
জ্যামিতিক আলোকবিজ্ঞান GEOMETRICAL OPTICS

প্রধান শব্দ (Key Words): ফার্মাট-এর
নীতি, গোলকীয় দর্পণ, লেন্সের ক্ষমতা,
লেন্সের ক্ষমতার একক, অণুবীক্ষণ যন্ত্র,
দূরবীক্ষণ যন্ত্র, নভো-দূরবীক্ষণ যন্ত্র, প্রিজম,
প্রিজমের প্রতিসরণ তল, প্রিজমের শীর্ষ,
প্রিজম কোণ, প্রিজমের ভূমি, বিচ্যুতি কোণ
বা বিচ্যুতি, ন্যূনতম বিচ্যুতি কোণ, বিচ্ছুরণ,
বর্ণালি।

সূচনা Introduction

পদার্থবিজ্ঞানের যে শাখায় আলো সংক্রান্ত বিষয়াদি নিয়ে আলোচনা করা হয় তাকে আলোকবিজ্ঞান বলে। আলোকবিজ্ঞানকে সাধারণত দুই ভাগে ভাগ করা হয়; যথা—জ্যামিতিক আলোকবিজ্ঞান (Geometrical optics) ও ভৌত বা প্রাকৃতিক আলোকবিজ্ঞান (Physical optics)। জ্যামিতিক আলোকবিজ্ঞান শাখায় ধরে নেওয়া হয় যে, পরীক্ষায় ব্যবহৃত যন্ত্রপাতির আকারের তুলনায় (যেমন কোনো ছিদ্র বা প্রতিবন্ধকের আকারের তুলনায়) আলোর তর্জ্ঞাদৈর্ঘ্য খুবই ছোট। পক্ষান্তরে ভৌত বা প্রাকৃতিক আলোকবিজ্ঞানে ওই আকার আলোর তর্জ্ঞাদৈর্ঘ্যের সজ্ঞা তুলনীয়।

আমরা জানি, কোনো একটি ষক্ষ ও সমসত্ত্ব মাধ্যমে আলোক সরল পথে গমন করে। কিন্তু আলোক রশ্মি এক ষক্ষ মাধ্যম হতে অন্য ষক্ষ মাধ্যমে তির্যকভাবে প্রবেশের সময় এর দিক পরিবর্তিত হয়। একে প্রতিসরণ বলে। প্রতিসরণ আলোকের একটি বিশেষ ধর্ম। এ অধ্যায়ে সমতল ও গোলকীয় তলে আলোকের প্রতিসরণ, বিক্ষ্রণ, প্রিজম, লেন্স ইত্যাদি সম্মন্ধে আলোচনা করা হবে।

এ অধ্যায় পাঠ শেবে শিক্ষার্থীরা----

- ফার্মাটের নীতি ব্যাখ্যা করতে পারবে।
- ফার্মাটের নীতির সাহায্যে আলোর প্রতিফলন ও প্রতিসরণের সূত্র বিশ্লেষণ করতে পারবে।
- লেন্স তৈরির গাণিতিক সমীকরণ প্রতিপাদন করতে পারবে। ব্যবহারিক:
 - ১. সমতল দর্পণ ও উত্তল লেন্স ব্যবহার করে তরলের প্রতিসরাজ্ঞ নির্ণয় করতে পারবে।
 - ২. লেন্সের ফোকাস দূরত্ব ও ক্ষমতা নির্ণয় করতে পারবে।
- মাইক্রোম্কোপের মৃলনীতি ব্যাখ্যা করতে পারবে।
- রিফ্লেক্টিং টেলিস্কোপের মূলনীতি ব্যাখ্যা করতে পারবে।

৬·১ ফার্মাট-এর নীতি Fermat's principle

৬·১·১ ধারণা Concept

আমরা জানি, আলোকরশ্মি কোনো একটি বিন্দু হতে চলে সমতল পৃষ্ঠ কর্ত্ক প্রতিষ্ণলন বা প্রতিসরণ-এর পর অন্য কোনো বিন্দুতে পৌছতে যদি কম দূরত্ব অতিক্রম করে তাহলে যে সময় লাগে তাও সর্বাপ্রেক্ষা কম হয়। অতএব আলোক রশ্মির কুদ্রতম পথ অতিক্রম করার অর্থ ন্যূনতম সময় লাগা। এখন ক্ষুদ্রতম পথ বা ন্যূনতম সময় বিষয়ক যে নীতি তা কেবল সমতল পৃষ্ঠের ক্ষেত্রে প্রযোজ্য। গোলকীয় তলে এর ব্যতিক্রম দেখা যায়। কোনো গোলকীয় তলে যখন আলোক রশ্মির প্রতিফলন বা প্রতিসরণ ঘটে, তখন আলোক রশ্মি হয় দীর্ঘতম না হয় ক্ষুদ্রতম পথ অতিক্রম করবে। তবে

পদার্থবিজ্ঞান (২য়) - ১৫(ক)

দীর্ঘতম বা ক্ষুদ্রতম পথ যাই অতিক্রম করুক না কেন পথ সর্বদা স্থির (stationary) থাকবে। 1650 খ্রিস্টাব্দে পিরারে ফার্মাট আলোক পথ সংক্রান্ত একটি নীতি আবিক্ষার করেন যা ফার্মাটের নীতি নামে পরিচিত। এই নীতির সাহায্যে আলোর সরলরৈথিক গতি, আলোর প্রতিফলন, প্রতিসরণের সূত্র প্রতিপাদন করা যায়। ফার্মাট-এর নীতি অনুসারে, "যখন কোনো আলোক রশ্মি প্রতিফলন বা প্রতিসরণ-এর সূত্র মেনে কোনো সমতল পূঠে প্রতিফলিত বা প্রতিসৃত হয়, তখন তা সর্বদা ক্ষদ্রতম পথ অনুসরণ করে।"

উপরোক্ত আলোচনার প্রেক্ষিতে সমতল বা গোলকীয় তল উভয়ের ক্ষেত্রে ফার্মাট-এর নীতিকে সাধারণ অর্থে (in

general form) নিম্নলিখিতভাবে বিবৃত করা যায় :

এক বিন্দু হতে অপর এক বিন্দুতে যাওয়ার সময় আলোক রশ্যির প্রতিফলন বা প্রতিসরণ যত সংখ্যক বারই হোক না কেন অনুসৃত পথ চরম বা অবম বা স্থির দৈর্ঘ্যের হবে এবং এই পথ অতিক্রম করতে সর্বাপেক্ষা কম সময় লাগে।

সূত্রানুসারে, বস্তু ও প্রতিবিন্দের মধ্যবর্তী আলোকপথ সকল রশ্মির ক্ষেত্রে সমান হবে।

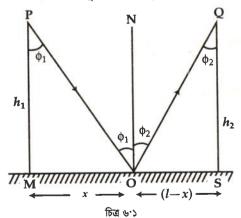
মনে করি আলোকরশ্মি বিভিন্ন মাধ্যমের মধ্য দিয়ে কয়েক বার প্রতিফলন ও প্রতিসরণের পর এক বিন্দু হতে অপর এক বিন্দুতে আসল। অতএব এর আলোক পথ হবে,

$$s_0 = \mu_1 s_1 + \mu_2 s_2 + \dots + \mu_s s_n = \sum \mu s = 4 \sqrt[4]{4}$$

এখানে $\mu_1, \, \mu_2, \, \mu_3 \, \ldots \, \mu_n$ হলো মাধ্যমগুলির প্রতিসরাজ্ঞ এবং $s_1, \, s_2, \, s_3 \, \ldots \, s_n$ যথাক্রমে ওই মাধ্যমসমূহে অতিক্রান্ত পথের দৈর্ঘ্য।

আমরা জানি, ধ্রুকের অন্তরকলন করলে শূন্য (0) হয়। $\therefore \delta[\Sigma \mu s] = 0$

 $\delta[f(x)] = 0$ হলে, f(x)-এর চরম (maximum) মান এবং অবম (minimum) অবস্থান সূচিত করে। তাই মোট আলোক পথ (μ_c) হয় চরম না হয় অবম হবে।


আলোক পথ: কোনো মাধ্যমের মধ্য দিয়ে আলোক রশ্মি কোনো নির্দিষ্ট সমযে যে পথ অতিক্রম করে তার সমতৃল্য আলোক পথ বলতে বোঝায় গুই নির্দিষ্ট সময়ে আলোক রশ্মি শূন্য মাধ্যমে যে পথ অতক্রিম করে তা।
আলোক পথ = মাধ্যমের প্রতিসরাহ্ক × মাধ্যমে আলো কর্তৃক অতিক্রান্ত পথের দৈর্ঘ্য। ∴ $l_0 = \mu_0 \times l$

৬·১·২ ফার্মাট-এর নীতির সাহায্যে আলোর প্রতিফলন ও প্রতিসরণের সূত্রাবলি Laws of reflection and refraction of light with the help of Fermat's principle

ক. প্রতিফশনের সূত্রাবলি Laws of reflection

নর সূত্রাবাল RMDAC

মনে করি, MS একটি সমতল প্রতিফলক। PO এবং OQ যথাক্রমে আপতিত এবং প্রতিফলিত রশ্মি [চিত্র ৬.১]। ফার্মাটের নীতি অনুসারে P ও Q এর মধ্যে POQ দূরত্ব ক্ষুদ্রতম। P এবং Q থেকে MS প্রতিফলকের ওপর যথাক্রমে

 $PM = h_1$ এবং $QS = h_2$ অভিলম্ম টানা হলো। ধরা যাক OM = x এবং MS = l; তাহলে OS = (l - x)। এখানে প্রাথমিক ও অভিম বিন্দু P ও Q স্থির হলে MS = l দূরত্ব স্থির। যেহেত্ব অনিয়মিত প্রতিফলিত রশ্মি P থেকে Q-তে MO প্রতিফলকের যে কোনো বিন্দুতে আপতিত হতে পারে, সেহেত্ব O বিন্দু থেকে M বিন্দুর দূরত্ব X একমাত্র চলরাশি (variable)।

চিত্র ৬ ১ থেকে, POQ =
$$s = PO + OQ$$

= $\sqrt{h_1^2 + x^2} + \sqrt{h_2^2 + (l - x)^2}$

ফার্মাটের নীতি অনুযায়ী P থেকে আগত আলোক রশ্মি প্রতিফলনের পর O থেকে Q-তে যে পথে যায় তার জন্য s গরিষ্ঠ অথবা লিঘিষ্ঠ (maximum or minimum) হবে। অর্থাৎ

$$\frac{ds}{dx} = 0 \qquad \dots \tag{6.1}$$

$$\frac{ds}{dx} = 0 = \frac{1}{2} (h_1^2 + x^2)^{-\frac{1}{2}} 2x - \frac{1}{2} \{h_2^2 + (l - x)^2\}^{-\frac{1}{2}} \cdot 2(l - x)$$

$$\boxed{4}, \quad 0 = \frac{x}{\sqrt{h_1^2 + x^2}} - \frac{l - x}{\sqrt{h_2^2 + (l - x)^2}} = 0 \qquad \dots \tag{6.2}$$

