M_0 = y V$	$_{R}$ M_{R}	$(\forall) y V_o M_R = x V_R M$	M_0
\$0\$ LiCoO2 = 'A' +	xLi ⁺ + xe ⁻ ; 'A' যৌগে	Co এর জারণ মান কত?	[ঢা. বো. ২০১৯]
(** * * * * * * * * *	(খ) + 3	(গ) + 2	(ঘ) +1
১০২। Fe ₃ O ₄ এ Fe এর জা	রণ মান কত?		[য. বো. ২০১৯]
$(\overline{\Phi}) + 2$		$(\mathfrak{I}) + 2.67$	(ঘ) + 3
১০৩। 5.0 g Fe ²⁺ আয়নবে	জারিত করতে কত গ্রাম K	MnO ₄ প্রয়োজন?	[য. বো. ২০১৯]
(季) 1.04	(খ) 2.84	(গ) 4.02	(ঘ) 4.01
১০৪। SO ₄ ²⁻ আয়নে সালয	গরের জারণ মান কত?	The state of the s	[চ. বো. ২০১৯]
	(খ) + 2.3	(গ) 2.5	(ঘ) + 6
১০৫। KMnO ₄ + H ₂ SO ₄ অনুপাত কত?	+ FeC ₂ O ₄ → উৎপ	াদ; এ বিক্রিয়ায় সমতাযুক্ত সর্ম	াকিরণে জারক ও বিজারকের মোল [দি. বো. ২০১৯]
(季) 2:5	(খ) 2 ঃ 6	(গ) 3 ঃ 5	(ঘ) 3 ঃ 6
🗖 বিভিন্ন বিশ্ববিদ্যালয়, বুয়ে	টে ও মেডিকেলে ভর্তি পর	কার প্রশ্ন (MCO) :	
১১৫। মিথাইল অরেঞ্জ নির্দেশ্য			[বুয়েট: ২০১৬]
	(খ) 4.2 – 6.3	(গ) 6.0 – 7.6	(ঘ) 8.3 – 10.0
১১৬। বিভদ্ধ পানির molL ^{1 হ}			[ঢা. বি. ২০১৬]
(季) 35.5		(গ) 55.5	(₹) 18.0
১১৭। H ₂ SiOF ₆ যৌগে Si এ			[বুয়েট: ২০১৬]
(本) + 6		(গ) + 2	(ঘ) 0
১১৮ । 10% NaCl দ্রবণের সে		(1) - 2	[মেডিকেল: ২০১৬]
		(গ) 0.1709 molL ⁻¹	and the second second second second
(4) 1.709 MOIL	(4) 170.9 mon	হলে মিলি গাম/দেসিলিটারে এর	মান কত? [ঢা. বি. ২০১৬]
		(গ) 0.80	(ঘ) none
(ক) 180	` '		` '
			nL প্রয়োজন? [রা. বি. ২০১৬]
(季) 10 mL			(₹) 20 mL
১২১। ক্ষারীয় মাধ্যমে KMn	O ₄ কয়টি ইলেকট্রন গ্রহণ ব		[জ. বি. ২০১৬]
(ক) ১টি	(খ) ৩টি	(গ) ৫টি	(ঘ) ৭টি
১২২। নিচের কোনটি বিজারক	?		[বুয়েট: ২০১৬]
(季) Fe ₂ (SO ₄) ₃	(박) K ₂ Cr ₂ O ₇	(গ) KI	(ঘ) I ₂
১২৩। কোনটিতে ক্লোরিনের	জারণ সংখ্যা সর্বাধিক?	Para la	[জা. বি. ২০১৭]
(ক) HClO	(খ) HClO ₂	(গ) HClO ₃	(ঘ) HClO ₄

	নিচের কোনটি সঠিক?		v	18 Thinks some
	ii ় i (ক)	(খ) ii ও iii	(গ) i ও iii	(ঘ) i, ii ও iii
१७१	ppm হলো—			[চ. বো. ২০১৬]
	(i) দ্রবণের ঘনমাত্রা প্রকা (iii) প্রতি মিলিয়ন ভাগ য় নিচের কোনটি সঠিক?			জাহাত কলিছে ''এৰ হা ; 'ক্ষেত্ৰৰ বিনাধা চল্লান
	(季) i ଓ ii	(খ) ii ও iii	(গ) i ও iii	(ঘ) i, ii ও iii
704		ার ppm এককে ঘনমাত্রা	ত্রে 2% NaOH এর 50 cm ³ সমান (ii) A ও B এর মিশ্র	দ্রবণ আছে— [কু. বো. ২০১৭] ণের প্রকৃতি নিরপেক্ষ
	(季) i ও ii	(খ) ji ও jij	(গ) i ও iii	(ঘ) i, ii ও iii
১৩৯	। দ্রবণের মোলারিটি পরিবর্ত		` '	[সি. বো. ২০১৭]
	(i) দ্রাবকের আয়তন নিচের কোনটি সঠিক?			
	i ଓ ii	(খ) ii ও iii	(গ) i ও iii	(ঘ) i, ii ও iii
780 1	(i) 0.1 M দ্রবণ (ii) 1. নিচের কোনটি সঠিক?	$06 \times 10^4 \text{ mgL}^{-1}$ (iii)) 1.06 ×10 ⁴ ppm	হবে— [দি. বো. ২০১৭]
	i v i (季)			(ঘ) i, ii ও iii
(খ)	রিডক্স বিক্রিয়া, বিয়ার-শ্য		টভিত্তিক :	
787 1				[রা. বো. ২০১৫]
	(i) ইলেকট্রন ত্যাগ করে নিচের কোনটি সঠিক?	(ii) জারিত হয়	(iii) ইলেক্ট্রন গ্রহণ করে	Fig. (6)
	ii v i (本)	(খ) ii ও iii	(গ) i ও iii	(ঘ) i, ii ও iii
१८५ ।	ব্লিচিং পাউডারে ক্লোরিনের	জারণ মান কত?		[দি. বো. ২০১৫]
	(i) + 1 নিচের কোনটি সঠিক?	(ii) 0	(ii) -1	
	ii v i (本)	(খ) ii ও iii	(গ) i ও iii	(ঘ) i, ii ও iii
1 086	H ₂ O ₂ এর রিডক্স বিক্রিয়া	য় উৎপাদে অক্সিজেনের জ	<u> লারণ সংখ্যা—</u>	[সি. বো. ২০১৬]
	(i) − 2 নিচের কোনটি সঠিক?	(ii) – 1	(iii) 0	nter di elitika peler
	(本) i ଓ ii	(খ) ii ও iii	(গ) i ও iii	(ঘ) i, ii ও iii
88	$2KMnO_4 + 3H_2SO_4 -$	$+5H_2C_2O_4 \longrightarrow 2M_1$	$nSO_4 + K_2SO_4 + 10CO_2$	বিক্রিয়াটিতে— [ঢা. বো. ২০১৬]
			(ii) H ₂ C ₂ O ₄ এ C এর জারণ	
	(iii) ব্যবহৃত H ₂ SO ₄ এব		then the	

	নিচের কোনটি সঠিক?			PROBER (FERN) SECTION
	(ক) i ও ii	(খ) ii ও iii	(গ) i ও iii	(ঘ) i, ii ও iii
1 384	$Fe^{2+} + Sn^{4+} \rightleftharpoons Fe^{3-}$	† + Sn ²⁺ বিক্রিয়াটিতে—	-	[কু. বো. ২০১৬]
	(i) Fe ²⁺ জারিত হয়েছে	(ii) Sn ²⁺ বিজারক (i	ii) Fe ³⁺ একটি ইলেকট্রন গ্রহ	ণ করেছে
	নিচের কোনটি সঠিক?	10		
		(খ) ii ও iii		(ঘ) i, ii ও iii
১ 8७ ।	$2Na_2S_2O_3 + I_2 \longrightarrow N$	la ₂ S ₄ O ₆ + 2NaI; এ বি	বিক্রিয়াটিতে—	[দি. বো. ২০১৬]
	(i) Na ₂ S ₂ O ₃ এর জারণ	ঘটেছে (ii) I2 এর বিজার	রণ ঘটেছে (iii) S এর জারণ	মান হ্রাস পেয়েছে
	নিচের কোনটি সঠিক?			
	, (ক) i ও ii	(খ) ii ও iii	(গ) i ও iii	(ঘ) i, ii ও iii
	রিডক্স বিক্রিয়াসমূহ—			বি. বো. ২০১৭
	(i) $CaCO_3 \xrightarrow{\Delta} CaO$	+ CO ₂	(ii) $H_2 + O_2 \longrightarrow H_2O$	केस्क्री विकास सम्बद्धाः वर्ता
	(iii) NaOH + HCl —	\rightarrow NaCl + H ₂ O	Page Street (4)	ARTIN ESTRIE III
	নিচের কোনটি সঠিক?			
	(季) ii		্গ) ii ও iii	(ম) i, ii ও iii
784	রিডক্স বিক্রিয়ায় টাইট্রেশ	ন ব্যবহৃত KMnO₄ দ্ৰব		Clear Tribby, Tel qui . 488
	(i) প্রাইমারি স্ট্যান্ডার্ড পদ	ার্থ	(ii) খনির্দেশকরূপে কাজ ব	করে
	(iii) অহ্লীয় মাধ্যম করতে	HCl এসিড ব্যবহার কর	া যায় না	100 (20)
	নিচের কোনটি সঠিক?		de Statione e es in	
	(ক) i ও ii	(খ) ii ও iii	(গ) i ও iii	(ঘ) i, ii ও iii
484	। বিয়ার-ল্যাম্বার্ট সূত্রের সাণে	থ সম্পর্কিত—		[রা. বো. ২০১৬]
	(i) একবর্ণী আলো		(ii) দ্রবণের ঘনমাত্রা	(iii) দ্রবণের তাপমাত্রা
	নিচের কোনটি সঠিক?			
		(খ) ii ও iii	(গ) i ও iii	(মৃ) i, ii ও iii
100	় । বিয়ার-ল্যাম্বার্ট সূত্রের সাহ			[চ. বো. ২০১৫; রা. বো. ২০১৯]
200	্রে দ্বলের ঘুরুমানা জান	যায় (ii) অণর আকতি	চ জানা যায় (iii) জৈবযৌগে	ার গঠন নির্ণয় করা যায়
	নিচের কোনটি সঠিক?	(11)	er disnie	1813)
	(本) i ও ii	(খ) ii ও iii	(গ) i ও iii	(ঘ) i, ii ও iii
8	ি ভিন্ন তথ্যভিত্তিক প্রশ্ন (Si	* * d	na le rei	
				[সি. বো.২০১৬]
	** নিচের উদ্দীপকের আলোকে ১৬১ ও ১৬২নং প্রশ্নের উত্তর দাও : াস. বো.২০১৬ 150 mL HNO3 এর দ্রবণে 1.5 g দ্রব আছে। দ্রবণটি 2% Na2CO3 দ্রবণকে প্রশমিত করলো।			
			2701142003411	* *)#E + dbsMJE #8
১৬১	। এসিড দ্রবণের ঘনমাত্রা (ক) 10 ⁵ ppm	ppm একংক কত্য (খ) 10 ⁴ ppm	(গ) 10 ³ ppm	(ঘ) 10 ² ppm

১৬২।	ক্ষারীয় দ্রবণটির ক্ষেত্রে প্র	যাজ্য—	सर नुस्कृत दिशाकित करा			
	(i) ঘনমাত্রা 0.189 M	(ii) আয়তন 37.3	mL (iii) আয়তন 57.6	mL		
	নিচের কোনটি সঠিক?		the Fort ward the li			
	(季) i ও ii	(খ) ii ও iii	(গ) i ও iii	(ঘ) i, ii ও iii		
	** একটি পাত্রে 50 mL 10% (w/v) Na ₂ CO ₃ দ্রবণ আছে। ২য় পাত্রে 2 M HCl দ্রবণ আছে। বি. বো. ২০১৫]					
	এ উদ্দীপকভিত্তিক ১৬৩ ও	১৬৪নং প্রশ্নের উত্তর দ	নাও :	(로) 는 (장)		
১৬৩।	ক্ষার দ্রবণটির ঘনমাত্রা মো	লারিটিতে কত?				
	(季) 0.047 M	(খ) 0.94 M	(গ) 1.24 M	(₹) 1.29 M		
१७८।	ক্ষার দ্রবণটিকে পূর্ণ প্রশমি	ত করতে এসিড দ্রবণের	া কত mL পরিমাণ দরকার	रतः		
	(季) 27 mL	(박) 35 mL	(গ) 47 mL	(된) 53 mL		
	** একটি পাত্রে 10% N	Ja ₂ CO ₃ দ্ৰবণ আছে।		[ঢা. বো. ২০১৭]		
	এ উদ্দীপকভিত্তিক ১৬৫ ও	। ১৬৬নং প্রশ্নের উত্তর ।	নাও :			
১৬৫।	উদ্দীপক দ্রবণের ঘনমাত্রা	কত?	i ledi - Alabok —	- the state of the		
	(本) 0.943 M	(খ) 1.06 M	(গ) 1.0 M	(되) 0.934 M		
୍ አሁሪ 1	উদ্দীপকের দ্রবণটির প্রকৃতি	Contract to the second		(III)		
	(i) অম্লীয়		(iii) নিরপেক্ষ	Serial Chief Serial		
9 SF	নিচের কোনটি সঠিক?	()	THE RESIDENCE OF THE PARTY OF T	Control of the Contro		
	(本) i	(খ) ii	(গ) iii	(ঘ) i, ii ও iii		
	** 2% HCl দ্ৰবণ 50	cm ³ 2% কস্টিক	সোডা দ্ৰবণ 50 cm ³	[কু. বো. ২০১৭]		
	উপরোক্ত উদ্দীপকভিত্তিক	১৬৭ ও ১৬৮নং প্রশ্নের	উত্তর দাও :			
১৬৭।	উদ্দীপকের দ্রবণ দৃটির ঘ	উদ্দীপকের দ্রবণ দুটির ঘনমাত্রার ক্ষেত্রে—				
	(i) উভয় দ্রবণের ঘনমাত্রা ppm এককে সমান (ii) মিশ্রিত দ্রবণের প্রকৃতি নিরপেক্ষ					
	(iii) উভয় দ্রবণের মোলার ঘনমাত্রা অসমান					
	নিচের কোনটি সঠিক?	51.153	A SERVICE THE TAILS	Particular Half (1)		
	(ক) i ও ii	(খ) ii ও iii	(গ) i ও iii	(ঘ) i, ii ও iii		
১৬৮।	২য় পাত্রের দ্রবণকে ডেসি	111 2 1	ন্বতে কৃত mL পানি যোগ			
	(季) 250 mL	(박) 200 mL	(গ) 100 mL	(되) 50 mL		
	** নিচের উদ্দীপক মতে		my and the personal production of the contract	[ব. বো. ২০১৭]		
	$Fe^{2+} + Cr_2O_7^{2-} + H^+ \longrightarrow A' + Cr^{3+} + H_2O$					
1681	উদ্দীপকের বিক্রিয়ায়—					
2017						
	(i) $\operatorname{Cr}_2\operatorname{O}_7^{2-}$ বিজারিত হয়েছে (ii) 'A' হলো জারক পদার্থ (iii) H^+ আয়ন বিজারক					
	নিচের কোনটি সঠিক?	The state of the state of				
	(ক) i ও ii	(খ) ii ও iii	(গ) i ও iii	(ঘ) i, ii ও iii		

1 00	উদ্দীপকের 20 mL 0.05	M জারক দ্রবণকে বিজারি	ত করতে কত mL ডেসিমোলা	র বিজারক দ্রবণ প্রয়োজন?	
	(季) 20 mL	(박) 40 mL	(গ) 60 mL	(된) 80 mL	
	** নিচের উদ্দীপকটি লক্ষ	্য করো এবং ১৭১ ও ১৭২০	নং প্রশ্নের উত্তর দাও :	[দি. বো. ২০১৭]	
	2KMnO ₄ + 10FeSO ₄	$+ 8H_2SO_4 \longrightarrow 5Fe_2$	$(SO_4)_3 + 2MnSO_4 + K_2S$	$SO_4 + 8H_2O$	
1 466	এক্ষেত্রে Mn এর জারণ স	ংখ্যা হ্রাস পেয়ে কোনটি হ	য়ছে?		
	(a) + 5	(খ) + 2	$(\mathfrak{I})+1$	(ঘ) – 1	
১१२ ।	এ বিক্রিয়াটিতে—		una estiste	St. Balloon of the State	
	(i) FeSO ₄ এর জারণ ঘটে	টছে (ii) KMnO4 জার	ক পদার্থ	Marine (Marine)	
	(iii) KMnO4 এক্ষেত্রে :	5টি ইলেকট্রন গ্রহণ করেছে	R		
	নিচের কোনটি সঠিক?			in Time	
	(ক) i ও ii	(খ) ii ও iii	(গ) i ও iii	(ঘ) i, ii ও iii	
	**নিচের উদ্দীপকের আর্লে	াকে ১৭৩ ও ১৭৪ নং প্রৱে	ার উত্তর দাও :	[য. বো. ২০১৬]	
	$Na_2S_2O_3 +$	$I_2 \longrightarrow Na_2S_4O_6 + 2$	NaI		
१ ७९८	বিক্রিয়াটির ধরন হলো—		er Damelon		
	(i) রিডক্স	(ii) আয়োডিমিতি	(iii) <mark>আয়োডোমিতি</mark>		
	নিচের কোনটি সঠিক?				
	(ক) i ও ii		(গ) i ও iii	(ঘ) i, ii ও iii	
1866	উদ্দীপকের বিক্রিয়ায় কোন	পদার্থটি জারিত হয়েছে?			
	(季) Na ₂ S ₂ O ₃			(ঘ) NaI	
	** নিচের উদ্দীপকভিত্তিক			যি. বো. ২০১৫]	
		$I_2 \longrightarrow Na_2S_4O_6 + 2$			
१ अ६९	উপরোক্ত বিক্রিয়ায় S এর	1,000		(7) 1 2 5	
	$(\overline{\Phi}) + 0.5$		$(\mathfrak{I})+2$	(য) + 2.5	
३१७ ।	নিচের বাক্যাংশ লক্ষ্য করে			TO A STATE THE TANK	
	(i) I_2 জারক (ii) I_2 এর জারণ ঘটেছে (iii) $Na_2S_2O_3$ বিজারক				
	নিচের কোনটি সঠিক?	The state of the s	Same and the second	(m)	
	(ক) i ও ii	The state of the s		(ঘ) i, ii ও iii	
	** নিচের উদ্দীপকভিত্তিক				
			$SO_4)_3 + K_2SO_4 + Cr_2(SO_4)_3 + K_2SO_5 + K_2S$	$(4)_3 + 7H_2O$	
	[FeSO ₄ এর আ. ভর =]	The second secon		ne diam't	
1 664			ম K ₂ Cr ₂ O ₇ দরকার হবে?		
	(季) 8.15 g		(গ) 4.0 g	(되) 4.90 g	
३१४।	নিচের কোন বাক্যাংশটি K ₂ Cr ₂ O ₇ এর বেলায় প্রযোজ্য নয়?				
	(ক) প্রাইমারি স্ট্যাভার্ড প		(খ) অশ্লীয় মাধ্যমের জন্য H		
	(গ) রিডক্স টাইট্রেশনে স্বর্নি	নর্দেশক	(ঘ) KMnO ₄ থেকে দুৰ্বল ড	<u> </u>	

```
** নিচের উদ্দীপকভিত্তিক ১৭৯ ও ১৮০নং প্রশ্নের উত্তর দাও :
                                                                            চি. বো. ২০১৭
     2KMnO_4 + 8H_2SO_4 + 10FeSO_4 \longrightarrow 5Fe_2(SO_4)_3 + 2MnSO_4 + K_2SO_4 + 8H_2O_4
১৭৯। উদ্দীপকের বিক্রিয়ায় কত মোল ইলেকটন আদান-প্রদান হয়েছে?
      (季) 1 mol
                          (খ) 3 mol
                                           (গ) 6 mol
                                                                  (되) 10 mol
১৮০। বিক্রিয়াটিতে H2SO4 এর ভূমিকা কোনটি?
                          (খ) বিজারক
                                          (গ) অশ্রীয় মাধ্যম
                                                                  (ঘ) নিরুদক
      (ক) জারক
      ** নিচের উদ্দীপক সংশিষ্ট ১৮১ ও ১৮২ নং প্রশ্নের উত্তর দাও।
                                                                             যি, বো. ২০১৯)
     আয়রন (III) অক্সাইড A + HC1 \longrightarrow B + H_2O
১৮১। 'A' যৌগের অমুত্র কত?
                             (划)4
                                                 (গ) 5
                                                                     (到)6
      (季) 3
১৮২। 'B' যৌগের জলীয় দ্রবণের প্রকৃতি কীরূপ?
      (ক) অপ্ৰীয়
                             (খ) ক্ষারীয়
                                                                     (ঘ) কোনোটিই নয়
                                                 (গ) প্রশম
                                বহুনির্বাচনি প্রশ্নাবলির উত্তরমালা
\Box সাধারণ বহুনির্বাচনি প্রশ্নের উত্তর : ১।(ঘ) ২।(ঘ) ৩।(খ) ৪।(ঘ) ৫।(ক) ৬।(ঘ) ৭।(ঘ)
         ১। (গ)
                 ১০।(খ)
                          22 | (작)
                                   ১২।(খ) ১৩।(খ) ১৪।(ঘ)
                                                              ১৫।(ঘ) ১৬।(ক)
৮।(খ)
                                                                               (本)(本)
১৮। (ঘ) ১৯। (খ) ২০। (খ) ২১। (খ) ২২। (খ) ২৩। (ক) ২৪। (ক)
                                                              २৫।(१) २७।(क) २१।(घ)
২৮।(গ) ২৯।(ঘ) ৩০।(গ) ৩১।(খ) ৩২।(গ) ৩৩।(গ) ৩৪।(ঘ) ৩৫।(ক) ৩৬।(গ) ৩৭।(ক)
৩৮।(ঘ) ৩৯।(গ) ৪০।(ক) ৪১।(খ) ৪২।(ঘ) ৪৩।(ক) ৪৪।(গ)
                                                              ৪৫। (क) ৪৬। (গ) ৪৭। (গ)
৪৮। (খ) ৪৯। (গ)
                 ৫০।(क) ৫১।(গ) ৫২।(क) ৫৩।(क) ৫৪।(খ)
                                                              ৫৫।(घ) ৫৬।(খ) ৫৭।(क)
৫৮।(খ) ৫৯।(খ) ৬০।(খ) ৬১।(ঘ) ৬২।(খ) ৬৩।(ঘ) ৬৪।(খ) ৬৫।(ঘ) ৬৬।(খ) ৬৭।(ঘ)
৬৮।(ঘ) ৬৯।(ক) ৭০।(ঘ) ৭১।গ)
                                   ৭২।(খ) 🛦 ৭৩।(গ) 98।(ক)
                                                              ৭৫।(ক) ৭৬।(খ) ৭৭।(ঘ)
৭৮। (ক) ৭৯। (ক)
                 bo।(খ) ৮১।(গ) ৮২।(ক) ৮৩।(ঘ) ৮৪।(ক)
                                                             be!(१) be!(४) be!(१)
৮৮।(ক) ৮৯।(ক) ৯০।(ক) ৯১।(খ)
                                   ৯২।(গ) ৯৩।(গ) ৯৪।(গ)
                                                              ৯৫।(ঘ) ৯৬।(গ) ৯৭।(খ)
৯৮। (ক) ৯৯। (গ) ১০০ (খ)
                          202 (()
                                   ১০২।(গ) ১০৩।(খ) ১০৪।(ঘ)
                                                              ১०৫।(१)
১১৫ i(ক) ১১৬ i(গ) ১১৭ i(ক) ১১৮ i(ক) ১১৯ i(ক) ১২০ i(খ) ১২১ i(খ) ১২২ i(গ) ১২৩ i(ঘ) ১২৪ i(ক)
১২৬।(ঘ)
🗖 বহুপদি সমাপ্তিসূচক বহুনির্বাচনি প্রশ্নের উত্তর : ১৩১। (ঘ) ১৩২। (ঘ) ১৩৩। (ঘ) ১৩৪। (ঘ) ১৩৫। (ঘ)
১৩৬।(ক) ১৩৭।(ঘ) ১৩৮।(গ) ১৩৯।(ঘ) ১৪০।(ঘ) ১৪১।(ক) ১৪২।(গ) ১৪৩।(গ) ১৪৪।(ক) ১৪৫।(ঘ)
১৪৬।(ক) ১৪৭।(ক) ১৪৮।(খ) ১৪৯।(ক) ১৫০।(ঘ)
🗖 অভিন্ন তথ্যভিত্তিক বহুনির্বাচনি প্রশ্নের উত্তর : ১৬১। (খ) ১৬২। (গ) ১৬৩। (খ) ১৬৪। (গ) ১৬৫। (ক)
১৬৬।(খ) ১৬৭।(গ) ১৬৮।(খ) ১৬৯ (ক) ১৭০।(গ) ১৭১।(ক) ১<del>৭</del>ই।(ঘ) ১৭৩।(ক) ১৭৪।(ক) ১৭৫।(ক)
১৭৬। (খ) ১৭৭। (ঘ) ১৭৮। (গ) ১৭৯। (ঘ) ১৮০। (গ) ১৮১। (ঘ) ১৮২। (ক)
```

(ঘ) বিভাগ: সূজনশীল প্রশ্ন (CQ)

১। নিচের উদ্দীপকটি অনুধাবন করো এবং সংশ্রিষ্ট প্রশ্নের উত্তর দাও:

বি. বো. ২০১৬

The state of the s	
টাইট্রেশনে ব্যবহৃত এসিড ও ক্ষার দ্রবণ :	ব্যবহৃত নির্দেশক :
0.1 M HCl দ্রবণ দ্বারা NaOH দ্রবণের ঘনমাত্রা নির্ণয়	মিথাইল অরেঞ্জ
0.1 M HCl দ্রবণ দারা NH4OH দ্রবণের ঘনমাত্রা নির্ণয়	মিথাইল অরেঞ্জ
0.1 M CH3COOH দ্রবণ দ্বারা NaOH দ্রবণের ঘনমাত্রা নির্ণয়	ফেনলফথ্যালিন

- (ক) জারক পদার্থ কী?
- (খ) $Na_2S_2O_3$ যৌগে S এর জারণ সংখ্যা বের করো।
- (গ) উদ্দীপকে উল্লেখিত শক্তিশালী এসিডের ঘনমাত্রা ppm এককে নির্ণয় করো। 🕃: 3650 ppm]
- (ঘ) ওপরের উদ্দীপকে তিনটি টাইট্রেশন ভিন্ন ভিন্ন নির্দেশক ব্যবহারের কারণ বিশ্লেষণ করো।

প্রদত্ত উদ্দীপকটি অনুধাবন করে সংশ্রিষ্ট প্রশ্নের উত্তর দাও: **ا** چ

[ঢা. বো. ২০১৭]

10 mL 0.5 M Na₂CO₂ 'B'

নির্দেশকের বর্ণ পরিবর্তনের pH পরিসর মিথাইল অরেজ: 3.1 - 4.4 (ফনলফথ্যালিন: 8.3 - 0.0

- (ক) প্রমাণ দ্রবণ কী?
- (খ) মোলার দ্রবণের ঘনমাত্রা তাপমাত্রা নির্ভরশীল, ব্যাখ্যা করো।
- (গ) উদ্দীপকের দ্রবণ দুটিকে মিশ্রিত করলে মিশ্রণের ঘনমাত্রা কত হবে?
- (ঘ) উদ্দীপকের প্রমাণ দ্রবণ দ্বারা সেকেন্ডারি দ্রবণকে টাইট্রেশন করতে উল্লেখিত নির্দেশক দুটিকে ব্যবহার করা যাবে কীনা, তা প্রশমন রেখাচিত্রের সাহায্যে ব্যাখ্যা করো।

৩। নিচের উদ্দীপকটি অনুধাবন করে সংশ্রিষ্ট প্রশ্নের উত্তর দাও:

অভিন্ন বোর্ড-২০১৮

টাইট্রেশনে ব্যবহৃত এসিড ও ক্ষার : নির্দেশক (P) : বর্ণ পরিবর্তন pH = 3.0 - 6.5

- (১) তীব্র এসিড (A) + (B) মৃদু ক্ষার
- নিৰ্দেশক (Q) : বৰ্ণ পরিবর্তন pH = 6.6 9.2
- (২) মৃদু এসিড (X) + (Y) দ্বি-অম্লীয় তীব্ৰ ক্ষার নির্দেশক (R) : বর্ণ পরিবর্তন pH = 8.3 10.0
- (ক) কার্বোক্যাটায়ন কাকে বলে?
- (খ) অ্যালকাইন-। অমুধর্মী কেন ব্যাখ্যা করো।
- (গ) উদ্দীপকের 'Y' এর ঘনমাত্রা 0.05 M হলে এর pH মনে হিসাব করো।
- (ঘ) উদ্দীপকের (১) নং টাইট্রেশনে উপরোক্ত তিনটি নির্দেশকের মধ্যে কোনটি উপযুক্ত হবে. তা তোমার উত্তরের সপক্ষে বিশ্বেষণ করে।
- প্রদত্ত উদ্দীপকটি অনুধাবন করে সংশ্রিষ্ট প্রশ্নের উত্তর দাও। 8 I

রা, বো, ২০১৭

40 mL সেমিমোলার HCl soln.

100 mL ডেসিমোলার Na₂CO₂

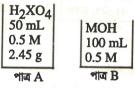
- (ক) আয়োডোমিতি কী?
- (খ) অশ্লীয় KMnO₄ জারক কেন?
- (গ) উদ্দীপকের এসিড দ্রবণকে 400 মিলিলিটার দ্রবণে পরিণত করলে ঘনমাত্রার পরিবর্তন কত হবে? 🕃: 0.05 M
- (ঘ) প্রশমন রেখার সাহায্যে উদ্দীপকের এসিড-ক্ষার টাইট্রেশনে ব্যবহৃত উপযুক্ত নির্দেশক কোনটি হবে তা যৌক্তিকভাবে বিশ্রেষণ করো।

ে। নিচের উদ্দীপকভিত্তিক সংশ্লিষ্ট প্রশ্লের উত্তর দাও।


ঢা, বো. ২০২৩

- (ক) রেসিমিক মিশ্রণ কী?
- (খ) 5 mol চিনি ও 10 mol পানি এর মিশ্রণে চিনির মোল ভগ্নাংশ কত?
- (গ) উদ্দীপকের B-পাত্রের দ্রবণকে সম্পূর্ণরূপে প্রশমিত করতে A-পাত্রের সম্পূর্ণ দ্রবণের প্রয়োজন হলে ঐ দ্রবণে দ্রবীভূত KOH এর পরিমাণ নির্ণয় করো।
- (ঘ) পাত্র-A এর দ্রবণকে পাত্র B এর দ্রবণ দ্বারা টাইট্রেট করতে কোন নির্দেশক উপযোগী? নির্দেশক লেখচিত্রের সাহায্যে ব্যাখ্যা করো।

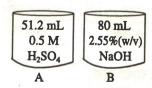
৬। নিচের উদ্দীপকটি অনুধাবন করে সংশ্রিষ্ট প্রশ্নের উত্তর দাও।


[সি. বো. ২০১৫; দি. বো. ২০১৯]

- (ক) প্রাইমারি স্ট্যান্ডার্ড পদার্থ কী?
- (খ) বিয়ার-ল্যাম্বার্টের সমীকরণটি লেখ এবং এটির প্রত্যেক পদের পরিচয় দাও।
- (গ) উদ্দীপকের B পাত্রের দ্রবণ তৈরিতে কী পরিমাণ MOH দ্রব প্রয়োজন?
- ্ঘি) উদ্দীপকের A পাত্রের দ্রবণে B পাত্রের দ্রবণ মিশালে মিশ্রিত দ্রবণ লিটমাস নিরপেক্ষ, অম্রীয় বা ক্ষারীয় কোনটি হবে তা গাণিতিকভাবে ব্যাখ্যা করো।

নিচের উদ্দীপকটি অনুধাবন করে সংশ্রিষ্ট প্রশ্নের উত্তর দাও।

[দি. বো. ২০১৬]

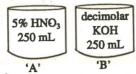


- (ক) সেকেন্ডারি স্ট্যান্ডার্ড পদার্থ কী?
- (খ) K₂Cr₂O₇ একটি জারক; ব্যাখ্যা করো।
- (গ) H₂XO₄ যৌগের আণবিক ভর গণনা করো। 👿: 98] [দি. বো. ২০১৬]
- (ঘ) উদ্দীপকের পাত্রদ্বয়ের দ্রবণ মিশ্রিত করলে মিশ্রণের প্রকৃতি কীরূপ হবে; তা বিশ্লেষণ করো।

স। প্রদত্ত উদ্দীপকটি অনুধাবন করে সংশ্রিষ্ট প্রশ্নের উত্তর দাও:

[অনুরূপ : ঢা. বো. ২০২২; ব. বো. ২০১৭;

অনুরূপ: ম. বো. ২০২৩]


- (ক) বিয়ারের সূত্রটি কী?
- (খ) K2Cr2O7 একটি জারক; ব্যাখ্যা করো।

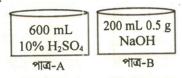
(গ) উদ্দীপকের 'B' পাত্রের দ্রবণের ঘনমাত্রা ppm এককে নির্ণয় করে। [উ: 25,500 ppm]

উদ্দীপকের পাত্রদ্বয়ের দ্রবণ মিশ্রিত করলে মিশ্রণের প্রকৃতি কীরূপ হবে; তা বিশ্লেষণ করো।
 টি: নিরপেক্ষা

৯। প্রদত্ত উদ্দীপকটি অনুধাবন করে সংশ্রিষ্ট প্রশ্নের উত্তর দও:

[সি. বো. ২০১৭]

(ক) বিশোষণ মাত্রা বা অ্যাবজরব্যান্স কী?


(খ) $Na_2S_2O_3$ যৌগে S এর জারণ-সংখ্যা নির্ণয় করো।

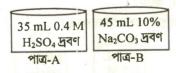
(গ) উদ্দীপকের 'A' দ্রবণের ঘনমাত্রা ppm এককে নির্ণয় করো। 🕃: 49,997 ppm]

(घ) উদ্দীপকের উভয় দ্রবণ মিশ্রিত করলে মিশ্রণের প্রকৃতি কীরূপ হবে; তা বিশ্রেষণ করো। **ডি:** অশ্লীয়]

১০। নিচের উদ্দীপকভিত্তিক সংশ্লিষ্ট প্রশ্নের উত্তর দাও:

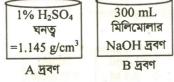
[ঢা. বো. ২০২৩; অনুরূপ: রা. বো. ২০২৩]

(ক) মোল ভগ্নাংশ কাকে বলে?


(খ) "নমুনা পানির BOD 10 ppm বলতে কী বুঝ?

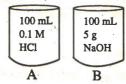
(গ) উদ্দীপকের A ও B পাত্রের দ্রবণের টাইট্রেশনে কোনটি উপযুক্ত নির্দেশক হবে? ব্যাখ্যা করো।

(ঘ) উদ্দীপকের A ও B-পাত্রের মিশ্র দ্রবণের pH এর মান কেমন হবে? গাণিতিকভাবে বিশ্লেষণ করো।


১১। নিচের উদ্দীপকভিত্তিক সংশ্রিষ্ট প্রশ্নের উত্তর দাও:

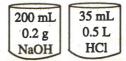
[ব. বো. ২০২৩]

- (ক) ফ্রি-রেডিকেল কাকে বলে?
- (খ) AlCl3 এর জলীয় দ্রবণ অন্নীয়; ব্যাখ্যা করো।
- (গ) উদ্দীপকের পাত্র A এর দ্রবণের ঘনমাত্রা ppm এককে নির্ণয় করো।
- (ঘ) উদ্দীপকের দ্রবণদ্বয়কে একত্রে মিশ্রিত করলে মিশ্রিত দ্রবণের প্রকৃতি কীরূপ হবে? গাণিতিকভাবে বিশ্লেষণ করো।
- ১২। নিচের উদ্দীপকভিত্তিক সংশ্লিষ্ট প্রশ্লের উত্তর দাও :


- (ক) হেটারোসাইক্লিক যৌগ কী?
- (খ) ধাতুর ক্ষয় একটি রাসায়নিক প্রক্রিয়া; ব্যাখ্যা করো।
- (গ) উদ্দীপকের এসিড দ্রবণে এসিডের মোলারিটি নির্ণয় করো।

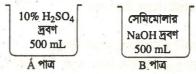
টি: 0.1168 M] [মূল পাঠ্য বইয়ে সমাধানকৃত সমস্যা ৩.৩৪ এর অনুরূপ]

(ঘ) B-দ্রবণে 100 mL A দ্রবণের এসিড মিশ্রিত করলে মিশ্রণের প্রকৃতি কীরূপ হবে? গাণিতিকভাবে বিশ্লেষণ করো।


১৩। নিচের উদ্দীপকটি অনুধাবন করে সংশ্রিষ্ট প্রশ্নের উত্তর দাও:

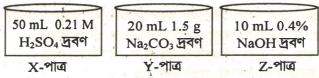
[মা. বো. (খ) ২০১৮]

- (ক) বিয়ার-ল্যাম্বার্টের সূত্র কী?
- (খ) সেমিমোলার দ্রবণ একটি প্রমাণ দ্রবণ; ব্যাখ্যা করো।
- (গ) উদ্দীপকের 'B' পাত্রের দ্রবণে ঘনমাত্রা ppm এককে হিসাব করো
- (ঘ) উদ্দীপকের 'A' ও 'B' পাত্রের দ্রবণের মিশ্রণের pH মান 7 পেতে কী করা প্রয়োজন; তা গাণিতিকভাবে বিশ্লেষণ করো। সংকেত: সমাধানকৃত সমস্যা-৩.৪৯ দেখো।
- ১৪। প্রদত্ত উদ্দীপকটি অনুধাবন করে সংশ্রিষ্ট প্রশ্নের উত্তর দাও:


যি. বো. ২০১৭

- (ক) আয়োডিমিতি কী?
- (খ) দ্রবণের মোল ভগ্নাংশ ঘনমাত্রা তাপমাত্রা নির্ভর কীনা, ব্যাখ্যা করো।
- (গ) উদ্দীপকের ক্ষার দ্রবণের ঘনমাত্রা ppb এককে গণনা করো। $[\mathbf{S}: 1 \times 10^7 \text{ppb}]$
- (ঘ) উদ্দীপকের উভয় দ্রবণকে একত্রে মিশ্রিত করলে ঐ মিশ্রণে কোন প্রকার লিটমাস কাগজের বর্ণ পরিবর্তন ঘটবে তা বিশ্বেষণ করো। [ড়: নীল লিটমাস লাল]

১৫। নিচের উদ্দীপকটি অনুধাবন করে সংশ্লিষ্ট প্রশ্নের উত্তর দাও:


[সি. বো. ২০১৬]

- (ক) প্রমাণ দ্রবণ কী?
- (খ) জারণ ও বিজারণ এক সাথে ঘটে; তা ব্যাখ্যা করো।
- (গ) উদ্দীপকে A পাত্রে কতটুকু পানি মিশালে তা সেমিমোলার দ্রবণে পরিণত হবে? 🐯: 520 mL]
- (ঘ) উদ্দীপকের A পাত্রের দ্রবণে B পাত্রের দ্রবণ মিশ্রিত করলে মিশ্রিত দ্রবণের প্রকৃতি কীরূপ হবে; তা গাণিতিকভাবে মূল্যায়ন করো।

১৬। নিচের উদ্দীপকভিত্তিক সংশ্লিষ্ট প্রশ্নের উত্তর দাও।

[সি. বো. ২০২৩]

- (ক) ভায়াস্টেরিওমার কী?
- (খ) Cu-এর বিজারণ বিভব + 0.34 V বলতে কী বুঝ?
- (গ) Z-পাত্রে 40 mL পানি যোগ করলে দ্রবণের ঘনমাত্রা কত ppm হবে? হিসাব করো।
- ্(ঘ) উদ্দীপকের X-পাত্রের দ্রবণে Y ও Z-পাত্রের দ্রবণ যোগ করলে মিশ্রণের প্রকৃতি কীরূপ হবে তা বিশ্লেষণ করো।

১৭। নিচের উদ্দীপকটি অনুধাবন করে সংশ্রিষ্ট প্রশ্নের উত্তর দাও:

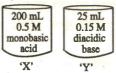
[কু. বো. ২০১৬]

- (ক) বিজারক কী?
- (খ) HPLC এর বৈশিষ্ট্য কী; ব্যাখ্যা করো।
- (গ) উদ্দীপকের B পাত্রের দ্রবণের ঘনমাত্রা ppm এককে নির্ণয় করো।
- (ঘ) উদ্দীপকের D পাত্রের মিশ্র দ্রবণের pH কীরূপ হবে, তা বিশ্লেষণ করো।

ডি: 1000 ppm] বি. বো. ২০১৯]

১৮ ৷ নিচের উদ্দীপকভিত্তিক সংশ্রিষ্ট প্রশ্নের উত্তর দাও:

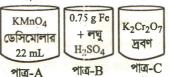
- (ক) সেমিমোলার দ্রবণ কাকে বলে?
- (খ) স্টার্চ ও সেলুলোজের মধ্যে পার্থক্য লেখ।
- (গ) উদ্দীপকের 'A' পাত্রের দ্রবণের ঘনমাত্রা ppm এককে নির্ণয় করো।
- (ঘ) উদ্দীপকের A ও B পাত্রের দ্রবণ একত্রে মিশ্রিত করলে মিশ্রণের p^H কত হবে তা গাণিতিকভাবে বিশ্রেষণ করো।



প্রদত্ত উদ্দীপকটি অনুধাবন করে সংশ্রিষ্ট প্রশ্নের উত্তর দাও:

[কু. বো. ২০১৭]

- বিয়ার-ল্যাম্বার্ট সূত্র কী?
- 0.1M Na₂CO₃ দ্রবণ একটি প্রমাণ দ্রবণ; ব্যাখ্যা করো। (খ)
- 'A' পাত্রের দ্রবণের ঘনমাত্রা ppm এককে নির্ণয় করো। 🖫 14,700 ppm]
- 'A' ও 'B' পাত্রের দ্রবণকে মিশ্রিত করলে ঐ মিশ্রণে এসিড বা ক্ষার দ্রবণের ঘনমাত্রার পরিবর্তন বিশ্লেষণ করো। দি. বো. ২০১৭


২০ ৷ প্রদত্ত উদ্দীপকটি অনুধাবন করে সংশ্লিষ্ট প্রশ্নের উত্তর দাও :

- (ক) দর্শক আয়ন কী?
- (খ) দুর্বল এসিড ও সবল ক্ষারের টাইট্রেশন ফেনলফখ্যালিন নির্দেশকরূপে ব্যবহৃত হয়; ব্যাখ্যা করো।
- (গ) উদ্দীপকের 'X' দ্রবণটিকে কীরূপে ডেসিমোলার দ্রবণে পরিণত করবে?
- (ঘ) 'Y' দ্রবণ দ্বারা 'X' দ্রবণ পূর্ণ প্রশমিত হবে কী না; তা বিশ্লেষণ করো।

২১ ৷ প্রদত্ত উদ্দীপকটি অনুধাবন করে সংশ্রিষ্ট প্রশ্নের উত্তর দাও:

[দি. বো. ২০১৯]

- (ক) পেপটাইড বন্ধন কাকে বলে?
- (খ) मिथाटेल प्रामिन प्रानिलिन प्राप्तिक क्रांतीय, न्याध्या करता।
- (গ) পাত্র-B ও পাত্র-C এর মিশ্র দ্রবণে সংঘটিত বিক্রিয়াটি আয়ন ইলেকট্রন পদ্ধতিতে সমতা বিধান করো।
- (ঘ) উদ্দীপকের নমুনা Fe-এর বিশুদ্ধতা গাণিতিকভাবে যাচাই করো।

২২। প্রদত্ত উদ্দীপকভিত্তিক সংশ্রিষ্ট প্রশ্নের উত্তর দাও:

[অনুরূপ: কু. বো. ২০২৩; ব. বো. ২০১৯]

- (ক) মুক্তমূলক কী?
- (খ) তড়িৎ কোষে লবণসেতুর ভূমিকা ব্যাখ্যা করো।
- (গ) 'A' যৌগের সাথে উদ্দীপকের বিজারক পদার্থটির বিক্রিয়া আয়ন ইলেকট্রন পদ্ধতিতে সমতা সাধন করো।
- (ঘ) উদ্দীপকের বিজারক পদার্থটিকে জারিত করতে KMnO₄ এর কত আয়তন প্রয়োজন হবে তা গাণিতিকভাবে বিশ্লেষণ করো।

২৩।নিচের রাসায়নিক বিক্রিয়াভিত্তিক উদ্দীপ<mark>কটি অনুধাবন করে প্রশ্নের উত্তর দাও:</mark>

[ঢা. বো. ২০১৯]

- (5) $Fe^{2+} + MnO_4^- + H^+ \longrightarrow Fe^{3+} + Mn^{2+} + H_2O$
- $(3) I_2 + S_2 O_3^{2-} \longrightarrow S_4 O_6^{2-} + \Gamma$
- (\circ) H-COOH + Na₂CO₃ \longrightarrow H-COONa + CO₂ + H₂O
- (ক) ETP কাকে বলে?
- (খ) লেদার ট্যানিং-এ NaCl ব্যবহার করা হয় কেন?
- (গ) উদ্দীপকের (১) নং বিক্রিয়ায় জারক ও বিজারক পদার্থ চিহ্নিতকরণ এবং তা কারণসহ বর্ণনা করো।
- (ঘ) উদ্দীপকের (২) ও (৩) নং বিক্রিয়া এ ধরনের কীনা, তা বিশ্লেষণ করো।

সিংকেত: সমাধানকৃত সমস্যা-৩.৬২ দেখো।]

২৪। নিচের উদ্দীপক মতে সংশ্রিষ্ট প্রশ্নের উত্তর দাও।

[রা. বো. ২০২২]

১নং দ্রবণ : 5 g লোহার আকরিক + 150 mL H₂SO₄

২নং দ্রবণ : 0.03 M 25 mL K₂Cr₂O₇ দ্রবণ

তনং দ্রবণ : KI ওঁড়া ও লঘু H₂SO₄ এর দ্রবণ

8নং দ্রবণ : KMnO4 এর দ্রবণ

- (ক) (CH₃)₃COH এর IUPAC নাম লেখ।
- (খ) দুটি যৌগ কখন এনানসিওমার হয়; ব্যাখ্যা করো।
- (গ) উদ্দীপকের ৩নং ও ৪নং দ্রবণ মিশ্রিত করলে সংঘটিত বিক্রিয়া আয়ন-ইলেকট্রন পদ্ধতিতে সমতাকরণ করো।
- (ঘ) ১নং দ্রবণ হতে 30 mL কে জারিত করতে ২নং দ্রবণ দরকার হলো। তাহলে লোহার আকরিকে ভেজালের শতকরা পরিমাণ কত? সমস্যা-৩.৭৭ এর অনুরূপ]

২৫। নিচের উদ্দীপক মতে সংশ্লিষ্ট প্রশ্নের উত্তর দাও।

[য. বো. ২০২২]

১নং দ্রবণ : KMnO4 এর দ্রবণ

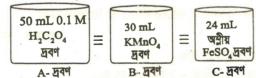
২নং দ্রবণ : 0.52 g Fe + লঘু H₂SO₄

৩নং দ্রবণ : 2.94 g K₂Cr₂O₇ এর 100 mL দ্রবণ

- (ক) প্যারাফিন কী?
- (খ) তড়িৎকোষে লবণসেতৃ ব্যবহারের কারণ ব্যাখ্যা করো।

- (গ) ১নং ও ২নং দ্রবণের মিশ্রণে সংঘটিত বিক্রিয়ার সমতাকৃত সমীকরণ লেখ।
- (ঘ) ২নং দ্রবণকে সম্পূর্ণ জারিত করতে ৩নং দ্রবণের 10 mL প্রয়োজন হলে লোহার বিশুদ্ধতা গাণিতিকভাবে বিশ্বেষণ করো।
- ২৬। 60~mL ডেসিমোলার KMnO_4 দ্রবণ দ্বারা লঘু H_2SO_4 দ্রবণে দ্রবীভূত এক টুকরা লোহার দ্রবণকে পূর্ণ জারিত করা হলো :
 - (ক) ppm কী?
 - (খ) FeSO₄ একটি বিজারক; ব্যাখ্যা করো।
 - (গ) উদ্দীপক মতে লোহার ভর নির্ণয় করো। 🕃: 1.676 g]
 - (ঘ) জারক হিসাবে এক্ষেত্রে $K_2Cr_2O_7$ ব্যবহার করলে অর্ধ-বিক্রিয়াসহ সংশ্লিষ্ট বিক্রিয়াটি জারক ও বিজারকের মোল অনুপাত বিশ্লেষণ করো।

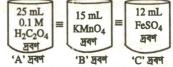
২৭। নিচের উদ্দীপকটি অনুধাবন করে সংশ্রিষ্ট প্রশ্নের উত্তর দাও।


[ঢা. বো. ২০১৬]

- (ক) রিডক্স বিক্রিয়া কী?
- খে) উত্তপ্ত গাঢ় NaOH ও Cl2 এর বিক্রিয়াটি একটি অসামঞ্জস্যতা বিক্রিয়া; ব্যাখ্যা করো।
- (গ) উদ্দীপকের বিক্রিয়ার সমতা সাধন আয়ন-ইলেকট্রন পদ্ধতিতে করো।
- (ঘ) উদ্দীপকের $KMnO_4$ এর ছলে $K_2Cr_2O_7$ ব্যবহার করে কীভাবে আয়রনের পরিমাণ নির্ণয় করা যায়; তা বিশ্রেষণ করো।

২৮। নিচের উদ্দীপকটি অনুধাবন করে সংশ্রিষ্ট প্রশ্নের উত্তর দাও:

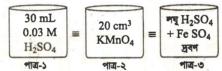
[অনুরূপ: ঢা. বো. ২০২২]



- (ক) সেমিমোলার দ্রবণ কী?
- খে) ${\rm Fe}^{2+}$ আয়ন অবছাভেদে জারক ও বিজারক উভয়ন্ধপে ক্রিয়া করে; তা ব্যাখ্যা করো।
- (গ) উদ্দীপকের A দ্রবণ ও B দ্রবণের রিডক্স বিক্রিয়াকে আয়ন-ইলেকট্রন পদ্ধতিতে সমতাযুক্ত আণবিক সমীকরণ প্রতিষ্ঠা করো।
- (ঘ) উদ্দীপকের A দ্রবণ ও B দ্রবণ ব্যবহার করে C দ্রবণে লোহার পরিমাণ গাণিতিকভাবে নির্ণয় করো।

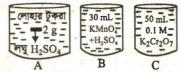
5: $0.067M \text{ KMnO}_4 = 0.5628 \text{ g Fe}^{2+}$

২৯। উদ্দীপকটি অনুধাবন করে সংশ্রিষ্ট প্রশ্নের উত্তর দাও:


[য. বো. ২০২৩, ২০১৭]

- (ক) সেকেন্ডারি স্ট্যান্ডার্ড পদার্থ কী?
- (খ) नघू H2SO4 এর সাথে Cu এর বিক্রিয়া ঘটে না কেন, ব্যাখ্যা করো।
- (গ) উদ্দীপকে উল্লিখিত B দ্রবণের সাহায্যে C দ্রবণের Fe এর পরিমাণ নির্ণয় করো।
- (ঘ) A ও B দ্রবণকে মিশ্রিত করলে সংঘটিত বিক্রিয়াটি আয়ন ইলেকট্রন পদ্ধতিতে সমতা সাধন করো এবং রিডক্স বিক্রিয়া যুগপৎ সংঘটিত হয়, তা বিশ্লেষণ করো।

৩০। উদ্দীপক সংশ্রিষ্ট প্রশ্নের উত্তর দাও।


দি, বো. ২০২১; সি. বো. ২০২১

- (ক) কার্বানায়ন কী?
- (খ) সমগোত্রীয় শ্রেণি কাকে বলে? ব্যাখ্যা করো।
- (গ) উদ্দীপকের পাত্র-১ এবং পাত্র-২ এর দ্রবণদ্বয়কে মিশ্রিত করলে সংঘটিত বিক্রিয়া আয়ন-ইলেকট্রন পদ্ধতিতে সমতা বিধান করো।
- (ঘ) উদ্দীপকের পাত্র-১ এবং পাত্র-২ এর দ্রবণের সাহায্যে পাত্র-৩ এর দ্রবণে আয়নের পরিমাণ গণনা করা সম্ভব; তা ব্যাখ্যা করো।

৩১। নিচের উদ্দীপকটি অনুধাবন করে সংশ্লিষ্ট প্রশ্লের উত্তর দাও:

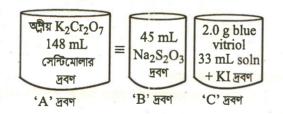
[অভিন্ন বোর্ড-২০১৮]

- (ক) HPLC এর পুরো নাম কী?
- (খ) Na2CO3 কে প্রাইমারি স্ট্যান্ডার্ড পদার্থ বলা হয় কেন?
- (গ) উদ্দীপকের 'B' পাত্রের দ্রবণে H_2S গ্যাস চালনা করলে সংঘটিত রিডক্স বিক্রিয়া আয়ন ইলেকট্রন পদ্ধতিতে সমতা বিধান করো।
- (ঘ) উদ্দীপকের 'A' পাত্রের এসিডে যোগ করা লোহা বিশুদ্ধ কীনা, তা গাণিতিকভাবে বিশ্লেষণ করো।

[সংকেত: সমাধানকৃত সমস্যা-৩.৭০ দেখো]

৩২। উদ্দীপকটি অনুধাবন করে সংশ্রিষ্ট প্রশ্নের উত্তর দাও:

নি. বো. ২০১৭



- (ক) প্রাইমারি স্ট্যান্ডার্ড পদার্থ কী?
- (খ) LiAlH4 এর কেন্দ্রীয় পরমাণুর জারণ সংখ্যা নির্ণয় করো।
- (গ) উদ্দীপকের Y ও Z দ্রবণের মিশ্রণে সংঘটিত বিক্রিয়াটির আয়ন-ইলেক্ট্রন পদ্ধতিতে সমতা বিধান করো।
- (घ) 'X' ও 'Y' দ্রবণের সাহায্যে 'Z' দ্রবণে Fe এর পরিমাণ গণনা করো। ডি: 0.2235 g Fe]
- ৩৩। 3.04 g ব্লিচিং পাউডার পানিতে দ্রবীভূত করে 400 mL দ্রবণ তৈরি করা হলো। ঐ দ্রবণের 25 mL দ্রবণকে আয়োডোমিতিক পদ্ধতিতে টাইট্রেশন করতে 0.075 M Na₂S₂O₃ দ্রবণের 40 mL প্রয়োজন হলো। এ উদ্দীপকভিত্তিক সংশ্রিষ্ট প্রশ্নের উত্তর দাও
 - (ক) ল্যাম্বার্টের সূত্রটি লেখ।
 - (খ) সেমিমোলার দ্রবণ একটি প্রমাণ দ্রবণ; ব্যাখ্যা করো।
 - (গ) উদ্দীপকে ব্লিচিং পাউডারে সক্রিয় ক্লোরিনের পরিমাণ নির্ণয় করো। 🕃: 1.704 g]
 - ্ঘ) উদ্দীপকের আয়োডোমিতিক পদ্ধতিতে Fe³⁺ আয়নের পরিমাণ নির্ণয়ের মাত্রিক সম্পর্ক প্রতিষ্ঠা করো।

[সমাধানকৃত সমস্যা-৩.৮০ দেখো।]

৩৪। উদ্দীপকটি অনুধাবন করে সংশ্রিষ্ট প্রশ্নের উত্তর দাও।

বি. বো. ২০১৭

- (ক) মোল কী?
- (খ) দ্রবণের ppm একক বলতে কী বুঝ?
- (গ) উদ্দীপকের প্রাইমারি স্ট্যান্ডার্ড দ্রবণটি দ্বারা থায়ো দ্রবণের টাইট্রেশনে KI দ্রবণের প্রয়োজনীয়তা ব্যাখ্যা করো।
- (ঘ) উদ্দীপকের C দ্রবণ দ্বারা B দ্রবণকে সম্পূর্ণরূপে জারিত করা সম্ভব কীনা; তা বিশ্লেষণ করো।

৩৫। উদ্দীপকটি অনুধাবন করে সংশ্রিষ্ট প্রশ্নের উত্তর দাও।

চ. বো. ২০১৭]

- (ক) জারণ-সংখ্যা কী?
- (খ) সীমিত বিক্রিয়ক কী? তা উদাহরণসহ ব্যাখ্যা করো।
- (গ) উদ্দীপকের প্রমাণ দ্রবণটিকে কীভাবে সেন্টিমোলার দ্রবণে পরিণত করা যায়? টি: 1900 mL পানি যোগ হবে।]
- (ঘ) উদ্দীপকের দ্রবণগুলো ব্যবহার করে অবিশুদ্ধ কপারে ভেজালের শতকরা পরিমাণ হিসাব করো। **ডি:** 2.246% ভেজাল

৩৬। নিচের উদ্দীপকভিত্তিক সংশ্লিষ্ট প্রশ্নের উত্তর দাও।

[কু. বো. ২০১৯]

$$A \longrightarrow XSO_4$$
 দ্রবণ, 'X' এর পা. ভর = 63.5; $B \longrightarrow KI$ দ্রবণ

C → 50 mL 0.02 M Na₂S₂O₃ দ্ৰবণ

- (ক) HPLC এর পূর্ণরূপ লেখ।
- (খ) গ্যালভানিক কোষে কয়টি প্রকোষ্ঠ থাকে? ব্যাখ্যা করো।
- (গ) উদ্দীপকের 'C' দ্রবণের ঘনমাত্রা ppm এককে নির্ণয় করো।
- (ঘ) উদ্দীপকের X^{2+} আয়নের পরিমাণ নির্ণয়ে 'B' দ্রবণের প্রয়োজন আছে কীনা এর যৌক্তিকতা বিক্রিয়াসহকারে বিশ্রেষণ করে।

চতুর্থ অধ্যায় তড়িৎ রসায়ন

Electro-chemistry

ভূমিকা (Introduction)

তড়িৎ বা বিদ্যুৎ বলতে ইলেকট্রন প্রবাহকে বোঝানো হয়। সব Redox বিক্রিয়ায় ইলেকট্রনের ছানান্তর ঘটে। Redox বিক্রিয়ার ছানান্তরিত ইলেকট্রনকে বাহ্যিক পরিবাহীতে প্রবাহিত করার প্রক্রিয়া হলো তড়িৎকোষ। এক্ষেত্রে তড়িৎকোষে রাসায়নিক বিক্রিয়া বা Redox বিক্রিয়ার শক্তি বৈদ্যুতিক শক্তিতে রূপান্তরিত হয়। টর্চ লাইটে ব্যবহৃত শুদ্ধ ব্যাটারি, ক্যালকুলেটরে ব্যবহৃত Ni-Cd ব্যাটারি, হার্টপেচ মেকার ও ঘড়িতে ব্যবহৃত Li-ব্যাটারি, ল্যাপটপ, সেলফোন, ডিজিটেল ক্যামেরায় ব্যবহৃত লিখিয়াম-আয়ন ব্যাটারি,

অধ্যায়ের প্রধান শব্দসমূহ (Key Words) : তড়িৎ পরিবাহী, তড়িৎ-বিশ্লেষ্য, ফ্যারাডে, ধাতুর সক্রিয়তা সিরিজ, জারণ অর্ধকোষ, বিজারণ অর্ধকোষ, লবণসেতু, তড়িৎদ্বার বিভব, কোষ বিভব, প্রাইমারি কোষ, সেকেন্ডারি কোষ, ফুয়েল সেল।

শিখনফল: এ অধ্যায় পাঠশেষে শিক্ষার্থীরা—

- তড়িৎ পরিবাহী ও এর প্রকারভেদ ব্যাখ্যা করতে পারবে।
- ২. তড়িৎ-বিশ্লেষ্যের পরিবাহিতা ব্যাখ্যা করতে পারবে।
- ৩. ব্যবহারিক : পরীক্ষার মাধ্যমে বিভিন্ন দ্রবণের পরিবাহিতার পার্থক্য দেখাতে এবং তীব্র ও দুর্বল তড়িৎ-বিশ্লেষ্য এবং তড়িৎ-অবিশ্লেষ্য চিহ্নিত করতে পারবে।
- ফ্যারাডের প্রথম সূত্র প্রয়োগ করে তড়িৎ-বিশ্রেষ্য পদার্থের পরিমাণ নির্ণয় বর্ণনা করতে পারবে।
- ধাতুর সক্রিয়তা সিরিজ বর্ণনা করতে পারবে।
- ব্যবহারিক : ধাতুর তুলনামূলক সক্রিয়তা পরীক্ষার মাধ্যমে দেখাতে পারবে।
- জারণ অর্ধবিক্রিয়া ও বিজারণ অর্ধবিক্রিয়া এবং তড়িৎদ্বার বিভব ব্যাখ্যা করতে পারবে।
- b. তড়িৎদ্বার বিভবের সাথে ধাতুর সক্রিয়তা সিরিজের সম্পর্ক বর্ণনা করতে পারবে।
- ৯. Redox বিক্রিয়া ও কোষ বিভব ও প্রমাণ কোষ বিভব ব্যাখ্যা করতে পারবে।
- ১০. তড়িৎদার এবং কোষের বিভবসংক্রান্ত নার্নস্ট সমীকরণ ব্যাখ্যা করতে পারবে।
- ১১. তড়িৎদার ও এর প্রকারভেদ বর্ণনা করতে পারবে।
- ব্যবহারিক : ধাতু-ধাতব আয়ন তড়িৎদ্বার গঠন করতে পারবে।
- ১৩. ব্যবহারিক : দুটি তড়িৎদ্বারের সাহায্যে কোষ গঠন করে রাসায়নিক শক্তিকে বিদ্যুৎশক্তিতে রূপান্তরিত করে দেখাতে পারবে।
- ১৪. এক ও দুই প্রকোষ্ঠবিশিষ্ট তড়িৎ-রাসায়নিক কোষের গঠন ব্যাখ্যা করতে পারবে।
- ১৫. রিচার্জেবল (লেড স্টোরেজ ও লিথিয়াম) ব্যাটারির কার্যপ্রণালি এবং রিচার্জ প্রক্রিয়া ব্যাখ্যা করতে পারবে।
- ১৬. লেড স্টোরেজ এবং লিথিয়াম ব্যাটারি ব্যবহারের সুবিধা অসুবিধা বর্ণনা করতে পারবে।
- ১৭. ফুয়েল সেলের প্রকারভেদ এবং বিভিন্ন ফুয়েল সেলের অ্যানোড, ক্যাথোড ও ফুয়েল উল্লেখ করতে পারবে।
- ১৮. হাইড্রোজেন ফুয়েল সেলের গঠন, সংঘটিত বিক্রিয়া ও এর সুবিধা ব্যাখ্যা করতে পারবে।
- ১৯. pH মিটারের সাহায্যে কোনো দ্রবণের pH নির্ণয়ের কৌশল ব্যাখ্যা করতে পারবে।

8.১ তডিৎ পরিবাহী ও এর প্রকারভেদ

Electric-Conductors and their Classification

'বিদ্যুতের তার' এ শব্দ দুটি আমাদের খুবই পরিচিত শব্দ। ঘরে, অফিসে, কারখানার বিদ্যুতের তার (wire) হলো 'কপার ধাতুর' এবং রাল্ভায় বিদ্যুৎ বা তড়িৎ-প্রবাহের মোটা 'তার' কয়েকটি ধাতুর সংমিশ্রণে তৈরি 'ধাতু সংকর'। সব ধাতু কম-বেশি তড়িৎ পরিবাহী। ধাতু ছাড়া 'গ্রাফাইট' এবং এসিড, ক্ষার, আয়নিক যৌগ যেমন, NaCl এর জলীয় দ্রবণ বা গলিত NaCl এর মধ্যদিয়ে তড়িৎ চলাচল করতে পারে।

তড়িৎ পরিবাহী: যেসব ধাতব-অধাতব পদার্থের মধ্যদিয়ে তড়িৎ চলাচল করতে পারে, এদেরকে তড়িৎ পরিবাহী (electric conductors) বলে। যেমন, 'কপার তার' হলো ধাতব পরিবাহী; গ্রাফাইট হলো অধাতব পরিবাহী। তরল পদার্থ পারদ বা মার্কারি তড়িৎ পরিবহণ করে।

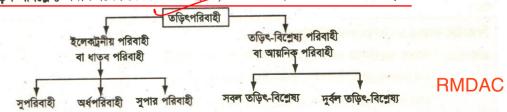
তড়িং অপরিবাহী: যেসব পদার্থের ভেতর দিয়ে তড়িং প্রবাহিত হতে পারে না, এদেরকে অপরিবাহী বা ইনসুলেটর (insulator) বলে। 'ইলেকট্রিক তার' এর ওপর প্রাস্টিক অথবা রাবারের যে আবরণ দেয়া হয়, এরা হলো তড়িং অপরিবাহী বা ইনসুলেটর।

* তড়িং পরিবাহীর শ্রেণিবিভাগ: তড়িং পরিবাহীকে তিন শ্রেণিতে ভাগ করা হয়। যেমন,

(১) তড়িৎ সুপরিবাহী, (২) তড়িৎ অর্ধপরিবাহী ও (৩) সুপার পরিবাহী বা সুপার কভাব্টর।

(১) তড়িৎ সুপরিবাহী: যেসব ধাতু যেমন কপার, অ্যাল্মিনিয়াম, আয়রন, জিঙ্ক, সিলভার ইত্যাদি সহজে বিদ্যুৎ পরিবহণ করতে পারে, এদেরকে তড়িৎ সুপরিবাহী (good conductor) বলা হয়। MAT (21-22)

- (২) অর্ধপরিবাহী বা সেমিকভাক্টর : তড়িৎ পরিবাহী ও তড়িৎ অপরিবাহী বা ইনস্লেটর—এ দুয়ের মাঝামাঝি পরিবাহিতা শুণসম্পন্ন কিছু পদার্থ আছে, এদেরকে অর্ধপরিবাহী বা সেমিকভাক্টর (semiconductors) বলা হয়। পর্যায় সারণির গ্রুপ IV A (14) এর সিলিকন (Si) ও জার্মেনিয়াম (Ge)-এসব অর্ধধাতু বা মেটালয়েড হলো সেমিকভাক্টর।
- (৩) সুপার কডাব্টর : বর্তমানে সুপার পরিবাহী বা সুপার কডাব্টর নামক বিশেষ তড়িৎ পরিবাহী আবিষ্কৃত হয়েছে। এসব সুপার কডাব্টর হলো সংকর ধাতু ও সংকর ধাতুর অক্সাইড। এদের নির্দিষ্ট একটি সন্ধি তাপমাত্রা T_c (Super conducting transition temperature) নামক নিমতাপমাত্রা থাকে; ঐ তাপমাত্রার নিচে এসব ধাতব পরিবাহীর কোনো বিদ্যুৎ রোধ থাকে না। যেমন, Nb_3Ge এর T_c হলো 23.2~K এবং $YBa_2Cu_3O_7$ এর $T_c=90~K$ । এসব সুপার কডাব্টরের মধ্যদিয়ে কোনো শক্তির অপচয় (loss) ছাড়া তড়িৎ অনায়াসে চলতে পারে।
- * ত<u>ড়িৎ পরিবাহীর প্রকারভেদ</u> : তড়িৎ পরিবহণের মেকানিজমের ভিন্নতার ওপর ভিত্তি করে তড়িৎ পরিবাহী মূলত দু'প্রকার। যেমন—(১) ইলেকট্রনীয় বা ধাতব পরিবাহী ও (২) তড়িৎ-বিশ্লেষ্য পরিবাহী।


ইলেকট্রনীয় বা ধাতব পরিবাহী: কঠিন ধাতব ও অধাতব তড়িৎ পরিবাহীকে ইলেকট্রনীয় পরিবাহী বা ধাতব পরিবাহী বলে। যেমন, কপার ধাতু ও গ্রাফাইট অধাতু হলেও ইলেকট্রনীয় পরিবাহী।

- বৈশিষ্ট্য : (১) এসব কঠিন পদার্থে পরমাণুর বহিঞ্জেরে এক বা একাধিক সঞ্চরণশীল ইলেকট্রন থাকে। তাই এসব পরিবাহীর এক প্রান্তে তড়িৎক্ষেত্র এর মধ্যদিয়ে তড়িৎ বা বিদ্যুৎ পরিবহণকালে জারণ-বিজারণ বিক্রিয়া ঘটে। তাই এদের এরপ নামকরণ হয়েছে।
- (২) এসর তড়িং-বিশ্রেষ্য আয়নিক যৌগ গলিত অবছায় এবং জলীয় দ্রবণে এদের উভয় প্রকার আয়নগুলা কেলাস ল্যাটিস (lattice) বা কেলাস জালি থেকে মুক্ত হয়ে ধনাত্মক ও ঋণাত্মক আয়নরূপে তরল মাধ্যমে সঞ্চরণশীল থাকে বলে তড়িং পরিবহণ করতে পারে।
- (৩) জলীয় দ্রবণে আয়নিক যৌগের ও পোলার সমযোজী যৌগের ধনাত্মক ও ঋণাত্মক আয়নগুলো যথাক্রমে ইলেকট্রন গ্রহণ ও বর্জন করে অর্থাৎ রাসায়নিক পরিবর্তনের মাধ্যমে তড়িৎ পরিবহণ করে থাকে। তাই এরূপ তড়িৎ পরিবাহীকে তড়িৎ-বিশ্লেষ্য পরিবাহী (electrolyte) বা আয়নিক পরিবাহী বলে।

তড়িং-বিশ্লেষ্যের শ্রেণিবিভাগ : কঠিন পরিবাহীর মতে পদার্থের জলীয় দ্রবণও সবল তড়িং-বিশ্লেষ্য (strong electrolyte), দুর্বল তড়িং-বিশ্লেষ্য (weak electrolyte) ও তড়িং-অবিশ্লেষ্য (non-electrolyte)—এ তিন শ্রেণিতে

বিভক্ত। যেসব আ<u>য়নিক যৌগ জলীয় দ্রবণে প্রায় 70% –100%</u> পরিমাণে আয়নিত হয়, এরা **হলো সবল তড়িৎ-বিশ্লেষ্য** যে<u>মন, KCl, NaCl, HCl, H</u>2SO4, NaOH, KOH ইত্যাদির দ্রবণ।

অপর্যদিকে যেসব যৌগ খুব কম পরিমাণে যেমন 1% –10% দ্রবণে আয়নিত হয়, এদেরকে **দুর্বল তড়িং-বিশ্রেষ্য** বলে। যেমন, 0.1M CH₃COOH, HF দ্রবণ। আবার যেসব যৌগ পানিতে আয়নিত হয় না; তাই তড়িং পরিবহণ করতে পারে না, এদেরকে তড়িং-অবিশ্রেষ্য পদার্থ বলে। যেমন– চিনির দ্রবণ, স্ফালকোহল, তরল হাইড্রোকার্বনসমূহ।

জেনে নাও :

- * ধাতব বন্ধনে আবদ্ধ ধাতুর কেলাস জালির (crystal lattice) মধ্যে থাকা মুক্ত ইলেকট্রনগুলো তড়িৎ পরিবহণ করে থাকে।
- কঠিন আয়নিক যৌগের কেলাস জালিতে ধনাতাক ও ঋণাতাক আয়ন আবদ্ধ থাকে; এদের কোনো মুক্ত ইলেকট্রন
 থাকে না। তাই কঠিন আয়নিক যৌগ তড়িৎ পরিবহণ করতে পারে না। কঠিন আয়নিক যৌগ তড়িৎ অপরিবাহী।
- * দ্রবণে বা গলিত অবস্থায় আয়নিক যৌগের ধনাত্মক আয়ন ও ঋণাত্মক আয়নগুলো কেলাস জালি থেকে মুক্ত হয়ে সচল হয়। তখন বিপরীতধর্মী আয়নগুলো তড়িৎ পরিবহণ করতে পারে। এ অবস্থায় আয়নগুলোর মধ্যে তড়িৎ শক্তির প্রভাবে জারণ বিজারণ ঘটে। তাই আয়নিক যৌগের জলীয় দ্রবণ ও গলিত অবস্থায় তড়িৎ পরিবহণ করাকে তড়িৎ-বিশ্রেষণ বলে এবং ঐ রূপ পরিবাহীকে তড়িৎ-বিশ্রেষ্য পরিবাহী বলে।
- গ্রাফাইট হলো কার্বনের একটি বহুরপ। এটিতে sp² সংকরিত কার্বন পরমাণুগুলোর একটি করে মুক্ত ইলেকট্রন
 থাকে। তাই গ্রাফাইট তড়িৎ পরিবাহী হয়। গ্রাফাইট হলো অধাতব ইলেকট্রনীয় পরিবাহী।
- ব্যতিক্রম: পারদ (Hg) তরল ধাতু হলেও এটি একটি ইলেকট্রনীয় তড়িৎ পরিবাহী।

8.১.১ ধাতব বা ইলেকট্রনীয় পরিবাহী ও তড়িৎ-বিশ্লেষ্য পরিবাহীর মধ্যে পার্থক্য

Differences between Electronic & Electrolytic conductors

- ১। ধাতব বা ইলেকট্রনীয় পরিবাহীতে সঞ্চরণশীল ইলেকট্রন দারা তড়িৎ প্রবাহ চলে। অপরদিকে তড়িৎ-বিশ্রেষ্যের সঞ্চরণশীল ধনাত্মক ও ঋণাত্মক আয়ন দারা তড়িৎ প্রবাহ ঘটে।
- ২। ইলেকট্রনীয় পরিবাহীতে তড়িৎ প্রবাহ একটি ভৌত প্রক্রিয়া, এতে তাপমাত্রার পরিবর্তন ঘটে মাত্র; সংশ্লিষ্ট পরমাণুতে ইলেকট্রনের গ্রহণ বা বর্জন বা শেয়ার ঘটে না।

অপরদিকে তড়িৎ-বিশ্লেষ্য পরিবাহীতে তড়িৎ পরিবহণ একটি **রাসায়নিক প্রক্রিয়া**, এতে সংশ্লিষ্ট <mark>আয়ন দ্বারা ইলেকট্রন</mark> গ্রহণ বা বর্জন ঘটে।

৩। <u>তাপমাত্রা বন্ধির সাথে ধাতব পরিবাহীর তড়িৎ পরিবহণ ক্ষমতা হ্রাস পায়।</u>

অপরদিকে তাপমাত্রা বৃদ্ধির ফলে তড়িৎ-বিশ্লেষ্যের তড়িৎ পরিবহণ ক্ষমতা বৃদ্ধি পায়। কারণ তাপমাত্রা বৃদ্ধিতে আয়নসমূহের গতি বৃদ্ধি পায়।

- ৪। ধাতব পরিবাহীর ক্ষেত্রে **কুলম্বের সূত্র** প্রযোজ্য ; অপ্রদিকে, তড়িৎ-বিশ্লেষ্য পরিবাহীর ক্ষেত্রে ফ্যারাডের সূত্র প্রযোজ্য।
 - ৫। ইলেকট্রনীয় পরিবাহীতে তড়িৎ প**রিবহণ ক্ষমতা** তড়িৎ-বিশ্লেষ্য পরিবাহীর তুলনায় অনেক গুণ বেশি থাকে।
- ৬। ধাতব পরিবাহীগুলো ধাতু অথবা গ্রাফাইট কার্বন হয়। অপরদিকে তড়িৎ-বিশ্লেষ্য পরিবাহী আয়নিক যৌগ বা পোলার সমযোজী যৌগের দ্রবণ হয়।

জেনে নাও: তাপমাত্রা বন্ধিতে ধাতর বা ইলেকট্রনীয় পরিবাহীর তডিং প্রবাহ হাস পায় কেন?

কারণ তাপমাত্রা বন্ধির ফলে ধাতুর কেলাস ল্যাটিস বা কেলাস জালিকার নির্দিষ্ট অবস্থানে থাকা ধনাত্মক আয়নগুলো (বা positive cores) তাদের অবস্থানের আশেপাশে দোদুল্যমান (oscillating) অবস্থায় থাকে। তখন দোদুল্যমান ধনাতাক আয়নগুলোর সাথে গতিশীল বা ডিলোকালাইজড ইলেকট্রনগুলো ধাক্কা খেতে থাকে। ফলে ইলেকট্রনসমূহের গতি হাস পায়। অর্থাৎ ধাতুর রোধ বা resistance বেডে যায়। তাই তাপমাত্রা বন্ধির সাথে ইলেকটেনীয় পরিবাহী বা ধাতুর তড়িৎ প্রবাহ হাস পায়।

শিক্ষার্থীর কাজ-৪ ১ : তডিৎ পরিবাহীভিন্তিক :

প্রশ্ন-৪.১: নিচের পদার্থসমূহ কোন শ্রেণির পরিবাহী, তা ব্যাখ্যা করো:

[অনধাবনভিত্তিক]

- (ক) কপার তার, গ্রাফাইট, কেরোসিন, NaOH দ্রবণ।
- (খ) কঠিন NaCl. হীরক, গ্রাফাইট, গলিত CaCla I

প্রশ্ন-৪.২ : ইলেকট্রনীয় বা ধাতব পরিবাহী ও তড়িৎ-বিশ্রেষ্য পরিবাহীর মধ্যে পার্থক্যসমূহ লেখ।

[অনধাবনভিত্তিক]

প্রশ্ন-৪.৩ : এফাইট বিদ্যুৎ পরিবাহী, কিন্তু হীরক বিদ্যুৎ অপরিবাহী; ব্যাখ্যা করো।

[অনধাবনভিত্তিক]

৪.২ তডিৎ-বিশ্রেষ্যের পরিবাহিতা

Conductance or Conductivity of Electrolytes

এখন আমরা তড়িৎ-বিশ্রেষ্য পদার্থসমূহ কাঁরূপে তড়িৎ পরিবঁহণ করে, তা নিচের ব্যাখ্যা থেকে জানতে পারবো।

তড়িৎ-বিশ্রেম্যের পরিবাহিতার সংজ্ঞা: আয়নিক যৌগের জলীয় দ্রবণে অথবা গলিত অবস্থায় তড়িৎ বা বিদ্যুৎ পরিবহণ করার ক্ষমতাকে তডিৎ-বিশ্রেষ্যের পরিবাহিতা বলে। পরিমাণগতভাবে তডিৎ-বিশ্রেষ্যের রোধের বাস্তানপাতিক হলো ঐ তডিৎ-বিশ্রেষ্যের পরিবাহিতা। তডিৎ-বিশ্রেষ্য পরিবাহীর মধ্যদিয়ে তডিৎ প্রবাহিত হওয়ার কালে আয়নগুলো দ্বারা তডিৎ বহনের বিরুদ্ধে ঐ পরিবাহী যে বাধা সৃষ্টি করে, তাকে ঐ তড়ি**ং-বিশ্রেষ্য পরিবাহীর রো**ধ বলে। যেমন, কোনো তডিং-

বিশ্রেষ্যের রোধ R এবং পরিবাহিতা L হলে , তখন $L=rac{1}{R}$; পরিবাহিতার একক $=rac{1}{$ রোধের একক

CGS পদ্ধতিতে পরিবাহিতার একক হলো ওম $^{-1}$ (ohm $^{-1}$) বা , mho = Ω^{-1} । SI পদ্ধতিতে পরিবাহিতার একক হলো সিমেনস্ (Siemens)। সিমেনস্কে S প্রতীক দ্বারা প্রকাশ করা হয়। 1S=1 ohm $^{-1}=1$ $\Omega^{-1}=1$ mho

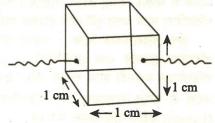
- * তডিৎ-বিশ্রেষ্য দ্রবণের মধ্যদিয়ে তডিৎ প্রবাহ ওমের সূত্র মেনে চলে।
- * তড়িৎ-বিশ্লেষ্যের ধনাতাক ও ঋণাতাক আয়নগুলো দ্রবণ বা তরল মাধ্যমে প্রবাহিত হওয়ার সময় তরল মাধ্যম আয়নগুলোর গতির বিপরীতে বাধা সৃষ্টি করে। তরল মাধ্যমে প্রাপ্ত তড়িৎ-বিশ্লেষ্যের আয়নগুলোর গতির বাধাকে ঐ তড়িৎ-বিশেষেরে রোধ বলে।
- * কঠিন পরিবাহীর বেলায় রোধ (resistance) যেমন, পরিমাপ করা হয়, তেমনি তড়িৎ-বিশ্লেষ্যের বেলায় রোধের পরিবর্তে পরিবাহিতা (conductance) পরিমাপ করা হয়।

৪.২.১ তডিৎ-বিশ্রেষ্যের পরিবাহিতার প্রকারভেদ

Different Types of Conductivity

বিভিন্ন পদার্থের তড়িৎ পরিবাহিতার তুলনা করার জন্য তাদের তড়িৎ পরিবাহিতাকে নিম্নোক্ত তিন প্রকারে প্রকাশ বা গণনা করা হয়। যেমন----

- (১) তড়িৎ-বিশ্লেষ্যের আপেক্ষিক পরিবাহিতা (Specific Conductance), κ (Kappa)
- (২) তড়িৎ-বিশ্লেষ্যের তুল্য পরিবাহিতা (Equivalent Conductance), Λ (Lamda)
- (৩) তড়িৎ-বিশ্লেষ্যের মোলার পরিবাহিতা (Molar Conductance), $\Lambda_{\rm m}$ $\overline{\triangleleft}$, μ (Mu)


(১) তড়িৎ-বিশ্লেষ্যের আপেক্ষিক পরিবাহিতা : ওমের সূত্র অনুসারে, l cm. দূরে অবস্থিত ও A cm 2 প্রস্থাচ্ছেদবিশিষ্ট দূটি ধাতব তড়িৎদ্বারের মধ্যবর্তী কোনো তড়িৎ-বিশ্লেষ্য দ্রবণের রোধ যদি R

হয়, তবে

$$R \alpha \frac{l}{A}$$
; বা, $R = \rho \times \frac{l}{A}$ (1)

এ সমীকরণে 'o' (rho) একটি সমানুপাতিক ধ্রুবক।

এ ধ্রুবকটিকে তড়িৎ-বিশ্লেষ্য দ্রবণের আপেক্ষিক রোধ বলা হয়। অপর কথায়, যখন $l=1~{
m cm}$ এবং $A=1~{
m cm}^2$ হয়, তখন $R=\rho$ হয়। সুতরাং $1~{
m cm}$ দূরত্বে থাকা ও $1~{
m cm}^2$ প্রস্থচ্ছেদবিশিষ্ট দুটি তড়িংদ্বারের মধ্যবর্তী

চিত্র-৪.১ : আপেক্ষিক রোধ

MCO-4.1 : SI পদ্ধতিতে

(খ) ohm⁻¹

(**旬**) Ω⁻¹

পরিবাহিতার একক কোনটি?