ৰা,
$$\frac{MO}{PO} - \frac{OS}{OQ} = 0$$

ৰা, $\frac{MO}{PO} = \frac{OS}{OQ}$

ৰা, $\sin OPM = \sin OQS$

ৰা, $\sin \phi_1 = \sin \phi_2$... (6.3)

অর্থাৎ আপতন কোণ, ∠PON = প্রতিফলন কোণ ∠OON

∴ আপতন কোণ = প্রতিফলন কোণ

ইহাই প্রতিফলনের বিতীয় সূত্র।

আবার PO এবং OQ প্রতিফলকের লম্ম তলে থাকবে। পুন ON সমতল প্রতিফলনের ওপর লম্ম বিধায়, PO এবং OQ যে সমতল গঠন করে ON ওই সমতলে অবস্থান করে। অর্ধাৎ আপতিত রশ্মি PO, প্রতিফলিত রশ্মি OQ এবং <u>অভিলম্</u> ON একই সমতলে অবস্থান করে।

ইহাই প্রতিফলনের প্রথম সূত্র।

₹. প্রতিসরণের সূত্রাবলি Laws of refraction

ধরা যাক PQ আলোক রশ্মি স্থির বিন্দু P থেকে Q বিন্দু হয়ে অন্য একটি স্থির বিন্দু R-এ পৌঁছাল। PQ আলোক রশাি a ও b স্থির মাধ্যমের $\mathbf{M}\mathbf{M}'$ বিভেদ তলে \mathbf{Q} বিন্দুতে i কোণে আপতিত হয়ে b মাধ্যমের r কোণে প্রতিসৃত হচ্ছে [চিত্র ৬ ২]।

বিভেদতল MM'-এর ওপর PA এবং RB লম্ম টানা হলো।

মনে করি, $PA = h_1$, $RB = h_2$, AB = d এবং AQ = xতাহলে QB = d—x। যদি a ও b মাধ্যমে আলোর বেগ যধাক্রমে c_a ও c_b হয় এবং PQ ও QR পথ অতিক্রম করতে আলোর 🛊 সময় লাগে, তবে

$$t = \frac{PQ}{c_a} + \frac{QR}{c_b} = \frac{\sqrt{{h_1}^2 + x^2}}{c_a} + \frac{\sqrt{{h_2}^2 + (d - x)^2}}{c_b}$$

कार्यार्टित नीि जन्यात्री t সময় न्। नठम হবে; কাজেই

$$\frac{dt}{dx} = 0 \qquad \dots \qquad (6.4)$$
 অতথ্য,
$$\frac{dt}{dx} = \frac{2x}{c_a \sqrt{h_1^2 + x^2}} - \frac{2(d-x)}{c_b \sqrt{h_2^2 + (d-x)^2}} = 0$$
 বা,
$$2\left\{\frac{x}{c_a \sqrt{h_1^2 + x^2}} - \frac{(d-x)}{c_b \sqrt{h_2^2 + (d-x)^2}}\right\} = 0$$
 বা,
$$\frac{x}{c_a \sqrt{h_1^2 + x^2}} - \frac{d-x}{c_b \sqrt{h_2^2 + (d-x)^2}} = 0$$

$$\frac{dt}{dx} = \frac{2x}{c_a \sqrt{h_1^2 + x^2}} - \frac{2(d - x)}{c_b \sqrt{h_2^2 + (d - x)^2}} = 0$$

$$\boxed{A}, \quad 2 \left\{ \frac{x}{c_a \sqrt{h_1^2 + x^2}} - \frac{(d - x)}{c_b \sqrt{h_2^2 + (d - x)^2}} \right\} = 0$$

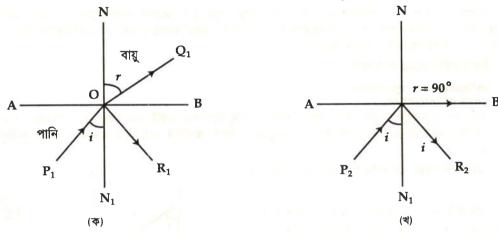
$$\boxed{A}, \quad \frac{x}{c_a \sqrt{h_1^2 + x^2}} - \frac{d - x}{c_b \sqrt{h_2^2 + (d - x)^2}} = 0 \qquad ... \qquad (6.5)$$

$$\boxed{A}, \quad \frac{\sin i}{c_a} = \frac{\sin r}{c_b}$$

$$\therefore \quad \frac{\sin i}{\sin r} = \frac{c_a}{c_b} = \mu_b \qquad ... \qquad (6.6)$$

N

(6.6)


ইহাই প্রতিসরণের দ্বিতীয় সূত্র বা স্লেদের সূত্র।

আবার PQ এবং QR রেখাদ্বয় পরস্পর Q বিন্দুতে মিলিত হয়ে একটি সমতল গঠন করে। যেহেতু PQR পথ ক্ষুদ্রতম সেহেত্ এই সমতলে বিভেদতল NN'-এর ওপর লব্দ হবে। NN' অভিলব্দ বিভেদতলের ওপর লব্দ হওয়ায় m PO এবং QR যে সমতলে অবস্থিত সেই সমতলে NN'ও অবস্থিত। কাজেই আপতিত রশ্মি PQ, প্রতিসৃত রশ্মি QR এবং অভিলম্ম NN' একই সমতলে অবস্থিত।

ইহাই প্রতিসরণের প্রথম সূত্র।

৬-১-৩ পূর্ণ অভ্যস্তরীণ প্রতিফলন Total internal reflection

আলো যখন এক মাধ্যম থেকে অন্য মাধ্যমে গমন করে। মাধ্যমের প্রতিসরাজ্ঞের ওপর নির্ভর করে আলোকরশি অভিলম্মের দিক অথবা অভিলম্ম হতে দুরে সরে যায়। যদি মাধ্যম ঘন হয়, তবে প্রতিসরিত রশাি অভিলম্মের দিকে বেঁকে যায় এবং মাধ্যম হান্ধা হলে বিপরীত ঘটনা ঘটে অর্থাৎ অভিলম্ম থেকে দূরে সরে যায়।

চিত্ৰ ৬ ৩

ধরা যাক, P_1O জালোকরশ্মি পানির মধ্য দিয়ে গমন করে বায়ু মাধ্যমের বিভেদ তলে O বিন্দুতে আপতিত হলো [চিত্র ৬ ৩ (ক)]। এর এক অংশ প্রতিফলিত হয়ে OR_1 পথে পানি মাধ্যমে ফিরে জাসে এবং অপর অংশ প্রতিসৃত হয়ে বায়ু মাধ্যমে OQ_1 পথে চলে যায়। এখানে প্রতিসরণ কোণ $\angle QON$ আপতন কোণ $\angle P_1ON_1$ অপেক্ষা বড় হয়। আপতন কোণ যত বড় হয় প্রতিসরণ কোণও তত বড় হবে। আপতন কোণের একটি বিশেষ মানের জন্য প্রতিসরণ কোণ 90° হয়, যাতে প্রতিসরিত রশ্মি দুই মাধ্যমের বিভেদতল ঘেঁষে যায় [চিত্র ৬ ৩ (খ)]। ঘন মাধ্যমে আপতন কোণের এই সীমাস্থ মানকে সংকট কোণ (Critical angle) বলা হয়।

সংজ্ঞা : আলোক রশ্মি ঘন মাধ্যম থেকে হান্ধা মাধ্যমে প্রতিসৃত হওয়ার সময় যে আগতন কোণের জন্য প্রতিসরণ কোণ ৭০° হয় এবং প্রতিসৃত রশ্মি দুই মাধ্যমের বিভেদতল ঘেঁবে যায়, তাকে সংকট কোণ বলে।

৬-১-৪ পূর্ণ অভ্যস্তরীণ প্রতিফলনের শর্তাবলি Conditions of total internal reflection

পূর্ণ অভ্যন্তরীণ প্রতিফলনের শর্তাবলি হলো :

- (क) আলোক রশ্মি অবশ্যই ঘন মাধ্যম থেকে হান্ধা মাধ্যমে গমন করবে।
- (খ) আপতন কোণের মান অবশ্যই মাধ্যমদ্বয়ের সংকট কোণ অপেক্ষা বড় হতে হবে।

সংকট কোণ এবং ঘন মাধ্যমের প্রতিসরাজ্কের মধ্যে সম্পর্ক

ধরা যাক , $\angle PON_1 = \theta_C = \,$ দুটি মাধ্যমের মধ্যে সংকট কোণ। (এক্ষেত্রে পানি এবং বায়ু) [চিত্র ৬ ৩(খ)] এখানে প্রতিসরণ কোণ 90°, যদি পানির সাপেক্ষে বায়ুর প্রতিসরাজ্ঞ $_v\mu_a$, তবে

$$_{w}\mu_{n}=\frac{\sin\theta_{C}}{\sin90^{\circ}}$$
 \forall 1, $\sin\theta C=\frac{1}{_{w}\mu_{n}}$ (i)

অতএব, সংকট কোণের মান এক মাধ্যমের সাপেক্ষে অন্য মাধ্যমের প্রতিসরাচ্ছের ওপর নির্ভর করে। এখন যদি মাধ্যমে দুটি 'a' এবং 'b' দ্বারা সূচিত করি এবং $\mu_a > \mu_b$ হয়, তবে

$$\sin \theta_{\rm C} = \frac{1}{{}_{w}\mu_{a}} = \frac{\mu_{b}}{\mu_{a}} \qquad \qquad \dots \qquad \dots$$
 (ii)

৬-১-৫ পূর্ণ অভ্যস্তরীণ প্রতিফলনের প্রয়োগ

Application of the phenomenon of total internal reflection

जात्नाकवारी उद्धत मधा पिरा जात्नात हमाहन [DAT: 23-24] [MAT: 22-23]

একটি তন্তু যা আলোকরশ্মি এক স্থান হতে অন্য স্থানে পূর্ণ অভ্যন্তরীণ প্রতিফলনের মাধ্যমে পাঠাতে পারে তাকে আলোকবাহী তম্বু (Optical fibre) বলা হয়। ইহা কাচ, কোয়ার্টজ (quartz) অথবা আলোকীয় গ্রেডের প্লাস্টিক দ্বারা নির্মিত।

আলোকবাহী তম্ভ লম্বা এবং খুবই সর পাইপ যার ব্যাস প্রায় 10⁻⁵ m। পাইপের ভেতরের অংশকে বলা হয় কোর (core) [চিত্র ৬·৪]। এই কোরের মাধ্যমে আলো এক স্থান থেকে অন্য স্থানে গমন করে। কোরের ওপরে নিয় প্রতিসরাজ্ক (μ) সম্পন্ন পদার্থের এর আস্তরণ থাকে। এই অন্তরককে বলা হয় ক্লাডিং (cladding)। কোরের অভ্যন্তরে আলোক রশ্মি