তড়িৎ-বিশ্লেষ্য দ্রবণের রোধকে ঐ তড়িৎ-বিশ্লেষ্যের আপেক্ষিক রোধ (p) বলে। আপে<mark>ক্ষিক রোধের বিপরীত রাশিকে</mark> আপেক্ষিক পরিবাহিতা বলা হয়।

আপেক্ষিক পরিবাহিতার সংজ্ঞা : এক সেন্টিমিটার দূরত্বে থাকা ও এক বর্গসেন্টিমিটার ক্ষেত্রফলবিশিষ্ট দুটি তড়িৎদারের মধ্যবর্তী অংশের তড়িৎ-বিশ্লেষ্য দ্রবণের পরিবাহিতাকে ঐ তড়িৎ-বিশ্লেষ্যের আপেক্ষিক পরিবাহিতা বলে। অপর কথায়, কোনো তড়িৎ-বিশ্লেষ্যের এক ঘন সেন্টিমিটার আয়তনের পরিবাহিতাকে ঐ তড়িৎ-বিশ্লেষ্যের আপেক্ষিক পরিবাহিতা বলে। আপেক্ষিক পরিবাহিতাকে κ (Kappa) প্রতীক দ্বারা প্রকাশ করা হয়।

∴ আপেক্ষিক পরিবাহিতা,
$$\kappa = \frac{1}{\rho}$$
(2)

(1) নং সমীকরণ থেকে 'ρ' এর মান (2) নং সমীকরণে বসিয়ে পাই,

$$\kappa = \left(\frac{1}{R}\right) \times \frac{l}{A}; \quad \text{If } \kappa = L \times \frac{l}{A} \dots (3)$$

[যেহেতু দ্রবণের পরিবাহিতা , $L = \frac{1}{R}$]

আপেক্ষিক পরিবাহিতার একক : আমরা জানি , আপেক্ষিক পরিবাহিতা , $\kappa = L imes rac{l}{A}$

 \therefore CGS পদ্ধতিতে আপেক্ষিক পরিবাহিতা κ এর একক = $\frac{1}{R} \times \frac{1}{A}$

$$= rac{1}{ রোধের একক} imes rac{ দৈর্ঘ্যের একক}{ ক্ষেত্রফলের একক} = rac{1}{ ওম} imes rac{ সেমি}{ (সেমি)^2} = ওম^{-1} সেমি^{-1} ext{ (ohm}^{-1} ext{ cm}^{-1}) ext{ বা , mho. cm}^{-1}$$

(**季**) S

(গ) mho

 \therefore SI এককে আপেক্ষিক পরিবাহিতার একক = সিমেনস্ $\times \frac{17018}{(\overline{\lambda \nu})^2} = \mathrm{Sm}^{-1}$

জেনে নাও : কোনো তড়িৎ-বিশ্লেষ্যের পরিবাহিতা ও আপেক্ষিক পরিবাহিতা নিম্নোক্ত বিষয়ের ওপর নির্ভর করে।

(১) তড়িৎ-বিশ্লেষ্যের উপস্থিত আয়নের সংখ্যা, (২) আয়নগুলোর চার্জ বা আধান, (৩) আয়নগুলোর আকার, (৪) আয়নগুলোর গতিবেগ, (৫) তাপমাত্রা, (৬) দ্রবণের গাঢ়ত্ব, (৭) দ্রাবকের প্রকৃতি [দ্রাবক তড়িৎ-বিশ্লেষ্যের ক্যাটায়ন ও অ্যানায়নগুলোকে আকর্ষণ করে পরস্পর থেকে বিচ্ছিন্ন হতে সাহায্য করে। তড়িৎ-বিশ্লেষ্যের বিপরীতধর্মী আয়নগুলোকে বিচ্ছিন্ন করার ক্ষমতাকে দ্রাবকের ডাই-ইলেকট্রিক প্রবক বলে। এটির মান যত বেশি হয়, তড়িৎ-বিশ্লেষ্য ঐ দ্রাবকে তত বেশি আয়নিত হয়। ফলে তড়িৎ পরিবাহিতা বৃদ্ধি পায়। যেমন, পানির ডাই-ইলেকট্রিক প্রবক হলো ৮০ এবং মিথাইল ব্যালকোহলের ৩০। তাই তড়িৎ-বিশ্লেষ্য পানিতে বেশি আয়নিত হয়।

(২) তড়িৎ-বিশ্লেষ্যের তুল্য পরিবাহিতা : তড়িৎ-বিশ্লেষ্যের পরিবাহিতা নির্ণয়ের ক্ষেত্রে তড়িৎ-বিশ্লেষ্যের পরিমাণ নির্দিষ্ট না থাকায় বিভিন্ন তড়িৎ-বিশ্লেষ্যের পরিবাহিতা সঠিকভাবে তুলনা করা যায় না। এজন্যে তুল্য পরিবাহিতা ও মোলার পরিবাহিতা নামে অপর দুটি রাশি ব্যবহৃত হয়ে থাকে।

তুল্য পরিবাহিতার সংজ্ঞা : কোনো তড়িৎ-বিশ্লেষ্যের এক গ্রাম তুল্যভর পরিমাণের দ্রবণকে এক সেন্টিমিটার $(1~{\rm cm})$ দূরত্বে থাকা দূটি উপযুক্ত তড়িংদ্বারের মধ্যবর্তী ছানে রাখলে তড়িং প্রবাহে দ্রবণটির যে পরিবাহিতা হয়, তাকে ঐ তড়িং-বিশ্লেষ্যের তুল্য পরিবাহিতা বলে। তুল্য পরিবাহিতাকে Λ (Lamda) প্রতীক দ্বারা প্রকাশ করা হয়।

যদি এক গ্রাম তুল্য তড়িৎ-বিশ্লেষ্য $V \ cm^3$ দ্রবণে থাকে এবং দ্রবণের আপেক্ষিক পরিবাহিতা κ (Kappa) হয়, তখন তুল্য পরিবাহিতা, $\Lambda = \kappa \times \frac{1}{1000}$ তুল্য পরিবাহিতা κ (V) আর্থাৎ এ সমীকরণ থেকে বোঝা যায়, তড়িৎ-বিশ্লেষ্য দ্রবণের আপেক্ষিক পরিবাহিতার মান পাওয়া যায়। পরিবাহিতা (κ) কে দ্রবণের মোট আয়তন (ν) দ্বারা গুণ করলে তুল্য পরিবাহিতার মান পাওয়া যায়।

চিত্র-৪.২: 4 cm³ আয়তনের দ্রবণের 1.0 গ্রাম তুল্যভর গড়ি বিশ্লেষ্য আছে। ∴ A = 4 k

** তড়িৎ-বিশ্লেষ্যের তুল্য পরিবাহিতা ও আপেক্ষিক পরিবাহিতার মধ্যে সম্পর্ক :

মনে করি, এক গ্রাম তুল্যুভর একটি তড়িৎ-বিশ্লেষ্য $4~\rm cm^3$ পানিতে দ্রবীভূত করে দ্রবণ তৈরি করা হলো। [আণবিক ভরকে ক্যাটায়নের মোট চার্জ সংখ্যা দ্বারা ভাগ করলে ঐ যৌগের তুল্যুভর পাওয়া যায়। যেমন Na_2CO_3 এর তুল্যুভর হলো $(106 \div 2) = 53$ ।] এ দ্রবণটিকে $1~\rm cm$ দ্রত্বে থাকা $4~\rm cm^2$ আয়তনের দুটি প্লাটিনাম (Pt) পাতের মধ্যবর্তী দ্থানে রাখা হলো। চিত্র-৪.২ অনুযায়ী দ্রবণটি $1~\rm cm^3$ আয়তনের 4টি ঘনকের আয়তনের সমান। প্রতি $1~\rm cm^3$ দ্রবণে থাকা ধনাত্মক ও ঋণাত্মক আয়নের পরিবাহিতা হলো ঐ দ্রবণের আপেক্ষিক পরিবাহিতা (κ) । সম্পূর্ণ দ্রবণের পরিবাহিতা হবে 4κ । সুতরাং একইভাবে $V~\rm cm^3$ দ্রবণের আয়তন $V~\rm x$ ংখ্যক একক ঘনকের মধ্যবর্তী দ্থানে অবদ্থান করবে। তখন মোট তুল্য পরিবাহিতা হবে, $\Lambda = \kappa \times V$

ধরা যাক, একটি তড়িৎ-বিশ্লেষ্য দ্রবণের ঘনমাত্রা C গ্রাম তুল্যভর/লিটার (বা এক নরমাল দ্রবণ 1 N)।

∴ C থাম তুল্যভর তড়িৎ-বিশ্লেষ্য দ্রবীভূত আছে 1000 cm³ দ্রবণে

 \therefore 1 গ্রাম তুল্যভর তড়িৎ-বিশ্লেষ্য দ্রবীভূত আছে $\frac{1000}{C}$ cm^3 দ্রবণে

তুল্য পরিবাহিতার সংজ্ঞা মতে, কোনো দ্রবণের যে আয়তনে এক গ্রাম তুল্যভর তড়িৎ-বিশ্লেষ্য বর্তমান থাকে, সে দ্রবণের মোট পরিবাহিতা হলো দ্রবণটির তুল্য পরিবাহিতা (Λ)। অর্থাৎ মোট আয়তন $V=\frac{1000}{C}~{\rm cm}^3$

$$\therefore$$
 ভুল্য পরিবাহিতা , $\Lambda=\kappa imes rac{1000\ ext{cm}^3}{ ext{C}}$, এখানে $C=$ গ্রাম তুল্যভর/লিটার

ছুন্য পরিবাহিতার একক : তুন্য পরিবাহিতা, $\Lambda = \kappa imes \frac{1000 \text{ cm}^3}{C}$

∴ Λ এর একক = κ এর একক × দ্বিণের ঘনমাত্রার একক

$$MCQ-4.2:$$
 আপেক্ষিক পরিবাহিতার সূত্র কোনটি?
$$(ক) \ L = R^{-1} \qquad (খ) \ \kappa = \frac{l}{\rho}$$

$$(গ) \ R = \rho \qquad (ঘ) \ R = \frac{l}{A}$$

$$CGS$$
 এককে Λ এর একক $= \frac{\Im \pi^{-1} \ \ (সমি^{-1} \times \ \ \)^3}{\Im \pi \ \ \ \ \ }$ $= \Im \pi^{-1} \ \ \ \ \ \ \ \ \ \ \$ সমি 2 (গ্রাম তুলাভর) $^{-1} = \mathrm{ohm}^{-1} \ \ \ \$ cm 2 . (g. eqv) $^{-1}$

SI এককে Λ এর একক = S.m². (g.eqv)⁻¹

(৩) তড়িং-বিশ্লেষ্যের মোলার পরিবাহিতা : সংজ্ঞা : কোনো তড়িং-বিশ্লেষ্যের এক মোল পরিমাণের দ্রবণকে এক সেন্টিমিটার (1 cm) দূরত্বে থাকা দুটি উপযুক্ত তড়িৎদারের মধ্যবর্তী ছানে রাখলে তড়িৎ প্রবাহে দ্রবণটির যে পরিবাহিতা হয়, তাকে ঐ তড়িৎ-বিশ্লেষ্যের মোলার পরিবাহিতা বলে। মোলার পরিবাহিতাকে $\Lambda_{
m m}$ প্রতীক দারা প্রকাশ করা হয়।

V আয়তনের দ্রবণে এক মোল তড়িৎ-বিশ্লেষ্য থাকলে মোলার পরিবাহিতা ও আপেক্ষিক পরিবাহিতার মধ্যে নিমুরূপ সম্পর্ক হয় : $\Lambda_m = \kappa \times V$

যদি M mol তড়িৎ-বিশ্লেষ্য পদার্থ $1000~{
m cm^3}$ দ্রবণে দ্রবীভূত থাকে । তখন $\Lambda_{
m m} = \kappa imes rac{1000~{
m cm^3}}{
m M}$

মোলার পরিবাহিতার একক : মোলার পরিবাহিতা , $\Lambda_m = \kappa imes \frac{1000~cm^3}{M}$

আয়তনের একক $\therefore \ \Lambda_m$ এর একক = κ এর একক $imes \overline{}_{ extbf{ extbf{ extbf{q}}}}$ দ্রবণের মোলার একক

CGS এককে Λ_m এর একক = ওম $^{-1}$ সেমি $^{-1}$ imes মোল

MCQ-4.3: তুল্য পরিবাহিতার সূত্র কোনটি?

(₹) L = R⁻¹

(1) $\Lambda = \frac{\kappa \times 1000 \text{ cm}^3}{C}$ (1) $\Lambda = \kappa \times V$

= ওম $^{-1}$, সেমি 2 . মোল $^{-1}$ = ohm $^{-1}$.cm 2 mol $^{-1}$

জেনে নাও: তুল্য পরিবাহিতা ও মোলার পরিবাহিতার বৈশিষ্ট্য হলো:

- তিড়িৎ-বিশ্লেষ্যের পরিমাণ নির্দিষ্ট যেমন এক গ্রাম তুল্যভর বা এক মোল।
- (২) তড়িৎ-বিশ্লেষ্যের দ্রবণের আয়তন নির্দিষ্ট নয়।
- তিড়িৎ-বিশ্লেষ্য নির্দিষ্ট; কিন্তু আয়তন নির্দিষ্ট না হওয়য় ঘনমাত্রা নির্দিষ্ট নয়।
- (৪) ঘনমাত্রা নির্দিষ্ট না হওয়ায়; নির্দিষ্ট আয়তনে একই তড়িৎ-বিশ্লেষ্যের তুল্য পরিবাহিতা বা মোলার পার্ববাহত বিভিন্ন হয়।

৪.২.২ তড়িৎ-বিশ্লেষ্যের ঘনমাত্রা পরিবর্তনে তুল্য পরিবাহিতার পরিবর্তন

Change of Equivalent Conductance with Concentration Change

কোনো তীব্র তড়িৎ-বিশ্লেষ্যের তুল্য পরিবাহিতা তড়িৎ-বিশ্লেষ্যের ঘনমাত্রা হ্রাসের সাথে সরল রৈখিকভাবে বৃদ্ধি পায়।

অপরদিকে মৃদু তড়িৎ-বিশ্লেষ্য (CH3COOH) এর ঘনমাত্রা হ্রাসের সাথে তুল্য পরিবাহিতা বক্র আকারে বৃদ্ধি পায় এবং অসীম লঘুতায় তুল্য পরিবাহিতা নির্ণয় করা যায় না। [চিত্র-৪.৩]

অসীম লঘুতায় তুল্য পরিবাহিতা : তীব্র তড়িৎ-বিশ্লেষ্য (HCl, KCl, LiCl, NaCl ইত্যাদি) পদার্থের দ্রবণকে পানি যোগ করে লঘু করতে থাকলে এর তুল্য পরিবাহিতা ক্রমশ বৃদ্ধি পেয়ে এমন একটি ছির মানে পৌছে যে, ঐ দ্রবণটিকে আরো লঘু করলে সেটির তুল্য পরিবাহিতা মান আর বৃদ্ধি পায় না। তখন ঐ শেষ মানটিকে তড়িৎ-বিশ্লেষ্যটির অসীম লঘুতায় তুল্য পরিবাহিতা বলে। এটিকে Λ_0 দ্বারা চিহ্নিত করা হয়।

বিজ্ঞানী কোলরাশ প্রীক্ষামূলক ফলাফলের ভিত্তিতে তড়িৎ– চিত্র-৪.৩ : Λ_{c} বনাম \sqrt{C} এর লেখচিত্র

450 তীব্ৰ তড়িত-বিশ্লেষ্য 400-**HC1** HCI-এর Λ_0 -এর মান 160-120-.08 (25°c) মৃদু তড়িত-বিশ্লেষ্য 60-40-20-CH₃COOH 0.05 0.1 0.15 0.2 0.25

বিশ্লেষ্যের ঘননাত্রা (८) এর সঙ্গে তুল্য পরিবাহিতার নিমুরূপ সম্পর্ক নির্ণয় করেন।

সম্পর্কটি হলো.

রসায়ন-২য় (হাসান) -৩৬(ক)

 $\Lambda_{\rm c}=\Lambda_{\rm o}-{\rm b}\sqrt{\rm C}$; এক্ষেত্রে $\Lambda_{\rm c}$ হলো ${\rm C}$ ঘনমাত্রায় তড়িৎ-বিশ্রেষ্যের তুল্য পরিবাহিতা , $\Lambda_{\rm o}=$ অসীম লঘুতায় ঐ তড়িৎ-বিশ্রেষ্যের তুল্য পরিবাহিতা , ${\rm b}=$ ঐ তড়িৎ-বিশ্রেষ্যের একটি ধ্রুবক রাশি । পরীক্ষার ভিত্তিতে নির্ণীত কয়েকটি তড়িৎ-বিশ্রেষ্যের $\Lambda_{\rm c}$ বনাম $\sqrt{\rm C}$ এর লেখচিত্র দেখানো হলো । [চিত্র–৪.৩]

তড়িৎ-বিশ্লেষ্যের পরিবাহিতার নির্ভরশীশতা : কোনো তড়িৎ-বিশ্লেষ্যের পরিবাহিতা নির্ভর করে তড়িৎ-বিশ্লেষ্যের দ্রবণে উপস্থিত (১) আয়নের সংখ্যা ও (২) আয়নগুলোর গতিবেগের ওপর।

(1) এক গ্রাম তুল্যভর পরিমাণ তীব্র তড়িৎ-বিশ্লেষ্য (HCl, KCl) যেকোনো লঘুতায় সম্পূর্ণ আয়নিত থাকে। ফলে তীব্র তড়িৎ-বিশ্লেষ্যের যেকোনো ঘনমাত্রায় আয়নের সংখ্যা একই থাকে। তাই শুধুমাত্র আয়নগুলোর গতিবেগের ওপর তীব্র তড়িৎ-বিশ্লেষ্যের পরিবাহিতা নির্ভর করে।

তীব্র তড়িৎ-বিশ্লেষ্যের গাঢ় দ্রবণে আয়নগুলো কাছাকাছি থাকায় বিপরীতধর্মী আয়নগুলো তীব্রভাবে আকৃষ্ট থাকে। ফলে আয়নগুলোর গতিবেগ কম হয় এবং পরিবাহিতাও কম হয়। লঘুকরণের ফলে আয়নগুলো দূরে সরে যায়, বিপরীতধর্মী আয়নের মধ্যে আকর্ষণ কমে যায়। তাই আয়নগুলোর গতিবেগ বেড়ে যায় অর্থাৎ পরিবাহিতা বেশি হয়। অতি লঘু অবছায় আয়নগুলোর গতিবেগ সর্বোচ্চ হয়। এরূপ অবছায় তীব্র তড়িৎ-বিশ্লেষ্যের যে পরিবাহিতার মান হয়, সেটিই হলো ঐ তড়িৎ-বিশ্লেষ্যের অসীম লঘুতায় তুল্য পরিবাহিতা (Λ_0)। এ অবছায় দ্রবণকে আরো লঘু করলেও পরিবাহিতার মান ছির থাকে; আর কোনো বাড়ে না। এরূপ অবছা HCl, KCl, LiCl এর বেলায় ঘটে।

(2) মৃদু তড়িৎ-বিশ্লেষ্য এর গাঢ় দ্রবণে কম মাত্রায় আয়নিত থাকায় বিপরীত আয়নগুলোর মধ্যে আকর্ষণ বল থাকে না। তাই আয়নগুলোর গতিবেগ প্রভাবিত হয় না। তুল্য পরিবাহিতা শুধুমাত্র আয়নের সংখ্যার ওপর নির্ভর করে। উচ্চঘনমাত্রায় মৃদু তড়িৎ-বিশ্লেষ্যের আয়নের সংখ্যা কম থাকায় তখন পরিবাহিতার মান কম হয় (চিত্র-৪.৩)। গাঢ় দ্রবণকে লঘু করলেও আয়নের সংখ্যা সামান্য বৃদ্ধি পাওয়ায় তড়িৎ পরিবাহিতাও সামান্য বৃদ্ধি পায়। অতি লঘু অবছায় আয়নীকরণ হঠাৎ বৃদ্ধি পাওয়ায় পরিবাহিতাও হঠাৎ বৃদ্ধি পায় (চিত্র-৪.৩)। কিছু মৃদু তড়িৎ-বিশ্লেষ্যের আয়নীকরণ একটি উভমুখী প্রক্রিয়া এবং কখনো পূর্ণ আয়নিত না হওয়ায় মৃদু তড়িৎ-বিশ্লেষ্যের তুল্য পরিবাহিতার মানটি অতি লঘুতায়ও পাওয়া যায় না। অর্থাৎ অসীম লঘুতায়ও মৃদু তড়িৎ-বিশ্লেষ্য (CH_3COOH) এর তুল্যপরিবাহিতা (Λ_0) নির্ণয় করা যায় না। লেখচিত্র তখন Y অক্ষকে ছেদ না করে Y অক্ষের সমান্তরাল অবছায় থাকে।

25°C তাপমাত্রায় কতগুলো তড়িৎ-বিশ্লেষ্যের জলীয় দ্রবণে তুল্য পরিবাহিতার মান (ohm⁻¹ cm²/g.eqv):

ঘনমাত্রা , গ্রামতুল্যভর L ⁻¹	HCl	KCl	AgNO ₃	NaCl	$\frac{1}{2}$ BaCl ₂	CH ₃ COOH
0.1 (N)	391.32	128.96	109.14	106.74	105.19	5.21
0.01 (N)	412.00	141.27	124.76	118.51	123.94	16.20
0.001 (N)	421.36	146.95	130.51	123.74.	134.34	48.63
0.0005 (N)	422.74	147.81	131.36	124.50	135.96	135.00
অসীম লঘুতায়	426.16	149.90	133.30	126.45	139.98	391.00

সমাধানকৃত সমস্যা—৪.১ : তীব্র তড়িৎ-বিশ্লেষ্যের পরিবাহিতা ও আপেক্ষিক পরিবাহিতাভিত্তিক :

* <u>তীব্র তড়িৎ-বিশ্রেষ্য (যেমন—NaCl এর দ্রবর্ণ) এর ঘনমাত্রা হ্রাসের সাথে আপেক্ষিক পরিবাহিতা হ্রাস পায়; এর</u> ব্যাখ্যা করো।

সমাধান: তড়িৎ-বিশ্লেষ্যের পরিবাহিতা প্রধানত নির্ভর করে দ্রবণে থাকা তড়িৎ-বিশ্লেষ্যের ধনাত্মক ও ঋণাত্মক আয়নের সংখ্যা ও আয়নগুলোর গতিবেগের ওপর। তীব্র তড়িৎ-বিশ্লেষ্যের গাঢ় ও লঘু দ্রবণ প্রতি ক্ষেত্রে অণুগুলো শতভাগ আয়নিত থাকে। তাই দ্রবণে পানি মিশিয়ে লঘুকরণ বা ঘনমাত্রা হ্রাসের ফলে আয়নীকরণে কোনো প্রভাব পড়ে না।

এখন আপেক্ষিক পরিবাহিতা ও সাধারণ পরিবাহিতার মধ্যে তফাৎ জানা যাক। গাঢ় দ্রবণে কম আয়তনে আয়নগুলো কাছাকাছি থাকে, কিন্তু দ্রবণের ঘনমাত্রা হ্রাস বা লঘুকরণের ফলে আয়নগুলো দূরে অবছান করে। তখন লঘুকৃত এক সিসি আয়তনে কম সংখ্যক আয়ন থাকে।

আপেক্ষিক পরিবাহিতার বেলায় উভয় তড়িৎদারের মধ্যবর্তী এক সেন্টিমিটার দ্রবণে থাকা আয়নগুলো দ্বারা তড়িৎ পরিবহণকে বোঝায়। লঘু দ্রবণে এক সি.সি. আয়তনে আয়নের সংখ্যা পূর্বাপেক্ষা কম হওয়ায় আপেক্ষিক পরিবাহিতা পূর্বাপেক্ষা বা গাঢ় দ্রবণ অপেক্ষা হ্রাস পায়।

অপরদিকে সাধারণ পরিবাহিতার ক্ষেত্রে দুই তড়িৎদ্বারের মধ্যে নিমজ্জিত দ্রবণের আয়তনে আয়নের সংখ্যা প্রায় একই থাকে। কিছু আয়নগুলো দূরে দূরে থাকার ফলে কোনো আয়নের ওপর বিপরীতধর্মী আয়নের আকর্ষণ বল কম হয়, তাই তড়িৎ পরিবাহিতার বৃদ্ধি ঘটে। অতএব তীব্র তড়িৎ-বিশ্লেষ্যের যেমন NaCl এর ঘনমাত্রা হ্রাসের সাথে আপেক্ষিক পরিবাহিতা হ্রাস পায়; কিছু সাধারণ পরিবাহিতা কিছুটা বৃদ্ধি পায়।

সমাধানকৃত সমস্যা – ৪.২ : মৃদু তড়িৎ-বিশ্লেষ্যের আপেক্ষিক ও তুল্য পরিবাহিতাভিত্তিক :

* মৃদু তড়িৎ-বিশ্লেষ্যের (যেমন CH3COOH এর দ্রবণ) এর ঘনমাত্রা বৃদ্ধিতে আপেক্ষিক পরিবাহিতা বৃদ্ধি পায়; কিছু তুল্য পরিবাহিতা হ্রাস পায়; ব্যাখ্যা করো।

সমাধান: মৃদু তড়িৎ-বিশ্লেষ্য যেমন CH_3COOH এর অণুগুলো দ্রবণে কম সংখ্যায় আয়নিত হয়, বাকি অণুগুলো অবিয়োজিত অবস্থায় থাকে। দ্রবণের আয়তন স্থির রেখে আরো মৃদু তড়িৎ-বিশ্লেষ্য দ্রব যেমন CH_3COOH যোগ করলে ঐ দ্রবণের ঘনমাত্রা বৃদ্ধি পায়। এতে মৃদু তড়িৎ-বিশ্লেষ্যের বিয়োজন মাত্রা হ্রাস পায় বটে। কিছু প্রতি এক সি.সি আয়তনে আয়নের সংখ্যা পূর্বাপেক্ষা বেশি হয়। এক সি.সি আয়তনে আয়নের সংখ্যা বেশি হলে তড়িৎ-বিশ্লেষ্যের আপেক্ষিক পরিবাহিতাও বেশি হয়। অর্থাৎ মৃদু তড়িৎ-বিশ্লেষ্যের ঘনমাত্রা বৃদ্ধিতে আপেক্ষিক পরিবাহিতা বৃদ্ধি পায়।

অপরদিকে তুল্য পরিবাহিতার বেলায়, আমরা জানি তুল্য পরিবাহিতা, $\Lambda=\kappa\times\frac{1000~\mathrm{cm}^3}{C}$ । এক্ষেত্রে C এর মান বৃদ্ধি করলে অর্থাৎ প্রতি লিটারে তড়িৎ-বিশ্লেষ্যের গ্রাম তুল্যভর বৃদ্ধি করলে তুল্য পরিবাহিতা হ্রাস পায়। কারণ তুল্য পরিবাহিতার ক্ষেত্রে যেহেতু দুটি তড়িৎদ্বারের মধ্যবর্তী দূরত্ব $1~\mathrm{cm}$ থাকে, সেহেতু প্রতিটি তড়িৎদ্বারের ক্ষেত্রফল $\frac{1000}{C}$ বর্গ সে.মি হয়। এক্ষেত্রে $1~\mathrm{cm}\times\frac{1000}{C}~\mathrm{cm}^2=\frac{1000}{C}~\mathrm{cm}^3$ । তাই C এর মান বৃদ্ধি করলে তড়িৎদ্বারের ক্ষেত্রফল হ্রাস পায়, বা প্রতি গ্রাম তুল্যভর দ্রব দ্রবীভূত থাকায় আয়তন (V) হ্রাস পায়। আমরা জানি $\Lambda=\kappa\times V$; দ্রবণের আয়তন হ্রাস পেলে তুল্য পরিবাহিতা Λ হ্রাস পায়। অতএব মৃদু তড়িৎ-বিশ্লেষ্য CH_3COOH এর ঘনমাত্রা বৃদ্ধিতে তুল্য পরিবাহিতা হ্রাস পায়।

৪.২.৩ পরিবাহিতা নির্ণয়ে ব্যবহৃত পরিবাহিতা কোষ ও কোষ ধ্রুবক

Conductivity Cell and Cell Constant

পরিবাহিতা কোষ: একটি নির্দিষ্ট আয়তনের তড়িৎ-বিশ্লেষ্যের রোধ মাপার জন্য নির্দিষ্ট ক্ষেত্রফলবিশিষ্ট দুটি তড়িৎদারকে নির্দিষ্ট ব্যবধানে কাচের পাত্রে রেখে যে কোষ ব্যবহার করা হয়, তাকে পরিবাহিতা কোষ বলে।

পরিবাহিতা কোষ ধ্রুবক : কোনো পরিবাহিতা কোষের তড়িৎদ্বার দুটির ক্ষেত্রফল সমান ও নির্দিষ্ট এবং উভয় তড়িৎদ্বারের মধ্যে ব্যবধানও নির্দিষ্ট থাকে। মনে করি, কোনো পরিবাহিতা কোষের প্রতিটি তড়িৎদ্বারের ক্ষেত্রফল হলো A এবং উভয় তড়িৎদ্বারের মধ্যবর্তী দূরত্ব হলো l। এক্ষেত্রে A ও l নির্দিষ্ট থাকে। এ নির্দিষ্ট মানের $\frac{l}{A}$ এর অনুপাতকে ঐ পরিবাহিতা কোষের কোষ-ধ্রুবক (Cell constant) বলা হয়।

সংজ্ঞা : কোনো পরিবাহিতা কোষের দু তড়িৎদ্বারের মধ্যবর্তী দূরত্ব (1) এবং তড়িৎদ্বারের ক্ষেত্রফল (A) এর অনুপাতকে কোষ ধ্রুবক বলে।

কোষ ধ্রুবকের একক : পরিবাহিতা কোষের কোষ ধ্রুবক হলো
$$\frac{l}{A}$$
। CGS এককে কোষ ধ্রুবকের একক = $\frac{cm}{cm^2}$ = cm^{-1} SI এককে কোষ ধ্রুবকের একক = $\frac{m}{m^2}$ = m^{-1}

$$MCQ$$
- $4A$: মোলার পরিবাহিতার সূত্র কোনটি?
$$(\mathfrak{F}) \ \Lambda = \frac{\kappa \times 1000 \ \mathrm{cm}}{C} \ (\mathfrak{F}) \ \Lambda = \frac{\kappa \times 1000 \ \mathrm{cm}^2}{C}$$

$$(\mathfrak{F}) \ \Lambda = \frac{\kappa \times 1000 \ \mathrm{cm}^3}{C} \ (\mathfrak{F}) \ \Lambda_{\mathrm{m}} = \frac{\kappa \times 1000 \ \mathrm{cm}^3}{C}$$

তডিৎ-বিশ্রেষ্যের পরিবাহিতাভিত্তিক গাণিতিক সমস্যা ও সমাধান:

সমাধানকৃত সমস্যা-৪.৩ : 25°C তাপমাত্রায় একটি পরিবাহিতা কোষের তড়িংঘার দুটির মধ্যবর্তী দূরত্ব হলো 1 cm এবং প্রতিটির প্রস্থাচ্ছেদ হলো 2 cm²। প্রতি লিটার দ্রবণে 50 g KCl দ্রবীভূত আছে এরূপ দ্রবণ দ্বারা ঐ কোষকে পূর্ণ করা হলে কোষটির রোধ হয় 7.25 ohm। ঐ দ্রবণের তুল্য পরিবাহিতা কত?

দক্ষতা : আপেক্ষিক পরিবাহিতা, $(\kappa) = \left(\frac{1}{R}\right) \times \frac{l}{A}$ এবং তুল্য পরিবাহিতা, $\Lambda = \kappa \times \frac{1000 \text{ cm}^3}{C}$ সমীকরণ দুটি ব্যবহৃত হবে।

সমাধান : আমরা জানি , আপেক্ষিক পরিবাহিতা ,
$$\kappa = \frac{1}{R} \times \frac{I}{A}$$

$$\therefore \ \kappa = \frac{1}{7.25 \text{ ohm}} \times \frac{1 \text{ cm}}{2 \text{ cm}^2} = 0.0689 \text{ ohm}^{-1} \cdot \text{cm}^{-1}$$

প্রশ্নমতে,
$$R = 7.25$$
 ohm $l = 1$ cm $A = 2$ cm² $A = 7$

আবার তুল্য পরিবাহিতা,
$$\Lambda = \kappa \times \frac{1000 \text{ cm}^3}{\text{C}}$$
;

 $\therefore \Lambda = 0.0689 \text{ ohm}^{-1}. \text{ cm}^{-1} \times \frac{1000 \text{ cm}^3}{0.6711 \text{ g.eqv}}$.

 $\therefore KCl$ এর গ্রামতুল্য ভর = 74

 $\Rightarrow C$
 \Rightarrow

: KCl এর ঘনমাত্রা,
$$C = \frac{50 \text{ g eqv}}{74.5}$$

$$= 0.6711 \text{ g eqv}.$$

$$\kappa = 0.0689 \text{ ohm}^{-1}. \text{ cm}^{-1}$$

প্রশ্নমতে, KCl এর গ্রামতুল্য ভর = 74.5 g

∴ KCl দ্রবণের তুল্য পরিবাহিতা = 102. 67 ohm⁻¹. cm². (g.eqv)⁻¹

সমাধানকৃত সমস্যা–8.8 : 25° C তাপমাত্রায় একটি পরিবাহিতা কোষে 0.05 M NaOH দ্রবণের রোধ হয় 30.5~
m ohm। পরিবাহিতা কোষের কোষ ধ্রুবক $0.367~
m cm^{-1}$ হলে ঐ m NaOH দ্রবণের মোলার পরিবাহিতা নির্ণয় করো।

প্রশ্নমতে, কোষ ধ্রুবক,
$$\frac{1}{A}=0.367~\mathrm{cm}^{-1}$$
দ্রবণের রোধ, $R=30.5~\mathrm{ohm}$
দ্রবণের ঘনমাত্রা, $M=0.05~\mathrm{mol}$
মোলার পরিবাহিতা, $\Lambda_{\mathrm{m}}=?$

MCQ $^{14.5}: \mathrm{CGS}$ এককে তুশ্য পরিবাহিতার একক কোনটিঃ

(季) ohm⁻¹. cm² (g.eqv)⁻¹

- (খ) sm⁻¹. (g.eqv)⁻¹
- (গ) ohm⁻¹. cm² mol⁻¹
- (ঘ) ohm⁻¹. (g.eqv)⁻¹

সমাধানকৃত সমস্যা-8.c: 25° C তাপমাত্রায় একটি পরিবাহিতা কোষে 0.005 (N) $\mathrm{K}_2\mathrm{SO}_4$ দ্রবণের রোধ হয় $326~\mathrm{ohm}$ । ঐ পরিবাহিতা কোষের কোষ ধ্রুবক $=0.228~\mathrm{cm}^{-1}$ । ঐ দ্রবণটির (a) আপেক্ষিক পরিবাহিতা ও (b) তুল্য পরিবাহিতা কত হবে?

দক্ষতা :
$$\kappa = \frac{1}{R} \times \frac{l}{A}$$
 এবং $\Lambda = \kappa \times \frac{1000 \text{ cm}^3}{C}$ সমীকরণ দুটি ব্যবহৃত হবে।

সমাধান : আপেক্ষিক পরিবাহিতা : প্রশ্নমতে , ঘনমাত্রা , $C = 0.005$ g. eqv.

$$\kappa = \frac{l}{R} \times \frac{l}{A} \text{ বা , } \kappa = \frac{1 \times 0.228 \text{ cm}^{-1}}{326 \text{ ohm}}$$

বা , $\kappa = 6.994 \times 10^{-4} \text{ ohm}^{-1}$. cm $^{-1}$
 $\kappa = \frac{1}{R} \times \frac{l}{A} \text{ (a)} \times \frac{l}{A} = 0.228 \text{ cm}^{-1}$

আবার তুল্য পরিবাহিতা,
$$\Lambda = \kappa \times \frac{1000 \text{ cm}^3}{\text{C}}$$

আপেক্ষিক পরিবাহিতা ,
$$\kappa=?$$
 তুল্য পরিবাহিতা , $\Lambda=?$

$$m K_2SO_4$$
 দ্রবণের (a) আপেক্ষিক পরিবাহিতা, $m K=6.994\times 10^{-4}\,ohm^{-1}\,cm^{-1}\,K_2SO_4$ দ্রবণের (b) তুল্য পরিবাহিতা, $\Lambda=139.88\,ohm^{-1}.\,cm^2.\,g.\,eqv^{-1}$

সমাধানকৃত সমস্যা—৪.৬ : কোনো পরিবাহিতা কোষের তড়িংঘারের মাত্রা (dimension)গুলো হলো 0.90 cm ও 1.005 cm এবং তড়িংম্বার দৃটির মধ্যব্তী দূরত্ব 4.5 cm হলে ঐ পরিবাহিতা কোমের কোম ধ্রুবক কত?

দক্ষতা : কোষ ধ্রুবকের সমীকরণ $\frac{I}{A}$ ব্যবহৃত হবে।

সমাধান : কোষ ধ্রুবকের সমীকরণ =
$$\frac{l}{A}$$
 প্রশ্নমতে, $l=4.5~{\rm cm}$ তড়িৎদ্বারের ক্ষেত্রফল. A = $\frac{4.5~{\rm cm}}{0.9045~{\rm cm}^2}$ = $4.975~{\rm cm}^{-1}$ = $(0.90\times1.005)~{\rm cm}^2$ = $0.9045~{\rm cm}^2$

সমাধানকৃত সমস্যা-8.9: একটি পরিবাহিতা কোষের প্রত্যেক তড়িংঘারের ক্ষেত্রফশ $1.25~\mathrm{cm}^2$ । $25^\circ\mathrm{C}$ তাপমাত্রায় কোষটিতে একটি তড়িৎ-বিশ্রেষ্য দ্রবণ দিয়ে পূর্ণ করে রোধের মান পাওয়া গেল 160 ohm। দ্রবণটির আপেক্ষিক পরিবাহিতা $0.016~
m ohm^{-1}.~cm^{-1}$ হলে ঐ কোষের তড়িংদ্বার দৃটির মধ্যে দূরত্ব ও কোষ ধ্রুবক নির্ণয় করো।

সমাধান : আপেক্ষিক পরিবাহিতা ,
$$\kappa = \left(\frac{l}{R}\right) \times \frac{l}{A}$$

বা,
$$l = \kappa \times R \times A$$

প্রশ্নমতে, তড়িৎদারের ক্ষেত্রফল, $A = 1.25 \text{ cm}^2$

বা, l = 0.016 ohm⁻¹. cm⁻¹ × 160 ohm × 1.25 cm²

তড়িৎবিশ্লেষ্যের রোধ, R = 160 ohm

আপেক্ষিক পরিবাহিতা, $\kappa = 0.016 \text{ ohm}^{-1}. \text{ cm}^{-1}$

বা,
$$l = 0.016 \times 160 \times 1.25$$
 cm

তড়িৎদারের দূরত্ব,
$$l=?$$
 কোষ ধ্রুবক = ?

∴
$$l = 3.2 \text{ cm}$$
কোষ ধ্রুবক = $\frac{l}{A} = \frac{3.2 \text{ cm}}{1.25 \text{ cm}^2}$

শিক্ষার্থীর কাজ-৪.২ : কোষ ধ্রুবক ও বিভিন্ন পরিবাহিত ভিত্তিক সমস্যা :

সমস্যা–8.১ : 25°C তাপমাত্রায় 0.1 (N) ঘনমাত্রার একটি তড়িৎ-বিশ্রেষ্য দ্রবণে দুটি তড়িৎদারকে (1 cm × 5 cm) সমান্তরালভাবে 1.5 cm দূরত্বে ছাপন করে দ্রবণটির রোধ পাওয়া গেল 50 ohm। দ্রবণটির তুল্য-পরিবাহিতা নির্ণয় করো। ডি: 60 ohm -1. cm². g.eqv -1]

সমস্যা-8.২ : 25° C তাপমাত্রায় 0.01 (N) NaCl দ্রবশের রোধ 200 ohm হয়। পরিবাহিতা কোষটির কোষ ধ্রুবক এক একক হলে দ্রবণটির তুল্য পরিবাহিতা কত হবে? তি: 5.0×10^{2} ohm $^{-1}$ cm 2 g. eqv $^{-1}$]

সমস্যা–৪.৩ : 25°C তাপমাত্রায় 0.01 (M) NaCl দ্রবণ দ্বারা একটি পরিবাহিতা কোষকে পূর্ণ করা হলো। তখন দ্রবণটির রোধ 384 ohm হয়। এ কোষের কোষ ধ্রুবক 0.5 cm⁻¹ হলে ঐ NaCl দ্রবণের মোলার পরিবাহিতা কত হবে? এক্ষেত্রে NaCl এর মোলার পরিবাহিতা ও তুল্য পরিবাহিতার সম্পর্ক কী হবে?

্ডি: 130.2 ohm⁻¹ cm² mol⁻¹; উভয় পরিবাহিতার মান সমান হবে। কারণ NaCl এর মোলার ভর ও গ্রাম তুল্য ভর সমান, 58.5 g]

সমস্যা-8.8 : 25° C তাপমাত্রায় কোনো পরিবাহিতা সেলে 0.05 (M) NaOH দ্রবণের রোধ হয় 31.16 ohm । ঐ পরিবাহিতা সেলের সেল ধ্রুবক 0.367 cm $^{-1}$ হলে NaOH দ্রবণটির মোলার পরিবাহিতা নির্ণয় করো ।

[5: 235.56 ohm-1. cm². mol-1]

সমস্যা–8.৬: একটি পরিবাহিতা কোষের তড়িংদ্বারের দূরত্ব হলো $1~{\rm cm}$ এবং প্রতিটি তড়িংদ্বারের প্রছচেছদ $4~{\rm cm}^2$ । প্রতি লিটার দ্রবণে $50~{\rm g}$ KCl দ্রবীভূত আছে। এরূপ দ্রবণ দ্বারা পরিবাহিতা কোষটিকে পূর্ণ করে রাখলে কোষটির রোধ $7.25~{\rm ohm}$ হয়। ঐ দ্রবণের তুল্য পরিবাহিতা গণনা করো। ${\rm l}$ ডি: $51.379~{\rm ohm}^{-1}.~{\rm cm}^2.~{\rm g.eqv}^{-1}$

সমস্যা-৪.৭ : 20°C তাপমাত্রায় 0.1 (N) KCl দ্রবংশর আপেক্ষিক পরিবাহিতা 0.01 t2 ohm⁻¹. cm⁻¹ হয়। ঐ দ্রবণ দ্বারা একটি পরিবাহিতা কোষকে পূর্ণ করলে 20°C তাপমাত্রায় ঐ কোষটির রোধ হয় 55 ohm। ঐ পরিবাহিতা কোষটির কোষ ধ্রুবকের মান কত হবে?

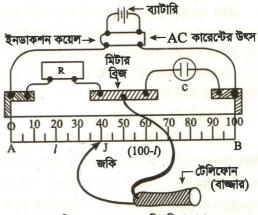
সমস্যা–8.৮ : 25° C তাপমাত্রায় একটি পরিবাহিতা কোষে 0.01(N) KCl ও 0.01 (N) HCl দ্রবণের রোধ যথাক্রমে 150 ohm ও 51.4 ohm হয়। ঐ তাপমাত্রায় KCl দ্রবণটির অপেক্ষিক পরিবাহিতা 1.41×10^{-3} ohm $^{-1}$. cm $^{-1}$ হলে একই তাপমাত্রায় HCl দ্রবণটির তুল্য পরিবাহিতা কত হবে?

দিষ্টব্য : উভয় ক্ষেত্রে কোষ ধ্রুবক সমানী

[5: 411.48 ohm⁻¹. cm². g.eqv⁻¹]

৪.২.৪ তড়িৎ-বিশ্লেষ্যের পরিবাহিতা মাপন

Measurement of Electrolytic Conductivity


মূলনীতি: তড়িৎ-বিশ্লেষ্য দ্রবণের পরিবাহিতা দ্রবণটির তড়িৎ রোধের বিপরীত হয়। সূতরাং হুইটস্টোন সেতু (Whitstone bridge) এর তড়িৎ-বর্তনীর মধ্যে একটি জ্ঞাত রোধের সাথে তুলনা করে যেকোনো ঘনমাত্রার তড়িৎ-বিশ্লেষ্যের পরিবাহিতা মাপা যায়। দ্রবণের পরিবাহিতা মাপার জন্য দ্রবণটিকে 'পরিবাহিতা কোষ' (Conductivity cell) এর মধ্যে নেয়া হয়। এক্ষেত্রে উচ্চ ফ্রিক্যুয়েন্সির AC কারেন্ট ব্যবহার করতে হয়।

প্রয়োজনীয় যন্ত্রপাতি : (১) হুইটস্টোন সেতু বা মিটার ব্রিজ, (২) রোধ বাক্স, (৩) পরিবাহিতা কোষ, (৪) ইনডাক্শন কয়েল, (৫) জকিযুক্ত বাজ্জার (buzzer) বা টেলিফোন, (৬) ব্যাটারি, (৭) সংযোগ কপার তার ইত্যাদি।

প্রয়োজনীয় রাসায়নিক বছু: 0.1 M HCl বা 0.1 M NaCl দ্রবণ।

কাজের ধারা : (১) হুইটস্টোন সেতু বা মিটার ব্রিজের ওপরের ডানদিকে পরিবাহিতা কোষ C এর মধ্যে তড়িং-বিশ্লেষ্য 0.1 M HCl দ্রবণটি যোগ করো।

- (২) মিটার ব্রিজের ওপরের বামদিকের অংশে রোধ বাক্স (R)-কে কপার তার দিয়ে যুক্ত করো।
- (৩) চিত্র-৪.৪ মতে, ব্যাটারি ও ইনডাকশন কয়েল (বা আবেশ কুণ্ডলী) এর সংযোগ করো।
- (৪) টেলিফোন (বা বাজ্জার) টি মিটার ব্রিজের ওপরের অংশে মাঝখানে কপার তার দিয়ে যুক্ত করে জকির সাথে সংযোগ করো।
- (৫) রোধ বাক্স থেকে একটি উপযুক্ত রোধ সংযোগ করার জন্য একটি প্রাগ তুলে নাও। জকিটি (J)-কে মিটার ব্রিজের AB তারের বিভিন্ন ছানে স্পর্শ করো এবং টেলিফোন বা বাজ্জারটিকে কানের কাছে নিয়ে গুজন শব্দ শোনা যায় কীনা দেখো। গুজন শব্দ শোনা গেলে মিটার ব্রিজে তড়িৎ প্রবাহের বর্তনী সংযোগ সঠিক হয়েছে বোঝা যায়।
- (৬) এবার জকি (J)টিকে মিটার ব্রিজের এক মিটার দীর্ঘ AB তারের ওপর দিয়ে খুব ধীরে ধীরে ডানদিকে এবং বামদিকে চালনা করে প্রশম বিন্দু বা নাল-পয়েন্ট (null point) ঠিক করতে হবে। AB তারের ওপর জকির যে অবস্থানে বাজ্জার থেকে কোনো গুঞ্জন শব্দ ক্ষীণ থেকে ক্ষীণতর হয়ে আর শোনা যাবে না; সে অবস্থান সূচক বিন্দুই হলো নাল-পয়েন্ট।

চিত্র-৪.৪ : দ্রবণের পরিবাহিতা মাপন

AB তারের দৈর্ঘ্য 100 cm। A প্রান্ত থেকে নাল-পয়েন্টের দূরত্ব l cm হলে ডানদিক থেকে দূরত্ব (100-l) cm হবে। এ দূরত্ব দুটি রেকর্ড করতে হবে।

গণনা : হুইটস্টোন সেতুর নিয়ম অনুসারে,

কোষের রোধ
$$=\frac{100-l}{l}$$
 বা , কোষের রোধ $= R \times \left(\frac{100-l}{l}\right)$

বা, কোষের পরিবাহিতা =
$$\frac{1}{\text{কোষের রোধ}} = \frac{l}{R(100-l)}$$
 (1)

MCQ-4.6 : CGS পদ্ধতিতে মোলার পরিবাহিতার একক কী ?

- (季) Ohm⁻¹. cm² (g.eqv)⁻¹
- (*) Ohm⁻¹ cm² mol⁻¹
- (গ) Ohm⁻¹. mol⁻¹
- (ম) Ohm⁻¹. cm² mol⁻¹

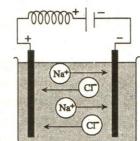
যেহেতু । এবং R-এর মান জ্ঞাত, অতএব সমীকরণ (1) হতে কোষের দ্রবণের পরিবাহিতা হিসাব করা যায়। এ পদ্ধতি শুদ্ধ ফল প্রদান করে। ফলাফলের শুদ্ধতা বৃদ্ধির জন্য উন্নত মানের বহু বাণিজ্যিক হুইটস্টোন সেতু তৈরি করা হয়েছে। প্রতিটি হুইটস্টোন সেতু একই নীতির ভিত্তিতে কাজ করে।

জেনে নাও : (১) একযোজী ধনাত্মক আয়ন ও একযোজী ঋণাত্মক আয়ন দ্বারা সৃষ্ট লবণ বা তড়িৎ-বিশ্লেষ্য যৌগের দ্রবণের তুল্য পরিবাহিতা (Λ) ও মোলার পরিবাহিতা (Λ_m) সমান হয়। যেমন— HCl, NaCl, KNO_3 ইত্যাদি। কারণ এসবের তুল্য ভর = আণবিক ভর হয়। 1 (M) দ্রবণ = 1 (N) দ্রবণ

- (২) যৌগের তুল্যভর = যৌগের আণবিক ভর \div মোট ধনাত্মক আয়ন সংখ্যার মোট চার্জ সংখ্যা। Na_2CO_3 এর তুল্যভর = $(106 \div 2) = 53$.
 - $Al_2(SO_4)_3$ এর তুল্য ভর = আঃ ভর \div ক্যাটায়নের মোট চার্জ সংখ্যা = $(332 \div 6) = 55.33$
- (৩) জারক ও বিজারকের তুল্যভর = আঃ ভর ÷ গ্রহণ বা ত্যাগ করা মোট ইলেকট্রন সংখ্যা
 KMnO₄ এর তুল্যভর = আঃ ভর ÷ 5 (কারণ MnO₄⁻ আয়ন 5টি ইলেকট্রন গ্রহণ করে।)
 ∴ KMnO₄ এর তুল্যভর = (158 ÷ 5) = 31.6
 K₂Cr₂O₇ এর তুল্যভর = (294 ÷ 6) = 49

৪.২.৫ তড়িৎ-বিশ্লেষ্যের পরিবাহিতার ব্যাখ্যা

Explanation of Electrolytic Conduction


কঠিন অবস্থায় তড়িৎ-বিশ্লেষ্য পদার্থের যেমন NaCl এর আয়নসমূহ কেলাসের মধ্যে কেলাস জালিতে নির্দিষ্ট স্থানে দৃঢ়ভাবে আবদ্ধ থাকে, তখন এরা তড়িৎ পরিবহণ করে না। বিগলিত বা দ্রবীভূত অবস্থায় আয়নসমূহ কেলাসজালি থেকে মুক্ত হয়ে মোটামুটি স্বাধীনভাবে বিচরণ করে। যেমন বিগলিত অবস্থায় সোডিয়াম ক্লোরাইডের সোডিয়াম আয়ন (Na^+) ও ক্লোরাইড (Cl^-) আয়নসমূহ মোটামুটি মুক্ত অবস্থায় চলাচল করে। তখন ধনাত্মক আয়ন (Na^+) ও ঋণাত্মক আয়ন (Cl^-) দ্বারা তড়িৎ পরিবহণ করা সম্ভব হয়।

NaCl
$$(l) \rightarrow Na^+(l) + Cl^-(l)$$

এ তরলে দুটি তড়িৎদ্বার প্রবেশ করিয়ে এদের মধ্যে ব্যাটারির সাহায্যে বিভব পার্থক্য সৃষ্টি করা হয়। তখন ঋণাত্মক ক্যাথোডে ধনাত্মক আধানযুক্ত সোডিয়াম আয়নসমূহ আকৃষ্ট হয়ে ক্যাথোডে পৌছামাত্র ক্যাথোড এদেরকে ইলেকট্রন দান করে; ফলে সোডিয়াম ধাতুরূপে ক্যাথোডে সঞ্চিত হয়।

$$Na^+(l) + e^-$$
 (ক্যাথোড হতে) $\longrightarrow Na(s)$ [ক্যাথোডে বিজারণ]

অন্যদিকে অ্যানোডে ঋণাত্মক ক্লোরাইড আয়নসমূহ আকৃষ্ট হয়ে ইলেকট্রন ত্যাগ করে ক্লোরিন পরমাণু এবং শেষে ক্লোরিন গ্যাসের অণু সৃষ্টি করে। এ প্রক্রিয়াকে গলিত NaCl এর তড়িৎ-বিশ্লেষণ বলা হয়।

চিত্র-৪.৫ : আয়নিক যৌগের গলিত অবস্থায় ও দ্রবণে তড়িৎ পরিবহণ কৌশল।

 $Cl^- \longrightarrow Cl + e^-$ [অ্যানোডে জারণ]; $2Cl \longrightarrow Cl_2$ (g)

ক্যাটায়ন ও অ্যানায়ন : তড়িৎ-বিশ্বেষণকালে তড়িৎ-বিশ্বেষ্যের ধনাত্মক আয়নসমূহ ক্যাথোড কর্তৃক আকৃষ্ট হয় বলে তাদেরকে ক্যাটায়ন বলে। যেমন, Na^+ , Mg^{2+} , Al^{3+} , NH_4^+ ও H^+ আয়ন ইত্যাদি এবং ঋণাত্মক আয়নসমূহ অ্যানোড কর্তৃক আকৃষ্ট হয় বলে তাদেরকে অ্যানায়ন বলা হয়। যেমন, Cl^- , Br^- , I^- , OH^- , NO_3^- , SO_4^{2-} ইত্যাদি।

ব্যবহারিক (Practical)

৪.৩ বিভিন্ন দ্রবণের পরিবাহিতার পার্থক্য

Conductivity Difference of Different Solutions

বিভিন্ন তড়িৎ-বিশ্লেষ্য পদার্থের দ্রবণের পরিবাহিতা ঐ সব <mark>যৌগের জলীয় দ্রবণে আয়নিত হওয়ার পরিমাণের ওপর</mark> নির্ভর করে।

যে তড়িং-বিশ্লেষ্য দ্রবণে যত বেশি আয়ন তৈরি করে সে পদার্থ তত বেশি বিদ্যুৎ পরিবহণ করতে পারে।

এ থেকে বোঝা যায়, (১) আয়নিক যৌগ NaCl, সবল এসিড ও সবল ক্ষার জলীয় দ্রবণে অধিক আয়নিত হওয়ায় এরা বেশি তড়িৎ পরিবহণ করতে পারে এবং এরা সবল পরিবাহী ও সবল তড়িৎ-বিশ্লেষ্য।

অপরদিকে (২) দুর্বল এসিড যেমন অ্যাসিটিক এসিড ও স্ম্যামোনিয়া জলীয় দ্রবণে কম আয়নিত হয়, তাই এরা কম তড়িৎ পরিবহণ করে। তাই এরা দুর্বল পরিবাহী এবং এদেরকে দুর্বল তড়িৎ-বিশ্লেষ্য বলে।

(৩) অপোলার বা আংশিক পোলার সমযোজী যৌগ পানিতে দ্রবীভূত অবস্থায় আয়নিত হয় না; যেমন সুক্রোজ বা চিনি, গ্রুকোজ, মিথানল, ইথানল ইত্যাদি। তাই এসব যৌগের জলীয় দ্রবণ বিদ্যুৎ পরিবহণ করতে পারে না; এদের দ্রবণকে তড়িৎ অবিশ্লেষ্য বলা হয়।

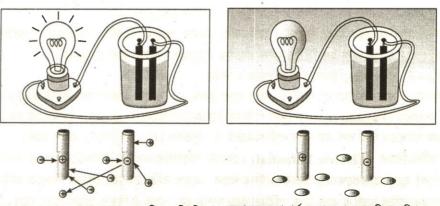
MAT (16-19

সারণি-৪.১ : সবল তড়িৎ-বিশ্লেষ্য , দুর্বল তড়িৎ-বিশ্লেষ্য ও তড়িৎ-অবিশ্লেষ্য

(ক) সবল তড়িৎ-বিশ্লেষ্য	(খ) দুর্বল তড়িৎ-বিশ্লেষ্য	(গ) তড়িৎ-অবিশ্লেষ্য
১. আয়নিক যৌগ, NaCl, KCl দ্রবণ	V. CH₃COOH দ্রবণ ।	৴. CH ₃ OH, C ₂ H ₅ OH দ্র্বণ
২. HCl, H ₂ SO ₄ , HClO ₄ এসিড	x. HF দ্ৰবণ	২. সুক্রোজ (C ₁₂ H ₂₂ O ₁₁) দ্রবণ
w. NaOH, KOH ক্ষার দ্রবণ	ত. H ₃ PO ₄ দ্ৰবণ	৩. H ₂ O (বিশুদ্ধ)

ব্যবহারিক (Practical)
শিক্ষার্থীর কাজ :
পরীক্ষা নং : ১৪
তারিখ :পরীক্ষার নাম : বিভিন্ন দ্রবণের পরিবাহিতার পার্থক্য পরীক্ষা

মূলনীতি: সবল তড়িৎ-বিশ্লেষ্য দ্রবণে অধিক আয়নিত হয়। তাই অধিক সংখ্যক আয়ন দ্বারা অধিক পরিমাণ তড়িৎ পরিবহণ সম্ভব হয়। অর্থাৎ সবল তড়িৎ-বিশ্লেষ্যের তড়িৎ পরিবাহিতার মান বেশি হয়। দুর্বল তড়িৎ-বিশ্লেষ্য দ্রবণে কম আয়নিত হয়। তাই কম সংখ্যক আয়ন দ্বারা কম পরিমাণ তড়িৎ পরিবহণ সম্ভব অর্থাৎ দুর্বল তড়িৎ-বিশ্লেষ্যের তড়িৎ পরিবাহিতার মান কম হয়। অপরদিকে যেসব যৌগ জলীয় দ্রবণে আয়নিত হয় না; এরা তড়িৎ পরিবহণ করতে পারে না বলে তড়িৎ অপরিবাহী হয়।


প্রয়োজনীয় রাসায়নিক পদার্থ: (১) 0.1 M HCl দ্রবণ, (২) 0.1 M CH3COOH,

(৩) 0.1 M C₁₂H₂₂O₁₁ (সুক্রোজ) দ্রবণ

প্রয়োজনীয় যদ্রপাতি : (১) বিকার-৩টি, (২) ব্যাটারি সেট, (৩) বাল্ব, (৪) কপার তারের সংযোগ।

কাজের ধারা : (১) তিনটি বিকারে 0.1 M HCl দ্রবণ, 0.1 M CH3COOH দ্রবণ ও 0.1 M সুক্রোজ দ্রবণ নাও।

- (২) নিচের চিত্র মতে প্রথমে 0.1M HCl দ্রবণে তড়িৎ সার্কিট সংযোগ করো। তখন তড়িৎ বাল্ব জ্বলে ওঠবে। উজ্জ্বল আলো দেবে। এতে প্রমাণিত হয় 0.1 M HCl সবল তড়িৎ-বিশ্লেষ্য।
- (৩) এবার 0.1 M HCl এর বিকারটি সরিয়ে নাও এবং 0.1 M CH₃COOH এর বিকারের দ্রবণে ইলেকট্রোড দুটো ছুবাও। এখন বাল্ব কম আলো দেবে। বিদ্যুৎ কম প্রবাহিত হচ্ছে বলে কম আলো হয়। এতে প্রমাণিত হয় 0.1 M CH₃COOH দ্রবণ দুর্বল তড়িৎ-বিশ্লেষ্য।

তড়ি-বিশ্লেষ্য দ্রবণে ধনাত্মক ও ঋণাত্মক আয়ন দ্বারা বিদ্যুৎ পরিবাহিত হওয়ায় তড়িৎ সার্কিট পূর্ণ হয়েছে। তড়িৎ বাল্ব দ্বুলে ওঠেছে।

সুক্রোজের দ্রবণে চার্জযুক্ত আয়ন না থাকায় বিদ্যুৎ পরিবহণ ঘটেনি। তড়িৎ সার্কিট অপূর্ণ থাকায় তড়িৎ বাল্ব জ্বলেনি।

চিত্র-৪.৬ : বিভিন্ন দ্রবণের তড়িৎ পরিবাহিতার পার্থক্য নির্ণয়।

(8) এবার 0.1 M CH₃COOH দ্রবণের বিকারটি সরিয়ে 0.1 M সুক্রোজ দ্রবণের বিকারটিতে তড়িৎ সংযোগ করো। এবার দেখো, বাল্বটি কোনো আলো দিচ্ছে না। এতে প্রমাণিত হয় সুক্রোজ দ্রবণ দিয়ে তড়িৎ পরিবহণ সম্ভব না হওয়ায় তড়িৎ সার্কিট পূর্ণ হয় নি। অর্থাৎ সুক্রোজ দ্রবণ তড়িৎ অপরিবাহী।

৪.৩.১ তড়িৎ-বিশ্লেষণে ব্যবহৃত পদ ও তাদের একক

Terms used in Electrolysis and their Units

তড়িৎ-বিশ্লেষণসংক্রান্ত ফ্যারাডের সূত্র বোঝার জন্য নিশ্লোক্ত পদসমূহ যেমন তড়িৎ বা বিদ্যুৎ, তড়িৎ প্রবাহ, তড়িৎ চার্জ, কুলম্ব, অ্যাম্পিয়ার, তড়িৎ-বিভব ইত্যাদি সম্বন্ধে জানা দরকার।

- ১। তড়িং (Electricity) : কোনো পরিবাহীর মধ্যদিয়ে 'ইলেকট্রনের প্রবাহকে' তড়িং বা বিদ্যুৎ বলে। বিদ্যুৎ পরিমাপের একক হলো কুলম্ব (coulomb), এর প্রতীক হলো ে। পিনি ক্রিমিণ্ডিন সিন্তিন সি
- ২। তড়িৎ প্রবাহ (Electric Current): কোনো পরিবাহীর মধ্যদিয়ে 'ইলেকট্রন বা তড়িৎ চার্জের প্রবাহ হারকে' তড়িৎ প্রবাহ বলা হয়। তড়িৎ প্রবাহের একক হলো অ্যাম্পিয়ার (ampere)। এর প্রতীক হলো A। অর্থাৎ প্রতি সেকেন্ডে পরিবাহীর মধ্যদিয়ে প্রবাহিত তড়িৎ চার্জের পরিমাণকে অ্যাম্পিয়ার বলে। এর মাত্রার প্রতীক হলো I।

সিলভার নাইট্রেটের জলীয় দ্রবণে যে পরিমাণ বিদ্যুৎ প্রবাহের ফলে এক সেকেন্ডে 0.001118 গ্রাম ধাতব সিলভার ক্যাথোডে জমা হয়, সে পরিমাণ তড়িৎ প্রবাহকে এক অ্যাম্পিয়ার বলে।

৩। তড়িৎ চার্জ (Electric charge) : কোনো সুপরিবাহীর মধ্যদিয়ে 1.0 অ্যাম্পিয়ার (IA) তড়িৎ প্রবাহ 1.0 সেকেন্ড সময় চললে যে পরিমাণ ইলেকট্রন চার্জ প্রবাহিত হয়, তাকে এক কুলম্ব তড়িৎ চার্জ বলে। তড়িৎ চার্জের SI একক হলো কুলম্ব (C)। মোট তড়িৎ চার্জের প্রতীক হলো (C)। তড়িৎ চার্জের প্রতীক হলো (C)

$$\therefore$$
 Q(C) = I(A) \times t(s)

কুলম্ব হলো তড়িৎ পরিমাণের ক্ষুদ্রতম একক।

- 8। **অ্যাম্পিয়ার (Ampere) :** কোনো পরিবাহীর মধ্যদিয়ে 1.0 সেকেন্ডে যত কুলম্ব তড়িৎ চার্জ প্রবাহিত হয় তাকে 1.0 অ্যাম্পিয়ার বলে।
- ৫। কুশ্ব (Coulomb): কোনো পরিবাহীর মধ্যদিয়ে 1.0 সেকেন্ড যাবৎ 1.0 আ্যাম্পিয়ার তড়িৎ প্রবাহের ফলে প্রবাহিত মোট তড়িৎ চার্জের পরিমাণকে 1.0 কুলম্ব তড়িৎ প্রবাহ বলে। এর প্রতীক হলো C।

$$\therefore 1C = 1A \times 1s$$

কুলম ও জ্যাম্পিয়ারের মধ্যে সম্পর্ক : মনে করি, কোনো তড়িৎ পরিবাহীর মধ্যদিয়ে C অ্যাম্পিয়ার তড়িৎ প্রবাহ t সেকেন্ড সময় ধরে চালনা করা হলো। এর ফলে প্রবাহিত তড়িতের পরিমাণ হলো Q কুলম।

∴ $Q = C \times t$; অর্থাৎ, কুলম্ব = অ্যাম্পিয়ার \times সময় ।

জেনে নাও : তড়িৎ পরিমাণের ক্ষুদ্রতম একক হলো কুলম্ব এবং বৃহত্তম একক হলো ফ্যারাডে (F)।

- ৬। ফ্যারাডে (Faraday) : এক মোল পরিমাণ ইলেকট্রনের চার্জকে 96500 কুলম্ব ধরা হয়। মোল পরিমাণ তড়িৎ চার্জকে এক ফ্যারাডে চার্জ বলা হয়। এর প্রতীক হলো F। সুডরাং 1F = 96500 C তড়িৎ চার্জ) MATC 15–16
- ৭। তড়িং-বিভব (Electric Potential): কোনো পরিবাহীর মাধ্যমে ইলেকট্রনের প্রবাহ থাকলে তখন ঐ মাধ্যমের নির্দিষ্ট এলাকা জুড়ে তড়িতক্ষেত্রের প্রভাব কার্যকর থাকে। এরূপ তড়িতক্ষেত্রের কোনো বিন্দুতে অসীম দূরত্ব থেকে একটি একক ধনাত্মক তড়িং চার্জকে আনতে যে পরিমাণ কাজ সম্পন্ন হয়, তাকে ঐ বিন্দুর তড়িং-বিভব বলে। তড়িং বিভবের SI

একক হলো ভোল্ট (volt) এবং এর প্রতীক হলো V। তড়িৎ-বিভব $(V) = \frac{N}{\text{চার্জের পরিমাণ }(C)} = JC^{-1}$

শিক্ষার্থীর কাজ-৪.২ (ক) : দ্রবণের তড়িং পরিবাহিতা পরীক্ষাভিত্তিক :

প্রশ্ন-৪.৫ : 0.1M HCl দ্রবণ তড়িৎ পরিবহণ করতে পারে; কিন্তু 0.1M সুক্রোজ দ্রবণ তড়িৎ পরিবহণ করতে পারে না কেন; তা তড়িৎ পরিবহণের শর্তসহ ব্যাখ্যা করো। [অনুধাবনভিত্তিক]

উত্তর $: 0.1 \; HCl$ দ্রবণে আয়নিত হয়ে H^{\dagger} আয়ন ও Cl^{-} আয়ন তৈরি করে। এ বিপরীতধর্মী আয়ন দ্বারা তড়িৎ পরিবহণ সম্ভব হয়। সুক্রোজ দ্রবণে আয়ন সৃষ্টি হয় না। তাই 0.1 M সুক্রোজ দ্রবণ বিদ্যুৎ অপরিবাহী হয়।

8.8 ফ্যারাডের তড়িৎ-বিশ্লেষণের প্রথম সূত্র Faraday's First Law of Electrolysis

তড়িৎ-বিশ্লেষণ : তড়িৎ-বিশ্লেষ্যের মধ্য দিয়ে তড়িৎ চলাচলকালে আয়নদ্বয়ের জারণ-বিজারণ ঘটে, তড়িৎ-বিশ্লেষ্য যৌগটি উপাদানে বিশ্লেষিত হয়। এরূপ পরিবর্তনকে তড়িৎ-বিশ্লেষণ (Electrolysis) বলে।

তড়িৎ-বিশ্লেষ্যের বিয়োজন বিভব : বিজ্ঞানী মাইকেল ফ্যারাডে তড়িৎ-বিশ্লেষ্য পদার্থের দ্রবণে তড়িৎ প্রবাহিত করে লক্ষ্য করেন যে, একটি ন্যূনতম মাত্রার চেয়ে সামান্য বেশি পরিমাণ তড়িৎ-বিভব প্রয়োগ করলেই তখন ঐ তড়িৎ-বিশ্লেষ্য পদার্থের দ্রবণের মধ্যদিয়ে তড়িৎ প্রবাহ চলতে থাকে। তড়িৎ-বিশ্লেষ্যের ক্ষেত্রে তড়িৎ প্রবাহের প্রয়োজনীয় তড়িৎ-বিভবের এ ন্যূনতম মাত্রাকে তড়িৎ-বিশ্লেষ্যের বিয়োজন বিভব (decomposition potential) বলে। বিয়োজন বিভবের চেয়ে সামান্য বেশি পরিমাণে তড়িৎ-বিভব প্রয়োগ করলেই তখন তড়িৎ-বিশ্লেষ্যের জারণ-বিজারণের ফলে তড়িৎ-বিশ্লেষণ ঘটে।

তড়িৎ-বিশ্রেষণের সাথে রাসায়নিক পরিবর্তনের মাত্রিক পরিমাণ সম্পর্কে ফ্যারাডের দুটি বিখ্যাত সূত্র আছে। এখানে ফ্যারাডের তড়িৎ-বিশ্রেষণের প্রথম সূত্রটি আলোচনা করা হলো।

ফ্যারাডের প্রথম সূত্র : তড়িৎ-বিশ্রেষণের সময় যেকোনো তড়িৎদারে সংঘটিত রাসায়নিক বিক্রিয়ার পরিমাণ অর্থাৎ কোনো তড়িৎদারে সঞ্চিত বা দ্রবীভূত পদার্থের পরিমাণ প্রবাহিত বিদ্যুতের পরিমাণের সমানুপাতিক।

কোনো পদার্থের তড়িৎ-বিশ্লেষণের সময় যদি 1 অ্যাম্পিয়ার মাত্রার বিদ্যুৎ প্রবাহ t সেকেন্ড সময় তড়িৎ কোষে প্রবাহিত হয়। তবে ঐ সময়ে Q কুলম্ব পরিমাণ বিদ্যুৎ প্রবাহিত হওয়ার ফলে W_g ভরের একটি পদার্থ তড়িৎদ্বারে সঞ্চিত বা দ্রবীভূত হয়, তাই ফ্যারাডের প্রথম সূত্র মতে,

$$W \propto Q$$
 বা, $W = ZO$... (i) বিদ্যুৎ চালনা করলে ক্যাথোডে কত গ্রাম Cr জমা হবে? আবার, $Q = I \times t$... (ii) [$Cr = 52$] [$Cr = 52$] $Cr = 52$ Cr

এখানে Z একটি ছির সংখ্যা যা পদার্থের ধর্মের ওপর নির্ভর করে এবং একে সে পদার্থের তড়িৎ রাসায়নিক তুল্যান্ধ (Electrochemical equivalent) বলা হয়। যখন Q=1 কুলম, তখন $W=Z\times 1$ coulomb, বা, Z=W g coulomb $^{-1}$ হয়ে থাকে।

তড়িৎ রাসায়নিক তুল্যাঙ্কের একক : ফ্যারাডের ১ম সূত্র মতে , $\mathbf{W}=\mathbf{Z}\mathbf{Q}$

$$\therefore Z = rac{W}{O} = rac{ ext{sin}}{ extstyle extstyle ag{sin}} \;\; ; \qquad \therefore \; extstyle extsty$$

তড়িৎ রাসায়নিক তুল্যাঙ্ক : তড়িৎ-বিশ্লেষণের সময় এক কুলম্ব বিদ্যুৎ প্রবাহের ফলে কোনো পদার্থের যত গ্রাম পরিমাণ অ্যানোডে দ্রবীভূত বা ক্যাথোডে সঞ্চিত হয়, তাকে সেই পদার্থের তড়িৎ রাসায়নিক তুল্যাঙ্ক বলা হয়। যেমন,

- (১) সিলভারের তড়িৎ রাসায়নিক তুল্যাঙ্ক হচ্ছে 0.001118 g coul-1;
- (২) হাইড্রোজেনের তড়িৎ রাসায়নিক তুল্যাঙ্ক হচ্ছে 0.000010447 g coul-1।

ফ্যারাডের সূত্রটি শতভাগ প্রযোজ্য হবে নিম্নোক্ত ক্ষেত্রে; যেমন MCO-4.8: (i) সবল তড়িৎ-বিশ্রেষ্য (ii) দুর্বল তড়িৎ-বিশ্রেষ্য (iii) গ্রাফাইটের ক্ষেত্রে নিচের কোনটি সঠিক? (本) i ଓ ii (খ) ii ও iii (গ) i ও iii (ঘ) i. ii ও iii . ফ্যারাডের সূত্র মতে তড়িৎ-বিশ্রেষণকালে তড়িৎদ্বার ক্যাথোডে সঞ্চিত পদার্থের পরিমাণ তিনটি বিষয় বা MCQ-4.9: ফ্যাক্টরের ওপর নির্ভর করে। যেমন— (i) বিদ্যুতের মাত্রা (I) (ii) বিদ্যুৎ প্রবাহের সময় (t) এবং (iii) ধনাত্মক আয়নের চার্জ সংখ্যা। নিচের কোনটি সঠিক? (季) i (季)i (খ) ii ও iii (গ) i ও iii (ঘ) i, ii ও iii

শিক্ষার্থীর কাজ-৪.৩ : তড়িৎ রাসায়নিক তুল্যাঙ্কভিত্তিক সমস্যা :

প্রশ্ন ৪.৬(ক) : হাইড্রোজেনের তড়িৎ রাসায়নিক তুল্যাঙ্ক হলো 0.000010447 g C-1 ব্যাখ্যা করো।

প্রশ্ন ৪.৬(খ): সিলভারের তড়িৎ রাসায়নিক তুল্যাঙ্ক 0.001118 g C-1 হয় কেন; ব্যাখ্যা করো। [অনুধাবনভিত্তিক]

প্রশ্ন ৪.৬(গ) : Fe এর তড়িং রাসায়নিক তুল্যাঙ্ক $2.894 \times 10^{-4}~{
m g}~{
m C}^{-1}$ এবং $1.929 \times 10^{-4}~{
m g}~{
m C}^{-1}$ হতে পারে। ব্যাখ্যা করো।

প্রশ্ন ৪.৬(ঘ) : Cu এর তড়িৎ রাসায়নিক তুল্যান্ধ 6. 586 × 10⁻⁴ g C⁻¹ এবং 3. 293 × 10⁻⁴ g C⁻¹ হতে পারে । ব্যাখ্যা করো ।

প্রশ্ন ৪.৬(%) : Z_n এর তড়িৎ রাসায়নিক তুল্যাঙ্ক $3.3886 \times 10^{-4} \, \mathrm{g \ C^{-1}}$ বলতে কী বোঝায় ? [দি. বো. ২০১৭]

জেনে নাও: (১) মৌলের তড়িৎ রাসায়নিক তুল্যাঙ্ক মৌলটির গ্রাম-পারমাণবিক ভর ও নির্দিষ্ট জারণ অবস্থা বা যৌগ গঠনে ব্যবহৃত যোজ্যতা সংখ্যার ওপর নির্ভর করে।

(২) ছির যোজ্যতা বা ছির জারণ অবস্থার মৌলের তড়িৎ রাসায়নিক তুল্যাঙ্ক ছির থাকে। কিন্তু একাধিক যোজ্যতা বা জারণ সংখ্যার মৌলের তড়িৎ রাসায়নিক তুল্যাঙ্ক তাদের যোজনী বা জারণ সংখ্যার ওপর নির্ভর করে ভিন্ন ভিন্ন হয়।

যেমন, মৌলের তড়িৎ রাসায়নিক তুল্যাঙ্ক, $Z = \frac{গ্রাম-পারমাণবিক ভর} যোজনী <math>\times 96473$ C

ছির যোজ্যতার মৌল:

মৌল	পাঃ ভর	যৌগে মৌশটির যোজ্যতা	তড়িৎ রাসায়নিক তুস্যাঙ্ক, Z	
Н	1.0079	1 (HCl)	$1.0447 \times 10^{-5} \text{ gC}^{-1}$	
0	15.9994	2 (H ₂ O)	$8.2921 \times 10^{-5} \text{ gC}^{-1}$	
Cl	35.4530	1 (HCl)	$3.6749 \times 10^{-4} \text{ gC}^{-1}$	
Zn	65.409	2. (ZnO)	$3.390 \times 10^{-4} \text{ gC}^{-1}$	
Ag	107.868	1(AgCl)	$1.1181 \times 10^{-3} \text{ gC}^{-1}$	

পরিবর্তনশীল যোজ্যতার মৌল:

মৌল		পাঃ ভর যৌগে মৌলটির যোজ্যতা		তড়িৎ রাসায়নিক তুল্যাঙ্ক, Z		
	Fe	55.845	2 (FeO)	$2.894 \times 10^{-4} \text{ gC}^{-1}$		
	Fe	55.845	3 (FeCl ₃)	$1.929 \times 10^{-4} \mathrm{gC^{-1}}$		
	Cu	63.546	1 (CuCl)	$6.586 \times 10^{-4} \text{ gC}^{-1}$		
	Cu	63.546	2 (CuO)	$3.293 \times 10^{-4} \text{ gC}^{-1}$		

- (৩) মৌলের রাসায়নিক তুল্যভর : মৌলের পারমাণবিক ভরকে ঐ মৌলের যৌগ গঠনে ব্যবহৃত যোজ্যতা সংখ্যা দ্বারা ভাগ করলে, যে সংখ্যা পাওয়া যায় তাকে ঐ মৌলের রাসায়নিক তুল্যভর বলে। রাসায়নিক তুল্যভরকে রাসায়নিক তুল্যাঙ্কও বলে। যেমন, CuSO4 যৌগে কপারের ব্যবহৃত যোজনী হলো 2 এবং Cu এর পারমাণবিক ভর হলো 63.5।
 - ∴ Cu এর রাসায়নিক তুল্যভর = (63.5 ÷ 2) = 31.75

(8) যৌগের তুল্যভর : যৌগের আণবিক ভরকে ক্যাটায়ন বা অ্যানায়নের মোট যোজনী সংখ্যা দ্বারা ভাগ করলে প্রাপ্ত ভাগফলকে যৌগটির তুল্যভর বলে। যেমন,

 $CuSO_4$ এর আণবিক ভর হলো $159.5 \mid CuSO_4$ যৌগে Cu^{2+} আয়নের যোজনী 2;

∴ CuSO₄ এর তুল্যভর = (159.5 ÷ 2) = 79.75। তদ্রেপ,

 H_2SO_4 এর তুল্যভর = (98 ÷ 2) = 49; Na₂CO₃ এর তুল্যভর = (106 ÷ 2) = 53 ।

(৫) তড়িৎ রাসায়নিক তুল্যায় ও গ্রাম রাসায়নিক তুল্যভরের মধ্যে সম্পর্ক :

মৌলের তড়িৎ রাসায়নিক তুল্যাঙ্ক × 96500 C (প্রায়) = মৌলটির গ্রাম রাসায়নিক তুল্যভর। যেমন,

Ag এর তড়িৎ রাসায়নিক তুল্যাস্ক $1.1181 \times 10^{-3} \ g \ C^{-1} \times 96500 \ C = 107.896 \ g \ (Ag$ এর গ্রাম রাসায়নিক তুল্যভর) ।

৪.৪.১ ফ্যারাডের সূত্রের প্রযোজ্যতা ও সীমাবদ্ধতা

MAT

Applicability and Limitation of Faraday's Law

- (क) প্রযোজ্যতা : (i) ফ্যারাডের সূত্র তড়িৎ-বিশ্লেষ্য-দ্রবণে ও গলিত তড়িৎ-বিশ্লেষ্যের ক্ষেত্রে সমভাবে প্রযোজ্য। (ii) ফ্যারাডের সূত্রের ওপর চাপ ও দ্রবণের ঘনমাত্রার বিশেষ কোনো প্রভাব নেই। তবে তাপের প্রভাব আছে, উত্তপ্ত অবস্থায় তড়িৎ-বিশ্লেষ্যের পরিবহণ সহজ হয়।
- (খ) সীমাবদ্ধতা : (i) ফ্যারাডের সূত্র কেবলমাত্র তড়িৎ-বিশ্লেষ্য পরিবাহীর বেলায় প্রযোজ্য। ইলেকট্রনীয় পরিবাহীর ক্ষেত্রে প্রযোজ্য নয়; কারণ এক্ষেত্রে জারণ-বিজারণ ঘটে না। (ii) যেসব ক্ষেত্রে শতভাগ তড়িৎ-বিশ্লেষ্য পদ্ধতিতে তড়িৎ প্রবাহিত হয়, শুধুমাত্র সেসব ক্ষেত্রে ফ্যারাডের সূত্র শতভাগ প্রযোজ্য। (iii) কোনো তড়িৎ-বিশ্লেষ্যে এক সাথে একাধিক জারণ-বিজারণ ঘটলে ফ্যারাডের সূত্রের গণনার ক্ষেত্রে ক্রটি ঘটবে।


8.8.২ ফ্যারাডের সূত্র প্রয়োগে তড়িৎ-বিশ্বেষ্য পদার্থের পরিমাণ নির্ণয়

To Determine Amount of Electrolytic Substance From Faraday's Law

চিত্র-৪.৭ এর তড়িৎ-বিশ্লেষ্য কোষটিতে অ্যানোড ও ক্যাথোডরূপে দুটি সিলভার ইলেকট্রোড এবং তড়িৎ-বিশ্লেষ্যরূপে সিলভার নাইট্রেট $(AgNO_3)$ দ্রবণ ব্যবহৃত হয়েছে। প্রবাহিত বিদ্যুতের পরিমাপের জন্য অ্যামেটার ব্যবহৃত হয়েছে। এখন সিলভার নাইট্রেট $(AgNO_3)$ এর জলীয় দ্রবণে বিদ্যুৎ চালনা করলে তড়িৎ-বিশ্লেষণ দ্বারা ক্যাথোডে সিলভার ধাতু জমা হয়। নিমুরূপে ক্যাথোডে সিলভার আয়ন (Ag^+) বিজারিত হয়।

$$Ag^+$$
 (aq) + e⁻ $\longrightarrow Ag$ (s) 1 মোল 1 মোল

এ সমীকরণ মতে বোঝা যায় যে, 1 মোল সিলভার আয়ন 1 মোল ইলেকট্রন দ্বারা বিজারিত হয়ে 1 মোল সিলভার পরমাণু উৎপন্ন করে। আবার উৎপন্ন সিলভারের পরিমাণ সার্কিট বা বর্তনীতে প্রবাহিত ইলেকট্রনের সংখ্যার সমানুপাতিক অর্থাৎ বর্তনীতে প্রবাহিত মোট বিদ্যুৎ বা বিদ্যুৎ চার্জের সমানুপাতিক। আবার 1 মোল সিলভার পরমাণুর ভর $108~{\rm g}$ এবং এর মধ্যে 10^{10} সংখ্যক (অ্যাভোগ্যাড্রো সংখ্যা 10^{10} সিলভার পরমাণু আছে। কিন্তু 1 মোল ইলেকট্রনেও সমসংখ্যক ইলেকট্রন থাকে। একটি ইলেকট্রনের চার্জ হলো 10^{10} মেল ইলেকট্রনের মোট চার্জ 10^{10} মাল ইলেকট্রনের মোট চার্জ 10^{10} মেল ইলেকট্রনের মোট চার্জ 10^{10}

চিত্র-৪.৭ : ফ্যারাডের ১ম সূত্রের সাহায্যে তড়িৎ বিশ্লেষ্য পদাত্র পরিমাণ নির্ণয়।

= 96473 C = 96500 C (প্রায়)। MAT (15-16) ফ্যারাডে (Faraday): এক মোল ইলেকট্রনের মোট চার্জ হলো 96,500 কুলুমা এ পরিমাণ বিদ্যুৎ চার্জকে এক

ফ্যারাডে চার্জ বা ফ্যারাডে ধ্রুবক বলা হয় এবং একে F দ্বারা চিহ্নিত করা হয়।

<u>∴ IF = 96500</u> C বিদ্যুৎ চার্জ।

1 মোল সিলভার (Ag) উৎপাদনের জন্য 1F বিদ্যুৎ চার্জ প্রয়োজন।

 \therefore \mathbf{x} মোল সিলভার (\mathbf{Ag}) উৎপাদনের $\mathbf{x} \times \mathbf{F}$ বিদ্যুৎ চার্জ প্রয়োজন । সুতরাং তড়িৎদ্বারে সঞ্চিত সিলভারের পরিমাণ প্রবাহিত বিদ্যুৎ চার্জের সমানুপাতিক।

MCQ4.10: এক ফ্যারাডে বলতে কী বোঝায়?

(本) 96500 To e-

(খ) 96500 টি e- এর চার্জ

(গ) 6.022 × 10²³ টি e- এর চার্জ

(ঘ) NA সংখ্যক ইলেকট্রন

অর্থাৎ তড়িৎ-বিশ্লেষ্য কোষে প্রবাহিত বিদ্যুতের পরিমাণ থেকে তড়িৎ-বিশ্লেষ্য পদার্থের পরিমাণ নির্ণয় করা যায়।

৪.৪.৩ ফ্যারাডের সূত্রের তাৎপর্য

Significance of Faraday's Law

১। পরমাণুর ইলেকট্রনীয় গঠন ও রাসায়নিক বন্ধনের ইলেকট্রনীয় তত্ত্ব জানার পরে ফ্যারাডের সূত্রসমূহ পরিষ্কারভাবে বোঝা যায়। যেকোনো মৌলের পরমাণুর নিউক্লিয়াসে মৌলটির পারমাণবিক সংখ্যার সমান সংখ্যক প্রোটন থাকে। একটি প্রমাণুতে সাধারণ অবস্থায় প্রোটনের সমান সংখ্যক ইলেকট্রন থাকে, যারা নিউক্লিয়াসকে কেন্দ্র করে পরিভ্রমণ রত।

২। কোনো পরমাণু থেকে একটি ইলেকট্রন বর্জন করা হলে সে পরমাণুতে একটি নিট ধনাত্মক আধানের সৃষ্টি হয়; অপরদিকে একটি পরমাণু অন্য কোনো পরমাণু থেকে একটি ইলেকট্রন গ্রহণ করলে তাতে একটি ঋণাত্মক আধানের সৃষ্টি श्य ।

৩। একটি পরমাণু বা পরমাণুগুচ্ছ যখন তড়িৎ নিরপেক্ষ থাকে না, অর্থাৎ তাতে যখন নিট ধনাত্মক বা ঋণাত্মক আধানের সৃষ্টি হয়, তখন তাকে আয়ন বলা হয়।

8। যদি কোনো পরমাণু n সংখ্যক ইলেকট্রন বর্জন করে, তখন n^+ আধানবিশিষ্ট ক্যাটায়নের সৃষ্টি হয়। আবার কোনো

প্রমাণু $\mathbf n$ সংখ্যক ইলেকট্রন গ্রহণ করলে $\mathbf n^-$ আধানবিশিষ্ট অ্যানায়নের সৃষ্টি হয়।

ে। সাধারণভাবে একটি ধাতু ও অধাতু পরস্পরের সাথে বিক্রিয়া করার সময় ধাতু পরমাণু থেকে এক বা একাধিক ইলেকট্রন অধাতু পরমাণুতে ছানান্তরিত হয়। এভাবে আয়নিক যৌগসমূহ গঠিত হয়। যেমন Na ও Cl পরমাণুর মধ্যে বিক্রিয়ার সময় সোডিয়াম প্রমাণু থেকে একটি ইলেকট্রন ক্লোরিন প্রমাণুতে স্থানান্তরিত হয়। অর্থাৎ Na^+ ও Cl^- আয়নের সৃষ্টি হয়। $Na = Na^+ + e^-; Cl + e^- = Cl^-$ । আয়নিক যৌগের স্ফটিকে আয়নসমূহ কেলাস ল্যাটিসে আবদ্ধ থাকে।

৬। দ্রবণে বা গলিত অবস্থায় তড়িৎ-বিশ্লেষ্যের আয়নগুলো মুক্ত অবস্থায় চলাচল করে। তখন তাদের পক্ষে তড়িৎ পরিবহণ সম্ভব হয়। তড়িৎ-বিশ্লেষণের সময় আয়নিক যৌগ গঠনের বিপরীত প্রক্রিয়া সম্পন্ন হয়। অর্থাৎ ক্যাথোডে ক্যাটায়ন প্রয়োজনীয় সংখ্যক ইলেকট্রন গ্রহণ করে আধান বা চার্জবিহীন পরমাণুতে পরিণত হয়। যেমন,

$$Na^+ + e^- \longrightarrow Na$$

আবার অ্যানোডে অ্যানায়ন প্রয়োজনীয় সংখ্যক ইলেকট্রন ত্যাগ করে আধানবিহীন প্রমাণুতে পরিণত হয় এবং পরে অণু গঠন করে। অথবা দ্রাবকের সাথে বা তড়িৎদ্বারের সাথে বিক্রিয়া করতে পারে। যেমন,

$$Cl^- \longrightarrow Cl + e^-$$
, $Cl + Cl \longrightarrow Cl_2$, $Na^+ + OH^- \longrightarrow NaOH$

৭। তড়িৎ-বিশ্লেষণের সময় একটি একযোজী ক্যাটায়ন বা অ্যানায়ন যথাক্রমে একটি ইলেকট্রন গ্রহণ বা বর্জন করে। যোজনী n হলে ক্যাটায়ন ও অ্যানায়ন nিট ইলেক্ট্রন যথাক্রমে গ্রহণ ও বর্জন করে।

৮। আবার ক্যাটায়নের এক মোল পরিমাণের মধ্যে অ্যাভোগ্যাদ্রো সংখ্যক N_A টি ক্যাটায়ন থাকে। তাই n যোজনী বিশিষ্ট এক মোল ক্যাটায়ন এক মোল প্রমাণু তৈরিতে nN_A িটি ইলেক্ট্রন প্রয়োজন হয়। একই ভাবে m যোজনীবিশিষ্ট এক মোল অ্যানায়ন থেকে এক মোল পরমাণু পেতে ${
m mN}_A$ সংখ্যক ইলেকট্রন বর্জন করতে হয়।

৯। বিদ্যুৎ বিশ্লেষণকালে কোনো পদার্থের আয়ন থেকে 1 মোল পদার্থকে সঞ্চিত করতে প্রয়োজনীয় বিদ্যুতের পরিমাণ সে পদার্থের ধনাত্মক আয়নের চার্জের সমান মোল ইলেকট্রন (যেমন ১, ২, ৩ মোল ইত্যাদি) এর সমান।

তড়িৎ-বিশ্লেষণ থেকে জানা যায়, ক্যাথোডে 1 মোল Ag. 1 মোল Cu এবং 1 মোল Cr এর সঞ্চিত হওয়ার কালে যথাক্রমে 96500 C, 2×96500 C এবং 3×96500 C বিদ্যুৎ প্রয়োজন হয়। এসব তথ্য নিমোক্ত সমীকরণের সাথে সামঞ্জস্যপূর্ণ। যেমন,

সুতরাং 1 মোল এক-ধনাত্মক আয়নকে বিজারিত করতে 1 F বিদ্যুৎ প্রয়োজন।

1 মোল দ্বি–ধনাত্মক আয়নকে বিজারিত করতে 2 F বিদ্যুৎ প্রয়োজন।

MAT

1 মোল ত্রি−ধনাত্মক আয়নকে বিজারিত করতে 3 F বিদ্যুৎ প্রয়োজন।

অপর কথায়, $96.5 \times 10^3 \mathrm{C}$ বিদ্যুৎ তিনটি তড়িৎ-বিশ্রেষ্য কোষে প্রবাহিত হওয়ার ফলে সঞ্চিত ধাতুসমূহের পরিমাণ হয় যথাক্রমে 1 মোল Ag , $\frac{1}{2}$ মোল Cu , $\frac{1}{3}$ মোল Cr অর্থাৎ 1 মোল/(ধনাত্মক আয়নের চার্জ)। মৌলের এরূপ সম্পর্কযুক্ত পরিমাণকে বিজ্ঞানী ফ্যারাডে তাঁর সূত্রে ধাতুসমূহের তুল্যভর বা তুল্যাঙ্ক (equivalents) বলেছেন।

ধাতুর তুল্যভরের সংজ্ঞা: কোনো ধাতুর লবণের দ্রবণের তড়িং-বিশ্লেষ্য কোষে এক ফ্যারাডে তড়িং দ্বারা ক্যাথোডে যত গ্রাম ধাতু সঞ্চিত্ত হয়, ঐ পরিমাণকে ধাতৃটির তুল্যভর বা তুল্যাঙ্ক বলে। ধাতুর এক মোল ও ধাতুর ধনাতাক চার্জের অনুপাত হলো ধাতৃটির তুল্যভর। যেমন, Cu এর তুল্যভর বা রাসায়নিক তুল্যভর = (63.55g ÷ 2) = 31.775 g।

১০। ফ্যারাডের সূত্রের সাহায্যে ইলেকট্রনের চার্জ গণনা করা সম্ভব।

তড়িৎ-বিশ্লেষণের সমীকরণ মতে, একযোজী এক মোল ক্যাটায়নকে চার্জ মুক্ত করতে 1F বিদ্যুতের প্রয়োজন হয়। এক মোল ক্যাটায়নের সংখ্যা হলো অ্যাভোগাড্রো সংখ্যা, N_A একটি ইলেকট্রনের চার্জ = e^-

 \therefore N_A × e⁻ = 1 ফ্যারাডে = 96500 কুলম্ব (C).

$$\therefore e^{-} = \frac{96500 \text{ C}}{N_A} = \frac{96500 \text{ C}}{6.022 \times 10^{23}} = 1.60245 \times 10^{-19} \text{ C}$$

এভাবে হিসাবকৃত ইলেকট্রনের চার্জের পরিমাণ বিভিন্ন পরীক্ষা থেকে প্রাপ্ত ইলেকট্রনের চার্জের সমান। এ থেকে ফ্যারাডের সূত্রের তাৎপর্য বোঝা যায় এবং প্রমাণিত হয় যে, 1 মোল ইলেকট্রন = 1 ফ্যারাডে (F)

সমাধানকৃত সমস্যা-৪.৮: 5 অ্যাম্পিয়ার মাত্রার তড়িৎ 60 মিনিট ধরে CuSO₄ দ্রবণের মধ্যদিয়ে চালনা করলে তড়িৎদ্বারে কী পরিমাণ কপার সঞ্চিত হবে? [Cu = 63.5]

দক্ষতা : সংশ্লিষ্ট বিজারণ সমীকরণ ও ফ্যারাডের ১ম সূত্র প্রয়োগ করতে হবে।

সমাধান : প্রশ্নমতে মোট সময়, t = 60 × 60 সেকেন্ড।

∴ প্রবাহিত বিদ্যুতের পরিমাণ,
$$Q = I \times t = 5 \times 60 \times 60$$
 C বা, $Q = \frac{5 \times 60 \times 60}{96500}$ F $= \frac{36 \times 5}{965}$ F

কপার সালফেট ($CuSO_4$) এর দ্রবণে তড়িৎ-বিশ্লেষণে Cu^{2+} আয়ন নিমুরূপে বিজারিত হয়।

$$Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$$

2F 1 (NIF) = 63.5 g Cu

সমীকরণ মতে, 2 F বিদ্যুৎ দ্বারা সঞ্চিত হয় 1 মোল কপার = 63.5 g Cu

$$\therefore \frac{36 \times 5}{965}$$
 F বিদ্যুৎ দ্বারা সঞ্চিত হয় = $\frac{63.5 \times 36 \times 5}{2 \times 965}$ g Cu = 5.922 g Cu (প্রায়) (উত্তর)

সমাধানকৃত সমস্যা-৪.৯ : CuSO₄ দ্রবণের মধ্যদিয়ে 160 mA বিদ্যুৎ 40 min. যাবৎ চালনা করা হলো। তড়িৎদারে সঞ্চিত কপার পরমাণুর সংখ্যা নির্ণয় করো।

সমাধান : প্রশ্নমতে, $t = 40 \times 60$ সেকেন্ড। বিদ্যুতের মাগ্রো, 1 = 160 mA = 0.16 A

∴ প্রবাহিত বিদ্যুতের পরিমাণ,
$$Q = 1 \times t = (0.16 \times 40 \times 60) C = \frac{384}{96500} F$$

CuSO4 দ্রবণের তড়িৎ-বিশ্লেষণে Cu²⁺ আয়ন নিমুরূপে বিজারিত হয় :

$$Cu^{2+}$$
 (aq) + 2e⁻ \longrightarrow Cu (s)
2F 1 (মাল

সমীকরণ মতে, 2 F বিদ্যুৎ দ্বারা সঞ্চিত হয় 1 মোল Cu বা, 6.022×10^{23} টি Cu প্রমাণু

$$\therefore \frac{384}{96500}$$
 F বিদ্যুৎ দ্বারা সঞ্জিত হয় $=\frac{6.022\times 10^{23}\times 384}{2\times 96500}$ টি Cu প্রমাণু $=1.198159585\times 10^{21}$ টি Cu প্রমাণু (উত্তর)

সমাধানকৃত সমস্যা-৪.১০ : সালফিউরিক এসিডের লঘু জলীয় দ্রবণের মধ্যদিয়ে প্লাটিনাম তারের মাধ্যমে ১ ঘণ্টা বিদ্যুৎ প্রবাহিত করায় আদর্শ তাপমাত্রা ও চাপে 250 mL হাইড্রোজেন গ্যাস উৎপন্ন হয়। বিদ্যুতের মাত্রা কত ছিল?