চিত্ৰ ৬ ৪

প্রবেশের পর কোর এবং ক্লাডিং-এর বিভেদতলে পরপর পূর্ণ অভ্যন্তরীণ প্রতিফলনের দারা সঞ্চালিত হয় এবং অপর প্রান্ত দিয়ে নির্গত হয়। যেহেতু, পূর্ণ অভ্যন্তরীণ প্রতিফলন আলোকবাহী তন্তুর অভ্যন্তরে ঘটে ফলে আলোর তীব্রতা অক্ষুণ্ন থাকে। একটি বৃহৎ বস্তুর চিত্র পাঠাতে হলে তন্তুর বান্ডেল বা তন্তুর কেবল (cable) বা তার ব্যবহার করা হয়

[চিত্র ৬·৫]। বস্তুর বিভিন্ন অংশ হতে আলোকরশ্যি বিভিন্ন আলোক-

বাহী তন্তুর দারা সঞ্চালিত হয়ে তারের অপর প্রান্তে বস্তুর ছবি উৎপন্ন

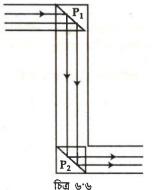
চিত্ৰ ৬ ৫

আলোকবাহী তম্ভর ব্যবহার

যোগাযোগ ব্যবস্থা ও চিকিৎসা বিজ্ঞানে আলোকবাহী তন্তু বহুল পরিমাণে ব্যবহৃত হয়। নিমে কয়েকটি উল্লেখযোগ্য ব্যবহার উল্লেখ করা হলো :

🛶 দিহের অভ্যন্তরে বিভিন্ন অংশের চিত্র তৈরির কাজে যা সাধারণ চোখে দেখা সম্ভব নয়, যথা—ফুসফুস, টিস্য, অন্ত্র ইত্যাদি।

করে।

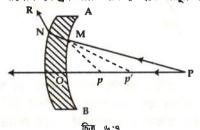

🔑 শ এক জায়গা থেকে অন্য জায়গায় ভিডিও সংকেত সঞ্চালন করা যায়, ডিজ্কিটাল পন্ধতিতে তথ্য সম্প্রচার করা যায়। কোনো বাধা ছাড়াই বিভিন্ন ডিজিটাল সংকেত এই তন্তু দ্বারা পাঠানো যায়।

প্রিজম টেলিস্কোপ Prism telescope

প্রিজম টেলিস্কোপ দুটি সমকোণী সমদিবাৰ প্রিজম P1 ও P2 দারা গঠিত। এগুলো এমনভাবে রাখা হয় যাতে তাদের অতিভুক্ত তল দুটি পিরস্পরের সমান্তর্যুর্লে থাকে। এখন P₁ প্রিক্তম ওপরে এমনভাবে বসানো থাকে যেন দূরবর্তী

কোনো বস্তু থেকে আগত আলোকরশ্যি একটি জানালার মধ্য দিয়ে প্রিজমে আপতিত হয় এবং পূর্ণ অভ্যন্তরীণ প্রতিফলনের মাধ্যমে অতিভূজ থেকে নিচের দিকে গমন করে। P2 প্রিজম তলায় স্থির অবস্থায় থাকে। এই প্রিজম আগত আলোকরশ্যি গ্রহণ করে এবং সম্পূর্ণ প্রতিফলনের মাধ্যমে সমকোণে অনুভূমিক দিকে দর্শকের চোখে পৌছায়। এক্ষেত্রে প্রিজমে আলোর পূর্ণ প্রতিফলনের ফলে প্রতিবিন্দ গঠিত হয়। ফলে দর্শক বহুদুরের বস্তুর প্রতিবিম্দ স্পর্য্ট দেখতে পায়।

সাধারণ পেরিস্কোপের চেয়ে প্রিজম পেরিস্কোপ অনেক বেশি উজ্জ্বল প্রতিবিম্ম সৃষ্টি করে।


কাজ : কোনো পদার্থের পরম প্রতিসরাঙ্কের মান 1-এর থেকে কম হতে পারে কী ? —ব্যাখ্যা কর।

কোনো মাধ্যমের পরম প্রতিসরাজ্ঞ বলতে শূন্য মাধ্যমে আলোর বেগ ও ওই মাধ্যমে আলোর বেগের অনুপাতকে বোঝায়। এখন যেহেতু শূন্য স্থানে আলোর বেগ অন্য যে কোনো মাধ্যমে আলোর বেগের চেয়ে বেশি, সেহেতু কোনো মাধ্যমের পরম প্রতিসরাজ্ঞ 1-এর কম হতে পারে না।

গোলীয় তলে প্রতিসরণ B-2 Refraction in spherical surface

লেন্স প্রস্তৃতকারকের সূত্র বা লেন্স তৈরির সমীকরণ Lens maker's formula or equation of lens formation

মনে করি AB একটি সরু লেন্সের প্রধান ছেদ [চিত্র ৬ ৭]। এর প্রধান অক্ষ OP-এর ওপর P একটি বিন্দু-বস্তু এবং O এর আলোক কেন্দ্র। ধরা যাক P হতে বায়ূর মধ্য দিয়ে আগত PM আলোক রশ্মিটি লেন্সের প্রথম পৃষ্ঠে আলোক কেন্দ্র

হতে সামান্য দূরে M বিন্দুতে আপতিত হওয়ায় রশ্মিটি প্রথম পৃষ্ঠে MN বরাবর এবং দিতীয় পৃষ্ঠে N বিন্দু হতে NR বরাবর প্রতিসূত হলো। আবার P হতে লেন্সের ওপর আপতিত প্রধান অক্ষ বরাবর PO রশ্বিটি একই রেখায় লেন্স হতে বায়ুতে নির্গত হলো। কাজেই উপরোক্ত নির্গত <mark>রশ্মিদ্বয়ের ছে</mark>দ বিন্দু p-ই বসত P-এর অলীক বা অবাস্ত<mark>ব প্রতিবিন্দ হবে।</mark> কেননা লেন্সের অপর পার্শ্ব হতে দেখলে ও<mark>ই রশাি দুটি উক্ত বিন্দু হতে</mark> নিৰ্গত হচ্ছে মনে হবে।

ধরা যাক NM-কে পশ্চাৎ দিকে বর্ধিত করায় তা PO-কে p' বিন্দুতে ছেদ করল। তা হলে প্রথম গোলকীয় পৃষ্ঠে প্রতিসরণের জন্য p'-ই P-এর অবাস্তব প্রতিবিন্দ হবে এবং দ্বিতীয় পৃষ্ঠের সাপেক্ষে p' জবাস্তব বস্তু হিসেবে ক্রিয়া করবে। সূতরাং দিতীয় পৃষ্ঠে প্রতিসরণের জন্য p-ই p'-এর প্রতিবিন্দ হবে।

ধরা যাক বস্তুর দূরত্ব OP=u, প্রতিবিন্দের দূরত্ব Op=v এবং Op'=v', প্রথম ও দ্বিতীয় গোলকীয় পৃষ্ঠের বক্রতার ব্যাসার্ধ যথাক্রমে r_1 ও r_2 এবং বায়ুর সাপেক্ষে লেন্সের উপাদানের প্রতিসরাঙ্ক $=\mu$

চিহ্নের বাস্তব ধনাত্মক প্রথা অনুযায়ী:

প্রথম গোলকীয় তলে
$$P$$
-এর সৃষ্ট প্রতিবিন্দ p' -এর ক্ষেত্রে লেখা যায়,
$$\frac{\mu}{v'} + \frac{1}{u} = \frac{\mu-1}{r_1} \qquad \qquad ... \qquad ...$$
 (6.7) দিতীয় তলে p' -এর সৃষ্ট প্রতিবিন্দ p -এর ক্ষেত্রে লেখা যায়,

$$\frac{1}{v} + \frac{1}{-v'} = \frac{1}{r_2} = \frac{1}{r_2} - 1$$
 [লক্ষ্যবস্তু অবাস্তব হৈতু v' ঋণ রাশি।]

উভয় পক্ষকে
$$\mu$$
 ছারা গুণনে পাওয়া যায়,
$$\frac{1}{v} - \frac{\mu}{v'} = -\frac{\mu - 1}{r_2} \qquad ... \qquad ...$$

সমীকরণ (6.7) ও (6.8) যোগে পাওয়া যায়,

$$\frac{1}{v} + \frac{1}{u} = (\mu - 1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right) \qquad \dots \qquad (6.9)$$

সমীকরণ (6.9) লেন্সে বস্তু দূরত্ব, প্রতিবিন্দ দূরত্ব ও বক্রতার ব্যাসার্ধের মধ্যকার সম্পর্ক নির্দেশক সমীকরণ। দেলের কোকাস দূরত্বের সমীকরণ :

লক্ষ্যবস্তু অসীম দূরত্বে অবস্থান করলে তার প্রতিবিন্দ লেন্সের দ্বিতীয় প্রধান ফোকাসে গঠিত হবে। এক্ষেত্রে $u = \infty$ and v = f

∴ সমীকরণ (6.9) হতে পাই,

$$\frac{1}{f} + \frac{1}{\infty} = (\mu - 1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

$$\overline{4}, \quad \frac{1}{f} + 0 = (\mu - 1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

$$\vec{A}, \quad \frac{1}{f} = (\mu - 1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right) \qquad \dots \qquad \dots \qquad \dots \tag{6.10}$$

ইহাই লেন্সের ফোকাস দূরত্ত্বের সাধারণ সমীকরণ। লেন তৈরির কাজে এই সমীকরণ ব্যবহার করা হয় বলে একে লেন্স তৈরির সমীকরণ বা লেন্স প্রস্তৃতকরণের সমীকরণও বলে।

বেন্টনকারী মাধ্যমের প্রতিসরাজ্ঞ μ_1 এবং লেন্সের উপাদানের প্রতিসরাজ্ঞ μ_2 হলে সমীকরণ (6.10)-এ μ -এর স্থালে $\frac{\mu_2}{2}$ বসিয়ে লেখা যায়,

$$\frac{1}{f} = \left(\frac{\mu_2}{\mu_1} - 1\right) \left(\frac{1}{r_1} - \frac{1}{r_2}\right) \qquad ... \qquad (6.11)$$

একে লেখ্ প্রস্তুতকারকের সূত্র বলা হয়। একে লেখের ফোকাস দূরত্বের সূত্রও বলা হয়। এটি লেখের মাধ্যম, বেফনকারী মাধ্যম এবং লেখের দুটি তলের বক্ষতার ব্যাসার্ধ দ্বারা নির্ধারিত।

কাজ: লেকের চারপাশের মাধ্যম পরিবর্তন করলে তার ফোকাস দূরত্ব পরিবর্তন হয় কেন ?