সমাধান : প্রশ্নমতে, উৎপন্ন H₂ গ্যাসের আয়তন (আদর্শ তাপমাত্রা ও চাপে) 250 mL = 0,250 L

আবার 1 মোল $H_2 = 1.008 \times 2 \text{ g H}_2$

অর্থাৎ 22.4 L H₂ = 1.008 × 2 g H₂

∴ 0.250 L H₂ =
$$\frac{1.008 \times 2 \times 0.250}{22.4}$$
 g H₂ = 0.0225 g H₂ (গ) 1.62 C (घ) 1.602 × 10⁻¹⁹ C

MCQ411: 1 মোল ইলেকট্রন কোন্টি ?

(ক) 1 ফ্যারাডে (খ) 1C

বিদ্যুৎ বিশ্রেষণকালে H⁺ এর বিজারণ নিমু সমীকরণ মতে ঘটে:

$$H^{+}(aq)$$
 + e^{-} $\rightarrow \frac{1}{2} H_{2}(g)$ 1 মোল 1 মোল

1 মোল হাইড্রোজেন প্রমাণু = 1.008 g

∴ 1.008 g হাইড্রোজেন মুক্ত করতে প্রয়োজন হয় 1F = 96500 C

$$\therefore 0.0225 \text{ g}$$
 হাইড্রোজেন মুক্ত করতে প্রয়োজন হয় = $\frac{96500 \times 0.0225}{1.008} \text{ C} = 2154.0178 \text{ C}$

আমরা জানি,
$$Q = I \times t$$
; : বিদ্যুতের মাত্রা, $I = \frac{Q}{t} = \frac{2154.0178C}{60 \times 60 \text{ s}} = 0.5983 \text{ A (প্রায়) । (উত্তর)}$

সমাধানকৃত সমস্যা-৪.১১: শঘু $m H_2SO_4$ মিশ্রিত পানিতে m Pt তড়িংঘারের মাধ্যমে m 3.0~A বিদ্যুৎ m 2 ঘণ্টা যাবং প্রবাহিত করা হলো। এতে কত গ্রাম পানি তড়িৎ-বিশ্লেষিত হবে এবং STP-তে কত আয়তনের $m H_2$ গ্যাস ও $m O_2$ গ্যাস উৎপন্ন হবে?

সমাধান : লঘু H_2SO_4 মিশ্রিত পানিতে Pt তড়িৎদার ব্যবহার করে তড়িৎ-বিশ্লেষণকালে জারণ-বিজারণ বিক্রিয়ার সমীকরণটি হলো নিমুরূপ:

তড়িৎ-বিয়োজন :
$$4H_2O$$
 \longrightarrow $4H^+$ + $4OH^-$
ক্যাথোডে বিজারণ : $4H^+$ + $4e^ \longrightarrow$ $2H_2$
আ্যানোডে জারণ : $4OH^ \longrightarrow$ $2H_2O$ + O_2 + $4e^-$
সামগ্রিক তড়িৎ-বিশ্লেষণ : $2H_2O$ $\xrightarrow{4F}$ $2H_2$ + O_2
 $36 \ g$ $2 \times 22.4 \ L(STP-তে)$

প্রশ্নমতে, প্রবাহিত মোট বিদ্যুতের পরিমাণ, $Q=1\times t=3.0\times 2\times 60\times 60$ C=21600 C সমীকরণ মতে, পানিতে 4F বা, 4×96500 C বিদ্যুৎ প্রবাহে 36 g পানি বিশ্লেষিত হয়

$$\therefore 21600 \text{ C}$$
 বিদ্যুৎ প্রবাহে $\frac{36 \times 21600}{4 \times 96500} \text{ g} = 2.0145 \text{ g}$ পানি।

STP-তে উৎপন্ন H2 গ্যাস ও O2 গ্যাস-এর আয়তন গণনা :

সমীকরণ মতে , $4\mathrm{F}$ বা , $4 imes 96500~\mathrm{C}$ বিদ্যুৎ প্রবাহে STP-তে $2 imes 22.4~\mathrm{L}$ H_2 উৎপন্ন হয়।

$$\therefore$$
 21600 C বিদ্যুৎ প্রবাহে STP-তে $\frac{2 \times 22.4 \times 21600 \text{ L}}{4 \times 96500} = 2.5069 \text{ L H}_2 \text{ I}$

আবার, সমীকরণ মতে, উৎপন্ন ${
m O}_2$ গ্যাসের আয়তন ${
m H}_2$ গ্যাসের অর্ধেক হয়।

উত্তর : পানি = 2.0145 g, $H_2 = 2.5069 \text{ L}$, $O_2 = 1.25345 \text{ L}$

সমাধানকৃত সমস্যা- ৪.১২ : সিলভার নাইট্রেট দ্রবণের মধ্যদিয়ে 1.5 অ্যাম্পিয়ারের বিদ্যুৎ কতক্ষণ ধরে প্রবাহিত করলে 1.89 g সিলভার ক্যাথোড সঞ্চিত হবে?

সমাধান : মনে করি, সময় = t সেকেন্ড। uখানে সঞ্চিত সিলভারের পরিমাণ = 1.89~g প্রবাহিত মোট বিদ্যুৎ, $Q = I \times t = 1.5 \times t$ (C)

এখানে সিলভার আয়ন (Ag^+) বিজারণের সমীকরণ নিমুরূপ :

$$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$$
1 মোল 1 মোল 1 মোল = 107.88 g

আবার 1 মোল Ag (অর্থাৎ 107.88 g) সঞ্চিত হতে 1.0 মোল ইলেকট্রন প্রয়োজন।

$$\therefore 1,89~{
m g}$$
 সিলভার সঞ্চিত হতে $\frac{1.0 \times 1.89}{107.88}$ মোল ইলেকট্রন প্রয়োজন।

$$\therefore$$
 মোট বিদ্যুতের পরিমাণ, $Q = \frac{96500 \times 1.0 \times 1.89C}{107.88} = 1690.63 C$ (প্রায়)

আবার
$$Q = 1.5 \times t$$
; : $t = \frac{Q}{1.5A} = \frac{1690.63 \text{ C}}{1.5A} = 1127.08 \text{ sec} = 18 \text{ min } 47.08 \text{ sec}$ (উত্তর)

MCQ-4.12: 1 mol Cr ক্যাথোডে সঞ্চিত হতে বিদ্যুৎ প্রয়োজন কত ফ্যারাডে? (ক) 1 F (খ) 2 F (গ) 3 F (ঘ) 4 F সমাধানকৃত সমস্যা- ৪.১৩ : ক্রোমিয়াম (III) সালফেট দ্রবণে 0.120 অ্যাম্পিয়ার বিদ্যুৎ কত সময় যাবৎ প্রবাহিত করলে ক্যাথোডে $1.00~{
m g}$ ক্রোমিয়াম সঞ্চিত হবে? $[{
m Cr}=52]$

সমাধান : ক্রোমিয়াম (III) আয়নের বিজারণের সমীকরণ নিমুরূপ :

$$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \longrightarrow \operatorname{Cr}(s)$$
1 মোল 3 মোল 1 মোল = 52

অর্থাৎ 1 মোল ক্রোমিয়াম (অর্থাৎ 52 g Cr) সঞ্চিত হতে 3 মোল ইলেকট্রন প্রয়োজন। সূতরাং 1 g ক্রোমিয়াম সঞ্চিত হতে 3/52 মোল ইলেকট্রন প্রয়োজন হবে।

∴ মোট বিদ্যুতের পরিমাণ,
$$Q = \frac{96500 \times 3}{52}$$
 C = 5567.3 C

আবার
$$Q = 1 \times t$$
, $\therefore t = \frac{Q}{1} = \frac{5567.3}{0.120} \frac{C}{A} = 46394$ s = 12 hr 53 min (উত্তর)

সমাধানকৃত সমস্যা-৪.১৪ : ক্রোমিয়াম (III) সালফেট দ্রবণে $0.0422~\mathrm{A}$ বিদ্যুৎ $1~\mathrm{hr}$ যাবৎ প্রবাহিত করার ফলে ক্যাথোডে $0.0275~\mathrm{g}$ ক্রোমিয়াম সঞ্চিত হয়। ক্রোমিয়াম আয়নের চার্জ কত? [$\mathrm{Cr}=52.0$]

সমাধান : মোট সময়. $t = 1 \text{ hr} = 60 \times 60 \text{ s}$.

প্রবাহিত মোট বিদ্যুতের পরিমাণ, Q = I × t =
$$0.0422 \times 60 \times 60$$
 C = 151.92 C = $\frac{151.92}{96500}$ F

সঞ্চিত ক্রোমিয়ামের মোল সংখ্যা =
$$\frac{0.0275}{52.0}$$
 = 0.00053 (প্রায়)

$$\operatorname{Cr}^{n+}(\operatorname{aq}) + \operatorname{ne}^{-} \longrightarrow \operatorname{Cr}(s)$$
1 (XIP) 1 (XIP) 1 (XIP)

0.00053 মোল ক্রোমিয়াম সঞ্চিত হতে দরকার হয় $\frac{151.92}{96500}$ F বিদ্যুৎ।

∴ 1.0 মোল ক্রোমিয়াম সঞ্চিত হতে দরকার
$$=\frac{151.92 \text{ F}}{96500 \times 0.00053} = \frac{151.92}{51.145} \text{ F} = 2.97 \text{ F} \approx 3 \text{ F}$$

∴ ক্রোমিয়াম আয়নের চার্জ +3 অর্থাৎ ক্রোমিয়াম আয়ন হলো Cr³⁺ (উত্তর)

সমাধানকৃত সমস্যা–8.১৫ : 2 অ্যাম্পিয়ার বিদ্যুৎ 1 ঘণ্টা যাবৎ সিরিজ সংযোগে $AgNO_3$ দ্রবণ, $CuSO_4$ দ্রবণ ও $Cr_2(SO_4)_3$ দ্রবণের তড়িৎ-বিশ্লেষ্য কোষে চালনা করা হয়। প্রতিটি তড়িৎ-বিশ্লেষ্য কোষে সঞ্চিত ধাতুর পরিমাণ নির্ণয় করো। [Ag=108, Cu=63.5, Cr=52]

সমাধান : সংশ্রিষ্ট বিজারণ বিক্রিয়া নিমুরূপে ক্যাথোডে ঘটে;

(i)
$$Ag^+$$
 (aq) + e $^ \longrightarrow$ Ag (s) প্রশ্নমতে, $t=1\times 60\times 60$ s
1F থবাহিত বিদ্যুতের পরিমাণ,

(ii)
$$Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$$
 $Q = 1 \times t = 2 \times 60 \times 60 C$
 $2F$ 1 Cu^{-} $2 \times 60 \times 60 F$ $72 F$

(iii)
$$Cr^{3+}$$
 (aq) $+$ $3e^{-} \longrightarrow Cr$ (s) $= \frac{2 \times 60 \times 60 \text{ F}}{96500} = \frac{72 \text{ F}}{965}$

(i) নং সমীকরণ মতে, 1 F বিদ্যুৎ দ্বারা সঞ্চিত হয় 1 মোল Ag অর্থাৎ = 108 g Ag

$$\therefore \frac{72 \text{ F}}{965}$$
 বিদ্যুৎ দ্বারা সঞ্চিত হয় = $\frac{108 \times 72}{965}$ g Ag = 8.058 g Ag

(ii) নং সমীকরণ মতে, 2 F বিদ্যুৎ দ্বারা সঞ্চিত হয় 1 মোল Cu অর্থাৎ = 63.5 g Cu

 $\therefore \frac{72 \text{ F}}{965}$ বিদ্যুৎ দ্বারা সঞ্চিত হয় $\frac{63.5 \times 72}{2 \times 965}$ g Cu = 2.369 g Cu

(iii) নং সমীকরণ মতে, 3 F বিদ্যুৎ দ্বারা সঞ্চিত হয় 1 মোল Cr অর্থাৎ = 52 g Cr

 $\therefore \frac{72 \text{ F}}{965}$ বিদ্যুৎ দ্বারা সঞ্চিত হয় = $\frac{52 \times 72}{3 \times 965}$ g Cr = 1.293 g Cr

উত্তর : Ag = 8.058 g; Cu = 2.369 g; Cr = 1.293 g.

শিক্ষার্থীর কাজ-৪.৪ : ফ্যারাডের সূত্রভিত্তিক গণনা :

সমস্যা-8.৯ : Ni $(NO_3)_2$ দ্রবণে প্লাটিনাম তড়িৎদ্বার ব্যবহার করে 5 অ্যাম্পিয়ার শক্তির বিদ্যুৎ 30 মিনিট যাবৎ চালনা করা হলো। ক্যাথোডে কী পরিমাণ নিকেল জমা হবে? [Ni = 58.7]

সমস্যা-8.১০ : অ্যালুমিনিয়াম অক্সাইড ও ক্রায়োলাইটের গলিত মিশ্রণে $1.0 \times 10^5~{
m A}$ বিদ্যুৎ $8.0~{
m h}$ যাবৎ চালনা করলে কত কিলোগ্রাম অ্যালুমিনিয়াম উৎপাদিত হবে?

সমস্যা-8.১১ : চউথামের দত্ত জুয়েলার্স মেয়েদের জন্য ইমিটেশন চেইন তৈরি করে। কম দামের ধাতুর তৈরি 10 টি চেইনের গুপর গোল্ডের প্রলেপ দিতে গোল্ড লবণের (Au^{3+}) দ্রবণে গোল্ড অ্যানোড ব্যবহার করে 5.0 A বিদ্যুৎ 10 মিনিট যাবৎ চালনা করা হয়। প্রতি 10 g গোল্ডের দাম 40,000 টাকা হলে প্রতি চেইনে কত টাকার গোল্ড ব্যবহৃত হয়েছে। [Au=196.97]

সমস্যা-8.১২(ক) : FeSO₄ এর দ্রবণে 250 A বিদ্যুৎ 40 মিনিট চালনা করলে ক্যাথোডে কত গ্রাম ধাতু জমা হবে? ডিঃ 173.61 g] দি. বো. ২০১৫

সমস্যা– 8.১২(খ) : FeSO₄ এর দ্রবণে 5 A বিদ্যুৎ 10 মিনিট চালনা করলে কী পরিমাণ ধাতু ক্যাথোডে জমা হবে? [উ: 0.868 g] কু. বো.২০১৬]

সমস্যা-8.১২(গ): CaCl₂ এর দ্রবণে 5 A বিদ্যুৎ 10 min চালনা করলে ক্যাথোডে কত গ্রাম ধাতু জমা হবে? ডি: 0.622 g] [কু. বো. ২০১৭]

সমস্যা-8.১২(ছ): AgNO₃ এর দ্রবণে 6 A বিদ্যুৎ 40 min চালনা করলে ক্যাথোডে কত গ্রাম ধাতু জমা হবে? ডিঃ 16.096 g] মিদ্রাসা. বো. ২০১৭

সমস্যা-৪.১৩(ক) : এক ধাতব সালফেট দ্রবণে 0.5 অ্যাম্পিয়ার বিদ্যুৎ 1 ঘণ্টা চালনা করলে ক্যাথোডে 0.59 গ্রাম ধাতু জমা হয়। ধাতুটির তুল্যভর কত হবে?

সমস্যা-8.3৩(খ) : $AgNO_3$ এর দ্রবণে 3 A বিদ্যুৎ 10 মিনিট চালনা করলে ক্যাথোডে 2.015 g সিলভার সঞ্চিত হয়। সিলভারের তড়িৎ রাসায়নিক তুল্যাঙ্ক ও রাসায়নিক তুল্যাঙ্ক নির্ণয় করো।

[$\cup{3}$: $1.11944 \times 10^{-3} \, gC^{-1}$, $108.02 \, g$]

সমস্যা–8.১৩(গ) : $CuSO_4$ এর দ্রবণে 30 মিনিট যাবৎ 0.5 A বিদ্যুৎ প্রবাহ চালনা করলে ক্যাথোডে 0.2964 গ্রাম কপার জমা হয়। কপারের তড়িৎ রাসায়নিক তুল্যাঙ্ক কত? [উ: $0.000329 \text{ g C}^{-1}$]

সমস্যা–8.১৩(ঘ): CuSO₄ এর দ্রবণে 0.25 A বিদ্যুৎ 1 ঘণ্টা চালনা করলে 0.295 g কপার ক্যাথোডে জমা হয়। কপারের তুল্যাঙ্ক ভর কত? [উ: 31.63 g]

সমস্যা-8.38(ক) : একটি একযোজী ধাতব আয়ন 1.60245×10^{-19} C বিদ্যুৎ পরিবহণ করলে তবে ঐ ধাতুর 1 g মোল আয়ন কী পরিমাণ বিদ্যুৎ পরিবহণ করবে ? [উ: 96499.5 C]

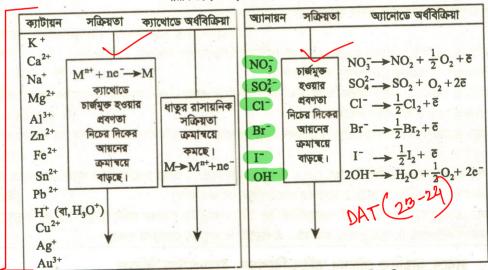
সমস্যা-8.38(খ): গলিত CaCl2 থেকে তড়িৎ-বিশ্লেষণ পদ্ধতিতে 20.0 g ক্যালসিয়াম ধাতু নিষ্কাশনে কত কুলম্ব উ: 96500 C] বিদ্যুৎ প্রয়োজন হবে? সমস্যা-8.১৫(ক) : একটি AgNO3 দ্রবণে 50 min যাবৎ 0.20 অ্যাম্পিয়ার শক্তিসম্পন্ন বিদ্যুৎ চালনা করলে ক্যাথোডে কত পরিমাণ সিলভার সঞ্চিত হবে? [Ag = 108] ডি: 0.6715 g] সমস্যা-8.১৫(খ) : AgNO3 দ্রবণের মধ্যদিয়ে 5 অ্যাম্পিয়ার শক্তির বিদ্যুৎ 10 মিনিট চালনা করা হলো। এতে কত ডি: 3.3575 g, 187.211713 × 10²⁰] পরিমাণ সিলভার ও কয়টি সিলভার পরমাণু ক্যাথোডে সঞ্চিত হবে? সমস্যা-8.১৬(ক) : CuSO₄ এর দ্রবণে 15 min. সময় যাবৎ 5 A বিদ্যুৎ প্রবাহ চালনা করলে ক্যাথোডে কী পরিমাণ ডি: 1.48 g Cu (প্রায়)] কপার জমা হবে? [Cu = 63.5] সমস্যা-8.১৬(খ) : তুঁতের জলীয় দ্রবণে 0.5 A মাত্রার বিদ্যুৎ প্রবাহ 10 min ধরে চালনা করলে কী পরিমাণ কপার ডি: 0.0987 g, 936.0179528 × 10¹⁸] ও কয়টি কপার পরমাণু ক্যাথোডে জমা হবে? সমস্যা-8.১৭(ক) : CuSO4 দ্রবণে 2 অ্যাম্পিয়ার মাত্রার বিদ্যুৎ প্রবাহ কতক্ষণ চালনা করলে ক্যাথোডে 2.368 g ডি: 59.94 min বা, 60 min] কপার সঞ্চিত করে? [Cu = 63.54] সমস্যা-8,১৭(খ): গলিত AICI3 তড়িং-বিশ্লেষ্যের মধ্যদিয়ে 1.5 A শক্তির বিদ্যুৎ কত সময় যাবৎ চালনা করলে ক্যাথোডে 1.6 g Al ধাতু জমা হবে? (Al এর পাঃ ভর = 27) সমস্যা-8.১৮(ক) : H_2SO_4 এর লঘু দ্রবণের মধ্যদিয়ে 2.5 অ্যাম্পিয়ার শক্তির বিদ্যুৎ কতক্ষণ চালনা করলে আদর্শ তাপমাত্রায় ও চাপে 600 mL হাইড্রোজেন গ্যাস উৎপন্ন হবে? ডি: 34.46 min] সমস্যা-8.১৮(খ): H2SO4 মিশ্রিত পানির মধ্যদিয়ে প্রটিনাম তড়িৎদারের মাধ্যমে 1.5 ঘণ্টা বিদ্যুৎ প্রবাহিত করায় আদর্শ তাপমাত্রায় ও চাপে 500 mL হাইড্রোজেন গ্যাস উৎপন্ন হয়। বিদ্যুতের শক্তিমাত্রা কত ছিল? [উ: 0.7978 A] সমস্যা-8.১৮(গ): H₂SO₄ মিশ্রিত পানির মধ্যদিয়ে গ্লাটিনাম তড়িৎদ্বারের মাধ্যমে বিদ্যুৎ প্রবাহিত করে STP-তে 500 mL H2 গ্যাস পাওয়া গেল। এতে কত কুলম্ব বিদ্যুৎ চলনা করা হয়? ডি: 4308.036 C] সমস্যা-8.১৮(ঘ) : এসিড মিশ্রিত পানির মধ্যদিয়ে 10 A বিদ্যুৎ 3 মিনিট 13 সেকেন্ড ধরে চালনা করলে কত পরিমাণ পানি বিয়োজিত হবে? STP-তে কত আয়তনের H_2 গ্যাস ও O_2 গ্যাস উৎপন্ন হবে? ্ৰ পানি = 0.36 g, H₂ = 0.224 L, O₂ = 0.112 L] সমস্যা-8.১৮(ঙ): 100 সেকেন্ড ধরে 10 A বিদ্যুৎ এনিড মিশ্রিত পানিতে চালনা করলে STP-তে কত আয়তন H₂ $[\mathfrak{G}: H_2 = 116 \text{ mL}, O_2 = 58 \text{ mL}]$ ও O2 উৎপন্ন হবে? সমস্যা- 8.১৯(ক) : একটি গোল্ড লবণের দ্রবণ থেকে 2.6267 গ্রাম গোল্ড মুক্ত করতে যে পরিমাণ তড়িৎ ব্যয়িত হয়, ঐ একই পরিমাণ তড়িৎ দ্বারা CuSO₄ দ্রবণে কপার অ্যানোড ব্যবহার করে তড়িৎ-বিশ্লেষণ করলে 1.26 g কপার দ্রবীভূত হয়। গোল্ড লবণটিতে গোল্ডের জারণ সংখ্যা নির্ণয় করো। [Cu = 63, Au = 197] ্রি: Au এর জারণ সংখ্যা = + 3] সমস্যা-8.১৯(খ): AgNO3 এর জলীয় দ্রবণে যে পরিমাণ বিদ্যুৎ চালনা করলে 10 গ্রাম Ag তড়িৎদ্বারে জমা হয়, একই পরিমাণ বিদ্যুৎ গোল্ড লবণের দ্রবণে চালনা করলে 6.08 গ্রাম Au তড়িৎদ্বারে জমা হয়। ঐ গোল্ড লবণে গোল্ডের ডি: +3] আধান কত? [Ag = 108, Au = 197] সমস্যা-8.২০(ক): 1 ফ্যারাডে তড়িৎ প্রবাহে কত গ্রাম ফেরাস আয়ন ও ফেরিক আয়ন চার্জ মুক্ত হবে? উ: ফেরাস = 2 8 g; ফেরিক = 18.66 g] [Fe = 56]সমস্যা-8.২০.(খ) : 1 মোল $\operatorname{Cr}_2\operatorname{O}_7^{2-}$ আয়নকে Cr^{3+} আয়নে বিজারিত করতে কত কুলম্ব বিদ্যুতের প্রয়োজন হবে? টে: 5.79 × 10³ কলম্ব

```
সমস্যা-8.২০(গ): CrO3 এর অম্রীয় দ্রবণের তড়িৎ-বিশ্লেষণে নিমু সমীকরণ মতে Cr উৎপন্ন করা যায়:
   CrO_3 (aq) + 6H^+ + 6e^- \longrightarrow Cr(s) + <math>3H_2O
   এক্ষেত্রে 12.5 \text{ A} তড়িৎ প্রবাহ কত সেকেন্ড যাবৎ চালনা করলে 15 \text{ g Cr} উৎপন্ন হবে? [\text{Cr} = 52]
                                                                                        ডি: 13361.5 s]
   সমস্যা- 8.২১(ক) : 0.5 L আয়তনের 2 M Ni (NO3)2 দ্রবণের মধ্যদিয়ে 3.7 A শক্তির বিদ্যুৎ 6.0 ঘটা যাবৎ
চালনা করা হলে তড়িৎ-বিশ্রেষণের পর ঐ দ্রবণের ঘনমাত্রা কত হবে? [Ni = 58.7]
                                                                                         ডি: 1.172 M
   সমস্যা- 8.২১(খ) : একটি অ্যালুমিনিয়াম শিল্পে দৈনিক 20 টন A1 ধাতু উৎপাদন করে। যদি দৈনিক সময় 30000
সেকেন্ড কার্যকাল হয়, তবে এতে দৈনিক কত ফ্যারাডে বিদ্যুৎ ও কত শক্তির বিদ্যুৎ প্রয়োজন হবে?
   [1 টন = 1000 kg এবং A1 = 26.98]
                                                                  ডি: 2.22387 ×10°F; 7.15 × 10° A]
   সমস্যা-8.২২(ক): নিকেল আয়নের দ্রবণে 160 মিনিট যাবৎ 0.1 A শক্তির বিদ্যুৎ চালনা করলে ক্যাথোডে 0.295
সমস্যা-8.২২(খ): AgNO3 ও Cu(NO3)2 এর দুটি পথক দ্রবণকে সিরিজে সংযুক্ত করে তাদের মধ্যদিয়ে কিছুক্ষণ
বিদ্যুৎ প্রবাহিত করা হয়। এ সময় দিতীয় দ্রবণ থেকে 0.705 g কপার ক্যাথোডে সঞ্চিত হলে প্রথম দ্রবণ থেকে কী
পরিমাণ সিলভার সঞ্চিত হবে? [Ag = 108, Cu = 63.5]
                                                                                          ডি: 2.398 g]
   সমস্যা-8.২৩ : M'SO4 দ্রবণ ও M"SO4 দ্রবণে 50 কুলম্ব বিদ্যুৎ চালনা করলে ভিন্ন ভিন্ন তড়িৎদ্বারে ভিন্ন ভিন্ন
পরিমাণ পদার্থ সঞ্চিত হওয়ার কারণ ব্যাখ্যা করো।
                                                                                         বি. বো. ২০১৬
                                                   [M' = 108, M" = 52] [উ: তুল্যভরের ভিন্নতার কারণে]
   সমস্যা-8.২৪(ক) : কোনো CuSO4 দ্রবণে প্লাটিনাম তড়িৎদারের সাহায্যে 1 ঘণ্টা যাবৎ 1.25 A বিদ্যুৎ চালনা
করলে ক্যাথোডে কতগুলো Cu প্রমাণু জমা পড়বে?
                                                                                  ডি: 14.04 × 10<sup>21</sup> টি
   সমস্যা-8.২৪(খ) : একটি ধাতব তারে 1A বিদ্যুৎ প্রবাহিত হচ্ছে। এক সেকেন্ডে এ তারের কোনো একটি বিন্দুর
মধ্যদিয়ে কত সংখ্যক ইলেক্ট্রন প্রবাহিত হবে?
                                                                                ডি: 6.2404 × 10<sup>18</sup> টি]
   সমস্যা–8.২৪(গ) : Al লবণের দ্রবণে 2 কুলম্ব বিদ্যুৎ প্রবাহিত হলে ক্যাথোডে কত সংখ্যক Al প্রমাণু জমা পড়বে?
                                                                                     উ: 4.16 × 10<sup>18</sup>7
   সমস্যা-8.২৫(ক): 30 মিনিট যাবং 1.5 A বিদ্যুৎ কোনো লবণের জলীয় দ্রবণে চালনা করলে ক্যাথোডে 0.8898 g
ধাতু সঞ্চিত হয়। ধাতুটির যোজ্যতা 2 হলে এর পারমাণবিক ভর কত হবে?
                                                                                          ডি: 63.592]
   সমস্যা-8.২৫(খ) : একটি ধাতুর পারমাণবিক ভর 112। ধাতুটির লবণের জলীয় দ্রবণে 1.5 A বিদ্যুৎ 15 মিনিট
চালনা করলে ক্যাথোডে 0.788 g ধাতু জমা হয়। ঐ লবণটিতে ধাতুটির যোজ্যতা কত?
                                                                                                ডি: 2
```

8.8.8 দ্রবণে আয়নিক যৌগের তড়িৎ-বিশ্লেষণ, ইলেকট্রোড বিক্রিয়া

Electrolysis of Aqueous Electrolytes and Electrode Reaction

যখন কোনো গলিত তড়িৎ-বিশ্লেষ্য কোষে একটি মাত্র ক্যাটায়ন ও একটি মাত্র অ্যানায়ন থাকে যেমন, গলিত NaCl, তখন ইলেকট্রোড বিক্রিয়া লেখা সহজ। তখন তড়িৎ-বিশ্লেষণকালে ক্যাটায়নটি ক্যাথোড থেকে ইলেকট্রন গ্রহণ করে ধাতুতে পরিণত হয় এবং অ্যানায়নটি অ্যানোডে ইলেকট্রন ত্যাগ করে চার্জ নিরপেক্ষ পরমাণুতে রূপান্তরিত হয়।


কিন্তু আয়নিক যৌগের জলীয় দ্রবণে একাধিক ক্যাটায়ন ও অ্যানায়ন থাকে। যেমন, $CuSO_4$ এর জলীয় দ্রবণে নিম্নোক্ত সমীকরণ মতে দুটি ক্যাটায়ন বা ধনাত্মক আয়ন যেমন H^+ , Cu^{2+} এবং দুটি অ্যানায়ন বা ঋণাত্মক আয়ন যেমন OH^- , SO_4^{2-} থাকে।

$$H_2O(l)$$
 \rightleftharpoons $H^+(aq)$ + $OH^-(aq)$
 $CuSO_4(aq)$ \longrightarrow $Cu^{2+}(aq)$ + $SO_4^{2-}(aq)$

সুতরাং তড়িৎ–বিশ্রেষ্য কোষে বিদ্যুৎ চালনা করলে ক্যাথোডের দিকে H^+ আয়ন ও Cu^{2+} আয়ন এবং অ্যানোডের দিকে OH^- আয়ন ও SO_4^{2-} আয়ন ধাবিত হবে। এখন ক্যাথোডে পৌঁছে উভয় ধনাত্মক আয়নের মধ্যে কোনটি অ্যাধিকার ভিত্তিতে বিজারিত হবে এবং অ্যানোডে পৌঁছে উভয় ঋণাত্মক আয়নের মধ্যে কোনটি অ্যাধিকার ভিত্তিতে জারিত হবে তা নির্ভর করে নিম্নোক্ত তিন শর্তের ওপর। যেমন,

- (১) তড়িৎ রাসায়নিক সারিতে সংশ্রিষ্ট আয়নের অবস্থান;
- (২) তড়িং-বিশ্লেষ্য দ্রবণে ক্যাটায়ন ও অ্যানায়নের ঘনমাত্রার প্রভাব;
- ত) তড়িৎ-কোষে ব্যবহৃত তড়িৎদ্বারের প্রকৃতি ও তড়িৎদারের প্রভাব।
- ১। তড়িৎ রাসায়নিক সারি (Electrochemical series): তড়িৎ-বিশ্বেষণের সময় বিভিন্ন আয়নের চার্জমুক্ত হওয়ার প্রবণতার ওপর ভিত্তি করে আয়নসমূহকে একটি সারিতে সাজানো হয়েছে, তাকে তড়িৎ রাসায়নিক সারি বলা হয়। এ সারিটি বিজারণ বিভবের উচ্চক্রম অনুসারে সজ্জিত। সহজে বিজারণযোগ্য ক্যাটায়নটি এ সারিতে সবচেয়ে নিচে ছান পেয়েছে। এক্ষেত্রে নিচের ২নং ও ৩নং শর্ত অপরিবর্তিত থাকতে হবে। উল্লেখ্য ধনাত্মক আয়ন বা ক্যাটায়নের সারিতে সবচেয়ে অধিক সক্রিয় ধাতুটি সারির প্রথমে রয়েছে এবং নিচের দিকে ক্রমান্বয়ে কম সক্রিয় মৌলসমূহ ছান পেয়েছে। অর্থাৎ দ্রবণ থেকে কোনো আয়ন চার্জমুক্ত হওয়ার প্রবণতা হলো তার ধাতুয় সক্রিয়তার বিপরীত।

সারণি-৪.২ : তড়িৎ রাসায়নিক সিরিজের একাংশ

ব্যাখ্যা : কোনো তড়িৎ-বিশ্লেষ্য দ্রবণে Na^+ ও K^+ আয়ন উপস্থিত থাকলে তড়িৎ-বিশ্লেষণের সময় প্রথমে Na^+ ক্যাথোড থেকে ইলেকট্রন গ্রহণ করে চার্জমুক্ত হবে। দ্রবণের সমস্ত Na^+ চার্জমুক্ত হওয়ার পর K^+ আয়নের চার্জমুক্ত হওয়ার সুযোগ হবে। কারণ তড়িৎ রাসায়নিক সারিতে Na^+ এর স্থান K^+ এর নিচে।

$$Na^+ + e^- \longrightarrow Na; K^+ + e^- \rightarrow K$$

অনুরূপভাবে দ্রবণে OH^- ও NO_3^- আয়ন উপস্থিত থাকলে তড়িৎ-বিশ্লেষণের সময় প্রথমে সমন্ত OH^- অ্যানোড তড়িৎদ্বারে ইলেকট্রন ত্যাগ করে চার্জমুক্ত ও পরে বিযোজন প্রক্রিয়ায় H_2O ও O_2 গঠন করে। সমন্ত OH^- আয়ন চার্জমুক্ত হওয়ার পর দ্রবণের NO_3^- আয়ন অ্যানোডে ইলেকট্রন ত্যাগ করে চার্জমুক্ত ও পরে বিযোজিত হয়ে NO_2 ও O_2 গঠন করে।

$$2 \text{ OH}^- \longrightarrow \text{H}_2\text{O} + \frac{1}{2} \text{O}_2 + 2\text{e}^-; \text{NO}_3^- \longrightarrow \text{NO}_2 + \frac{1}{2} \text{O}_2 + \text{e}^-$$

অনুরূপভাবে দ্রবণে Cl⁻ আয়ন ও I⁻ আয়ন থাকলে তড়িৎ-বিশ্লেষণের সময় প্রথমে I⁻ আয়ন অ্যানোডে ইলেকট্রন ত্যাগ করে চার্জমুক্ত হবে। এরূপে সব I⁻ আয়ন চার্জমুক্ত হওয়ার পর Cl⁻ আয়নের চার্জমুক্ত হওয়ার সুযোগ হবে।

$$2I^- \longrightarrow I_2 + 2e^-; 2CI^- \longrightarrow Cl_2 + 2e^-$$

- ২। সমধর্মী আয়নের ঘনমাত্রার প্রভাব : আবার তড়িৎ রাসায়নিক সারিতে কোনো আয়নের অবস্থানের অগ্রাধিকারের চেয়ে ঐ আয়নের ঘনমাত্রার প্রভাব বেশি কার্যকরী হয়। যেমন, 0.1M NaCI এর জলীয় দ্রবণে ঋণাত্মক আয়ন OH^- এর ঘনমাত্রা থাকে 10^{-7} মোল L^{-1} এবং CI^- এর ঘনমাত্রা থাকে 0.1 মোল L^{-1} অর্থাৎ CI^- এর ঘনমাত্রা OH^- এর ঘনমাত্রার চেয়ে 10^6 শুণ বেশি। তড়িৎ রাসায়নিক সারিতে OH^- আয়নের অবস্থান CI^- আয়নের নিচে হওয়ায় OH^- আয়ন আগে চার্জমুক্ত হওয়া উচিত; কিন্তু ঘনমাত্রা বেশি থাকায় CI^- আয়ন আগে চার্জমুক্ত হয়ে থাকে। একই নিয়মে $PbCI_2$ এর জলীয় দ্রবণে Pb^{2+} আয়নের ঘনমাত্রা H_3O^+ আয়নের ঘনমাত্রার চেয়ে অনেক বেশি থাকায় তড়িৎ-বিশ্রেষণের সময় H_3O^+ এর পরিবর্তে Pb^{2+} আয়ন ক্যাথোডে চার্জমুক্ত হয়।
- ৩। তড়িংঘারের প্রকৃতি : তড়িংকোষে ব্যবহৃত তড়িংঘারের প্রকৃতি অনেক সময় তড়িং রাসায়নিক সারির অগ্রাধিকার নিয়মের ব্যতিক্রম ঘটায়। যেমন, NaCl এর জলীয় দ্রবণে (দুটি ধনাত্মক আয়ন H^+ ও Na^+ থাকে) প্রাটিনাম তড়িংঘার ব্যবহার করে তড়িং-বিশ্লেষণ ঘটালে ক্যাথোডে তড়িং রাসায়নিক সারির অগ্রাধিকার মতে H^+ আয়ন, চার্জমুক্ত হয়ে H_2 গ্যাস উৎপন্ন করে। কিন্তু ক্যাথোডরূপে পারদ ব্যবহৃত হলে তখন H^+ এর পরিবর্তে Na^+ আয়ন আগে চার্জমুক্ত হয়। কারণ এক্ষেত্রে Na^+ আয়ন পারদের সাথে মিশে গিয়ে পারদ সংকর Hg.Na তৈরি করে; ফলে Na^+ আয়নের বিজারিত হওয়ার প্রবণতা বেড়ে যায়।

শিক্ষার্থীর কাজ-৪.৫: তড়িৎ রাসায়নিক সিরিজভিত্তিক সমস্যা:

প্রশ্ন-৪.৭ : নিচের প্রশ্নগুলো অনুধাবন করে উত্তর দাও।

- (ক) কোনো দ্রবণে Fe^{2+} ও $A1^{3+}$ আয়ন আছে। এ দ্রবণে বিদ্যুৎ চালনা করলে কোন আয়নটি প্রথমে ক্যাথোডে ইলেকট্রন গ্রহণ করে চার্জ মুক্ত হবে? ব্যাখ্যা করো।
- (খ) কোনো দ্রবণে Zn^{2+} ও Cu^{2+} আয়ন আছে। ঐ দ্রবণে বিদ্যুৎ চালনা করলে কোন আয়নটি আগে চার্জমুক্ত হবে —ব্যাখ্যা করো।
- (গ) কোনো জলীয় দ্রবণে CI⁻ ও I⁻ আয়ন আছে। বিদ্যুৎ চালনা করলে কোন আয়নটি অ্যানোডে আগে চার্জমুক্ত হবে?
- (ঘ) 0.1 M NaCl এর জলীয় দ্রবণে Cl- ও OH- আয়ন দুটিই থাকে। বিদ্যুৎ বিশ্লেষণকালে কোন আয়নটি আগে চার্জমুক্ত হবে তা ব্যাখ্যা করো।
- (%) $PbCl_2$ এর লঘু দ্রবণে Pb^{2+} আয়ন ও H^+ আয়ন উভয়ই থাকে। বিদ্যুৎ বিশ্লেষণের ফলে কোন আয়নটি আগে চার্জমুক্ত হবে তা ব্যাখ্যা করে।
- (চ) গাঢ় NaCl এর দ্রবণ বা ব্রাইনের তড়িৎ-বিশ্লেষণের বিক্রিয়াগুলো লেখ। এক্ষেত্রে ক্যাথোডটি মারকারি (Hg) ও অ্যানোডটি লোহার তৈরি।

8.8.৫ শিল্পন্মেত্রে তড়িৎ-বিশ্লেষণের ব্যবহার

Uses of Electrolysis in Industry

শিল্পক্ষেত্রে তড়িৎ-বিশ্লেষণের ব্যাপক ব্যবহার আছে; বিশেষ করে তড়িৎ-বিশ্লেষণের মাধ্যমে বিভিন্ন ধাতুর নিষ্কাশন, ধাতুর বিশুদ্ধকরণ, বিভিন্ন যৌগ উৎপাদন এবং ইলেকট্রোপ্লেটিং ইত্যাদি উল্লেখযোগ্য। নিম্নে শিল্পক্ষেত্রে তড়িৎ-বিশ্লেষণের কিছু ব্যবহার উল্লেখ করা হলো:

১। ডাউন পদ্ধতিতে গলিত NaCl এর তড়িৎ-বিশ্রেষণে সোডিয়াম ধাতু নিঙ্কাশন।

- ২। মারকারি ক্যাথোড সেলে NaCl এর জলীয় দ্রবণের তড়িৎ-বিশ্লেষণে কস্টিক সোডা NaOH, H₂, ক্লোরিন উৎপাদন
- । NaCl এর জলীয় দ্রবণের তড়িৎ-বিশ্রেষণে সোডিয়াম ক্লোরেট (I), NaClO উৎপাদন।
- 8। গলিত CaCl2 ও গলিত MgCl2 এর তড়িৎ-বিশ্লেষণে যথাক্রমে Ca ধাতু ও Mg ধাতু নিষ্কাশন।
- ৫ । বিশুদ্ধ বক্সাইট বা অ্যালুমিনা (Al2O3) এর তড়িৎ-বিশ্লেষণে অ্যালুমিনিয়াম ধাতু নিষ্কাশন।
- ৬। তড়িৎ-বিশ্রেষণ প্রক্রিয়ায় ইলেকট্রোপ্রেটিং বা তড়িৎ প্রলেপন পদ্ধতিতে বিভিন্ন ধাতুর ওপর নিকেল ও ক্রোমিয়ামের প্রলেপ দেয়া হয়।

৪.৫ ধাতুর সক্রিয়তা সিরিজ

Reactivity Series of Metals

আমরা জানি, ধাতুসমূহ বিক্রিয়াকালে ইলেকট্রন ত্যাগ করে ধনাত্মক আয়নে জারিত হয়। আবার ধনাত্মক আয়ন অবস্থাভেদে ইলেকট্রন গ্রহণ করে বিজারিত হয়ে ধাতুর পরমাণুতে পরিণত হতে পারে। এ ধাতব আয়নের বিজারিত হওয়ার প্রবণতা ধাতুর সক্রিয়তার ওপর নির্ভর করে।

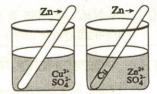
* একক প্রতিছাপন বিক্রিয়া : জারণ-বিজারণ বিক্রিয়া বা রিডক্স বিক্রিয়াসমূহ হলো একক-প্রতিছাপন (Single-displacement) বিক্রিয়া। ধাতুর সক্রিয়তা একক-প্রতিছাপন বিক্রিয়া দ্বারা পানি ও এসিড থেকে H-প্রতিছাপন সহযোগে প্রমাণিত হয়। এছাড়া অধিক সক্রিয় ধাতু লবণের দ্রবণে আয়নকে প্রতিছাপন করে।

ধাতু দারা পানি অথবা এসিডের $\mathbf H$ এর একক প্রতিছাপন : অত্যধিক সক্রিয় গ্রুপ $\mathbf IA$ (1) ধাতুসমূহ এবং গ্রুপ $\mathbf 2A$ (2) এর $\mathbf Ca$, $\mathbf Sr$ ও $\mathbf Ba$ ধাতু প্রবল বিক্রিয়াসহকারে পানি থেকে $\mathbf H_2$ প্রতিছাপন করতে পারে। যেমন ,

 ${\stackrel{0}{2}}{\stackrel{L}{\text{Li}}} \, (s) + {\stackrel{+1}{2}}{\stackrel{-2}{\text{H}}} - {\stackrel{-1}{\text{O}}} - {\stackrel{+1}{\text{H}}} \, (l) \xrightarrow{\leq 25^{\circ}\text{C}} {\stackrel{+1}{\text{C}}} - {\stackrel{-2}{\text{H}}} \, (aq) + {\stackrel{0}{\text{H}}}_2 \, (g)$

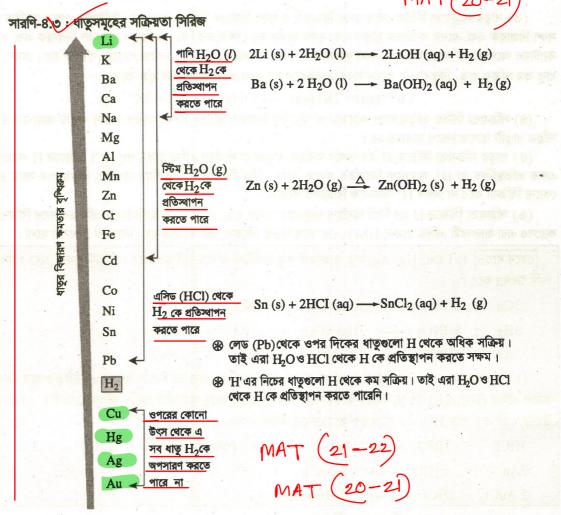
কম সক্রিয় ধাতু Al ও Zn এর বেলায় বিক্রিয়ার গতি বৃদ্ধির জন্য তাপ শক্তি দরকার হয়; তাই এরা স্টিমের সাথে বিক্রিয়ায় H₂ প্রতিছাপন করে।

 $2\text{Al (s)} + 6\text{H-O-H (l)} \xrightarrow{\leq 100^{\circ}\text{C}} 2\text{Al (O-H)}_{3} \text{ (s)} + 3\text{H}_{2}^{0} \text{ (g)}$


এদের চেয়ে কম সক্রিয় ধাতু যেমন নিকেল ও টিন (Sn) স্টিমের সাথেও বিক্রিয়া করে না; লঘু এসিড দ্রবণের সাথে এরা বিক্রিয়া করে। কারণ পানির চেয়ে এসিডের দ্রবণে H^+ আয়নের ঘনমাত্রা বেশি থাকে।

 $\stackrel{0}{\text{N i (s)}} + \stackrel{+1}{2} \stackrel{+1}{\text{H}^{+}} (\text{aq}) \longrightarrow \stackrel{+2}{\text{Ni}^{2+}} (\text{aq}) + \stackrel{0}{\text{H}}_{2} (\text{g})$

সবচেয়ে কম সক্রিয় ধাতু সিলভার ও গোল্ড কোনো অবস্থায় পানি ও এসিড থেকে H_2 প্রতিস্থাপন করতে পারে না । লক্ষ্যণীয় এসব বিক্রিয়ায় ধাতু হলো বিজারক (ধাতুর O-N. বিক্রিয়া শেষে বেড়েছে) এবং পানি ও এসিডের H^+ আয়ন হলো জারক (বিক্রিয়া শেষে এদের O-N. কমেছে) ।


* অধিক সক্রিয় ধাতু দ্বারা দ্রবণে অন্য ধাতব আয়নকে প্রতিছাপন :

এক্ষেত্রে সরাসরি পরীক্ষার মাধ্যমে ধাতুর সক্রিয়তা তুলনা করা যায়। যেমন হালকা নীল বর্ণের কপার (II) সালফেটের দ্রবণে জিঙ্ক ধাতুর দণ্ড রেখে দাও। কিছু সময় পর দেখা যাবে নীল দ্রবণটির বর্ণ আরো হালকা হয়ে যাচ্ছে এবং জিঙ্ক দণ্ডের ওপর লালচে কপার গুঁড়া জমা হচ্ছে।

 $Cu^{2+}(aq) + SO_4^{2-}(aq) + \overset{0}{Z} n(s) \rightarrow \overset{0}{C} u(s) + Zn^{2+}(aq) + SO_4^{2-}(aq)$ চিত্র-৪.৮ : ধাড়ুর সক্রিয়তা পরীক্ষা

সংজ্ঞা : একক প্রতিছাপন বিক্রিয়ার মাধ্যমে ধাতৃসমূহের সক্রিয়তার তৃশনামূশক সারি রসায়নবিদেরা তৈরি করেছেন; ধাতৃসমূহের এ সারিকে ধাতৃর সক্রিয়াতা সিরিজ বলা হয়। এ সারিতে সবচেয়ে অধিক সক্রিয় ধাতৃটিকে ওপরে এবং সবচেয়ে কম সক্রিয় ধাতৃকে সারির নিচে ছান দেয়া হয়েছে। যেমন,

ধাতুর সত্রিয়তা সিরিজের গুরুত্ব :

- (১) ধাতুর সক্রিয়তা সিরিজে বিভিন্ন ধাতুর রাসায়নিক সক্রিয়তার একটি ক্রম দেখানো হয়েছে। এ সিরিজে কোনো ধাতুর অবছান যত ওপরে তার সক্রিয়তা নিচের ধাতুগুলোর চেয়ে তত বেশি। যেমন, প্রদত্ত সক্রিয়তা সিরিজে Li হলো সবচেয়ে বেশি সক্রিয় ধাত।
- (২) এ সক্রিয়তা সিরিজ থেকে জানা যায়, ওপরে ছান প্রাপ্ত অধিক সক্রিয় ধাতুটি সিরিজে এর নিচে অবস্থিত কম সক্রিয় ধাতুর লবণের দ্রবণে ঐ কম সক্রিয় ধাতুর আয়নকে একক প্রতিছাপিত করতে পারে। অর্থাৎ ঐ আয়নকে বেশি সক্রিয় ধাতু বিজারিত করতে পারে। যেমন, Mg ধাতু দ্বারা $ZnSO_4$ লবণের Zn^{2+} আয়নকে, Zn ধাতু দ্বারা $FeSO_4$ এর Fe^{2+} আয়নকে এবং Fe দ্বারা $CuSO_4$ এর Cu^{2+} আয়নকে বিজারিত করতে পারে।

$$ZnSO_{4} (aq) \rightarrow Zn^{2+} (aq) + SO_{4}^{2-} (aq)$$

$$Mg (s) + Zn^{2+} (aq) \rightarrow Mg^{2+} (aq) + Zn (s)$$

$$Zn (s) + Fe^{2+} (aq) \rightarrow Zn^{2+} (aq) + Fe (s)$$

$$Zn (s) + Fe^{2+} (aq) \rightarrow Zn^{2+} (aq) + Fe (s)$$

$$Zn (s) + FeSO_{4} (aq) \rightarrow ZnSO_{4} (aq) + Fe (s)$$

(৩) ধাতুর সক্রিয়তা সিরিজ থেকে সবল বিজারক ও দুর্বল বিজারক চিহ্নিত করা যায়। সিরিজের ওপরে অবস্থিত ধাতু সবল বিজারক এবং এদের ক্যাটায়ন সুস্থিত এবং দুর্বল জারক হয়। সিরিজের নিচে অবস্থিত ধাতু দুর্বল বিজারক এবং এদের ক্যাটায়ন অপেক্ষাকৃত কম স্থায়ী এবং সবল জারক হয়। এরা ইলেকট্রন গ্রহণ করে সহজে ধাতুতে পরিণত হয়। যেমন, Cu ধাতু কম সক্রিয় ধাতু, কিন্তু Cu²⁺ আয়ন সবল জারকরূপে Kl দ্রবণ থেকে আয়োডিন মুক্ত করে।

$$Cu^{2+}(aq) + 2KI(aq) \longrightarrow Cu(s) + I_2(aq) + 2K^+(aq)$$

- (৪) সক্রিয়তা সিরিজ তড়িৎকোষে ক্যাথোড ও অ্যানোড নির্ধারণে ভূমিকা রাখে। অধিক সক্রিয় ধাতুটি অ্যানোড ও কম সক্রিয় ধাতুটি ক্যাথোডরূপে ব্যবহৃত হয়।
- (৫) ধাতুর সক্রিয়তা সিরিজে H এর ওপরে অবস্থিত ধাতুগুলো সাধারণ এসিড যেমন লঘু HCl এসিডের H পরমাণুকে একক প্রতিস্থাপিত বা H^+ আয়নকে বিজারিত করতে পারে। কিন্তু সিরিজে H এর নিচে অবস্থিত ধাতুগুলোর সাথে HCl কোনো বিক্রিয়া করে না অর্থাৎ H^+ আয়নকে বিজারিত করে না।
- (৬) সক্রিয়তা সিরিজে H এর নিচে অবস্থিত ধাতুগুলো যেমন, Cu, Ag, Au ইত্যাদি HCl এসিডের সাথে বিক্রিয়া না করলেও এরা জারণধর্মী এসিড যেমন, HNO3 এর সাথে রিডয়া বিক্রিয়া দ্বারা আক্রান্ত হয়। নিচে তা দেখানো হলো :

জেনে নাও: (১) Cu, Hg, Ag ধাতু জারণধর্মী লঘু নাইট্রিক এসিডে দ্রবীভূত হয়ে নাইট্রেট লবণ, NO গ্যাস ও পানি উৎপন্ন করে। 3Cu + 8HNO₃ → 3Cu(NO₃)₂ + 2NO + 4H₂O

$$3 \text{Hg} + 8 \text{HNO}_3 \longrightarrow 3 \text{Hg(NO}_3)_2 + 2 \text{NO} + 4 \text{H}_2 \text{O}$$

 $3 \text{Ag} + 4 \text{HNO}_3 \longrightarrow 3 \text{Ag NO}_3 + \text{NO} + 2 \text{H}_2 \text{O}$

(২) রাজঅম্ন বা 1 mol গাঢ় HNO₃ এসিড ও 3 mol গাঢ় HCl এসিডের মিশ্রণে স্বর্ণ (Au) দ্রবীভূত হয়ে ক্লোরো অরিক এসিড (HAuCl₄) উৎপন্ন করে। <u>স্বর্ণের সাথে জায়মান Cl-পরমাণু যুক্ত হয়ে প্রথমে অরিক ক্লোরাইড (AuCl₃)</u> উৎপ্র করে এবং পরে HCl এর সাথে যুক্ত হয়ে ক্লোরো অরিক এসিড (HAuCl₄) তৈরি ক<u>রে।</u>

$$3HCl + HNO_3 \longrightarrow 2H_2O + NOCl (নাইট্রোসিল ক্লোরাইড) + 2 [Cl] $\times 3$
 $2Au + 6 [Cl] \longrightarrow 2 AuCl_3$
 $2 AuCl_3 + 2HCl \longrightarrow 2 HAuCl_4$$$

৪.৬। ধাতুর তুলনামূলক সক্রিয়তা পরীক্ষা

Comparative Reactivity Tests of Metals

অনুচ্ছেদ-৪.৫ এর আলোচনা থেকে আমরা জেনেছি, ধাতুর তুলনামূলক সক্রিয়তা জানার জন্য ধাতুসমূহের সাথে বিভিন্ন তাপীয় অবস্থায় পানির বিক্রিয়া এবং HCI এসিডের সাথে ধাতুসমূহের বিক্রিয়া ব্যবহার করা যায়। এক্ষেত্রে পানি ও HCI এসিডের H⁺ আয়ন ধাতু দ্বারা বিজারিত হয়। এছাড়া অধিক সক্রিয় ধাতু দ্বারা দ্রবণে কম সক্রিয় ধাতুর আয়ন বিজারিত হওয়ার প্রবণতা থেকে সক্রিয়তার তুলনা করা যায়।

ব্যবহারিক (Practical)				
শিক্ষার্থীর কাজ :		সময় : ১ পিরিয়ড		
পরীক্ষা নং : ১৫				
তারিখ:				
পরীক্ষার নাম : ধাতুর তুলনামূলক সক্রিয়তা পর্	गिक्ना	學的問題,其他學典學的學院但是		

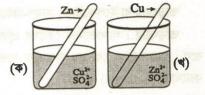
মূলনীতি: কম সক্রিয় ধাতুর লবণের দ্রবণে অধিক সক্রিয় ধাতু ডুবালে কম সক্রিয় ধাতুর ধনাত্মক আয়ন অধিক সক্রিয় ধাতু দ্বারা বিজারিত হয়ে ধাতুর পরমাণুতে পরিণত হয়। অধিক সক্রিয় ধাতুর পরমাণু জারিত হয়ে ধনাত্মক আয়নরূপে দ্রবণে দ্রবীভূত থাকে।

প্রয়োজনীয় রাসায়নিক পদার্থ :

(১) Zn ধাতুর পাত, (২) ZnSO₄ দ্রবণ,

(৩) Cu ধাতুর পাত,

(8) CuSO₄ দ্ৰবণ।


প্রয়োজনীয় যদ্রপাতি : (১) বিকার-২টি।

কাজের ধারা : (১) নিচের চিত্র-৪.৯(ক) মতে ১টি বিকারে CuSO₄ দ্রবণ নিয়ে এতে Zn ধাতুর পাত ডুবাও এবং কিছুক্ষণ রেখে দাও।

(২) দ্বিতীয় বিকারটিতে ZnSO4 দ্রবণ নিয়ে Cu ধাতুর পাত ডুবাও এবং কিছুক্ষণ রেখে দাও (চিত্র-৪.৯(খ)।

(৩) দশ মিনিট পর প্রথম বিকারে (ক) দেখতে পাবে $CuSO_4$ দ্রবণের নীল বর্ণ হালকা নীল হয়েছে এবং জিঙ্ক পাতটি কালো হয়েছে। এর কারণ জিঙ্ক পাতের ওপর সৃক্ষ্ম কপার কণা জমা হয়েছে। বিক্রিয়াটি হলো : Zn পরমাণু দ্বারা Cu^{2+} আয়নের বিজারণ।

$$Zn(s) + Cu^{2+}(aq) \longrightarrow Zn^{2+}(aq) + Cu(s)$$

চিত্র-৪.৯ : ধাতুর তুলনামূলক সক্রিয়তা পরীকা

(৪) অপরদিকে দ্বিতীয় বিকারে (খ) কপার পাতটি অপরিবর্তিত রয়েছে অর্থাৎ Cu পরমাণু Zn^{2+} আয়নকে বিজারিত করতে পারে নি।

সিদ্ধান্ত: Z_n ধাতু কপার ধাতু অপেক্ষা অধিক সক্রিয় প্রমাণিত।

শিক্ষার্থীর কাজ-৪.৬ : ধাতুর সক্রিয়তা পরীক্ষাভিত্তিক :

প্রশ্ন—৪.৮ : কপার সালফেটের নীল দ্রবণে জিঙ্ক দণ্ড ডুবলে কিছু সময় পরে দ্রবণের নীল বর্ণ ক্রমশ হালকা হতে থাকে এর কারণ ব্যাখ্যা করো।

উত্তর : উপরোক্ত কাজের ধারায় (৩) ও (৪) নং দেখো।

৪.৭ জারণ অর্ধ-বিক্রিয়া ও বিজারণ অর্ধ-বিক্রিয়া

Oxidation Half reaction and Reduction Half reaction

প্রতিটি জারণ-বিজারণ বা রিডক্স বিক্রিয়া দুটি অংশে বিভক্ত। একটি অংশে বিজারকের ইলেকট্রন ত্যাগ ও অপর অংশে জারকের ইলেকট্রন গ্রহণ হয়ে থাকে। তাই প্রতিটি অংশকে রিডক্স বিক্রিয়ার **অর্ধ-বিক্রিয়া বলে। যেমন-জারণ** অর্ধ-বিক্রিয়া ও বিজারণ অর্ধ-বিক্রিয়া।

জারণ অর্ধ-বিক্রিয়া : রিডক্স বিক্রিয়ায় বিজারক যে ইলেকট্রন ত্যাগ করে জারক পদার্থ তা গ্রহণ করে থাকে। বিজারক ইলেকট্রন ত্যাগ করে জারিত হয়। এতে বিজারকের সংশ্লিষ্ট পরমাণুর O.N বৃদ্ধি পায়। একে **জারণ অর্ধবিক্রিয়া বলে**।

বিজারণ অর্ধ-বিক্রিয়া : রিডক্স বিক্রিয়ায় জারক কর্তৃক ইলেকট্রন গ্রহণের ফলে এর সংশ্রিষ্ট মৌলের প্রমাণুটি বিজারিত হয়। এতে জারকের সংশ্রিষ্ট প্রমাণুর O.N.ভ্রাস পায়, একে বিজারণ অর্ধ-বিক্রিয়া বলে। যেমন—

বিকারে নেয়া $CuSO_4$ দ্রবণে জিঙ্ক ধাতুর পাত ডুবালে তখন জিঙ্ক (Zn) ধাতু ও Cu^{2+} (aq) আয়ন এর মধ্যে ইলেকট্রন আদান-প্রদানের মাধ্যমে বিক্রিয়া ঘটে এবং প্রমাণিত হয় Zn ধাতুর সক্রিয়তা Cu ধাতুর সক্রিয়তার চেয়ে বেশি। এটি একটি রিডক্স বিক্রিয়া। অর্ধ-বিক্রিয়ার সাহায্যে বিক্রিয়াটি নিম্নরূপে লেখা যায়:

$$Zn(s) \longrightarrow Zn^{2+}(aq) + 2e^-$$
 [জারণ অর্ধ-বিক্রিয়া] $Cu^{2+}(aq) + 2e^- \longrightarrow Cu(s)$ [বিজারণ অর্ধ-বিক্রিয়া]

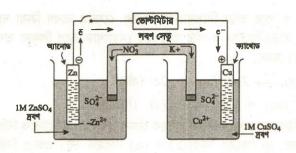
উভয় বিক্রিয়া থেকে বোঝা যায়, এক্ষেত্রে ইলেকট্রনের আদান-প্রদান ঘটেছে। এটি একটি স্বতঃস্কূর্ত রিডক্স বিক্রিয়া। এ স্বতঃস্কূর্ত রিডক্স বিক্রিয়াকে কাজে লাগিয়ে গ্যালভানিক কোষ (Galvanic Cell) বা ভোল্টার কোষ (Voltar cell) তৈরি করা সম্ভব।

রিজক্স বিক্রিয়া ও গ্যাশভানিক কোষ: লক্ষ্য করো, পূর্বের চিত্র-৪.৯-এ জারক ও বিজারকের মধ্যে সংশ্রিষ্ট রিডক্স বিক্রিয়াটি (Zn/Cu²⁺) ঘটেছে একই বিকারে এবং দ্রবণের মাধ্যমে। তাই ঐ ক্ষেত্রে বিদ্যুৎ উৎপন্ন করা সম্ভব নয়। কিছু রিডক্স বিক্রিয়ার দুটি অর্ধ-বিক্রিয়াকে পৃথক পাত্রে সংঘটিত করে বাহ্যিক পরিবাহী তার দ্বারা যুক্ত করলে, তখনই পরিবাহীর মাধ্যমে ইলেকট্রনের প্রবাহ বিজারক (Zn) থেকে জারক (Cu²⁺) এর দিকে ঘটবে। এরপে ইলেকট্রন প্রবাহই গ্যাশভানিক কোষে রাসায়নিক শক্তিকে বিদ্যুৎ শক্তিতে রূপান্তর করা হয়। তখন উপরোক্ত দুটি অর্ধ-বিক্রিয়া দুটি পৃথক পাত্রে সংঘটিত করা হয় এবং এদেরকে জারণ অর্ধকোষ ও বিজারণ অর্ধকোষ বলা হয়।

তড়িংঘার বা ইলেকট্রোড, জারণ-অর্ধকোষ ও বিজারণ-অর্ধকোষ :

তড়িংঘার: গ্যালভানিক কোষের প্রতিটি অর্ধকোষে ডুবানো ধাতব দণ্ডটিকে তড়িংঘার বা ইলেকট্রোড (electrode) বলে। গ্যালভানিক কোষের ঋণাত্মক চার্জযুক্ত তড়িং দারকে অ্যানোড (anode) এবং ধনাত্মক চার্জযুক্ত তড়িংদারকে ক্যাথোড (cathode) বলে।

যে পাত্রে জারণ অর্ধ-বিক্রিয়া ঘটে, এটিকে জারণ অর্ধ-কোষ বলে এবং যে পাত্রে বিজারণ অর্ধ-বিক্রিয়া ঘটে, সেটিকে বিজারণ অর্ধকোষ বলে। প্রতিটি অর্ধকোষে তড়িংছার (electrode) রূপে ধাতব দণ্ডকে ঐ ধাতুর লবণের দ্রবণ (1M দ্রবণ) বা তড়িং-বিশ্লেষ্যে (electrolyte-এ) ডুবিয়ে রাখা হয়। দুই অর্ধকোষ (half-cell)-কে লবণ সেতু (salt-bridge) দ্বারা যুক্ত করা হয়। তখন পূর্ণ তড়িংকোষ সৃষ্টি হয়।


লবণ সেতু : তড়িংকোষে ব্যবহৃত লবণ সেতু হলো KC। বা KNO_3 বা NH_4NO_3 বা Na_2SO_4 এর 0.1M ঘনমাত্রার দ্রবণ ভর্তি উল্টানো U-আকৃতির কাচনল। এটির দৃ'মুখে তুলা ভর্তি থাকে। লবণ সেতুর দু'বাহু বা দু'প্রান্ত দুটি অর্থকোষে ডুব্যানো থাকে। (চিত্র-৪.১০)

্রুবর্গ সেতুর বৈশিষ্ট্য : (১) লবণ সেতুতে ব্যবহৃত তড়িৎ-বিশ্রেষ্যের ক্যাটায়ন ও অ্যানায়নের গতিবেগ সমান বা প্রায় সমান হয়ে থাকে।

- (২) তড়িৎ-বিশ্লেষ্যটি তড়িৎ-কোষের দ্রবণ দুটির সাথে কোনো বিক্রিয়া করবে না।
- (৩) তড়িষ্-বিশ্লেষ্যের <mark>আয়ন দুটি অ্যানোডে ও ক্যাথোডে জারিত বা</mark> বিজারিত হবে না। স্বৰণ সেতুর ভূমিকা: লবণ সেতুর নিমোজ ভূমিকা রয়েছে—-
- (১) দুটি অর্ধকোষের পরোক্ষ সংযোগকারীরূপে লবণ সেতু ভূমিকা রাখে।
- (২) লবণ সেতু কোষের বর্তনী পূর্ণ করে এবং (৩) উভয় অর্ধকোষে বৈদ্যুতিক চার্জের নিরপেক্ষতা বজায় রাখে।

শবণ সৈতু প্রস্তুত পদ্ধতি : ক্যাটায়ন ও অ্যানায়নের গতিবেগ প্রায় সমান এরূপ কোনো উপযুক্ত তড়িৎ-বিশ্রেষ্য যেমন KCl, KNO3, NH4NO3 বা Na2SO4 এর 0.1M জলীয় দ্রবণে সামান্য জিলেটিন অথবা সামুদ্রিক শৈবাল থেকে তৈরি আঠালো অ্যাগার-অ্যাগর (agar-agar) মিশিয়ে উত্তপ্ত করা হয়। পরে দ্রবণটিকে U আকৃতির কাচের নলের মধ্যে নিয়ে শীতল করলে দ্রবণটি জেলির মতো জমে যায়। U নলের মুখ দুটিকে তুলো বা গ্লাসউল দ্বারা বন্ধ করে রাখা হয়। এটিই হলো লবণ সেতু।

কোষ বিভব বা তড়িৎকোষে বিদ্যুৎ প্রবাহ সৃষ্টি : জারণ অর্থকোষ বা অ্যানোডকে বাহ্যিক বর্তনীরূপে কপার তার ও ভোল্টমিটারসহ বিজারণ অর্থকোষ বা ক্যাথোডের সাথে সুইচের মাধ্যমে যুক্ত করলে উভয় তড়িৎদ্বারের বিভব পার্থক্যের কারণে বিদ্যুৎ প্রবাহ ভোল্টমিটারে 1.1V রেকর্ড হয়। এটিই হলো বিদ্যুৎ প্রবাহ সৃষ্টিকারী গ্যালভানিক কোষ। *

চিত্ৰ-৪.১০ : গ্যালভানিক কোষ (ডেনিয়েল কোষ)।

চিত্র-৪.১১ : জিঙ্ক-কপার কোষ।

গ্যালভানিক তড়িৎকোষে নিমুরূপ অর্ধবিক্রিয়া দুটি ঘটে :

অ্যানোডে জারণ অর্ধ-বিক্রিয়া:

ক্যাথোডে বিজারণ অর্ধ-বিক্রিয়া :

$$Zn(s) \longrightarrow Zn^{2+}(aq) + 2e^{-}$$

$$Cu^{2+}$$
 (aq) + 2e⁻ \longrightarrow Cu (s)

কোষ বিক্রিয়া : Zn (s) + Cu²⁺ (aq)
$$\longrightarrow$$
 Zn ²⁺ (aq) + Cu (s)

$$E^{\circ} = 1.1V$$

কোষ বিভব : কোষের অ্যানোডের জারণ বিভব ও ক্যাখোডের বিজারণ বিভবের সমষ্টি হলো কোষ বিভব বা কোষটির তড়িচালক বল বা কোষের (electro motive force বা, emf)। ভোল্টমিটারে রেকর্ডকৃত প্রমাণ অবছায় কোষটির emf = 1.10V. তড়িৎ কোষের emf-কে অর্থাৎ E_{cell} -কে নিমুরূপে লেখা হয়।

$$E_{\text{cell}}^{0} = E_{\text{cathode(red)}}^{0} - E_{\text{anode(red)}}^{0}$$

$$= E_{\text{anode(ox)}}^{0} - E_{\text{cathode(ox)}}^{0}$$

$$= E_{\text{anode(ox)}}^{0} + E_{\text{cathode(red)}}^{0}$$

এক্ষেত্রে, Eanode(red) = অ্যানোডের বিজারণ বিভব

E_{cathode(red)} = ক্যাথোডের বিজারণ বিভব

E^o_{anode(ox)} = অ্যানোডের জারণ বিভব

 $E_{cathode(ox)}^{0} =$ ক্যাথোডের জারণ বিভব

যেমন সারণি-৪.৩ এ দেয়া প্রমাণ তড়িৎদ্বারের বিজারণ বিভব মতে, জিঙ্ক-কপার কোষটির emf হবে:

$$E_{\text{cell}}^{0} = E_{\text{cathode}}^{0} - E_{\text{anode}}^{0} = [0.34 - (-0.76)] \text{ V} = (0.34 + 0.76) \text{ V} = 1.10 \text{ V}$$

MCQ-4.13 : নিচের বক্তব্য মনোযোগসহকারে পড়ো। লবণ সেতুর তিনটি ভূমিকা হলো নিমুরূপ:

- (i) গ্যালভানিক কোষের বর্তনী পূর্ণ করা, (ii) উভয় অর্ধকোষে ধনাত্মক আয়ন সংখ্যা সমান রাখা,
- (iii) উভয় অর্ধকোষে বৈদ্যুতিক চার্জের নিরপেক্ষতা বজায় রাখা। নিচের কোনটি সঠিক?

ii vi(本)

- (খ) ii ও iii
- (গ) i ও iii

(ঘ) i, ii ও iii

8.৭.১ তড়িৎদার ও তড়িৎকোষ লেখার সাংকৈতিক চিহ্ন ও রীতি

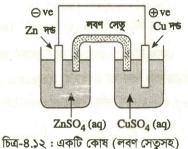
Notations and Conventions of Writing Electrodes and Cells

(১) তড়িৎদার ও তড়িৎ-বিশ্লেষ্যের সংস্পর্শ তলের স্থানটিকে একটি খাড়া রেখা বা তির্যক রেখা দারা বা কমা দারা প্রকাশ করে তড়িৎদারের সংকেত লেখা হয়। যেমন :

$$Zn(s) \mid Zn^{2+}(aq) = \overline{1}, Zn(s)/Zn^{2+}(aq) = \overline{1}, Zn(s), Zn^{2+}(aq)$$

(২) অর্ধকোষকে প্রথমে তড়িৎদ্বার (অ্যানোড)রূপে ও পরে তড়িৎ-বিশ্লেষ্যরূপে লিখলে এক্ষেত্রে জারণ ক্রিয়া ঘটে বোঝায় এবং এটিকে **জারণ অর্ধকোষ** বলে। কিন্তু প্রথমে তড়িৎ-বিশ্লেষ্য ও পরে তড়িৎদ্বার (ক্যাথোড)রূপে লিখলে তখন বিজারণ ক্রিয়া ঘটে বোঝায় এটিকে বিজারণ অর্ধকোষ বলে। যেমন,

জারণ অর্থকোষ : $Zn(s)/Zn^{2+}$ (aq) ; $Zn(s) \longrightarrow Zn^{2+}$ (aq) + $2e^-$ (জারণ) বিজারণ অর্থকোষ : Cu^{2+} (aq)/Cu(s) ; Cu^{2+} (aq) + $2e^- \longrightarrow Cu(s)$ (বিজারণ)


(৩) জারণ-বিজারণ তড়িংদ্বারে অথবা গ্যাসবিশিষ্ট তড়িংদ্বারে যেখানে নিষ্ক্রিয় ধাতুকে যেমন, Pt, Au ইত্যাদিকে নিষ্ক্রিয় তড়িংদ্বাররূপে বৈদ্যুতিক সংযোগের জন্য ব্যবহার করা হয়, সে ক্ষেত্রেও বিধি (১) ও (২) ব্যবহৃত হয়। এছাড়া নিষ্ক্রিয় তড়িংদ্বারের আগে একটি কমা চিহ্নসহ লেখা হয়। যেমন,

Pt,
$$H_2(g)/H^+(aq)$$
;
 $\frac{1}{2} H_2(g)$
 $\longrightarrow H^+(aq)$
 $+ e^-$ (জারণ)

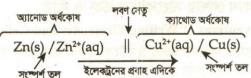
 Pt. $Fe^{2+}(aq)/Fe^{3+}(aq)$,
 $Fe^{2+}(aq)$
 $\longrightarrow Fe^{3+}(aq)$
 $+ e^-$ (জারণ)

 $Fe^{3+}(aq)/Fe^{2+}(aq)$
 $Fe^{3+}(aq) + e^ \longrightarrow Fe^{2+}(aq)$
 (বিজারণ)

(৪) কোষ সংকেত : দুটি অর্থকোষ বা তড়িংদার দারা গঠিত একটি পূর্ণাঙ্গ কোষ লেখার সময় যে তড়িংদারটিতে জারণ ঘটে, তাকে বাম পাশে (অ্যানোড) এবং যে তড়িংদারটিতে বিজারণ ঘটে, তাকে ডান পাশে (ক্যাথোড) লেখা হয়। উভয় অর্ধকোষের দুটি তড়িং-বিশ্রেষ্যকে সচ্ছিদ্র দেয়াল দ্বারা সরাসরি সংযোগ করা হলে তখন উভয়ের মধ্যবর্তী দ্বানে একটি খাড়া রেখা ছাপন করা হয়। যেমন ডেনিয়েল কোষের:

কোষ সংকেত বা কোষ ডায়াঘাম হলো নিমুরূপ:

এক্ষেত্রে অর্ধকোষের মধ্যবর্তী রেখাটি দ্বারা অর্ধকোষে তড়িৎ-বিশ্লেষ্য দুটি সরাসরি সংস্পর্শে আছে, তা প্রকাশ পায়।


(৫) তবে উভয় অর্থকোষের সংযোগ সাধন যদি একটি লবণ সেতু (salt bridge) দ্বারা করা হয়, তাহলে অর্থকোষ দুটির মাঝখানে একটি খাড়া দ্বিরেখা দিতে হয়। তখন কোষ সংকেত বা কোষ ডায়াগ্রামটি নিমুরূপ হয়। যেমন,

$$Zn(s)/ZnSO_4(aq) \parallel CuSO_4(aq)/Cu(s)$$

(৬) পূর্ণকোষ বিক্রিয়া: দুটি অর্ধকোষের জারণ ও বিজারণ বিক্রিয়াকে যোগ করলে পূর্ণ কোষ বিক্রিয়া হয়। যেমন, ডেনিয়েল কোষের জারণ অর্ধকোষ ও বিজারণ অর্ধকোষ বিক্রিয়া দুটি যোগ করলে পূর্ণ কোষ বিক্রিয়ার সমীকরণ পাওয়া যায়:

জারণ অর্ধকোষ বিক্রিয়া : Zn(s) \longrightarrow $Zn^{2+}(aq) + 2e^-$ বিজারণ অর্ধকোষ বিক্রিয়া : $Cu^{2+}(aq) + 2e^ \longrightarrow$ Cu(s) যোগ করে, পূর্ণ কোষ বিক্রিয়া : $Zn(s) + Cu^{2+}(aq)$ \longrightarrow $Zn^{2+}(aq) + Cu(s)$

৭। কোষ সংকেত বা কোষ ডায়াগ্রাম এর বিভিন্ন প্রতীক ও সাংকেতিক চিহ্ন নিম্নোক্ত বিষয় প্রকাশ করে :

কোষ বিক্রিয়া ও কোষ ডায়াগ্রাম সম্পর্কিত সমস্যা ও সমাধান

সমাধানকৃত সমস্যা-8.১৬ : $Fe(s)/Fe^{2+}$ (aq) ও $Cu(s)/Cu^{2+}$ (aq) ইলেকট্রোড সমন্বয়ে গঠিত তড়িৎ কোষ ডায়াগ্রাম ও কোষ বিক্রিয়া লেখ ।

সমাধান : এক্ষেত্রে জারণ অর্থকোষ বিক্রিয়া হলো : $Fe(s) \longrightarrow Fe^{2+}(aq) + 2e^{-}$

বিজারণ অর্থকোষ বিক্রিয়া হলো : $Cu^{2+}(aq) + 2e^- \longrightarrow Cu(s)$

 \therefore মোট কোষ বিক্রিয়া হলো $: Fe(s) + Cu^{2+}(aq) \longrightarrow Fe^{2+}(aq) + Cu(s)$

∴ কোষ ডায়াগ্রাম হলো : Fe (s)/Fe²⁺ (aq)| Cu²⁺ (aq)/Cu (s)

সমাধানকৃত সমস্যা- 8.১৭ : Zn(s) / ZnSO₄ (aq) | CuSO₄ (aq) / Cu (s) এ কোষটির কোষ বিক্রিয়া শেখ।

সমাধান : এক্ষেত্রে জারণ অর্ধকোষ বিক্রিয়া হলো : $Zn(s) \longrightarrow Zn^{2+}(aq) + 2e^-$

বিজারণ অর্ধকোষ বিক্রিয়া হলো $: Cu^{2+}(aq) + 2e^- \longrightarrow Cu(s)$

 \therefore মোট কোষ বিক্রিয়া হলো $: Zn(s) + Cu^{2+}(aq) \longrightarrow Zn^{2+}(aq) + Cu(s)$

সমাধানকৃত সমস্যা—8.১৮ : $Fe(s)/FeSO_4$ (aq) এবং Pt, H_2/H_2SO_4 (aq) ইলেকট্রোড সমন্বয়ে গঠিত তড়িৎ কোষের ডায়াগ্রাম ও কোষ বিক্রিয়া লেখ।

সমাধান : এক্ষেত্রে জারণ অর্ধকোষ বিক্রিয়া হলো : $Fe(s) \longrightarrow Fe^{2+}(aq) + 2e^{-}$

বিজারণ অর্থকোষ বিক্রিয়া হলো $: 2H^+(aq) + 2e^- \longrightarrow H_2(g)$

 \therefore মোট কোষ বিক্রিয়া হলো $: Fe(s) + 2H^+(aq) \longrightarrow Fe^{2+}(aq) + H_2(g)$

কোষ ডায়াছ্মাম হলো $: Fe(s)/FeSO_4(aq) \parallel H_2SO_4(aq)/H_2 Pt.$

সমাধানকৃত সমস্যা-8.১৯ : নিমোক্ত কোষ বিক্রিয়া থেকে কোষ ডায়াগ্রাম শেখ।

$$Zn (s) + H_2SO_4 (aq) \longrightarrow ZnSO_4 (aq) + H_2 (g)$$

সমাধান : এক্ষেত্রে অ্যানোডরূপে জিঙ্ক ইলেকট্রোড $Zn\left(s\right)/ZnSO_4\left(aq\right)$ এবং ক্যাথোডরূপে হাইড্রোজেন তড়িৎদার সমন্বয়ে লবণ সেতুসহকারে কোষ ডায়াগ্রাম হলো :

$$Zn(s)/ZnSO_4(aq) \parallel H_2SO_4(aq)/H_2(g), Pt$$

সমাধানকৃত সমস্যা—8.২০ : নিমোক্ত কোষ বিক্রিয়া থেকে কোষ ডায়াগ্রাম বা কোষ সংকেত লেখ।

$$Mg(s) + CuSO_4(aq) \longrightarrow MgSO_4(aq) + Cu(s)$$

সমাধান : এক্ষেত্রে অ্যানোডরূপে Mg-ইলেকট্রোড Mg (s) / $MgSO_4$ (aq) এবং ক্যাথোডরূপে Cu-ইলেকট্রোড Cu(s) / $CuSO_4(aq)$ সমন্বয়ে কোষ ডায়াঘামটি হলো : Mg (s) / $MgSO_4$ (aq) | $CuSO_4$ (aq) / Cu (s).