লেশের উপাদানের প্রতিসরাজ্ক যদি তার চারপাশের মাধ্যমের প্রতিসরাজ্কের চেয়ে বেশি হয় তাহলে আপতিত রশািগুচ্ছ প্রতিসরণের পর অতিসারী রশািগুচ্ছে পরিণত হবে। কিন্তু যদি লেশের উপাদানের প্রতিসরাজ্ক চারপাশের মাধ্যমের প্রতিসরাজ্কের চেয়ে কম হয় তাহলে উত্তল লেসে আপতিত রশািগুচ্ছকে প্রতিসরণের পর অপসারী রশািগুচ্ছে পরিণত করবে। অবতল লেশের ক্ষেত্রে বিপরীত ঘটনা ঘটবে। এভাবে ফোকাস দূরত্ব পরিবর্তন হয়।

জ্যামিতিক আলোকবিজ্ঞানে কোনো তলে, দর্পণে, লেন্সে বা আলোক যন্ত্রে আলোর প্রতিফলন বা প্রতিসরণে ফোকাস দ্রত্ব, প্রতিবিন্দের দূরত্ব ধনাত্মক এবং সকল অবাস্তব দূরত্ব ঋণাত্মক। বাস্তব দূরত্ব বলতে আলোক রশ্মি প্রকৃত লক্ষ্যে যে দূরত্ব অতিক্রম করে তা বোঝায়। অন্যদিকে অবাস্তব দূরত্ব হলো আলোক রশ্মি যে দূরত্ব অতিক্রম করে না।

৬.২.২ গোলীয় তলে আলোর প্রতিসরণের নিয়ম

Rules of refraction in spherical surface

 গোলীয় উন্তল বা অবতল পৃষ্ঠে আলোর প্রতিসরণের জন্য এবং বিন্দ বাস্তব, অবাস্তব, সোজা ও উন্টার ক্ষেত্রে:

$$\frac{\mu}{v} + \frac{1}{u} = \frac{\mu - 1}{r}$$

II. আলো μ প্রতিসরাজ্কের ঘন মাধ্যম থেকে বায়ুতে প্রতিসরণের ক্ষেত্রে :

$$\frac{1}{v} + \frac{\mu}{u} = \frac{1-u}{r}$$

III. μ_1 প্রতিসরাজ্কের কোনো মাধ্যম থেকে গোলীয় পৃষ্ঠে আপতিত হয়ে μ_2 প্রতিসরাজ্কের কোনো মাধ্যমে প্রতিসরণের ক্ষেত্রে :

$$\frac{\mu_2}{v} + \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{r}$$

৬ ২৩ ক্ষমতা এবং বক্রতার ব্যসার্ধের সম্পর্ক

Relation of radius of curvature of a lens with its power

সামরা জানি,

$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

যদি উভয় পৃষ্ঠের বক্রতার ব্যাসার্ধ সমান হয়, তবে উভোত্তল ও উভাবতল লেন্দের ক্ষেত্রে আমরা জানি,

$$\frac{1}{f} = (\mu - 1) \frac{2}{r}$$

অতএব, *লেন্দে*র ক্ষমতা,

$$P = \pm (\mu - 1) \frac{2}{r}$$
; which $P \propto \frac{1}{r}$

সূতরাং, যদি উভোত্তল বা উভাবতল লেন্সের বক্রতার ব্যাসার্ধ বৃদ্ধি পায় তবে লেন্সের ক্ষমতা হ্রাস পায় এবং পরস্পর বিপরীতধর্মী।

গাণিতিক উদাহরণ ৬.১

১। বায়ু সাপেক্ষে পানি এবং কাচের প্রতিসরাজ্ঞ যথাক্রমে $\frac{4}{3}$ এবং $\frac{3}{2}$ । দেখাও যে, পানিতে একটি কাচ লেন্সের ফোকাস দূরত্ব বায়ুতে ফোকাস দূরত্বের চার গুণ। যদি লেন্সের ফোকাস 60 cm হয় তাহলে পানিতে ফোকাস দূরত্ব কড হবে ?

বাতাসের ক্ষেত্রে

$$\frac{1}{f_1} = \left(\frac{3}{2} - 1\right) \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

$$\text{II. } \frac{1}{f_1} = \frac{1}{2} \left(\frac{1}{r_1} - \frac{1}{r_2}\right) \qquad \dots \qquad \dots \qquad \dots$$
(ii)

পানির ক্ষেত্রে

$$\frac{1}{f_2} = \begin{pmatrix} \frac{3}{2} \\ \frac{4}{3} \end{pmatrix} \begin{pmatrix} \frac{1}{r_1} - \frac{1}{r_2} \end{pmatrix} = \begin{pmatrix} \frac{9}{8} - 1 \end{pmatrix} \begin{pmatrix} \frac{1}{r_1} - \frac{1}{r_2} \end{pmatrix}
= \frac{1}{8} \begin{pmatrix} \frac{1}{r_1} - \frac{1}{r_2} \end{pmatrix} \dots$$
 (iii)

(ii) নং সমীকরণকে (iii) নং সমীকরণ দ্বারা ভাগ করে পাই, $\frac{f_2}{f_1}=4$

বা, $f_2 = 4f_1$ (প্রমাণিত)

পানিতে একটি কাচ লেঙ্গের ফোকাস দূরত্ব বায়ুতে ফোকাস দূরত্বের 4 গুণ।

এখন $f_1 = 60 \text{ cm}$: $f_2 = 4f_1 = 4 \times 60 \text{ cm} = 240 \text{ cm}$

২। একটি উভোত্তল লেপের দুই পৃষ্ঠের বক্রতার ব্যাসার্ধ 15 cm এবং 30 cm। লেলটির ফোকাস দূরত্ব 20 cm হলে এর উপাদানের প্রতিসরাক্ষ নির্ণয় কর। [ঢা. বো. ২০০৯; KUET Admission Test, 2018-19 (মান তিনু)]
আমরা জানি.

$$\boxed{4}, \quad (\mu - 1) = \frac{30}{3 \times 20} = 0.5$$

$$\therefore \mu = 1 + 0.5 = 1.5$$

এখানে,

লেন্সের কাচের প্রতিসরাজ্ঞ্ক , $\mu_2=\frac{3}{2}$ ধরি, যখন $\mu_1=1$ (বাতাসে) , তখন ফোকাস দূরত্ব = $f_1=60~\mathrm{cm}$ যখন $\mu_1=\frac{4}{3}$ (পানিতে) তখন ফোকাস দূরত্ব = f_2

্মিনে রাখবে : $\mu_2 \to$ লেন্সের উপাদানের প্রতিসরাচ্চ সূত্রের লবে (numerator) বসবে । আর $\mu_1 \to$ মাধ্যমের প্রতিসরাচ্চ সূত্রের হরে (denominator) বসবে ।]

উত্তল লেনের প্রথম পৃষ্ঠের বক্রতার ব্যাসার্ধ , $r_1=+15~\mathrm{cm}$ উত্তল লেনের ঘিতীয় পৃষ্ঠের বক্রতার ব্যাসার্ধ , $r_2=-30~\mathrm{cm}$ উত্তল লেন্দটির ফোকাস দূরত্ব , $f=+20~\mathrm{cm}$ প্রতিসরাজ্ঞ্ক , $\mu=?$ মনে রাখবে : উভাবতল লেনের ক্রেত্রে $r_1\to$ ঝণাত্মক , $r_2\to$ ধনাত্মক এবং উভোভল লেনের ক্রেত্র $r_1\to$ ধনাত্মক , $r_2\to$ খণাত্মক হয়।]

৩। $30~\mathrm{cm}$ ফোকাস দ্রত্ববিশিক্ট একটি সমোন্তল লেন্স-এর উপাদানের প্রতিসরাজ্ঞ $1\cdot52$ হলে এর পৃষ্ঠহয়ের বক্রতার ব্যাসার্ধ নির্ণয় কর।

আমরা জানি.

r = 31.2 cm

$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right) = (\mu - 1) \left(\frac{1}{r} + \frac{1}{r} \right)$$

$$\vec{a}, \quad \frac{1}{f} = (\mu - 1) \left(\frac{2}{r} \right)$$

$$\vec{a}, \quad \frac{1}{30} = (1.52 - 1) \left(\frac{2}{r} \right)$$

এখানে,

প্রত্যেক পৃষ্ঠের বক্রতার ব্যাসার্ধ = r উত্তল লেন্দের ১ম পৃষ্ঠের বক্রতার ব্যাসার্ধ, $r_1 = r_2$ ২য় পৃষ্ঠের ব্যাসার্ধ, $r_2 = -r$ প্রতিসরাজ্ঞক, $\mu = 1.52$ ফোকাস দূরত্ব, $f = 30 \, \mathrm{cm}$

8।একটি উভাবতন নেঙ্গের বক্রতার ব্যাসার্ধ যথাক্রমে 30 cm এবং 20 cm। নেঙ্গের উপাদান প্রতিসরাজ্ক 1.52 হলে, এর ফোকাস দূরত্ব কত ? [JU unit-H and A Admission Test. 2020-21]

এখানে.

আমরা জানি

$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

$$\overline{4}, \quad \frac{1}{f} = (1.52 - 1) \left(\frac{1}{30} - \frac{1}{-20} \right)$$

$$\overline{4}, \quad \frac{1}{f} = 0.52 \times \left(\frac{5}{60}\right)$$

$$f = 23^{\circ}1 \text{ cm}$$

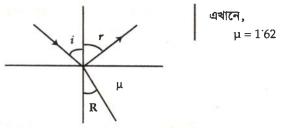
প্রথম পৃষ্ঠের বক্রতার ব্যাসার্ধ, $r_1=30~{\rm cm}$ দিতীয় পৃষ্ঠের বক্রতার ব্যাসার্ধ, $r_2=20~{\rm cm}$ প্রতিসরাঙ্ক, $\mu=1.52$ ফোকাস দূরত্ব, f=?

৫। 1'62 প্রতিসরাক্ষবিশিক্ট একটি কাচের প্লেটে আলোক রশ্বি আপতিত হয়। যদি প্রতিক্ষিত এবং প্রতিসরিত রশ্বি একে অপরের সাথে লম্বভাবে অবস্থান করে তবে আপতন কোণের মান নির্ণয় কর।

[RUET Admission Test, 2019-20]

এখানে, i = r

চিত্র থেকে পাই,
$$R + 90^{\circ} + r = 180^{\circ}$$


এখন, মেলের সূত্রানুযায়ী,
$$\mu = \frac{\sin i}{\sin R}$$

বা,
$$1.62 = \frac{\sin i}{\sin (90^\circ - i)}$$

$$\boxed{4}, \quad 1.62 = \frac{\sin i}{\cos i} = \tan i$$

$$i = \tan^{-1}(1.62) = 58.31^{\circ}$$

সূতরাং, আপতন কোণ $i = 58.31^\circ$

৬। একটি লেন্দের বায়ুতে ফোকাস দূরত্ব 18 cm। পানিতে নিয়ে গেলে এর ফোকাস দূরত্ব কত হবে? $(a\mu_w = 4/3, a\mu_g = 3/2)$ [BUET Admission Test, 2015-16]

আমরা জানি,

$$\frac{1}{f} = (_a \mu_{b-1}) \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

১ম ক্লেব্ৰে,
$$\frac{1}{f_a} = (a\mu_{g-1}) \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$
 ... (i)

২য় কেত্রে,
$$\frac{1}{f_w} = (_w \mu_{g-I}) \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$
 ... (ii)

$$\therefore \quad _{w}\mu_{g} = \frac{_{a}\mu_{g}}{_{a}\mu_{w}} = \frac{3/2}{4/3}$$
$$= \frac{3}{2} \times \frac{3}{4} = \frac{9}{8}$$