সমাধানকৃত সমস্যা $-8.23: Zn\ (s)/Zn^{2+}\ (aq)$ এবং $Ag\ (s)/Ag^{+}\ (aq)$ ইলেকট্রোড সমন্বয়ে গঠিত তড়িৎকোষ ডায়াছাম ও কোষ বিক্রিয়া লেখ।

সমাধান : এক্ষেত্রে Ag ধাতু অপেক্ষা Zn ধাতু অধিক সক্রিয় হওয়ায় Zn-ইলেকট্রোডে অ্যানোড এবং Ag-ইলেকট্রোডকে ক্যাথোডরূপে ব্যবহার করে তড়িৎ কোষটি তৈরি করতে হবে।

এক্ষেত্রে জারণ-অর্ধকোষ বিক্রিয়া হলো $: Zn(s) \longrightarrow Zn^{2+}(aq) + 2e^{-}$

বিজারণ-অর্থকোষ বিক্রিয়া হলো $: 2Ag^{+}(aq) + 2e^{-} \longrightarrow 2Ag(s)$

 \therefore মোট কোষ বিক্রিয়া হলো $\qquad : Zn(s) + 2Ag^{+}(aq) \longrightarrow Zn^{2+}(aq) + 2Ag(s)$

কোষ ডায়ামাম হলো $\operatorname{Zn}(s)/\operatorname{Zn}^{2+}(aq)/\operatorname{Ag}(s)$

শিক্ষার্থীর কাজ-৪.৭ : তড়িৎকোষের অর্ধ-বিক্রিয়াভিত্তিক গণনা :

সমস্যা-৪.২৬ : নিচের তড়িৎকোষের অর্ধকোষ বিক্রিয়াসহ কোষ বিক্রিয়া লেখ।

(ক) Zn/Zn²⁺ এবং Ag/Ag⁺ দ্বারা গঠিত তড়িৎকোষ।

(4) Zn (s)/Zn²⁺ (aq) || H⁺ (aq)/H₂ (g), Pt

সমস্যা- 8.২৭: নিচের গ্যালভানিক কোষগুলোর অর্ধকোষ বিক্রিয়া ও কোষ বিক্রিয়া লেখ:

 $(\overline{\Phi}) Cu (s)/Cu^{2+} (aq) || Ag^{+} (aq)/Ag (s)$

(\forall) Zn (s)/Zn²⁺ (aq) || Ag⁺ (aq)/Ag (s)

(গ) $Cr(s)/Cr^{3+}(aq) \| Pb^{2+}(aq)/Pb(s)$

সমস্যা- ৪.২৮ : নিচের রিডক্স বিক্রিয়াগুলো থেকে গ্যালভানিক কোষগুলোর কোষ সংকেত বা কোষ ডায়াগ্রাম লেখ :

$$(\overline{\Phi}) \text{ Al (s)} + Zn^{2+}(aq) \longrightarrow Al^{3+}(aq) + Zn (s)$$

(
$$\forall$$
) $Ag^+(aq) + Ni(s) \longrightarrow Ni^{2+}(aq) + Ag(s)$

(
$$\mathfrak{I}$$
) Cd (s) + Ni²⁺ (aq) \longrightarrow Cd²⁺ (aq) + Ni (s)

৪.৭.২ তড়িৎদ্বার বিভব

Electrode Potential

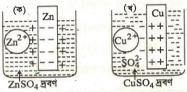
যেকোনো তড়িৎ রাসায়নিক কোষের দুটি অর্ধকোষের প্রত্যেকটিতে একটি তড়িৎ-বিশ্লেষ্য ও একটি ধাতব দণ্ড থাকে। প্রতিটি অর্ধকোষের ধাতব দণ্ডকে একক তড়িৎদ্বার বলে। প্রতিটি একক তড়িৎদ্বারের বৈদ্যুতিক বিভব থাকে, একে তড়িৎদ্বার বিভব বলে।

একক তড়িংদ্বার বিভবের সংজ্ঞা: যখন কোনো ধাতব দত্তকে ঐ ধাতুর লবণের দ্রবণে ডোবানো হয় তখন ধাতব দগুটি দ্রবণের সাপেক্ষে ধনাত্মক বা ঋণাত্মক আধান প্রাপ্ত হয়। ফলে ধাতব দণ্ড ও দ্রবণের সাপেক্ষে একটি নির্দিষ্ট বৈদ্যুতিক বিভব পার্থক্যের সৃষ্টি হয়, এ বিভব পার্থক্যকে ধাতব দণ্ডের একক তড়িংদ্বার বিভব বলে।

তড়িংদ্বার বিভবের একক : তড়িংদ্বার বিভবের একক হলো ভোল্ট (V)।

ব্যাখ্যা: তড়িৎদ্বার বিভবের উৎসরূপে বিজ্ঞানী নার্নস্ট নিমুরূপ তত্ত্ব উপস্থাপন করেন। ধাতব দণ্ডের কেলাসে ধাতুর আয়নসমূহ ল্যাটিসে নির্দিষ্ট স্থানে থাকে এবং এর যোজনী ইলেকট্রনসমূহ ল্যাটিসের ফাঁকা স্থানে চলাচল করে। কোনো ধাতুর দণ্ডকে এর কোনো লবণের দ্রবণে ড্বালে তখন ধাতুর আয়ন ল্যাটিস ত্যাগ করে দ্রবণে প্রবেশের প্রবণতা দেখায়। একে দ্রবণ চাপা বলা হয়। এ অবস্থায় ধনাত্মক চার্জযুক্ত আয়নের চার্জোঃ সমসংখ্যক ইলেকট্রন ধাতবদণ্ডে অতিরিক্ত থাকে, এ ধাতব দণ্ডটি ঋণাত্মক চার্জযুক্ত হয়। ধাতব আয়নগুলো পানির সাথে যুক্ত হয়ে হাইড্রেটেড আয়নরূপে থাকে। আবার হাইড্রেটেড ধাতব ধনাত্মক আয়নগুলো ঐ ধাতব দণ্ডের ইলেকট্রন গ্রহণ করে পুনরায় পরমাণুরূপে ধাতব দণ্ডে যুক্ত হতে চায়। একে ধনাত্মক আয়নের অস্মোটিক চাপ বলে। এরূপে ধাতুটির ইলেকট্রন ত্যাগের বেশি বা কম প্রবণতার ফলে ধাতব দণ্ড ঋণাত্মক বা ধনাত্মক চার্জযুক্ত হতে পারে।

$$M(s) \rightleftharpoons M^{n+}(aq) + ne^{-}$$


প্রত্যেকটি তড়িৎদ্বারের পৃষ্ঠতলে ইলেকট্রন ত্যাগ বা ইলেকট্রন গ্রহণ—এ দুটি বিপরীতমুখী প্রবণতার পরিমাণ কখনো সমান হয় না; তাই ধাতব দণ্ড ও এর দ্রবণের আয়নের মধ্যে একটি বৈদ্যুতিক বিভব সৃষ্টি হয়। এ বিভবকে **তড়িংদ্বার বিভব** বলা হয়। তড়িংদ্বার বিভব দু প্রকার, (১) জারণ বিভব ও (২) বিজারণ বিভব।

জারণ-বিভব (Oxidation Potential): কোনো ধাতৃর পাতকে ঐ ধাতুর লবণের জলীয় দ্রবণে ডুবালে যদি ধাতুর পরমাণুর ইলেকট্রন ত্যাগের প্রবণতা বেশি হয় অর্থাৎ ধাতৃটির পাতে ধাতুর পরমাণুগুলো ইলেকট্রন ত্যাগ করে জারিত হয়ে ধনাত্মক আয়ন বা ক্যাটায়নরূপে দ্রবণে প্রবেশের প্রবণতা বেশি দেখায়, তখন ঐ ধাতুর পাত এবং দ্রবণটির মধ্যে যে বিভব পার্থক্য সৃষ্টি হয়ে থাকে, তাকে ধাতুটির **জারণ বিভব** বলে। তখন তড়িৎদ্বারটি ঋণাত্মক চার্জযুক্ত হয়ে **অ্যানোডরূপে** কাজ করে। যেমন, ডেনিয়েল কোষে জিঙ্ক ইলেকট্রোড-এর বেলায় জিঙ্ক পরমাণুর ইলেকট্রন ত্যাগের প্রবণতা বেশি। তাই Zn-দণ্ডের বহিঃস্তরে জমা হওয়া ইলেকট্রনের ঋণাত্মক চার্জের এবং এর খুব নিকটে সংযোগস্থলের দ্রবণে জিঙ্ক ক্যাটায়ন (Zn^{2+}) এর ধনাত্মক চার্জের একটি বৈদ্যুতিক দ্বি-স্তর (electrical double layer) সাম্যাবস্থায় থাকে। ফলে জিঙ্ক দণ্ড ও জিঙ্ক আয়নের সংযোগস্থলে নির্দিষ্ট মানের ইলেকট্রেনীয় চাপ বা ঋণাত্মক তড়িৎ শক্তি সৃষ্টি হয়। একে জিঙ্ক ইলেকট্রোডের বিভব বা জারণ বিভব বলে। তখন জিঙ্ক ইলেকট্রোড ঋণাত্মক অ্যানোডরূপে কাজ করে। [চিত্র-৪.১৩(ক) দেখো]

$$Zn(s) = Zn^{2+}(aq) + 2e^{-}$$

বিজারণ বিভব (Reduction Potential) : কোনো ধাতুর পাতকে ঐ ধাতুর লবণের জলীয় দ্রবণে ডুবালে, যদি ধাতব পরমাণুর ইলেকট্রন ত্যাগের প্রবণতার চেয়ে দ্রবণের ধনাত্মক আয়নগুলোর ধাতব পাত থেকে ইলেটকট্রন গ্রহণ করে

বিজারিত হয়ে ঐ ধাতুর পরমাণুতে পরিণত হওয়ার প্রবণতা বেশি হয়ে থাকে, তখন ঐ ধাতুর পাত ও লবণের দ্রবণটির মধ্যে যে বিভব পার্থক্য সৃষ্টি হয়, তাকে ধাতুটির বিজারণ বিভব বলে। তখন ঐ তড়িংছারটি ধনাত্মক চার্জযুক্ত হয়ে ক্যাথোডরূপে কাজ করে। যেমন, ডেনিয়েল কোষে কপার ইলেক্ট্রোড এর বেলায় Cu-পরমাণুর ইলেক্ট্রেন ত্যাগের প্রবণতার চেয়ে Cu^{2+} আয়নের ইলেক্ট্রন গ্রহণের প্রবণতা বেশি। তাই Cu দণ্ডের বহিঃন্তরে জমা হওয়া Cu^{2+} আয়নের ধনাত্মক চার্জের এবং এর সংযোগস্থলের দ্রবণে ঋণাত্মক সালফেট (SO_4^{2-})

চিত্র-৪.১৩ : ইলেকট্রোড বিভব

আয়নের চার্জের একটি বৈদ্যুতিক দ্বি-স্তর সাম্যাবস্থা তৈরি করে ধনাত্মক তড়িৎ শক্তি সৃষ্টি হয়। একে কপার <mark>ইলেকট্রো</mark>ডের বিভব বা বিজারণ বিভব বলে [চিত্র-৪.১৩(খ) দেখো]

Cu (s)
$$\leftarrow$$
 Cu²⁺ (aq) + 2e⁻

ধাতুর মতো হাইড্রোজেন পরমাণুও এর আয়নের দ্রবণে তড়িৎদ্বার বিভব সৃষ্টি করে।

তড়িংদার বিভবের নির্ভরশীলতা : (১) তড়িংদারের ধাতব প্রকৃতি, (২) দ্রবণে আয়নের ঘনমাত্রা ও (৩) দ্রবণের তাপমাত্রার ওপর তড়িংদার বিভব নির্ভর করে। যেমন, ডেনিয়েল কোষে ব্যবহৃত দুটি অর্ধকোষের সংযোগের ফলে জিঙ্ক তড়িংদার থেকে ইলেকট্রন কপার তড়িংদার প্রবাহিত হয়। অর্থাৎ কপারের তুলনায় জিঙ্ক পরমাণু সহজে Zn^{2+} আয়নরূপে জারিত হয়ে দ্রবণে প্রবেশের অধিক প্রবণতা দেখায়। তড়িংদারসমূহের জারিত বা বিজারিত হওয়ার তুলনামূলক পরিমাপ হচ্ছে তড়িংদার বিভব।

MCQ-4.14: তড়িংদ্বার বিভব নির্ভর করে নিম্নোক্ত বিষয়ের	MCQ-4.15: নিচের কোন্ তড়িৎদার জারণ	
ওপর—(i) ধাতব দণ্ডের প্রকৃতি; (ii) তাপমাত্রা	অর্ধকোষ বোঝায়?	
(iii) তড়িৎ-বিশ্লেষ্যের ঘনমাত্রা	(季) Zn ²⁺ /Zn	(학) Zn/Zn ²⁺
নিচের কোনটি সঠিক? (ক) i ও ii, (খ) ii ও iii (গ) i ও iii, (ঘ) i, ii ও iii	(গ) Cu ²⁺ /Cu	(घ) H ⁺ /H ₂ , Pt

৪.৮ তড়িৎদ্বার বিভব বা তড়িৎ রাসায়নিক সিরিজ

Electrode Potential or Electro-Chemical Series

একক অবস্থায় যেকোনো তড়িৎদ্বারই তড়িৎ উৎপাদনে সক্ষম নয়। অতএব, এর বিভবের সুনির্দিষ্ট মান থাকলেও e.m.f থাকে না; কিন্তু সম্পূর্ণ কোষের e. m. f থাকে। অর্থাৎ দুটি ভিন্ন তড়িৎদ্বারের বিভব পার্থক্য অথবা দুটি তড়িৎদ্বারের সংযোজনের ফলে উৎপন্ন কোষের e. m. f-ই কেবল মাপা যায়।

প্রমাণ হাইদ্রোজেন তড়িংঘার : কোনো তড়িংঘার বিভবের মান সর্বসম্মতিক্রমে শূন্য ধরে এর সাথে পরীক্ষণীয় তড়িংঘার সংযোগে সৃষ্ট কোষের উৎপন্ন e.m.f-কে তড়িংঘার বিভব ধরা হয়। সর্বজনীন রীতি অনুযায়ী প্রমাণ হাইদ্রোজেন তড়িংঘারের বিভবের মান শূন্য ধরা হয়। যেকোনো তড়িংঘারের বিভব প্রমাণ হাইদ্রোজেন তড়িংঘারের আপেক্ষিকে মাপা হয়।

প্রমাণ তড়িংছার বিভব: বিভিন্ন তড়িংছারের বিভবের তুলনামূলক মান প্রকাশের জন্য প্রতিটি তড়িংছারের তড়িং-বিশ্লেষ্য দ্রবণের ঘনমাত্রা 1M এবং তাপমাত্রা 25°C বা, 298 K রাখা হয়। এ অবস্থায় প্রতিটি তড়িংছারের বিভবকে প্রমাণ তড়িংছারের বিভব বলা হয়। যেমন, প্রমাণ হাইড্রোজেন তড়িংছারের বিভব মানকে 0.0 V ধরা হয়।

প্রমাণ হাইদ্রোজেন তড়িংদ্বারের গঠন : প্রমাণ হাইদ্রোজেন তড়িংদ্বারের বেলায় বিশুদ্ধ H_2 গ্যাসকে প্রমাণ অবছায় যেমন 1.0 atm চাপে 25° C তাপমাত্রায় 1.0 M H^+ আয়নের দ্রবণে ডুবানো নিষ্ক্রিয় ধাতু প্রাটিনাম পাতের সংস্পর্শে চালনা করা হয় ; [চিত্র-8.58]। প্রাটিনাম ধাতু H_2 গ্যাস শোষণ করে। শোষিত অবছায় H_2 তড়িংদ্বারে নিম্মরূপ অর্ধকোষ বিক্রিয়া চলতে থাকে এবং এর তড়িংদ্বার বিভবকে 0.0V ধরা হয়।

$$H_2 (g, 1 \text{ atm}) \longrightarrow 2H^+ (aq, 1M) + 2e^- \qquad E^{\theta} = 0.0 \text{ V}$$

 $2H^+ (aq, 1M) + 2e^- \longrightarrow H_2 (g, 1 \text{ atm}) \qquad E^{\theta} = 0.0 \text{ V}$

H-তড়িৎদার ডায়াগ্রাম : নিদ্রিয় তড়িৎদার প্লাটিনাম সহযোগে হাইড্রোজেন তড়িৎদারকে নিমরূপে লেখা হয়।

 $Pt(s). H_2(g) (1atm)/ H^+ (aq) (1M)$ $E^\theta = 0.0 V$ প্রাইমারি বা মুখ্য নির্দেশক তড়িৎদ্বার (Primary Reference Electrode): প্রমাণ হাইড্রোজেন তড়িৎদ্বারকে (Standard Hydrogen Electrode, S.H.E) প্রাইমারি বা মুখ্য নির্দেশক তড়িৎদ্বার বলা হয়। কারণ প্রমাণ হাইড্রোজেন তড়িৎদ্বার (S.H.E) দ্বারা অন্যান্য তড়িৎদ্বারের প্রমাণ তড়িৎদ্বার বিভব নির্ণয় করা হয়।

Pt তার

H₂

1 atm

Pt পাত

Pt পাত

Pt গ্রাড্র

Pt গ্রাড্র

IM HCl(aq)

চিত্র-৪.১৪ : H2তড়িৎদার

সেকেভারি বা গৌণ নির্দেশক তড়িংখার (Secondary Reference

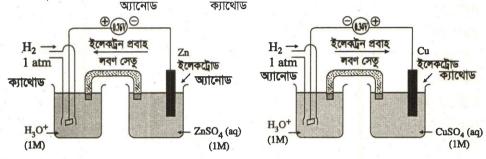
Electrode): দৈনন্দিন বিভিন্ন ইলেকট্রোডের বিভব মাপার জন্য প্রাইমারি নির্দেশক তড়িৎদাররূপে প্রমাণ H-তড়িৎদার (S.H.E) ব্যবহার করা সুবিধাজনক নয়। কারণ এর মধ্যে (১) 25°C তাপমাত্রায় সব সময় HCl দ্রবণের ঘনমাত্রা 1.0M রাখা যায় না; এবং (২) ঐ HCl দ্রবণে 1 atm চাপে বিশুদ্ধ H₂ গ্যাস চালনা করা সম্ভব হয় না। তাই S.H.E. এর পরিবর্তে S.H.E. দ্বারা সঠিকভাবে নির্ধারিত তড়িৎ-বিভব যুক্ত কিছু 'ধাতু ও ধাতুর অদ্রবণীয় লবণ তড়িৎদার' বা অর্ধকোষকে ব্যবহার করা হয়। এরূপ তড়িৎদার বা অর্ধকোষকে সেকেন্ডারি বা গৌণ নির্দেশক তড়িৎদার' বলে। যেমন—

- (i) ক্যালোমেল (Hg₂Cl₂) তড়িৎদার, Hg (l), Hg₂Cl₂ (s)/KCl (aq)
- (ii) সিলভার-সিলভার ক্লোরাইড তড়িৎদ্বার, Ag (s), AgCl (s)/HCl (aq)

MAT (17-18)

প্রমাণ H-তড়িংবার সহযোগে বিভিন্ন তড়িংবারের বিভব নির্ণয়:

(১) Zn-তড়িংছার (Zn^{2+}/Zn) -এর বিভব মান নির্ণয় : $25^{\circ}C$ -এ Zn-ইলেকট্রোডকে অ্যানোডরূপে ও H-ইলেকট্রোডকে ক্যাথোডরূপে লবণ সেতুর মাধ্যমে সংযোগ করা হয়। তখন Zn-ইলেকট্রোডটি ভোল্টমিটারের ঋণাত্মক প্রান্তের সাথে ও H-ইলেকট্রোডকে উচ্চরোধবিশিষ্ট ভোল্টমিটারের ধনাত্মক প্রান্তের সাথে যুক্ত করা হলেই তখন এক্ষেত্রে ভোল্টমিটার নির্দেশ করে Zn-ইলেকট্রোড থেকে ইলেকট্রন H-ইলেকট্রোডে প্রবাহিত হচ্ছে অর্থাৎ Zn-ইলেকট্রোডে জারণ ক্রিয়া ঘটছে এবং ভোল্টমিটার নির্দেশ করছে কোষটির $emf 0.76\ V$; অর্থাৎ Zn-ইলেকট্রোডের জারণ বিভব $+0.76\ V$ । প্রমাণ H-ইলেকট্রোডের জারণ বা বিজারণ মান শূন্য অর্থাৎ


$$E_{\text{cell}}^{\theta} = E_{\text{Zn/Zn}^{2+}}^{\theta} (1.0 \text{ M}) + E_{\text{H}^{+}/\text{H}_{2}}^{\theta} (1.0 \text{ M}) = (E_{\text{Zn/Zn}^{2+}}^{\theta} (1.0 \text{ M}) + 0.0) \text{ V} = 0.76 \text{ V}$$

$$E_{\text{H}^{+}/\text{H}_{2}}^{\theta} = 0.00 \text{ V} = E_{\text{H}_{2}/\text{H}^{+}}^{\theta}$$

 $\therefore Z_n$ -ইলেকট্রোডের জারণ বিভব = $+0.76~\mathrm{V}$ । সুতরাং Z_n ইলেকট্রোডের বিজারণ বিভব = $-0.76~\mathrm{V}$

∴ কোষ বিক্রিয়াটি হলো : $Zn(s) + 2H^{+}(aq) \longrightarrow Zn^{2+}(aq) + H_{2}(g)$. $E^{\theta}_{cell} = 0.76 \text{ V}$

তড়িৎকোষ সংকেত হলো : Zn/Zn^{2+} $(aq) \parallel H^+(aq)/H_2$ (1 atm). Pt

চিত্র-৪.১৫: H-ইলেকট্রোডের সাহায্যে Zn-ইলেকট্রোড ও Cu-ইলেকট্রোডের বিভব মান নির্ণয়।

(২) Cu-তড়িংছার (Cu²+/Cu) এর বিভব মান নির্ণয় : 25°C-এ Cu-ইলেকট্রোডকে ক্যাথোডরপে ও H-ইলেকট্রোডকে অ্যানোডরপে লবণ সেতুর মাধ্যমে সংযোগ করা হয়। তখন Cu-ইলেকট্রোডিকি উচ্চরোধবিশিষ্ট ভোল্টমিটারের ধনাত্মক প্রান্তের সাথে ও H-ইলেকট্রোডকে ভোল্টমিটারের ঋণাত্মক প্রান্তের সাথে যুক্ত করা হলে তবেই ভোল্টমিটারটি পাঠ দেয় এবং নির্দেশ করে H-ইলেকট্রোডে জারণ ঘটছে এবং ভোল্টমিটার নির্দেশ করছে কোষটির e. m. f 0.34 V। যেহেতু H-ইলেকট্রোডে জারণ ঘটছে; কোষের e. m. f এর সম্পর্ক মতে,

$$\therefore E_{cell}^{\theta} = E_{H_2/H^+}^{\theta} (1.0 \text{ M}) + E_{Cu^{2+}/Cu}^{\theta} (1.0 \text{ M}) = (0.0 + E_{Cu^{2+}/Cu}^{\theta} (1.0 \text{ M}) = 0.34 \text{ V}$$

m : Cu-ইলেকট্রোডের বিজারণ বিভব , $E_{Cu^{2+}/Cu}^{\theta} = 0.34 \ V$ এবং জারণ বিভব $E_{Cu/Cu^{2+}}^{\theta} = -0.34 \ V$

 \therefore কোষ বিক্রিয়াটি হলো : $2H(g) + Cu^{2+}(aq) \longrightarrow 2H^{+}(aq) + Cu(s)$ $E^{\theta}_{cell} = 0.34 \text{ V}$

তড়িৎকোষ সংকেত হলো : Pt. H₂ (1 atm)/H⁺(aq)|| Cu²⁺ (aq)/Cu অ্যানোড ক্যাথোড

(৩) তড়িং রাসায়নিক সিরিজ বা তড়িং-বিভব সিরিজ (Electro-chemical or Electro-potential Series)

ধাতুসমূহের জারণ-বিজারণ প্রবণতার তুলনা বা প্রমাণ বিজারণ বিভব সম্বন্ধে ধারণা পাওয়ার জন্য এবং তড়িৎকোষের অ্যানোড ও ক্যাথোড নির্বাচনের সুবিধার্থে বিভিন্ন ধাতব আয়নের বিজারণ বিভবের মানসমূহকে ক্রমবৃদ্ধি অনুসারে সারিবদ্ধ করা হয়েছে। ধনাত্মক আয়নসমূহের বিজারণ প্রবণতার এ সারিকে প্রমাণ তড়িৎ-বিজারণ বিভব সিরিজ (25°C) বা, তড়িৎ রাসায়নিক সিরিজ বলা হয় (সারণি-৪.৪)।

海捕鱼山地

সারণি-৪.৪ : ধাতুসমূহের প্রমাণ তড়িৎ-বিভব সারি (25°C) বা তড়িৎ রাসায়নিক সিরিজ

তড়িৎদার বা ইলেকট্রোড	তড়িৎদার অর্ধ-বিক্রিয়া	E°(V) (at 25°C)
Li+/Li	Li^+ (aq) + $e^ \rightleftharpoons$ Li (s)	-3.04
K ⁺ /K	K^+ (aq) + $e^- \rightleftharpoons K(s)$	-2.92
Ca ²⁺ / Ca	Ca^{2+} (aq) + 2e ⁻ \rightleftharpoons Ca (s)	-2.87
Na ⁺ /Na	Na^+ (aq) + $e^ \rightleftharpoons$ Na (s)	-2.71
Mg ²⁺ /Mg	Mg^{2+} (aq) + $2e^- \rightleftharpoons Mg$ (s)	-2.36
Al ³⁺ /Al	Al^{3+} (aq) + $3e^- \rightleftharpoons Al$ (s)	-1.66
Zn^{2+}/Zn	Zn^{2+} (aq) + $2e^- \rightleftharpoons Zn$ (s)	- 0.76 V
	Cr^{3+} (aq) + $3\epsilon^- \rightleftharpoons Cr(s)$	
Cr ³⁺ /Cr 명 Fe ²⁺ /Fe 당	Fe^{2+} (aq) + $2e^- \rightleftharpoons Fe$ (s)	-0.74 -0.44
Cd ²⁺ /Cd 등	Cd^{2+} (aq) + $2e^- \rightleftharpoons Cd$ (s)	
Cd ²⁺ /Cd	Co^{2+} (aq) + $2e^ \rightleftharpoons$ Co (s)	- 0.40 - 0.28
Ni ²⁺ /Ni	Ni^{2+} (aq) + $2e^- \rightleftharpoons Ni$ (s)	
Sn ²⁺ /Sn	Sn^{2+} (aq) + 2e ⁻ \rightleftharpoons Sn (s)	<u>▼</u> -0.25 -0.14
Pb ²⁺ /Pb-	Pb^{2+} (aq) + $2e^- \rightleftharpoons Pb$ (s)	-0.13
H ⁺ /H ₂ .Pt	$2H^+$ (aq) $+ 2e^- \rightleftharpoons H_2(g)$	0.00
€u ²⁺ /Cu	Cu^{2+} (aq) - $2e^- \rightleftharpoons Cu$ (s)	+0.34 DAT (23
Hg ₂ ²⁺ /Hg.	Hg_2^{2+} (aq) + 2e ⁻ \rightleftharpoons 2Hg (<i>l</i>)	+ 0.79
Ag+/Ag	$Ag+(aq) + e^{-} \Leftrightarrow Ag(s)$	+ 0.80
Au ³⁺ /Au	Au^{3+} (aq) + $3e^- \rightleftharpoons Au$ (s)	+ 1.42

জেনে রাখো:

- (১) প্রতিটি তড়িৎদ্বারের প্রমাণ বিজারণ বিভবের মান হলো প্রমাণ H তড়িৎদ্বারের সাপেক্ষে নির্ণীত মান। প্রতিটি তড়িৎদ্বারকে H তড়িৎদ্বারের সাথে যুক্ত করে একটি পূর্ণ তড়িং-কোষ গঠন করা হয়। ঐ পূর্ণ কোষে প্রমাণ H তড়িৎদ্বারের বিভব শূন্য ধরে কোষটির যে emf পাওয়া যায়, সেটি হলো ঐ তড়িৎদ্বার বা অর্ধকোষের প্রমাণ বিজারণ বিভবের মান।
- (২) কোনো তড়িৎদ্বারের বিজারণ বিভব মান যত হয়; ঐ তড়িৎদ্বারের জারণ বিভব মান সংখ্যাগত তত হয়। তবে ধূনাতাক বা ঋণাতাক চিহ্ন বিপরীত হয়। যেমন, কপার তড়িৎদ্বারের প্রমাণ বিজারণ বিভব Cu^{2+}/Cu হলো +0.34~V; তাই এর প্রমাণ জারণ বিভব (Cu/Cu^{2+}) হলো +0.34~V।
- (৩) যে তড়িৎদ্বারের বিজারণ বিভবের মান যত বেশি ঋণাত্মক তার প্রমাণ জারণ বিভবের মান তত বেশি ধনাত্মক। অর্থাৎ ঐ তড়িৎদ্বারে তত বেশি জারণ ক্রিয়া সম্পন্ন হয় এবং সে ধাতুর বিজারণ ক্ষমতাও তত বেশি।
- (৪) শ্রেণির ওপর থেকে নিচের দিকে তড়িৎদ্বারসমূহের প্রমাণ বিজারণ বিভবের ঋণাত্মক মান ক্রমশ কমতে থাকে। অর্থাৎ ঐ সব তড়িৎদ্বারের ধাতুর জারিত হওয়ার প্রবণতা এবং তাদের বিজারণ ক্ষমতাও তত কমতে থাকে।
 - (৫) শ্রেণিতে বিজারক বলতে ধাতুগুলোকে এবং জারক বলতে তাদের ধনাত্মক আয়নকে বোঝায়।

(৪) ধাতুর ক্ষয় ও অ্যানোডিক জারণ (Metallic Corrosion & Anodic Oxidation)

ধাতুর ক্ষয় : কোনো ধাতু পরিবেশ থেকে পানি ও অক্সিজেন সহযোগে বিক্রিয়া করে ক্ষয়প্রাপ্ত হলে, তাকে করোসান বা ধাতুর ক্ষয় বলে। লোহার মরিচা পড়া, রূপার উজ্জ্বলতা হ্রাস, কপার ও ব্রোঞ্জ সংকর ধাতুর ওপর সবুজ আন্তরণ সৃষ্টি ইত্যাদি ধাতুক্ষয়ের উদাহরণ।

ধাতৃর ক্ষয়ের ব্যাখ্যা : ধাতৃ ক্ষয়ের সাধারণ উদাহরণ হলো লোহার মরিচা পড়া। অবিশুদ্ধ লোহার Fe পরমাণু এবং এর অপদ্রব্য অক্সিজেন মিশ্রিত পানির উপস্থিতিতে অসংখ্য ক্ষুদ্র ক্ষুদ্র ভোল্টার কোষ গঠন করে। লোহার Fe পরমাণু তখন অ্যানোডরূপে ক্রিয়া করে। Fe পরমাণু জারিত হয় এবং অক্সিজেন মিশ্রিত পানি বিজারিত হয়ে Fe(OH)2 গঠন করে। পরে বায়ুর অক্সিজেন ও পানি দ্বারা Fe(OH)2 অধিক জারিত হয়ে সোদক ফেরিক অক্সাইড বা মরিচা গঠন করে।

Fe
$$\longrightarrow$$
 Fe²⁺ + 2e⁻ ... [জারণ]

 $H_2O + \frac{1}{2}O_2 + 2e^- \longrightarrow 2HO^-$... [বিজারণ]

 $Fe^{2+} + 2HO^- \longrightarrow Fe(OH)_2$
 $2Fe(OH)_2 + H_2O + \frac{1}{2}O_2 \longrightarrow Fe_2O_3.3H_2O$ বা, $2Fe(OH)_3$ [মরিচা]

সুতরাং ধাতুর ক্ষয় প্রক্রিয়াটি হলো একটি তড়িৎ রাসায়নিক অ্যানোডিক জারণ প্রক্রিয়া।

ধাতৃক্ষয় রোধ প্রক্রিয়া : (i) যেহেতু ধাতুর ক্ষয় একটি তড়িৎ রাসায়নিক অ্যানোডিক জারণ প্রক্রিয়া সেহেতু ধাতুকে ক্ষয় থেকে রক্ষা করতে হলে ধাতুটি কোনো অবস্থায় যেন অ্যানোডরূপে কাজ করতে না পারে সে ব্যবস্থা করতে হবে।

(ii) কোনো ধাতুর ওপর প্রায় সমমানের তড়িৎদ্বার বিভবের অপর ধাতু সংযোগ করে ধাতুকে অ্যানোডিক জারণ থেকে ক্ষয়মুক্ত রাখা সম্ভব। ডেনিয়েল কোষে অ্যানোডরূপে ব্যবহৃত Zn ধাতু ইলেকট্রন ত্যাগ করে জারিত হয়।

$$Zn(s) \longrightarrow Zn^{2+}(aq) + 2e^{-}$$

MAT (15-16)

তাই লোহার ওপর মরিচা পড়া রোধ করতে অধিক সক্রিয় Zn ধাতুর প্রলেপ দেয়া বা গ্যা**লভানাইজিং** করা হয়।

(iii) একক ধাতুর পরিবর্তে সম সক্রিয় d- ব্লকের ধাতু সংকর ব্যবহার করে অ্যানোডরূপে লোহার জারণ রোধ করা যায়। যেমন মরিচারোধী ইস্পাত লোহার সঙ্গে কার্বন, Cr ও Ni যুক্ত করে সংকর- ধাতুরূপে লোহার জারণ বিভব হ্রাস ও মরিচা রোধ করা হয়।

জেনে নাও তড়িৎ রাসায়নিক কোষে অ্যানোড নির্বাচনভিত্তিক সমস্যা :

সমস্যা : ডেনিয়েল সেলে Zn দণ্ডটি বিজারকরপে কাজ করে কেন?

[সি. বো. ২০১৯]

সমাধান: কোনো তড়িৎ রাসায়নিক কোষে ব্যবহৃত দুটি তড়িৎদার বা, ইলেকট্রোডের মধ্যে যেটির প্রমাণ বিজারণ বিভব মান বেশি ঋণাত্মক সেটির ধাতব দণ্ডটি কার্যকর বিজারকরূপে ক্রিয়া করে। অর্থাৎ ইলেকট্রন ত্যাগ করে এবং এটি ঐ কোষের ঋণাত্মক তড়িৎদার বা, অ্যানোডরূপে ভূমিকা রাখে। অপর ইলেকট্রোডটি ক্যাথোডরূপে কাজ করে।

ডেনিয়েল সেলে ব্যবহৃত দুটি তড়িংদ্বার হলো জিঙ্ক তড়িংদ্বার ও কপার তড়িংদ্বার। জিঙ্ক তড়িংদ্বারর প্রমাণ বিজারণ বিভব (Zn^{2+}/Zn) এর মান =-0.75~V এবং কপার তড়িংদ্বারের প্রমাণ বিজারণ বিভব (Cu^{2+}/Cu) এর মান =+0.34V। উভয় তড়িংদ্বারের প্রমাণ বিজারণ বিভবের মান থেকে সুস্পষ্ট জিঙ্ক তড়িংদ্বারের বিজারণ বিভবের মান অধিক ঋণাত্মক হওয়ায় জিঙ্ক তড়িংদ্বারের Zn দুওটি বিজারকরূপে ইলেকট্রেন ত্যাগ করে কোষটির অ্যানোডরূপে ভূমিকা রাখে। কপার ইলেকট্রোড ক্যাথোডরূপে কাজ করে।

সারণি-8.8 অনুসরণ করে ব্যাখ্যা করো ; প্রমাণ অবছায় Pb^{2+} (aq) আয়ন, A1 (s) অথবা Cu (s) দ্বারা বিজারিত হবে কিনা? $25^{\circ}C$ -এ প্রতিটি কোষ বিক্রিয়ার ক্ষেত্রে emf (E_{cell}^{0}) এর মান গণনা করো ।

দক্ষতা : সক্রিয়তা সিরিজ মতে, কোনো বিজারক এর নিচে দ্থানপ্রাপ্ত যেকোনো ধাতব আয়ন জারককে বিজারিত করতে পারে; কিন্তু এর ওপরের দ্থানের ধাতব আয়ন জারককে বিজারিত করতে পারে না। জারণ অর্ধ-বিক্রিয়া ও বিজারণ অর্ধ-বিক্রিয়ার বিভব মানের যোগফল হবে প্রতিটি কোষ বিক্রিয়ার $\operatorname{emf}(E_{\operatorname{cell}}^0)$ ।

সমাধান : (১) বিজারক Al(s) এর অবস্থান জারক Pb^{2+} (aq) এর ওপরে এবং বিজারক Cu(s) এর অবস্থান Pb^{2+} (aq) এর নিচে। তাই Al(s) দ্বারা Pb^{2+} (aq) আয়ন বিজারিত হবে; কিন্তু Cu(s) তা পারে না। রিডক্স বিক্রিয়ার বৈভব (E_{cell}^0) এর মান ধনাত্মক হলে তবে এসব বিক্রিয়ার স্বত্যক্ষূর্ততা প্রমাণিত হবে।

[Al (s)
$$\longrightarrow$$
 Al³⁺ (aq) + 3e⁻] × 2 (জারণ অর্ধ-বিক্রিয়া) E^{o} = +1.66 V [Pb²⁺ (aq) + 2e⁻ \longrightarrow Pb (s)] × 3 (বিজারণ অর্ধ-বিক্রিয়া) E^{o} = −0.13 V E^{o} = +1.53 V

লক্ষ্য করে Al/Al^{3+} জারণ অর্ধ-বিক্রিয়াকে 2 দারা এবং Pb^{2+}/Pb বিজারণ অর্ধ-বিক্রিয়াকে 3 দারা গুণ করে ইলেকট্রন ত্যাগ ও গ্রহণ সংখ্যার সমতা করা হয়েছে। কিছু E^o এর মানকে গুণ করা হয়নিং কারণ বিভব E^o হলো energy/ charge এর অনুপাত। শক্তি বা বছুর পরিমাণের সাথে চার্জের পরিমাণও বাড়ে; অনুপাত ঠিক থাকে; এটি বছুর ঘনত্বের অনুরূপ। এক্ষেত্রে কোষের $emf\left(E_{cell}^o\right)$ ধনাত্মক হওয়ায় কোষ বিক্রিয়াটি স্বতঃস্কৃর্তভাবে ঘটবে অর্থাৎ Al দারা Pb^{2+} আয়ন বিজারিত হবে। (2) আবার Cu দারা Pb^{2+} আয়নকে বিজারিত করার সমীকরণ হবে নিমুরূপ:

$$Cu (s) \longrightarrow Cu^{2+} (aq) + 2e^{-}$$
 (জারণ অর্ধ-বিক্রিয়া) $E^{0} = -0.34 \text{ V}$
 $Pb^{2+} (aq) + 2e^{-} \longrightarrow Pb (s)$ (বিজারণ অর্ধ-বিক্রিয়া) $E^{0} = -0.13 \text{ V}$
 $Cu (s) + Pb^{2+} (aq) \longrightarrow Pb (s) + Cu^{2+} (aq)$ কোষ বিক্রিয়া $E_{cell}^{0} = -0.47 \text{ V}$

এক্ষেত্রে কোষের $\mathrm{emf}\left(\mathrm{E}_{\mathrm{cell}}^{\mathrm{o}}\right)$ এর মান ঋণাত্মক হওয়ায় কোষ বিক্রিয়া স্বতঃস্ফূর্তভাবে ঘটেনি। অর্থাৎ Pb^{2+} আয়ন $\mathrm{Cu}\left(\mathrm{s}\right)$ দ্বারা বিজ্ञারিত হবে না।

সমাধানকৃত সমস্যা–৪.২৩ : নিমোক্ত বিক্রিয়াটি স্বতঃক্তৃর্তভাবে ঘটবে কীনা ব্যাখ্যা করো।

$$Zn (s) + Cu^{2+} (aq) \longrightarrow Zn^{2+} (aq) + Cu (s)$$

যদি $E^0_{Zn^{2+}/Zn} = -0.76 \text{ V}$, এবং $E^0_{Cu^{2+}/Cu} = +0.34 \text{ V}$;

সমাধান : প্রদত্ত বিক্রিয়া : $Zn(s) + Cu^{2+}(aq) \longrightarrow Zn^{2+}(aq) + Cu(s)$ হলো একটি গ্যালভানিক কোষের বিক্রিয়া। এ কোষটির ডায়াগ্রাম বা কোষ সংকেত হলো : $Zn(s)/Zn^{2+}(aq)/Cu^{2+}(aq)/Cu(s)$

এক্ষেত্রে কোষটির emf হলো :
$$E_{\text{Cen}|X}^0 = E_{\text{Cu}^{2+}/\text{Cu}}^0 - E_{\text{Zn}^{2+}/\text{Zn}}^0$$
 $E_{\text{Cen}|X}^0 = [0.34 - (-0.76)] \text{ V}; \quad \therefore E_{\text{Cen}|X} = + 1.1 \text{ V}$ $E_{\text{Cu}^{2+}/\text{Cu}}^0 = + 0.34 \text{ V}$

কোষের emf ধনাত্মক হওয়ায় প্রদত্ত বিক্রিয়াটি স্বতঃস্ফূর্তভাবে ঘটবে।

সমাধানকৃত সমস্যা–8.২8 : Pt, Cl₂ (g) / Cl⁻ (aq) || Fe²⁺ (aq), Fe³⁺ (aq), Pt

- ক) কোষটির জন্য অ্যানোডে বিক্রিয়া, ক্যাথোডে বিক্রিয়া ও সর্বমোট কোষ বিক্রিয়া লেখ।
- খে) যদি $E^0_{Fe^{3+}/Fe^{2+}} = +0.770~V;~E^0_{Cl_2/Cl^-} = +1.358~V$ হয়, তবে তুমি যেভাবে কোষটি লিখেছো, তা স্বতঃস্কৃত হবে কীনা যুক্তি দাও এবং না হলে তা কীভাবে স্বতঃস্কৃত হবে বোঝাও।

সমাধান (ক) : প্রদত্ত কোষটির মাঝখানের খাড়া দ্বি-রেখার বামদিকের ইলেকট্রোডটি অ্যানোড এবং ডানদিকের ইলেকট্রোডটি ক্যাথোড বোঝায় । Pt, $Cl_2(g)$ / $Cl^-(aq)$, $\parallel Fe^{2+}(aq)$, $Fe^{3+}(aq)$, Pt

অ্যানোডে জারণ বিক্রিয়া :
$$2C1^-(aq)$$
 \longrightarrow $Cl_2(g) + 2e^-$ ক্যাথোডে বিজারণ বিক্রিয়া : $2Fe^{3+}(aq) + 2e^ \longrightarrow$ $2Fe^{2+}(aq)$

সর্বমোট কোষ বিক্রিয়া : 2Fe³⁺ (aq) + 2C1⁻ (aq),
$$\longrightarrow$$
 2Fe²⁺ (aq) + Cl₂ (g)

সমাধান (খ): কোষের e.m.f,
$$E_{cell}^0 = \left(E_{\mbox{\tiny bla}}^0 - E_{\mbox{\tiny dla}}^0\right) = \left(E_{\mbox{\tiny Fe}^{3+}/\mbox{\tiny Fe}^{2+}}^0 - E_{\mbox{\tiny Cl}_2/\mbox{\tiny Cl}}^0\right)$$

$$= + 0.770 \ \mbox{V} - (+ 1.358 \ \mbox{V}) = - 0.588 \ \mbox{V}$$

যেহেতু কোষের e. m. f., E_{cell}^0 এর মান ঋণাত্মক হয়েছে; তাই কোষটি বা কোষ বিক্রিয়াটি যেভাবে লেখা হয়েছে তা স্বতঃস্কৃত হবে না। এর বিপরীতমুখী বিক্রিয়াটি স্বতঃস্কৃত হবে। যেমন,

$$2Fe^{2+}(aq) + Cl_2(g) \longrightarrow 2Fe^{3+}(aq) + 2Cl^{-}(aq)$$

সমাধানকৃত সমস্যা-8.২৫: Pb(s) Pb^{2+} (aq) $\parallel Br_2(l)$ $\mid Br^-(aq)$ $\mid Pt(s)$; এ গ্যালভানিক কোষভিত্তিক নিচের প্রন্নের সমাধান করো।

- ক) প্রদত্ত গ্যালভানিক কোষের অর্ধ-বিক্রিয়াসহ সমতাযুক্ত কোষ বিক্রিয়া লেখ।
- (খ) প্রদত্ত কোষ ডায়াগ্রামভিত্তিক কোষটির পূর্ণাঙ্গ সংযোগ প্রক্রিয়া বর্ণনা করো।

সমাধান (ক) : প্রদত্ত কোষ ডায়াগ্রাম মতে কোষটির মাঝখানের খাড়া দ্বি-রেখার বামদিকের লেড ইলেকট্রোডটি অ্যানোড এবং ডানদিকের তরল ব্রোমিনসহ ইলেকট্রোডটি হলো ক্যাথোড। উভয়ের অর্ধ-বিক্রিয়া নিম্নরূপ :

জ্যানোডে জারণ :
$$Pb(s) \longrightarrow Pb^{2+}(aq) + 2e^{-}$$
 ক্যাথোডে বিজারণ : $Br_2(l) + 2e^{-} \longrightarrow 2Br^{-}(aq)$

সর্বমোট কোষ বিক্রিয়া : $Pb(s) + Br_2(l) \longrightarrow Pb^{2+}(aq) + 2Br^{-}(aq)$

সমাধান (খ): প্রদত্ত গ্যালভানিক কোষটির পূর্ণাঙ্গ সংযোগভিত্তিক সংক্ষিপ্ত বর্ণনা নিম্নরূপ:

কোষটির অ্যানোড হলো Pb ধাতুর পাত যা Pb^{2+} আয়নের যেমন $Pb(NO_3)_2$ এর জলীয় দ্রবণের পাত্রে আংশিকভাবে ডুবানো আছে। কোষটির ক্যাথোড হলো নিদ্রিয় Pt ধাতুর তার যা আংশিকভাবে ডুবানো আছে Br_2 এর সম্পৃক্ত জলীয় দ্রবণ ও তরল Br_2 এর পাত্রে।

একটি লবণ সেতু $(NaNO_3$ দ্রবণ ভর্তি) দ্বারা অ্যানোড অর্ধকোষ ও ক্যাথোড অর্ধকোষ যুক্ত আছে। অ্যানোড ও ক্যাথোড উভয় ইলেকট্রোডকে একটি কপার তার দ্বারা যুক্ত করে বহিঃবর্তনী পূর্ণ করা হয়।

সমাধানকৃত সমস্যা-8.২৬ : লঘু H_2SO_4 এসিড দ্রবণকে জিঙ্ক (Zn) ও কপার (Cu) ধাতুর মধ্যে কোন্ ধাতুর পাত্রে রাখা সম্ভব হবে ব্যাখ্যা করো। দেয়া আছে, $E^0_{Zn^{2+}/Zn}=-0.76~V; E^0_{Cu^{2+}/Cu}=+0.34~V$