(i) ÷ (ii)
$$\Rightarrow \frac{f_w}{f_a} = \frac{a\mu_{g-1}}{w\mu_{g-1}}$$

$$\therefore f_w = f_a \left(\frac{\frac{3}{2} - 1}{\frac{9}{8} - 1} \right) = 72 \text{ cm}$$

৭। একটি উত্তল লেন্সের ফোকাস দূরত্ব 0'2 m এবং এটি গ্লাসের তৈরি যার প্রতিসরাক্ষ 1'50। এটিকে 1'33 প্রতিসরাক্ষবিশিষ্ট পানিতে ডুবালে লেঙ্গটির ফোকাস দূরত্বের পরিবর্তন নির্ণয় কর।

[BUET Admission Test, 2019-20]

$$\frac{1}{f_a} = \left(\frac{\mu_g}{\mu_a} - 1\right) \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

$$\therefore \frac{1}{0.2} = (1.5 - 1) \left(\frac{1}{r_1} - \frac{1}{r_2}\right) \qquad \dots \qquad \dots \qquad \dots \qquad \dots$$
(i)

 $f_a = 0.2 \,\mathrm{m}$ $\mu_g = 1.5$

আবার,

$$\frac{1}{f_w} = \left(\frac{\mu_g}{\mu_w} - 1\right) \left(\frac{1}{r_1} - \frac{1}{r_2}\right)
= \left(\frac{1.50}{1.33} - 1\right) \left(\frac{1}{r_1} - \frac{1}{r_2}\right) \dots \qquad (ii)$$

সমীকরণ (i) কে সমীকরণ (ii) দ্বারা ভাগ করে পাই,

$$\frac{f_w}{0.2} = \frac{0.5}{\frac{1.50}{1.33} - 1} = \frac{0.5 \times 1.33}{1.50 - 1.33} = \frac{0.665}{0.17} = 3.91$$

- $f_w = 0.2 \times 3.91 = 0.782$
- ∴ ফোকাস দূরত্বের পরিবর্তন = 0'782 0'2 = 0'582 m

৮। বায়ু সাপেকে কাচের সক্ষট কোণ 42° এবং বায়ু সাপেকে পানির সক্ষট কোণ 48° হলে পানির সাপেকে কাচের সক্ষট কোণ কত ? [BUET Admission Test, 2015-16; 2012-13]

আমরা জানি,

$$_{w}\mu_{g} = \frac{1}{\sin_{w}\theta_{g}} \qquad \dots \qquad \dots \qquad \dots$$

$$_{a}\mu_{g} = \frac{1}{\sin_{a}\theta_{g}} \qquad \dots \qquad \dots \qquad \dots \qquad \dots$$
(i)

এবং
$$_{a}\mu_{w}=\frac{1}{\sin_{a}\theta_{w}}$$
 ... (iii)

$$\therefore \frac{{}_{a}\mu_{g}}{{}_{a}\mu_{w}} = \frac{\sin_{a}\theta_{w}}{\sin_{a}\theta_{g}}$$

বা,
$$_{w}\mu_{g}=\frac{\sin_{a}\theta_{w}}{\sin_{a}\theta_{g}}$$
 ... (iv)

(i) ও (iv) তুলনা করে পাই,

$$\frac{1}{\sin_{w}\theta_{g}} = \frac{\sin_{a}\theta_{w}}{\sin_{a}\theta_{g}}$$

$$\sin_{w}\theta_{g} = 0.9$$

$$w\theta_{g} = \sin^{-1}(0.9) = 64.2^{\circ}$$

৬৩ ব্যবহারিক Experimental

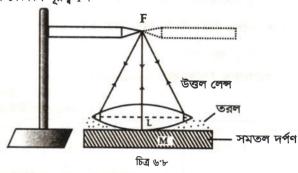
পরীক্ষণের নাম : পিরিয়ড : ২ তরলের প্রতিসরাজ্ঞ নির্ণয় (সমতন দর্পণ ও উত্তল লেন্দের সাহায্যে)

Determination of the refractive index of a liquid using plane mirror and convex Lens

তত্ত্ব (Theory) : কোনো সমতল দর্পণের ওপর ২-৩ ফোঁটা তরল রেখে যদি এই তরল পদার্থের ওপর f_1 ফোকাস দূরত্বের একটি উত্তল লেন্স স্থাপন করা হয় [চিত্র ৬-৮], তবে লেন্স ও সমতল দর্পণের মধ্যস্থিত তরল পদার্থের আবরণ f_2 ফোকাস দূরত্বের একটি সমাবতল তরল লেন্স গঠন করে। এই অবস্থায় গঠিত লেন্সের (সমাবতল) বক্রতার ব্যাসার্ধ ব্যবহৃত উত্তল লেন্সের বক্রতার ব্যাসার্ধের সমান। লেন্সদ্বয় মিলিতভাবে একক সংযোজিত লেন্স গঠন করে যা উত্তল লেন্সের ধরা যাক, এই লেন্সের ফোকাস দূরত্ব F।

স্তরাং আমরা দিখতে পারি

$$\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2}$$


এখানে F এবং f1 এর মান ঋণাত্মক।

$$\therefore -\frac{1}{F} = -\frac{1}{f_1} + \frac{1}{f_2}$$

$$\boxed{\text{at,}} \quad \frac{1}{f_2} = \frac{1}{f_1} - \frac{1}{F} = \frac{F - f_1}{F f_1}$$

$$\overline{\mathbf{q}}, \quad \frac{1}{f_2} = \frac{\mathbf{F} - f_1}{\mathbf{F} f_1}$$

$$\therefore f_2 = \frac{f_1 F}{F - f_1}$$

(i)

পরীক্ষার সাহয্যে f_1 ও F এর মান নির্ণয় করে সমীকরণ (i)-এ বসিয়ে f_2 এর মান নির্ণয় করা যায়। এখানে বায়ুর সাপেক্ষে তরল পদার্থের প্রতিসরাঙ্ক μ , সমাবতল লেন্সের গোলকীয় তলের বক্রতার ব্যাসার্থ r_1 এবং সমতল দর্পণের ব্যাসার্থ r_2 হলে সমাবতল লেন্সের ফোকাস দূরত্ব f_2 কে লেখা যায়,

$$\frac{1}{f_2} = (\mu - 1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right) \qquad \dots \qquad \dots$$
 (ii)

কিন্তু সমতলের বক্রতার ব্যাসার্ধ অসীম হলে, অর্থাৎ $r_2 = \infty$ হলে, সমীকরণ (ii) কে লেখা যায়,

$$\frac{1}{f_2} = (\mu - 1)\frac{1}{r_1}$$

বা, $f_2 (\mu - 1) = r_1$

বা,
$$\mu-1=\frac{r_1}{f_2}$$

$$\therefore \mu = 1 + \frac{r_1}{f_2}$$

(iii)

যন্ত্রপাতি (Apparatus) : উত্তল লেন্স, সমতল দর্পণ, পিন স্ট্যান্ড, মিটার স্কেল, স্লাইড ক্যালিপার্স, স্ফেরোমিটার, পরীক্ষণীয় তরল পদার্থ ইত্যাদি।

কার্যপন্ধতি বা কাজের ধারা (Working procedure) :

- ১। স্লাইড ক্যালিপার্সের সাহায্যে ব্যবহৃত উত্তল লেন্সের বেধ নির্ণয় করা হয়। তারপর এই বেধ t-কে 2 দারা ভাগ করে লেন্সের উপরিতলের বেধ $\frac{t}{2}$ পাওয়া যায়।
 - ২। টেবিলের ওপর একটি সমতল দর্পণ রেখে এর ওপর উত্তল লেন্সটি বসানো হয়।
- ৩। তারপর লক্ষ্যবস্তু পিন এমনভাবে স্ট্যান্ডের সাথে আটকানো হলো যেন পিনের ধারালো প্রান্ত লেন্সের প্রধান অক্ষের সমান্তরাল থাকে।
- ৪। এখন লক্ষ্যবস্তু পিনটাকে নিচ হতে ক্রমশ ওপরের দিকে উঠানো হয়। যখন লক্ষন ত্রুটি থাকে না এবং বাস্তব প্রতিবিন্দ্র গঠিত হয় তখন মিটার স্কেলের সাহায়্যে লেন্সের উপরিতলের মধ্যবিন্দু হতে পিনের শীর্ষবিন্দু পর্যন্ত

উচ্চতা h_1 পরিমাপ করা হয়। এখন $f_1=\left(h_1+\frac{t}{2}\right)$ -এর সাহায্যে উত্তল লেন্সের ফোকাস দূরত্ব নির্ণয় করা হয়।

ে। সমতল দর্পণ হতে লেন্সটিকে সরিয়ে দর্পণের ওপর ২–৩ ফোঁটা তরল পদার্থ ঢালা হয়। আবার সমতল দর্পণের ওপর উত্তল লেন্সটিকে স্থাপন করা হয়।

৬। পুনরায় লক্ষ্যবস্তু পিনটিকে নিচ হতে ক্রমশ ওপরের দিকে উঠানো হয়। যখন লন্দন ত্র্টি থাকে না এবং বাস্তব প্রতিবিন্দ গঠিত হয় তখন মিটার স্কেলের সাহায্যে লেন্সের উপরিতলের মধ্যবিন্দু হতে পিনের শীর্ষবিন্দু পর্যন্ত উচতা h_2 পরিমাপ করা হয়। এখন $F = \left(h_2 + \frac{t}{2}\right)$ -এর সাহায্যে সংযোজিত লেন্সের ফোকাস দূরত্ব নির্ণয় করা হয়।

৭। স্ফেরোমিটারের তিন পায়ের মধ্যবর্তী দূরত্ব পরিমাপ করা হয় এবং গড় মান D নেওয়া হয়। সমতল দর্পণের পৃষ্ঠ হতে লেন্সের পৃষ্ঠের উচ্চতা নির্ণয় করা হয়। অতঃপর $r_1=\left(\frac{D^2}{6h}+\frac{h}{2}\right)$ সূত্রের সাহায্যে উত্তল লেন্সের বক্রতার ব্যাসার্ধ r_1 নির্ণয় করা হয়।

পরীক্ষালন্থ উপাত্তসমূহ (Experimental data) :

ছক<mark>-</mark>১ (নমুনা) {লেশের বেধ নির্ণয়ের জন্য]

	Icate in Calata Language DI									
পর্যবেক্ষণ সংখ্যা	প্রধান কেল পাঠ Mcm	ভার্নিয়ার ক্রেলের পাঠ	ভার্নিয়ার পাঠের ধ্রবক Ccm	ভার্নিয়ার পাঠের মান F=V×Ccm	মোট পাঠ (M + F)	গড় পাঠ t cm	লেন্সের মধ্য বিন্দুর পাঠ t/2 cm			
	WICHI	·	Cent	T-VACCIII						
1	0.2	3	0.01	0.03	0.23					
2	0.2	4		0.04	0.54	0 [.] 54	0.27			
3	0.2	5		0.02	0 ⁻ 55					

ছক-২ [উচ্চতা (h) নির্ণয়ের জন্য]