সমাধান : আমরা জানি , H_2SO_4 দ্রবণে H^+ আয়ন থাকে । H^+ আয়নের প্রমাণ বিজারণ বিভব , $E_{H^+/_2H_2}^{++1} = 0.0~V$ সূতরাং তিনটি তড়িৎদারের বিজারণ বিভবের ক্রম হলো নিমুরপ : $E_{Zn^{2+}/Zn}^{\circ} < E_{H^+/_2H_2}^{\circ} < E_{Cu^{2+}/Cu}^{\circ}$

অতএব, H^+ আয়ন দ্বারা Z_n ধাতু জারিত হবে। অর্থাৎ Z_n ধাতু দ্বারা H^+ আয়ন বিজারিত হয়ে H_2 গ্যাসে পরিণত এবং Z_n ধাতু Z_n^{2+} আয়নে পরিণত হবে। তাই Z_n ধাতুর পাত্রে লঘু Z_n^{2+} আয়নে পরিণত হবে। তাই Z_n ধাতুর পাত্রে লঘু Z_n^{2+} আয়নে পরিণত হবে। তাই Z_n ধাতুর পাত্রে লঘু Z_n^{2+} আয়নে পরিণত হবে। তাই Z_n ধাতুর পাত্রে লঘু Z_n^{2+} আয়নে পরিণত হবে। তাই Z_n ধাতুর পাত্রে লঘু Z_n^{2+} আয়নে পরিণত হবে। তাই Z_n ধাতুর পাত্রে লঘু Z_n^{2+} আয়নে পরিণত হবে। তাই Z_n^{2+} ধাতুর পাত্রে লঘু Z_n^{2+}

অপরদিকে, $E_{H^+/2H2}^0 < E_{Cu^{2+}/Cu}^0$ হওয়ায় H^+ আয়নকে Cu ধাতু বিজারিত করতে পারে না। অর্থাৎ H^+ আয়ন দ্বারা Cu জারিত হয় না। তাই Cu ধাতু লঘু H_2SO_4 দ্রবণে রিডক্স বিক্রিয়া মুক্ত থাকে। সুতরাং লঘু H_2SO_4 দ্রবণকে Cu ধাতুর পাত্রে রাখা যায়।

সমাধানকৃত সমস্যা-8.২৭ : শোহার পাত্রে $CuSO_4$ দ্রবণ রাখা যাবে কি? অথবা , Fe (s) + $CuSO_4$ (aq) \longrightarrow $FeSO_4$ (aq) + Cu (s), এ বিক্রিয়াটি স্বতঃস্কৃতভাবে ঘটবে কি? দেয়া আছে , $E_{F_e}^0{}^2/_{Fe} = -0.44 \ {
m V}$, $E_{Cu}^0{}^2/_{Cu} = +0.34 \ {
m V}$

সমাধান : Fe (s) + CuSO₄ (aq) \longrightarrow FeSO₄ (aq) + Cu (s) সমীকরণভিত্তিক গ্যালভানিক কোষের কোষ ডায়াগ্রাম বা কোষ সংকেত হলো :

MCQ-4.16: সক্রিয়তা সিরিজে কোনটির অবস্থান ওপরে? [চ. বো. ২০১৭] (ক) Pb (খ) Cu (গ) Ag (ঘ) Ca

এ কোষটির emf হলো ,
$$E_{cell}^{o}=E_{Cu^{2+}/Cu}^{o}-E_{Fe^{2+}/Fe}^{o}=0.34~V-(-0.44)~V=+0.78~V$$

যেহেতু কোষটির emf মান ধনাত্মক হয়েছে, তাই প্রদন্ত বিক্রিয়াটি শ্বতঃস্কৃতভাবে ঘটবে। এজন্য লোহার পাত্রে CuSO4 দ্রবণ সংরক্ষণ করা যাবে না।

সমাধানকৃত সমস্যা-৪.২৮: নিচের উদ্দীপকভিত্তিক সংশ্লিষ্ট প্রশ্লের উত্তর দাও।

[ঢা. বো. ২০২৩]

(গ) উদ্দীপক দ্রবণ Al-ধাতুর পাত্রে সংরক্ষণ করা যাবে কীনা? বিশ্লেষণ করো।

$$E_{Zn/Zn^{2+}}^{o} = 0.76 \text{ V}$$
 $E_{Al/Al^{3+}}^{o} = 1.66 \text{ V}$ $ZnSO_4$ 近적이

(ঘ) উদ্দীপকের দ্রবণের মধ্যে 2.5 amp বিদ্যুৎ 1 ঘণ্টা যাবৎ চালনা করা হলো। তড়িৎ-বিশ্লেষণের পর দ্রবণের ঘনমাত্রা কত হবে? গাণিতিকভাবে বিশ্লেষণ করো।

সমাধান : (গ) উদ্দীপকের জিংক তড়িৎদ্বার ও অ্যালুমিনিয়াম তড়িৎদ্বারের জারণ বিভব থেকে বোঝা যায়, তড়িৎ-বিভব সিরিজে Al এর অবস্থান Zn এর ওপরে; কারণ Al এর জারণ বিভবের $(1.66\ V)$ মান Zn এর জারণ বিভব $(0.76\ V)$ এর মান থেকে বেশি। তাই Al ধাতুর পাত্রে $ZnSO_4$ দ্রবণ বা Zn^{2^+} আয়নের দ্রবণ রাখলে Al পরমাণু দ্বারা Zn^{2^+} আয়ন বিজারিত হবে এবং নিমুরূপ অর্থবিক্রিয়া ঘটবে:

$$Al(s)$$
 $\longrightarrow Al^{3+}(aq) + 3e^-$ $\times 2$; জারণ অর্ধবিক্রিয়া, $E^\circ = 1.66 \text{ V}$ $Zn^{2+}(aq) + 2e^ \longrightarrow Zn(s)$ $\times 3$; বিজারণ অর্ধবিক্রিয়া, $E^\circ = -0.76 \text{ V}$

যোগ করে :
$$2Al(s) + 3Zn^{2+}$$
 (aq) $\rightarrow 2Al^{3+}$ (aq) $+ 3Zn(s)$; কোষ বিক্রিয়া $E_{cell}^0 = + 0.90 \text{ V}$

উপরোক্ত সমীকরণ মতে, কোষবিক্রিয়ায়, কোষ বিভব মান ধনাত্মক + 0.90V হওয়ায় Al ধাতুর পাত্রে উদ্দীপকের দ্রবণ ZnSO4 দ্রবণ সংরক্ষণ করা যাবে না।

সমাধান (ঘ) : তড়িৎ-বিশ্লেষণের পর উদ্দীপকের দ্রবণের পরিবর্তিত ঘনমাত্রা নির্ণয় :

উদ্দীপকের দ্রবণটি 0.5 M ZnSO₄ দ্রবণ। ঐ দ্রবণে Zn²⁺ আয়ন আছে। তড়িৎ-বিশ্লেষণ বিক্রিয়া হলো নিম্নরূপ। ফ্যারাডের সূত্র মতে

$$Zn^{2+}$$
 (aq) + 2e⁻ \longrightarrow Zn(s)
1 mol = 65.4 g 2F 1 mol = 65.4 g

উদ্দীপকের শর্ত মতে, সময়, t=1 ঘণ্টা $=60 \times 60$ sec; বিদ্যুৎ শক্তি, I=2.5A.

আমরা জানি, $Q = I \times t = 2.5 \times 60 \times 60 C = 9,000 C$

$$= (9,000 \div 96,500) F = 0.0933 F$$

তড়িৎ-বিশ্লেষণের সমীকরণ মতে, 2.0 F বিদ্যুৎ দ্বারা সঞ্চিত Zn = 65.4 g Zn

$$\therefore 0.0933 \text{ F বিদ্যুৎ দ্বারা সঞ্চিত } Z_n = \frac{65.4 \text{ g} \times 0.0933}{2.0} = \boxed{3.05 \text{ g } Z_n}$$

আমরা জানি, $1000 \text{ mL } 1.0 \text{ M } ZnSO_4$ দ্রবণে Zn^{2+} আছে $=1 \text{ mol } Zn^{2+}$ আয়ন

∴ 250 mL 0.5 M ZnSO₄ দ্ৰবণে Zn²⁺ আছে =
$$\frac{65.4 \text{ g} \times 0.5 \times 250}{1000}$$
 = $\boxed{8.175 \text{ g Zn}^{2+}}$

$$\therefore$$
 তড়িৎ বিশ্লেষণের পর ঐ দ্রবণে অবশিষ্ট Zn^{2+} আছে = $(8.175-3.05)~g=5.125g~Zn^{2+}$

$$= \frac{5.125}{65.4} \text{ mol Zn}^{2+}$$

.. প্রদন্ত 250 mL 0.5 M ZnSO4 দ্রবণের তড়িৎ-বিশ্লেষণের পর পরিবর্তিত মোলার ঘনমাত্রা

$$= rac{$$
মোল সংখ্যা Zn^{2^+} আয়নের $}{$ লিটারে দ্রবণের আয়তন $} = rac{5.125 \; mol \; Zn^{2^+}}{65.4 imes 0.250 \; L} = 0.313 \; M \; ZnSO_4$ দূবণ।

সমাধানকৃত সমস্যা-৪.২৯: কোষের emf গণনা ও কোষ বিক্রিয়ার স্বতঃস্কৃতিতা নির্ণয়:

নিচের উদ্দীপকভিত্তিক সমস্যা সমাধান করো:

[অভিন্ন বোর্ড-২০১৮]

উদ্দীপক : (i)
$$\mathbf{E}_{\mathbf{A}^{2+}/\mathbf{A}}^{0} = +0.20 \text{ V}$$
, (ii) $\mathbf{E}_{\mathbf{B}^{2+}/\mathbf{B}}^{0} = -0.62 \text{ V}$, (iii) $\mathbf{E}_{\mathbf{x}^{2+}/\mathbf{x}}^{0} = -0.80 \text{ V}$

- (ক) উদ্দীপকের (i) ও (ii) নং অর্ধকোষ (বা তড়িংছার) সহকারে সৃষ্ট কোষের তড়িচ্চালক বল (বা emf) গণনা করো।
- (খ) উদ্দীপকের ${\bf B}^{2^+}$ আয়নের দ্রবণকে ' ${\bf A}'$ এবং ' ${\bf X}'$ ধাতু নির্মিত কোনো পাত্রে সংরক্ষণ করা যাবে কীনা; তা গাণিতিকভাবে বিশ্রেষণ করো।

সমাধান (ক): কোষের emf গণনা:

প্রশ্নমতে, (i) নং তড়িৎদ্বারের প্রমাণ বিজারণ বিভব, $E_{A^{2+}/A}^{0}$ = + 0.20 V

এবং (ii) নং তড়িৎদ্বারের প্রমাণ বিজারণ বিভব, $E^0_{B^{2+}\!/B} = -0.62~V$

এক্ষেত্রে কোষটির অ্যানোড হবে, $E^0_{R^{2+}\!/\!R}$ = -0.62~V এবং ক্যাথোড হবে, $E^0_{A^{2+}\!/\!A}$ = +0.20~V

 \therefore কোষ বিক্রিয়া হলো : B (s) + A^{2+} (aq) \longrightarrow B^{2+} (aq) + A (s)

এবং কোষ ডায়াগ্রাম বা কোষ সংকেত হলো : $B(s)/B^{2+}(aq) \mid A^{2+}(aq)/A(s)$

∴ কোষটির তড়িচ্চালক বল বা, emf হলো,

$$E^0_{cell} \equiv E^0_{A^{2+}\!/A} - E^0_{B^{2+}\!/B} = [0.20 - (-0.62)] \text{ V} = (0.20 + 0.62) \text{V} = 0.82 \text{ V}$$
 (ੱਚਤਰ)

সমাধান (খ): প্রশ্নমতে, তড়িৎদ্বার তিনটির বিজারণ বিভবের ক্রমবৃদ্ধি হলো:

$$E_{X^{2+}/X}^0 = -0.80 \text{ V}, E_{B^{2+}/B}^0 = -0.62 \text{ V}, E_{A^{2+}/A}^0 = +0.20 \text{ V}$$

 \therefore ঐ ধাতুসমূহের সক্রিয়তা ক্রম হলো, X(s) > B(s) > A(s)

উদ্দীপক মতে পাত্রটি হলো 'A' ও 'X' ধাতুর তৈরি অর্থাৎ A ও X এর সংকর ধাতুর পাত্র। সূতরাং প্রদত্ত তিনটি ধাতুর সক্রিয়তার ক্রম অনুসারে B^{2+} আয়নের দ্রবণে অধিক সক্রিয় ধাতু X পরমাণু ইলেকট্রন প্রদান করে নিজে জারিত হয়ে X^{2+} আয়নে পরিণত হবে এবং B^{2+} আয়ন বিজারিত হয়ে B ধাতু উৎপন্ন হবে। সূতরাং X ধাতুটি ক্ষয় হয়ে যাবে।

 \therefore কোষ বিক্রিয়া : $X(s) + B^{2+}(aq) \rightarrow X^{2+}(aq) + B(s)$

সুতরাং উপরোক্ত স্বতঃস্ফূর্ত বিক্রিয়াটি ঘটবে। এক্ষেত্রে সৃষ্ট কোষের তড়িচ্চালক বল (বা, emf) হবে নিমুরূপ:

$$E_{cell}^{0} \equiv E_{B^{2+}/B}^{0} - E_{x^{2+}/X}^{0} = [-0.62 - (-0.80)] \text{ V} = (-0.62 + 0.80) \text{ V} = +0.18 \text{ V}$$

কোষের emf মান ধনাত্মক $(+0.18~{
m V})$ হওয়ায় উপরোক্ত কোষ বিক্রিয়াটি স্বতঃস্কৃর্তভাবে ঘটবে। তাই ${
m B}^{2+}$ আয়নের দ্রবণকে ${
m X}$ ও ${
m A}$ ধাতু নির্মিত বা এদের সংকর ধাতুর পাত্রে সংরক্ষণ করা যাবে না। এ সত্যটি গাণিতিকভাবে কোষ বিক্রিয়ার স্বতঃস্কৃর্ততা দ্বারা নিরূপিত বা নির্ণয় করা হলো।

৪.৮.১ সিস্টেমের কোনো প্রক্রিয়ার স্বতঃস্কৃর্ততার সাথে গিবৃস-এর মুক্ত শক্তি হ্রাসের সম্পর্ক

Relation between Spontaneous Process & Decrease of Gibbs Free Energy

রাসায়নিক তাপগতিবিজ্ঞানে তড়িৎ রাসায়নিক কোষের অভ্যন্তরের বিক্রিয়ক পদার্থসমূহ ও তাদের দ্বারা দখল করা স্থানটিকে বিক্রিয়া সিস্টেম (System) এবং অবশিষ্ট অংশকে পরিবেশ (surroundings) বলে।

∴ সিস্টেম + পরিবেশ = বিশ্ব (universe)

যেকোনো সিস্টেমের মোট শক্তির দুটি অংশ আছে। একটি অংশ সিস্টেমের মুক্ত-শক্তি (free energy), যাকে কার্যে পরিণত করা যায়।

অপর অংশটি হলো অপভ্য বা অপ্রাপ্য শক্তি (unavail energy), যাকে কার্যে পরিণত করা যায় না। এ অপ্রাপ্য শক্তি এনট্রপি' (entropy) নামক অবস্থা নির্ভর অপেক্ষক (State function) দ্বারা পরিমাপ করা হয়।

<u>এনট্রপির সংজ্ঞা</u>: কোনো সিস্টেমের কণাগুলোর (অণু, প্রমাণু, আয়ন ইত্যাদির) বিশৃঙ্খলতার মাত্রা পরিমাপ করার জন্য যে 'তাপ গতীয় অপেক্ষক' বিবেচনা করা হয়, তাকে ঐ সিস্টেমের এনট্রপি বলে। এনট্রপিকে S অক্ষর দ্বারা প্রকাশ করা হয়।

<u>গিবুসের মুক্ত-শক্তির সংজ্ঞা</u> : কোনো সিস্টেমে ছির চাপ ও তাপমাত্রায় সংঘটিত কোনো প্রক্রিয়ায় যে তাপ গতীয় অপেক্ষকের মান হাসের দ্বারা সিস্টেমটি কী পরিমাণ ব্যবহারযোগ্য কাজ (usable work) বা নিট কাজ (net work) সম্পাদন করতে পারে তা নির্ণয় করা যায়, সেই তাপ গতীয় অপেক্ষকটিকে গিব্সের মুক্ত-শক্তি বলে। গিব্স মুক্ত-শক্তিকে 'G' অক্ষর দ্বারা প্রকাশ করা হয়।

গিবৃসের মুক্ত-শক্তির ব্যবহার: ছির চাপ ও তাপমাত্রায় সংঘটিত কোনো প্রক্রিয়ায় স্বতঃস্কৃতিতা নির্ণয়ের জন্য গিবৃস মুক্ত-শক্তি ব্যবহৃত হয়। ছির চাপে, TK তাপমাত্রায় সিস্টেমের মোট শক্তি হলো এনথালপি (H) এর সমান। তখন এনট্রপির মান S হলে, সিস্টেমের অলভ্য শক্তির মান হয় $T \times S$ ।

- \therefore সিস্টেমের মোট শক্তি H = G (মুক্ত-শক্তি) + TS (সিস্টেমের অলভ্য শক্তি)
- \therefore H = G + TS; \forall 1, G = H TS. \forall 3, Δ G = Δ H T Δ S

এ সমীকরণটি হলো রাসায়নিক তাপ গতিবিজ্ঞানে ব্যবহৃত কোনো সিস্টেমের কোনো প্রক্রিয়ায় মুক্ত-শক্তি পরিবর্তনের গাণিতিক রূপ। **এটিকে গিবস সমীকরণ** বলে।

(ক) কোষ বিক্রিয়ার স্বতঃস্কৃর্ততার সাথে গিবৃসের মুক্ত-শক্তি হ্রাসের সম্পর্ক:

কোনো গ্যালভানিক কোষ বা তড়িৎ-রাসায়নিক কোষে জারণ-বিজারণ বিক্রিয়ার ফলে তড়িৎ শক্তি উৎপন্ন হয়। কোষের উভয় তড়িৎদ্বারকে পরিবাহীর মাধ্যমে যুক্ত করলে উচ্চ তড়িৎদ্বার-বিভবযুক্ত ক্যাথোড থেকে অ্যানোডের দিকে পরিবাহীর মাধ্যমে তড়িতের প্রবাহ ঘটে। তখন তড়িৎকোষটি বৈদ্যুতিক কাজ সম্পাদন করে।

আবার কোনো তড়িৎ রাসায়নিক কোষের ক্ষেত্রে ঐ কোষটি থেকে তড়িৎ প্রবাহজনিত যে পরিমাণ বৈদ্যুতিক কাজ সম্পন্ন হয়, তা হলো ঐ তড়িৎ কোষ থেকে প্রাপ্ত সর্বাধিক কাজের পরিমাণ (W_{max})।

ধরা যাক , কোষটির তড়িচ্চালক বল $= E_{cell}$ ভোল্ট এবং কোষের রিডক্স বিক্রিয়ায় n সংখ্যক ইলেকট্রন প্রয়োজন হয়। ফলে পরিবাহীতে n ফ্যারাডে (nF) তড়িৎ প্রবাহিত হয়। সুতরাং

তড়িৎ প্রবাহজনিত কোষের সর্বাধিক কাজ (W_{max}) = প্রবাহিত তড়িতের পরিমাণ imes কোষের তড়িচ্চালক বল।

 \therefore W_{max} = nF × E_{cell} ভোল্ট-কুলম্ব = nF E_{cell} জুল [\therefore 1J = 1VC]

আবার তাপগতিবিদ্যা অনুসারে কোনো তড়িৎ রাসায়নিক কোষে বিক্রিয়ার ফলে যে মুক্ত-শক্তির হ্রাস ঘটে (— Δ G), তা উৎপন্ন তড়িৎ শক্তি তথা তড়িৎ প্রবাহজনিত কাজের সমান হয়। অর্থাৎ

মুক্ত-শক্তির হ্রাস
$$(-\Delta G)$$
 = বৈদ্যুতিক কাজ (W_{max}) ; বা $, -\Delta G = W_{max}$ = nF E_{cell} J

 \therefore মুক্ত-শক্তির হ্রাস, $-\Delta$ G=nF E_{cell} J

যদি কোষ বিক্রিয়ায় অংশগ্রহণকারী উপাদানগুলো প্রমাণ অবস্থায় থাকে, তবে উপরোক্ত সমীকরণটি হবে,

$$-\Delta G^{\circ} = n F E_{cell}^{0} J$$

 $\Delta G^\circ = - \ \mathbf{n} \ \mathbf{F} \ \mathbf{E}_{\mathrm{cell}}^0$ সমীকরণের তাৎপর্য : (তাপগতিবিদ্যা অনুসারে) :

(১) <u> ΔG° = ঋণাত্মক (− ve)</u> হলে, তখন কোষ বিক্রিয়া স্বতঃস্কৃর্ত হবে।

এ অবস্থায় E_{cell} এর মান ধনাত্মক (+ ve) হতে হবে।

(২) ΔG° = ধনাত্মক (+ v) হলে, তখন কোষ বিক্রিয়া স্বতঃস্ফূর্ত হবে না।

এ অবস্থায় E_{cell} এর ঋণাত্মক (– ve) হতে হবে।

 (\mathfrak{O}) $\Delta G^{\circ}=0$ হলে, $\mathrm{E}_{\mathrm{cell}}^{0}=0$ হয়, তখন কোষটির বিক্রিয়া সাম্যাবস্থায় আছে এবং কোষটি মৃত (dead)।

সমাধানকৃত-৪.৩০ : কোষের emf থেকে কোষ বিক্রিয়ায় 'মুক্ত-শক্তি হ্রাস' গণনাভিত্তিক :

নিম্রোক্ত রাসায়নিক বিক্রিয়াভিত্তিক গ্যালভানিক কোষের প্রমাণ কোষ বিভব (emf) 25°-এ 1.10V হয়। এ কোষের রাসায়নিক বিক্রিয়ায় প্রমাণ মুক্ত-শক্তির পরিবর্তন গণনা করো:

$$Zn(s) + Cu^{2+}(aq) \longrightarrow Zn^{2+}(aq) + Cu(s)$$

সমাধান : কোষের রাসায়নিক বিক্রিয়া প্রমাণ মুক্ত-শক্তির পরিবর্তন, ΔG° গণনার জন্য ব্যবহৃত হয় : $\Delta G^{\circ}=nFE^{\circ}$ সমীকরণ । এক্ষেত্রে n= কোষ বিক্রিয়ায় সমতাযুক্ত সমীকরণ মতে ছানান্তরিত ইলেকট্রনের মোট মোল সংখ্যা; F=96, $500C.\ (mol.e^{-})^{-1}$ এবং প্রদত্ত $E^{\circ}=1.10\ V.$ প্রদত্ত কোষ বিক্রিয়ায় $2\ mol.$ ইলেকট্রন Zn থেকে Cu^{2+} আয়নে ছানান্তরিত হয়েছে, তাই $n=2\ mol.e^{-}$.

$$\triangle G^{\circ} = - \text{ nFE}^{\circ} = - (2 \text{ mole}^{-}). 96500 \text{ C (mol. e}^{-})^{-1} \times 1.10 \text{ V} = 212,300 \text{ C.V}$$

 $\therefore \Delta G^{\circ} = -212.3 \text{ kJ} \text{ [Here 1C.V = 1 J]}$

শিক্ষার্থীর কাজ-৪.৮ : স্বতঃস্কৃত কোষ বিক্রিয়াভিত্তিক গণনা :

সমস্যা-৪.২৯ : প্রমাণ অবস্থায় নিম্নোক্ত বিক্রিয়া স্বতঃস্কৃর্তভাবে ঘটবে কীনা, তা Eo এর মান দ্বারা প্রমাণ করো।

উ: $E_{cell}^0 = -1.41 \text{ V}$; তাই বিক্রিয়াটি স্বতঃস্ফুর্ত হবে না।

সমস্যা-8.৩০ : Zn^{2+}/Zn এবং Cu^{2+}/Cu এর বিজারণ বিভব যথাক্রমে -0.76~V ও +0.34~V হলে নিচের বিক্রিয়াটি স্বতঃস্ফূর্তভাবে ঘটবে কীনা যুক্তি দেখাও।

$${
m Cu~(s)} + {
m Zn^{2+}~(aq)} \longrightarrow {
m Cu^{2+}~(aq)} + {
m Zn~(s)}$$
 [উ: ${
m E}_{{
m cell}}^0 = -1.1~{
m V}$, সমস্যা-8.৩১(ক) : জিঙ্ক ধাতুর পাত্রে ${
m FeSO_4}$ দ্রবণ রাখা যাবে কীনা; তা ব্যাখ্যা করে।

এন্ফেন্তে $Zn/Zn^{2+}=+0.76V$ এবং $Fe/Fe^{2+}=+0.44~V$ [উ: $E_{cell}^{0}=+0.32~V$, তাই রাখা যাবে না ।] সমস্যা- 8.৩১(খ) : জিঙ্ক ধাতুর পাত্রে NiSO $_{4}$ এর দ্রবণকে দীর্ঘকাল সংরক্ষণ করা যাবে কীনা, তা গাণিতিকভাবে মূল্যায়ন করো । $E_{Ni}^{0}{}^{2+}/Ni=-0.25~V$; $E_{Zn}{}^{2+}/Z_n=-0.76~V$] [য. বো. ২০১৬; সি. বো. ২০১৬]

ডি: $E_{cell} = +0.51V$, তাই রাখা যাবে না।]

সমস্যা- ৪.৩১(গ) : তামা বা কপার ধাতুর পাত্রে MgSO4 দ্রবণ রাখা যাবে কি? যুক্তি দাও।

দেয়া আছে,
$$E_{red}^0$$
, $Cu^{2+}/Cu = +0.34 \text{ V}$; E_{red}^0 , $Mg^{2+}/Mg = -2.3 \text{ V}$

তিন্তর সংকেত : কপার ধাতুর বিজারণ বিভব ম্যাগনেসিয়ামের চেয়ে বেশি অর্থাৎ কপার ধাতুর জারণ বিভব Mg ধাতুর চেয়ে কম; তাই Cu পরমাণু থেকে ইলেকট্রন Mg^{2^+} আয়নে যাবে না। সুতরাং কোনো স্বতঃস্ফূর্ত বিক্রিয়া ঘটবে না। এক্ষেত্রে $E_{\text{কোষ}} = -2.64 \ V$ । তাই স্বতঃস্ফূর্ত কোষ বিক্রিয়া ঘটবে না। তাই কপার ধাতুর পাত্রে $MgSO_4$ দ্রবণ রাখা যাবে।

সমস্যা-৪.৩১(ঘ) : কপার ধাতুর পাত্রে FeSO₄ দ্রবণ রাখা যাবে কি?

দেয়া আছে,
$$E_{Cu/Cu}^0$$
2+ = $-0.34~V$ এবং $E_{Fe/Fe}^0$ 2+ = $+0.44~V$

উত্তর সংকেত: ৪.৩১(গ) নং প্রশ্নের যুক্তির মতো।]

সমস্যা-৪.৩১(%) : কপার ধাতুর পাত্রে ফেরাস সালফেট দ্রবণ রাখা যাবে কীনা; তা গাণিতিকভাবে বিশ্লেষণ করো। এক্ষেত্রে, $E^0_{Fe^{2+}/Fe} = -0.44V; \ E^0_{Cu^{2+}/Cu} = +0.34V$ [মাদ্রাসা বোর্ড-২০১৮]

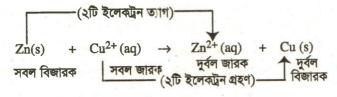
ডি: যাবে , কারণ , $E^0_{cell} = -0.78 \text{ V}$

সমস্যা-৪.৩১(চ) : দেয়া আছে, $E^0_{A^{2t}/A} = +0.20 \text{ V}; E^0_{B^{2t}/B} = -0.62 \text{ V}; E^0_{x^{2t}/x} = -80 \text{ V})$ । এক্ষেত্রে B^{2t} আয়নের দ্রবণকে 'A' ও 'X' ধাতুদ্বয়ের তৈরি কোনো পাত্রে সংরক্ষণ করা যাবে কীনা; তা গাণিতিকভাবে বিশ্লেষণ করো। [সমাধানকৃত সমস্যা-৪.২৯ দেখো। [অভিন্ন বোর্ড-২০১৮]

ডি: যাবে না, কারণ, X ধাতু B ধাতুর চেয়ে অধিক সত্রিয়; $E_{cell}^0 = + 0.18 \ V$

সমস্যা- ৪.৩১(ছ) : $Zn(s) + Cu^{2+}(aq) \longrightarrow Zn^{2+}(aq) + Cu(s)$; এ বিক্রিয়াটি স্বতঃস্কূর্তভাবে ঘটবে কি? দেয়া আছে, Zn^{2+}/Zn এবং Cu^{2+}/Cu তড়িংদ্বারের বিজারণ বিভব হলো যথাক্রমে -0.76~V এবং +0.34~V [উ: $E_{cell} = +1.1V$, বিক্রিয়া স্বতঃস্কূর্ত ঘটবে।]

সমস্যা-৪.৩১ (জ): নিম্নোক্ত রাসায়নিক বিক্রিয়াভিত্তিক কোষের প্রমাণ কোষ বিভব (emf) 25°C-এ 0.92V হয়। এ কোষ বিক্রিয়াকালে প্রমাণ মুক্ত-শক্তির পরিবর্তন কত হবে?


 $Al(s) + Cr^{3+}(aq) \longrightarrow Al^{3+}(aq) + Cr(s)$

[Ans. -266.34 kJ]

8.৯ Red-Ox বিক্রিয়া, কোষ বিভব ও প্রমাণ কোষ বিভব

Red-Ox Reaction, Cell Potentials & Standard Cell Potentials

(১) রিডক্স (Red-Ox) বিক্রিয়া : প্রত্যেক রিডক্স বিক্রিয়া হলো দু'টি অর্ধ-বিক্রিয়ার সমষ্টি। এর প্রত্যেক পার্শ্বে একটি বিজারক ও একটি জারক উপাদান থাকে। যেমন, জিঙ্ক-কপার বিক্রিয়ায় Zn ও Cu উভয়ই হলো বিজারক এবং Cu^{2+} আয়ন ও Zn^{2+} আয়ন হলো উভয় জারক। সবল বিজারক ও সবল জারক স্বতঃস্ফূর্তভাবে পরক্ষার যথাক্রমে দুর্বল জারক ও দুর্বল বিজারকে পরিণত হয়। যেমন—

জেনে নাও: এক্ষেত্রে এসিড-ক্ষারক কেমিস্ট্রির মিল রয়েছে। সবল এসিড ও সবল ক্ষারক স্বতঃস্কূর্তভাবে বিক্রিয়ায় যথাক্রমে দুর্বল ক্ষারক ও দুর্বল এসিড তৈরি করে। তখন কনজুগেট বা অনুবন্ধী অমু-ক্ষারকের মধ্যে একটি প্রোটনের পার্থক্য থাকে। তখন এসিডে বেশি প্রোটন থাকে; কিছু ক্ষারকে প্রোটন থাকে না। Red-Ox যুগলের বেলায় যেমন Zn ও Zn $^{2+}$ আয়নের ক্ষেত্রেও এক বা একাধিক ইলেকট্রনের পার্থক্য থাকে। তখন বিজারক উপাদানে (Zn) বেশি ইলেকট্রন থাকে; কিছু জারিত উপাদানে $(Zn)^{2+}$) তা থাকে না। এসিড-ক্ষারক বিক্রিয়ায়, K_a ও K_b এর মান জেনে এসিড-ক্ষারকের সবলতা তুলনা করা হয়। অনুরূপভাবে Red-Ox বিক্রিয়ায় বিজারণ বিভব E^o এর মান জেনে জারক ও বিজারক তুলনা করা হয়।

সারণি-8.8-এ দেয়া তড়িৎদ্বারসমূহের প্রমাণ বিজারণ বিভব (E°) এর মান থেকে জানা যায়, অধিক সবল জারক (সারণির বাম দিকের ক্যাটায়ন) এর অর্ধ-বিক্রিয়ার E° এর মান তুলনামূলক বেশি (বেশি ধনাত্মক অথবা কম ঋণাত্মক) থাকে। অপরদিকে, অধিক সবল বিজারক (সারণির ডানদিকের ধাতু) এর অর্ধ-বিক্রিয়ার E° এর মান তুলনামূলক কম (কম ধনাত্মক অথবা বেশি ঋণাত্মক) থাকে। সুতরাং 'প্রমাণ বিজারণ বিভব'-এর সারণি-8.8 অনুসারে, কোনো বিজারক (ডান দিকের) ও এর নিচে স্থান প্রাপ্ত জারক (বামদিকে) এর মধ্যে শ্বতঃস্কূর্ত বিক্রিয়া ঘটবে $(E^\circ_{cell}>0)$ । অপর কথায়,

তড়িৎকোষে শ্বতঃস্ফূর্ত বিক্রিয়ার জন্য অধিক সবল বিজারক (অ্যানোডরূপে) নিতে হবে সারণির ডানদিকে ওপর থেকে এবং জারক (ক্যাথোডরূপে) নিতে হবে সারণির বামদিকে নিচের থেকে। যেমন, Zn (ডানদিকে ওপরে) ও Cu^{2+} আয়ন (বামদিকে নিচে) এর মধ্যে শ্বতঃস্ফুর্ত কোষ বিক্রিয়া ঘটবে।

(২) কোষ বিভব : কোষ বিভবের সংজ্ঞা : কোনো তড়িৎকোষে অ্যানোড বা ঋণাত্মক ইলেকট্রোড থেকে যে বিকর্ষণ বল দারা ঋণাত্মক ইলেকট্রনসমূহ বিকর্ষিত হয়ে ক্যাথোডে বা ধনাত্মক ইলেকট্রোডের দিকে ধাবিত হয়, তাকে ঐ কোষের বিভব বা emf বলে। গাণিতিকভাবে, কোষ বিভব বা কোষের emf (E_{cell}) হলো অ্যানোডের জারণ বিভব ও ক্যাথোডের বিজারণ বিভব মানের সমষ্টির সমান।

$$\therefore E_{cell} = E_{anode (ox)} + E_{cathode (red)}$$
$$= E_{cathode (red)} - E_{anode (red)}$$

কোষের emf তড়িৎদারের ধাতুর (i) প্রকৃতি, (ii) দ্রবণে আয়নের ঘনমাত্রা ও (iii) দ্রবণের তাপমাত্রার ওপর নির্ভর করে। তাই তড়িৎদারে 1.0 M দ্রবণ ও তাপমাত্রা 25°C দ্বির রেখে তড়িৎদারসমূহের প্রমাণ বিজারণ বিভব নির্ণয় করা হয়েছে (সারণি-8.8)।

(৩) প্রমাণ কোষ বিভব : প্রমাণ কোষ বিভবের সংজ্ঞা : প্রমাণ তড়িৎদ্বার বিভববিশিষ্ট দুটি অর্ধকোষ সমন্বয়ে তৈরি করা তড়িৎকোষের ক্যাথোড ও অ্যানোডের প্রমাণ তড়িৎদ্বার বিজারণ বিভবের পার্থক্যের মানকে তড়িৎকোষটির প্রমাণ কোষ বিভব বলে। প্রমাণ তড়িৎদ্বার বিভব বলতে প্রতিটি অর্ধকোষে 25°C তাপমাত্রায় ও 1 M ঘনমাত্রার তড়িৎ-বিশ্লেষ্যে থাকা তড়িৎদ্বারে সৃষ্ট তড়িৎ-বিভবকে বোঝায়। প্রমাণ কোষ বিভব (E^o_{cell})-কে গাণিতিকভাবে নিমু সমীকরণ দ্বারা প্রকাশ করা হয়। এক্ষেত্রে উভয় তড়িৎদ্বারের প্রমাণ বিজারণ বিভব ব্যবহৃত হয়।

$$E_{\text{cell}}^0 = E_{\text{cathode (red)}}^0 - E_{\text{anode (red)}}^0$$

জিঙ্ক-কপার তড়িৎকোষের বিভব হবে নিমুরূপ:

$$E_{cell}^{0} = E_{Cu^{2+}/Cu}^{0} - E_{Zn^{2+}/Zn}^{0}$$
$$= [0.34 - (-0.76)] V$$

[সারণি-৪.৪ থেকে তড়িৎদ্বারের বিজারণ বিভব মান নেয়া]

$$= [0.34 + 0.76] V = 1.10 V$$

শিক্ষার্থীর কাজ-৪.৯ : কোষ বিভব নির্ণয় : প্রমাণ জারণ ও বিজারণ বিভব থেকে :

সমস্যা-8.৩২ : Zn/Zn^{2+} এবং Ag/Ag^+ তড়িৎদ্বারের প্রমাণ জারণ বিভব + 0.76 V এবং - 0.80 V ।

তড়িৎকোষটির বিভব মান গণনা করো।

ডি: 1.56 V]

সমস্যা-৪.৩৩ : নিচের কোষটির প্রমাণ কোষ বিভব 0.92 V এবং Al^{3+}/Al এর প্রমাণ বিজারণ বিভব -1.66 V হলে Cr^{3+}/Cr এর প্রমাণ বিজারণ বিভব কত হবে? $\text{Al}(s)/\text{Al}^{3+}$ (aq) $|\text{Cr}^{3+}(aq)/\text{Cr}(s)|$ ডি: -0.74 V

সমস্যা-৪.৩৪: নিচের রাসায়নিক কোষটির কোষ বিভব গণনা করো।

 $Mg(s)/Mg^{2+}(aq) + Cu^{2+}(aq)/Cu(s)$

একেন্দ্রে $\rm E_{Mg^{2+}\!/Mg} = -2.36~V$ এবং $\rm E_{Cu^{2+}\!/Cu} = +~0.34~V$

ডি: 2.7 V]

সমস্যা-৪.৩৫ : নিচে দেয়া কোষ ডায়াগ্রাম মতে কোষটির emf বের করো।

[সি. বো. ২০১৫]

 $A/A^{2+} \parallel B^{2+}/B$; $E_{A/A^{2+}}^{0} = +0.80 \text{ V}$; $E_{B/B^{2+}}^{0} = +0.40 \text{ V}$

ডি: 0.40 V]

জেনে নাও: বিদ্যুৎ বা তড়িৎশক্তি দারা কাজ (work) সম্পাদিত হয়। কোষের এ বিদ্যুৎশক্তি উভয় ইলেকট্রোডের তড়িৎ-বিভব পার্থক্যের সমান। একে কোষের ভোল্টেজ বা emf বলা হয়।

নেগেটিও ইলেকট্রোড থেকে ইলেকট্রন স্বতঃস্ফূর্তভাবে পজিটিভ ইলেকট্রোডে প্রবাহিত হয় অর্থাৎ ইলেকট্রন প্রবাহ অধিকতর পজিটিভ তড়িৎ-বিভবের ইলেকট্রোডমুখী হয়। তাই কোষ বিক্রিয়ার স্বতঃস্ফুর্ততা হলো ধনাতাক কোষ বিভব অর্থাৎ

E_{cell} > 0 বা ধনাত্মক হলে, তখন কোষ বিক্ৰিয়া স্বতঃস্ফূৰ্ত হয়।

 ${
m E_{cell}}=0$ হলে, কোষ বিক্রিয়া সাম্যাবস্থায় $\overline{
m a}$ রেছে; তখন ঐ কোষটি নিষ্ক্রিয় বা মৃত হয়েছে (The Cell is dead)।

 $E_{cell} < 0$ বা ঋণাত্মক হলে, তখন কোষ বিক্রিয়া স্বতঃস্ফূর্ত নয়।

SI এককে, তড়িং-বিভব হলো ভোল্ট (V) এবং বৈদ্যুতিক চার্জের একক হলো কুলম্ব (C)। শক্তি বা কাজের সংজ্ঞা মতে, এক ভোল্ট বিভব পার্থক্যের দুটি ইলেকট্রোডের মধ্যে এক কুলম্ব বিদ্যুৎ চার্জ প্রবাহের ফলে এক জুল (J) শক্তি-মুক্ত হয় বা সমতল্য কাজ সম্পাদিত হয়। তাই 1V=1J/C. $\therefore 1J$ (কাজ) =1V(তড়িৎ-বিভব) $\times 1C$ (তড়িৎ চার্জ)

কয়েকটি গ্যালভানিক বা ভোল্টায়িক কোষের কোষ বিভব হলো নিমুরূপ:

্বেড্রন্থ কাষ বা ড্রাই ব্যাটারি (ফ্লাশ লাইট) : 1.50 V

১১ ক্যালকুলেটর সিলভার বাটন ব্যাটারি : 1.60 V

্ব ২) লেড-এসিড কার ব্যাটারি (6 সেল =12 V): 2.00 V (৫) লিথিয়াম-আয়ন ল্যাপটপ ব্যাটারি : 3.70 V

্রে ক্যালকুলেটর ব্যাটারি (মার্কারি): 1.30 V

ত্যে হাইড্রোজেন ফুয়েল সেল ব্যাটারি : 1.23 V

তড়িৎদ্বার ও কোষের বিভব সংক্রান্ত নার্নস্ট সমীকরণ 8.50

MAT (23-24)

Nernst Equation Related to EMF of Electrodes & Cell

প্রমাণ তড়িৎদার বিভব মান থেকে প্রমাণ কোষ বিভব গণনা করা সহজ। কিন্তু অধিকাংশ কোষের কেলায় সব উপাদান (components) প্রমাণ অবস্থায় বা standard states-এ থাকে না। এছাড়া কোষ বিক্রিয়া শুরুর সাথে দ্রবণের ঘনমাত্রা ও তাপমাত্রার পরিবর্তন ঘটে। আবার বিভিন্ন ব্যাটারিতে বিক্রিয়কসমূহের ঘনমাত্রা প্রমাণ অবস্থায় থাকে না। তাই জার্মান রসায়নবিদ নার্নস্ট প্রমাণ অবস্থায় অর্থাৎ তাপমাত্রা 25°C ও বিক্রিয়কের এক মোলার ঘনমাত্রায় (1 M) (standard states-এ) নির্ণীত ইলেকট্রোডের বিভব মান (E°)-এর সাথে অপ্রমাণ অবস্থায় (non-standard states-এ) ঐ ইলেকট্রোডের বিজারণ বিভব (E) মানের সম্পর্ক দ্থাপন করেন। যেমন, নার্নস্ট সমীকরণ মতে, ডেনিয়েল কোষে অপ্রমাণ অবস্থায় জিঙ্ক ইলেকট্রোড ও কপার ইলেকট্রোডের বিজারণ বিভব সম্পর্ক হলো নিমুরূপ:

$$\begin{split} E_{Zn^{2+}/Zn} &= E_{Zn^{2+}/Zn}^{0} + \frac{RT}{2F} \text{ In } [Zn^{2+} \text{ (aq)}] \\ E_{Cu^{2+}/Cu} &= E_{Cu^{2+}/Cu}^{0} + \frac{RT}{2F} \text{ In } [Cu^{2+} \text{ (aq)}] \end{split}$$

MCQ-4.17:	সক্রিয়তা	সিরিজ মতে নিচের
কোন্টি সঠিক?		[ব. বো. ২০১৫]
(季) Al > Ni	(킥) Zn > Mg	
(ক) Al > Ni (গ) Fe > Na		(ঘ) Cu > Sn

ডেনিয়েল কোষ বিক্রিয়াটি হলো : $Zn(s) + Cu^{2+}(aq) \xrightarrow{2e} Zn^{2+}(aq) + Cu(s)$

কোষ বিভব, $E_{cell} = E_{cathode(red)} - E_{anode(red)}$

$$\begin{split} \therefore \ E_{cell} & = \left\{ E_{Cu^{2+}/Cu}^{o} \ + \ \frac{RT}{2F} \ In \ [Cu^{2+} \ (aq)] \right\} - \left\{ E_{Zn^{2+}/Zn}^{o} \ + \ \frac{RT}{2F} \ In \ [Zn^{2+} \ (aq)] \right\} \\ & = \left\{ E_{Cu^{2+}/Cu}^{o} \ - \ E_{Zn^{2+}/Zn}^{o} \right\} \ + \ \frac{RT}{2F} \ In \ \frac{[Cu^{2+} \ (aq)]}{[Zn^{2+} \ (aq)]} \end{split}$$

:
$$E_{cell} = E_{cell}^0 - \frac{2.303RT}{2F} \log \frac{[Zn^{2+}(aq)]}{[Cu^{2+}(aq)]}$$
;