পর্যবেক্ষণ সংখ্যা	কোন তল	রৈখিক <i>স্কেল</i> পাঠ M cm	বৃত্তাকার ফেবল পাঠ V	লঘিষ্ঠ ধ্বক Ccm	বৃত্তাকার পাঠের মান F = V × C cm	মোট পাঠ (M + F) cm	গড় পাঠ t cm	$h = (x_2 - x_1)$ cm
1	সমতল	0	7	0.001	0.002	0.007		
2	দর্পণের ওপর (x ₁)	0	8	0.001	0.008	0.008	0.0072	0°1975
1	লেন্সের ওপর	0.5	4	0.001	0.004	0 ⁻ 204	0.202	
2	(x_2)	0.5	6	0.001	0.006	0.206	IL LEVIO P	

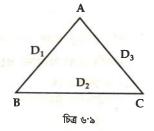
ছক-৩ [(ƒ1) ও (F) এর মান নির্ণয়ের জন্য]

পর্যবেক্ষণ সংখ্যা	উচ্চতা h ₁ cm	গড় উচ্চতা h ₁ cm	ফোকাস দ্রত্ব $f_1 = \left(h_1 + \frac{t}{2}\right)$	উচ্চতা lı ₂ cm	গড় উচ্চতা h ₂ cm	ফোকাস দূরত্ব $F = \left(h_2 + \frac{t}{2}\right)$
1	14.1		cm 14'2 + 0'27	22.2		22°3 + 0°27
2	14.3	14.2	= 14.47	22.4	22.3	= 22.57
3	14 ⁻ 2			22°3	7	

স্ফেরোমিটারের পায়ার দূরত্ব D নির্ণয় :

$$D = \frac{D_1 + D_2 + D_3}{3}$$

$$D = \frac{3.9 + 3.9 + 3.9}{3} = 3.9 \text{ cm}$$


হিসাব (Calculation) :

$$r_1 = \frac{D^2}{6h} + \frac{h}{2} = \frac{3.9 \times 3.9}{6 \times 0.1975} + \frac{0.1975}{2}$$

$$= \frac{15.21}{1.185} + 0.09875 = 12.84 + 0.09875$$

$$= 12.93 \text{ cm}$$

$$f_2 = \frac{F \times f_1}{F - f_1} = \frac{22.57 \times 14.47}{22.57 - 14.47} = \frac{326.5879}{8.10} = 40.31 \text{ cm}$$

সুতরাং

$$\mu = 1 + \frac{r_1}{f_2} = 1 + \frac{12.93}{40.31} = 1 + 0.32 = 1.32$$

ফলাফল (Result) :

পানির পরীক্ষালব্ধ প্রতিসরাজ্ঞ = 1:32

সতৰ্কতা ও আলোচনা (Precautions and discussions) :

- ১। লম্বন তুটি যথাযথ পরিহার করা হয়।
- ২। পিনের অগ্রভাগ লেন্সের প্রধান অক্ষ বরাবর রাখা হয়।
- ৩। দর্পণে কম পরিমাণ তরল পদার্থ ব্যবহার করা হয়।
- ৪। লেন্সের বেধ সঠিকভাবে পরিমাপ করা হয়।

পরীক্ষণের নাম :

লেন্সের ফোকাস দূরত্ব ও ক্ষমতা নির্ণয় Determination of the focal length and power of a lens

 $rac{1}{u}$ এবং $rac{1}{v}$ লেখচিত্রের সাহায্যে একটি উত্তল লেঙ্গের ফোকাস দূরত্ব ও ক্ষমতা নির্ণয় (To determine the focal length and power of a convex lens by plotting $rac{1}{u}$ and $rac{1}{v}$ graph.)

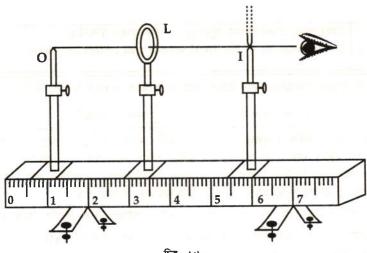
মূলতত্ত্ব (Theory): ফোকাস দূরত্ব : কোনো একটি লেঙ্গের আলোক কেন্দ্র হতে প্রধান ফোকাস পর্যন্ত দূরত্বকে লেঙ্গটির ফোকাস দূরত্ব বলে এবং তাকে 'f' দ্বারা প্রকাশ করা হয় এবং কোনো একটি লেঙ্গের ফোকাস দূরত্বকে মিটারে প্রকাশ করে তার বিপরীত রাশির চিহ্ন পরিবর্তন করলে ডায়প্টারে লেঙ্গের ক্ষমতা পাওয়া যায়। u এবং v যথাক্রমে বস্তু দূরত্ব এবং প্রতিবিদ্দ দূরত্ব হলে, প্রকৃত প্রতিবিদ্দের জন্য আমরা পাই—

 $\frac{1}{f}=\frac{1}{v}+\frac{1}{u}$; এখন, $\frac{1}{u}$ -কে X অক্ষের দিকে এবং $\frac{1}{v}$ -কে Y-অক্ষের দিকে নির্দেশ করে একটি লেখচিত্র অঙ্কনকরলে তা একটি সরলরেখা হবে। সরলরেখাটি মূলবিন্দু হতে উভয় অক্ষকে সমান দূরে ছেদ করবে। মূলবিন্দু হতে উভয় অক্ষের ছেদবিন্দু পর্যন্ত দূরত্ব $\frac{1}{f}$ -এর সমান। কারণ চিত্র ৬-৭-এ X-অক্ষে $\frac{1}{v}=0$; অতএব, $\frac{1}{u}+\frac{1}{v}=\frac{1}{f}$ সমীকরণকে লেখা যায়, $\frac{1}{u}+0=\frac{1}{f}$; বা, u=f। অনুরূপভাবে Y-অক্ষে $\frac{1}{u}=0$; অতএব, $\frac{1}{u}+\frac{1}{v}=\frac{1}{f}$ সমীকরণ হবে $0+\frac{1}{v}=\frac{1}{f}$; বা, v=f। তবে কেন্দ্র হতে ছেদবিন্দুদ্বয়ের দূরত্ব সমান না হলে গড় মান নিতে হবে।

ফোকাস দূরত্ব নির্ণয় করার পর নিম্নের সমীকরণ ব্যবহার করে লেন্সের ক্ষমতা নির্ণয় করা যায় :

লেন্সের ক্ষমতা : কোনো লেন্স দারা আলোক রশ্মিগুচ্ছের অভিসারিতা (convergence) বা অপসারিতা (divergence) উৎপাদনের সামর্থ্যকে তার ক্ষমতা বলে। লেন্সের ফোকাস দূরত্ব যত কম, তা দারা তত কম দূরত্বের মধ্যে সমান্তরাল রশ্মিগৃচ্ছ অভিসারী বা অপসারী রশ্মিগুচ্ছে পরিণত হয়। অর্থাৎ ওই লেন্সের ক্ষমতা বেশি। এ জন্য কোনো লেন্সের ফোকাস দূরত্বের বিপরীত সংখ্যাকে তার ক্ষমতা বলা হয়। সুতরাং কোনো লেন্সের ফোকাস দূরত্ব জানা থাকলে লেন্সের ক্ষমতা নিম্নের সমীকরণ ব্যবহার করে নির্ণয় করা যায় :

লেব্দের ক্ষমতা,
$$P=\frac{100}{f(cm)}$$
 ডায়ণ্টার (D) বা $\frac{1}{f}$ বা, $P=\frac{1}{f(m)}$ ডায়ণ্টার (D)।


লেন্সটি যেহেতৃ উত্তল লেন্স অতএব এর ক্ষমতা ধনাত্মক হবে।

যন্ত্রপাতি এবং অন্যান্য প্রয়োজনীয় দ্রব্যাদি (Apparatus and other necessary materials) :

- (১) আলোক বেঞ্চ,
- (২) পরীক্ষণীয় উত্তল লেক,
- (৩) বস্তু-আলপিন,
- (৪) পর্দা আলপিন,
- (৫) সূচক দণ্ড,
- (৬) ছক কাগজ ইত্যাদি।

কার্যপন্ধতি বা কাজের ধারা (Working procedure)

- (১) একটি উত্তল লেল নেয়া হয় এবং আলোক বেঞ্চের একটি দন্ডের ওপর তাকে স্থাপন করা হয়।
- (২) লেন্সের সম্মুখে আলোক বেঞ্চের অপর একটি দণ্ডে একটি আলপিন স্থাপন করা হয়।
- (৩) লেন্সের অপর পার্শ্বে আলোক বেঞ্চের ওপর একটি দক্তে অপর একটি আলপিনকে এমনভাবে স্থাপন করা হয় যেন প্রথম আলপিনের প্রকৃত প্রতিবিন্দ দৃষ্টিভ্রম ত্রুটি এড়িয়ে তার ওপর সমাপতিত হয়।
- (৪) আলোক বেঞ্চের স্কেল হতে লেন্স, বস্তু -আলপিন এবং প্রতিবিন্দ আলপিনের অবস্থানের পাঠ নেয়া হয় এবং u ও v-এর জাপাত মান বের করা হয়।
- (৫) উত্তମ লেন্সের বিভিন্ন অবস্থানের জন্য উপরোক্ত প্রক্রিয়াগুলো অনুসরণ করে u ও v-এর কয়েকটি আপাত মান বের করা হয়।

চিত্র ৬.7০

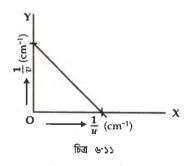
- (৬) বস্তু দূরত্ব এবং প্রতিবিন্দ দূরত্বের সূচক ত্র্টি বের করা হয় এবং u ও v-এর প্রকৃত মান নির্ণয় করা হয়।
- (৭) প্রতি ক্ষেত্রেই $\frac{1}{n}$ এবং $\frac{1}{n}$ -এর মান বের করা হয়।
- (b) লেখচিত্রের X অক্ষের দিকে $\frac{1}{u}$ -কে এবং Y অক্ষের দিকে $\frac{1}{v}$ -কে স্থাপন করে একটি লেখচিত্র অব্ফন করা হয়। লেখ হতে প্রাশ্ত সরলরেখা X এবং Y অক্ষকে যে বিন্দুতে ছেদ করে লেখের মূলবিন্দু হতে এদের দূরত্ব বের করা হয় এবং গড় মান নির্ণয় করা হয় যার মান $rac{1}{f}$ -এর সমান। এর বিপরীত মানই পরীক্ষণীয় লেন্সের নির্ণেয় ফোকাস দূরত্ব।

সূচক তুটি নির্ণয় :

সূচক দণ্ডের দৈর্ঘ্য = x সেমি লেন্স ও বস্তুর মধ্যে আপাত দূরত্ব = y সেমি লেন্স ও প্রতিবিন্দের মধ্যে আপাত দূরত্ব = x সেমি

পর্যবেক্ষণ এবং সন্নিবেশন (Observation and Manipulation) :

উত্তল লেন্সের ফোকাস দূরত্ব ও ক্ষমতা নির্ণয়ের ছক


शर्यातक मन्त्रा	<i>লেঙ্গে</i> র জবস্থান = L সেমি	বস্তুর অবস্থান = ○ সেমি	প্ৰতিবিশ্বের জবস্থান =] সেমি	জাপাত বস্তুর দূরত্ত্ব = (L ~ () সেমি	আপাত প্রতিবিন্দ দূরত্ত্ব = (L ~ I) নেমি	বস্তু দূরত্বের সূচক বুটি $(x\sim y)$ সেমি	প্রতিবিম্ব দূরত্ত্বের সূচক ঝুটি $(x\sim z)$ সেমি	সংশোধিত বস্ত্ দূরত্ব = u সেমি	সংশোধিত প্রতিবিন্দ দ্রত্ত্ব $= v$ সেমি	$\frac{1}{v} + \frac{1}{u}$ ਕਿਸਿ-1 (cm-1) = $\frac{1}{f}$ cm-1	$\frac{1}{v}$ अभि ⁻¹ (cm-1) = $\frac{1}{f}$ cm ⁻¹	<i>f जि</i> षि cm	গড़ ƒ मिय cm	ক্ষমতা $P = \frac{1}{f(m)}D = -D$
1														
2														
3							-							

হিসাব বা গণনা (Calculation):

- (১) X-অক্টের ছেদক, $\frac{1}{u} = \frac{1}{f} = \, {\rm cm}^{-1}$ বা, $f = \, {\rm cm} = \, {\rm m}$
- (২) Y-অক্ষের ছেদক, $\frac{1}{v} = \frac{1}{f} = \dots \cdot \text{cm}^{-1}$ বা, $f = \dots \cdot \text{cm} = \dots \cdot \text{m}$ বা, f এর গড় মান [(১) ও (২) এর গড়] = cm = m

লেন্সের ক্ষমতা, $P = \frac{1}{f}$ $D = - \dots D$

ফলাফল (Result) : প্রদন্ত লেন্সের নির্ণেয় ফোকাস দূরত্ব, f=-cm=-m এবং এর ক্ষমতা $P=-\ldots$ D.

সতৰ্কতা (Precautions) :

- (১) বস্ত্-আলপিন ও প্রতিবিন্দ আলপিন লেন্সের প্রধান অক্ষের সাথে একই সরলরেখায় হওয়া উচিত।
- (২) বস্তু ও প্রতিবিন্দের শীর্ষভাগের মধ্যে দৃষ্টিভ্রম ত্রুটি থাকা উচিত নয়।
- (৩) পাঠগুলো নির্ভুল হওয়া উচিত।
- (৪) সূচক ত্রুটি নির্ণয় করা উচিত।

वालांग्ना (Discussions) :

- (১) সূচক ত্র্টি নির্ণয় করা না হলে বস্তু-দূরত্ব এবং প্রতিবিন্দ্র-দূরত্ব সঠিক হবে না। ফলে পরীক্ষালব্ধ ফলাফল ত্র্টিপূর্ণ হবে।
 - (২) পরীক্ষালব্ধ পাঠগুলো নির্ভুল না হলে ফলাফল সঠিক হবে না।

৬'৪ কতিপয় প্রয়োজনীয় সংজ্ঞা Some necessary definitions

আলোর প্রতিসরণ (Refraction) : আলোক রশ্মি এক ষচ্ছ মাধ্যম থেকে জন্য ষচ্ছ মাধ্যমে যাওয়ার সময় মাধ্যমন্বয়ের বিভেদতলে তির্যকভাবে আপতিত আলোক রশ্মির দিক পরিবর্তন করার ঘটনাকে আলোর প্রতিসরণ বলে।

বিম্ব (Image): কোনো বিন্দু থেকে নিঃসৃত আলোক রশ্মিগুচ্ছ প্রতিফলিত বা প্রতিসৃত হয়ে যদি দ্বিতীয় কোনো বিন্দুতে মিলিত হয় বা দ্বিতীয় কোনো বিন্দু হতে অপসৃত হচ্ছে বলে মনে হয়, তাহলে ওই দ্বিতীয় বিন্দুকে প্রথম বিন্দুর বিন্দু বা প্রতিবিন্দ বলে।

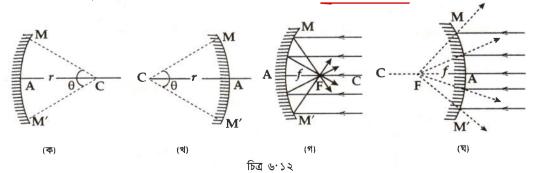
বাস্ত্রব বিশ্ব (Real image): কোনো বিন্দু হতে নিঃসৃত আলোক রশ্মিগুচ্ছ প্রতিফলন বা প্রতিসরণের পর দিতীয় কোনো বিন্দুতে মিলিত হলে এই দিতীয় বিন্দুকে প্রথম বিন্দুর বাস্ত্রব প্রতিবিন্দ্র বলে। এই বিন্দ্র চোখে দেখা যায়, পর্দায়ও ফেলা যায়। অবতল দর্পণে ও উত্তল লেন্সে এই বিন্দ্র গঠিত হয়।

অবাস্তব বিষ্ণ্ (Virtual image) : কোনো বিন্দু হতে নিঃসৃত আলোক রশািগুচ্ছ প্রতিফলন বা প্রতিসরণের পর দিতীয় কোনো বিন্দু থেকে অপসৃত হচ্ছে বলে মনে হলে দিতীয় বিন্দুকে প্রথম বিন্দুর অবাস্তব বিষ্ণ বলে। এই বিষ্ণ চোখে দেখা যায় কিন্তু পর্দায় ফোলা যায় না। সবরকম দর্পণ ও লেন্সে উৎপন্ন হয়।

প্রতিসরাজ্ঞ (Refractive index): আলো যখন এক স্বচ্ছ মাধ্যম হতে অন্য স্বচ্ছ মাধ্যমে তির্যকভাবে প্রবেশ করে তখন নির্দিষ্ট একজোড়া মাধ্যম ও নির্দিষ্ট বর্ণের আলোর জন্য আপতন কোনের সাইন এবং প্রতিসরণ কোনের সাইন এর অনুপাত একটি ধ্রুব সংখ্যা হয়। এই ধ্রুব সংখ্যাকে ওই বর্ণের জন্য প্রথম মাধ্যমের সাপেক্ষে দ্বিতীয় মাধ্যমের প্রতিসরাজ্ঞ বলে।

অর্থাৎ $\frac{\sin i}{\sin r} = \mu =$ ধুব সংখ্যা = প্রতিসরাভক।

একে প্রতিসরণের ২য় সূত্র বা মেলের সূত্র বলে।


আপেক্ষিক প্রতিসরাজ্ঞ্ক (Specific refractive index): আলোক রশ্মি যখন এক ষচ্ছ মাধ্যম হতে জন্য কোনো ষচ্ছ মাধ্যমে তির্যকভাবে প্রবেশ করে তখন নির্দিষ্ট বর্ণের আলোর জন্য আপতন কোণের সাইন ও প্রতিসরণ কোণের সাইনের জনুপাতকে ওই বর্ণের জন্য ওই মাধ্যমের আপেক্ষিক প্রতিসরাজ্ঞ্ক বলে।

পরম প্রতিসরাজ্ঞ্ক (Absolute refractive index): আলোক রশ্মি যখন শূন্য মাধ্যম হতে অন্য কোনো মাধ্যমে প্রবেশ করে তখন নির্দিষ্ট বর্ণের জালোর জন্য আপতন কোণের সাইন ও প্রতিসরণ কোণের সাইনের অনুপাতকে ওই বর্ণের জন্য ওই মাধ্যমের পরম প্রতিসরাজ্ঞ্ক বলে।

লেন্স (Lens) : দুটি গোলীয় বা একটি সমতল অথবা দুটি বেলনাকৃতি অথবা একটি বেলনাকৃতি ও একটি সমতল পৃষ্ঠ দারা সীমাবন্ধ কোনো স্বচ্ছ প্রতিসারক মাধ্যমকে লেন্স বলে।

উত্তল লেন্স (Convex lens): <u>যে লেন্সের মধ্যভাগ মোটা ও প্রান্ত সরু তাকে উত্তল লেন্স বলে</u>। এই লেন্স সাধারণত একগৃচ্ছ আলোক রাশ্মিকে অভিসারী করে বলে ওকে অভিসারী লেন্সও বলে।

অবতল লেন্স (Concave lens): যে লেন্সের মধ্যভাগ সরু ও প্রান্তের দিক মোটা তাকে অবতল লেন্স বলে। এই লেন্স সাধারণত এক গুচ্ছ আলোক রশ্মিকে অপসারিত করে বলে একে অপসারী লেন্স বলে।

মের্বিন্দু (Pole) : গোলকীয় দর্পণের প্রতিফলক তলের মধ্য বিন্দুকে দর্পণের মের্বিন্দু বলে। একে A দারা ব্যক্ত করা হয় [চিত্র ৬'১২ (ক) ও ৬'১২ (খ)]।

Det 94 2. (AZO PATA) 2. (AZO PATA)

6. (51(2) (94) 6. 7

MY POWER 8. STORY 40/1 (2)

8. 65300 40/1 (2)

8. 65300 40/1 (2)

1. 2. 11

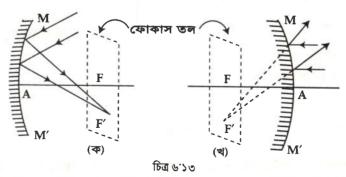
4798 37214 3mt (1291)
4798 23mt (1291)
61334 4714

বক্রতার কেন্দ্র (Centre of curvature) : গোলকীয় দর্পণ যে গোলকের অংশ বিশেষ তার কেন্দ্রকে ওই দর্পণের বক্রতার কেন্দ্র বলে। একে C দারা ব্যক্ত করা হয় [চিত্র ৬·১২ (ক) ও ৬·১২ (খা]।

প্রধান আক্ষ (Principal axis) : গোলকীয় দর্পণের বক্ষতার কেন্দ্র এবং মের্র মধ্য দিয়ে অতিক্রাস্ত সরলরেখাকে ওই দর্পণের প্রধান আক্ষ বলে। অথবা, কোনো গোলকীয় দর্পণের মধ্য দিয়ে তার পৃষ্ঠের লম্বভাবে অতিক্রাস্ত সরলরেখাকে উক্ত দর্পণের প্রধান আক্ষ বলে। এখানে AC রেখা দর্পণের প্রধান আক্ষ [চিত্র ৬'১২ (ক) ও ৬'১২ (খ)]।

প্রধান ছেদ (Principal section) : কোনো গোলকীয় দর্পণের প্রধান অক্ষের মধ্য দিয়ে অতিক্রমকারী কোনো তল যে বৃত্তাকার রেখায় দর্পণেকে ছেদ করে তাকে ওই দর্পণের প্রধান ছেদ বলে। ৬'১২নং চিত্রে MAM' দর্পণের প্রধান ছেদ। দর্পণ সংক্রান্ত সব বর্ণনায় তার প্রধান ছেদই অজ্ঞিত হয়।

প্রধান তল (Principal plane) : গোলকীয় দর্পণের মের্বিন্দুর মধ্য দিয়ে প্রধান অক্ষের সাথে লম্বভাবে অজ্জিত তলকে দর্গণের প্রধান তল বলে।


উন্মেব (Aperture) : গোলকীয় দর্পণে প্রধান ছেদ বক্রতার কেন্দ্রে যে কোণ উৎপন্ন করে, তাকে দর্পণের উন্মেষ বলে। এখানে প্রধান ছেদের প্রান্ত -বিন্দু দৃটিকে বক্রতার কেন্দ্রের সাথে যুক্ত করলে দর্পণের উন্মেষ পাওয়া যায়। চিত্র ৬:১২ (ক) ও ৬:১২ (খ)-এ ও দর্পণের উন্মেষ এবং $\theta = \frac{\text{চাপ}, \text{ MAM'}}{\text{বক্রতার ব্যাসার্ধ, } r}$ । কোনো দর্পণের উন্মেষ 10° অপেক্ষা ক্রম হলে ওই দর্পণকে ক্ষুদ্র উন্মেষযুক্ত দর্পণ বলে। Φ

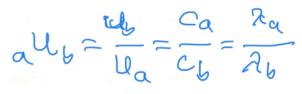
বক্রতার ব্যাসার্ধ (Radius of curvature) : গোলকীয় দর্পণ যে গোলকের অংশ বিশেষ উক্ত গোলকের ব্যাসার্ধকে ওই দর্পণের বক্রতার ব্যাসার্ধ বলে। এটাই বক্রতার ব্যাসার্ধের ভাষাগত সংজ্ঞা। এর গাণিতিক সংজ্ঞা আছে; যেমন কোনো একটি গোলকীয় দর্পণের মের্বিন্দু এবং বক্রতার কেন্দ্রের মধ্যবর্তী দূরত্বকে ওই গোলকীয় দর্পণের বক্রতার ব্যাসার্ধ বলে। একে r দ্বারা প্রকাশ করা হয়। [চিত্র ৬'১২ (ক) ও ৬'১২ (খ)-এ AC = r]

প্রধান কোকাস বা মুখ্য কোকাস (Principal focus) : একগুছ সমান্তরাল আলোক রিশা প্রধান অক্ষের সমান্তরালে কোনো একটি গোলকীয় দর্পণে আপতিত হবার পর প্রতিফলিত রিশাসমূহ প্রধান অক্ষের যে বিন্দুতে মিলিত হয় (অবতল দর্পণে) বা প্রধান অক্ষের যে বিন্দু হতে ছড়িয়ে পড়ছে বলে মনে হয় (উত্তল দর্পণে) ওই বিন্দুকে দর্পণের প্রধান বা মুখ্য কোকাস বলে। একে 'F' দারা প্রকাশ করা হয় [চিত্র ৬'১২ (গ) ও ৬'১২ (ঘ)]।

ফোকাস দূরত্ব (Focal length) : গোলকীয় দর্পণের মের্বিন্দু এবং প্রধান ফোকাসের মধ্যবর্তী দূরত্বকে তার ফোকাস দূরত্ব বলে। একে f দ্বারা প্রকাশ করা হয় [চিত্র ৬'১২ (গ) ও ৬'১২ (ঘ)-এ AF = f]।

কোকাস তল (Focal plane) : গোলকীয় দর্পণের প্রধান কোকাসের মধ্য দিয়ে প্রধান অক্ষের লম্বভাবে কল্লিভ বা অঙ্কিত তলকে তার কোকাস তল বলে। চিত্র ৬'১৩-এ FF' তল হলো ফোকাস তল।

গৌণ ফোকাস (Secondary focus): একগৃচ্ছ সমান্তরাল আলোক রশ্মি প্রধান অক্ষের সাথে আনতভাবে চলে দর্পণের ওপর আপতিত হবার পর প্রতিফলিত রশ্মিগৃচ্ছ দর্পণের ফোকাস তলের যে বিন্দুতে মিলিত হয় (অবতল দর্পণে) বা ফোকাস তলের যে বিন্দু হতে ছড়িয়ে পড়ছে বলে মনে হয় (উত্তল দর্পণে) ওই বিন্দুকে দর্পণের একটি গৌণ ফোকাস বলে। চিত্র ৬:১৩-এ F' বিন্দু একটি গৌণ ফোকাস।


গৌণ অক্ষ (Secondary axis) : মেরু ব্যতীত দর্পণের কোনো একটি বিন্দু এবং বক্ততার কেন্দ্রে সংযোজক রেখাকে গৌণ অক্ষ বলে।

৬·৫ প্রতিসরাজ্ঞ ও আলোর বেগ Refractive index and velocity of light

বিভিন্ন মাধ্যমে আলোর বেগের বিভিন্নতার জন্যই আলোর প্রতিসরণ ঘটে বা আলোক রশ্মি দিক পরিবর্তন করে। শূন্যস্থানে সকল বর্ণের আলোর বেগ একই। কিন্তু জন্য কোনো মাধ্যমে বিভিন্ন বর্ণের আলোর বেগের মান বিভিন্ন হয়। কাজেই মাধ্যমের প্রতিসরাজ্ঞের সাথে আলোর বেগের ঘনিষ্ঠ সম্পর্ক আছে।

কোনো মাধ্যমের প্রতিসরাজ্ক,

$$\mu=\frac{\frac{\pi}{2}}{\frac{\pi}{2}}$$
 মাধ্যমে আলোর বেগ (c_0) তুই মাধ্যমে আলোর বেগ (c_m)

এখন আলোক রশ্মি যদি 'a' মাধ্যম থেকে 'b' মাধ্যমে প্রবেশ করে তাহলে 'a' মাধ্যমের সাপেকে 'b' মাধ্যমের প্রতিসরাজ্ঞ,

$$_a\mu_b=rac{`a'}{`b'}$$
 মাধ্যমে আলোর বেগ (c_a)

বা,
$$a\mu_b = \frac{c_a}{c_b}$$

a,b,c তিনটি ক্রমবর্ধমান প্রতিসরাজ্কের মাধ্যম হলে এবং a হতে c মাধ্যমে প্রতিসরণের ক্ষেত্রে,

ৰা,
$$_{b}\mu_{c} \times _{b}\mu_{c} \times _{c}\mu_{a} = 1$$
 হয় $_{b}\mu_{c} = \frac{1}{_{c}\mu_{a} \times _{a}\mu_{b}} = \frac{_{a}\mu_{c}}{_{a}\mu_{b}}$

$$\vec{A}, \quad _c \mu_b = \frac{_a \mu_b}{_a \mu_c} = \frac{\mu_b}{\mu_c}$$

গাণিতিক উদাহরণ ৬.২

১। কাচের প্রতিসরাক্ষ 1'5 এবং পানির প্রতিসরাক্ষ $\frac{4}{3}$ । পানিতে আলোর বেগ \cdot 2'25 \times $10^8~{
m ms}^{-1}$ হলে কাচে আলোর বেগ কত ?

আমরা জানি.

$$w\mu_g = \frac{\mu_g}{\mu_w}$$

$$\therefore \quad w\mu_g = \frac{1.5}{\frac{4}{3}} = \frac{9}{8}$$

জাবার, $_{w}\mu_{g}=rac{ ext{পানিতে জালোর বেগ}}{ ext{কাচে জালোর বেগ}}=rac{v_{u}}{v_{g}}$

11.
$$v_g = \frac{v_w}{w^{\text{Hg}}}$$

∴ $v_g = \frac{2.25 \times 10^8}{\frac{9}{8}} = \frac{2.25 \times 10^8 \times 8}{9} = 2 \times 10^8 \,\text{ms}^{-1}$

২। একটা পানিপূর্ণ পাত্রে পানির গভীরতা 18 cm বলে মনে হয়। পাত্রে আরও পানি চেলে প্রকৃত গভীরতা 8 cm বাড়ালে পাত্রের পানির আপাত গভীরতা 24 cm বলে মনে হয়। পানির প্রতিসরাক্ষ এবং পাত্রে পানির প্রাথমিক প্রকৃত গভীরতা নির্ণয় কর।

আমরা জানি, তরলের প্রতিসরাজ্ঞ্ক = তরলের প্রকৃত গভীরতা তরলের আপাত গভীরতা ধরা যাক, পানির প্রতিসরাজ্ঞ্ক μ এবং পানির প্রাথমিক প্রকৃত গভীরতা = x

$$\therefore \quad \mu = \frac{x}{18} \text{ di}, \quad x = 18 \, \mu \qquad \qquad \dots \qquad \qquad \dots \qquad \qquad \qquad \dots$$

এখানে.

কাচের প্রতিসরাজ্ঞ , $\mu_s=1.5$ পানির প্রতিসরাজ্ঞ , $\mu_w=\frac{4}{3}$ পানিতে আলোর বেগ , $v_w=2.25\times 10^8~{\rm ms^{-1}}$ কাচে আলোর বেগ , $v_s=?$

পাত্রে আরও পানি ঢালার পর পানির প্রকৃত গভীরতা হলো (x+8) cm সূতরাং, দ্বিতীয় ক্ষেত্রে

$$\mu = \frac{x+8}{24}$$

 $\overline{4}$, $24 \mu = x + 8 = 18 \mu + 8$

 $\sqrt{4}$, $24 \mu - 18 \mu = 8$

বা, 6 µ = 8

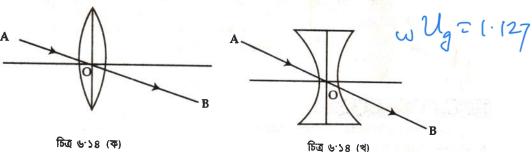
$$\therefore \quad \mu = \frac{8}{6} = 1.33$$

সমীকরণ (i)-এ μ এর মান বসিয়ে পানির প্রাথমিক প্রকৃত গভীরতা পাই, $x = 18 \mu = 18 \times 1^{\circ}33 = 24 \text{ cm}$

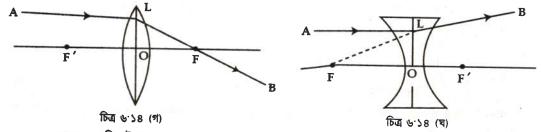
ALT - 1.33

CARIBA - 1.44

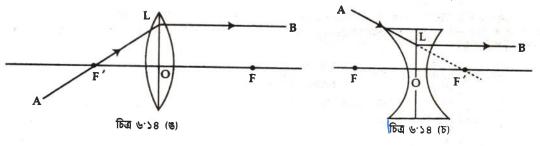
[2] myst - 1-46


DIF - 1-22

1200 - 2:4

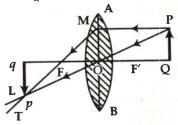

৬.৫.১ লেলের আলোক রশ্মি চিত্র Ray diagram in lens

লেল ছারা কোনো বস্তুর প্রতিবিম্ম সৃষ্টি হলে এর আকৃতি অনেক রকম হতে পারে। জ্যামিতিক পন্ধতিতে কোনো বস্তুর প্রতিবিম্ম অঞ্চন করার সময় নিম্নলিখিত তিনটি শর্ত মনে রাখতে হবে।


১। যে আলোক রশ্মি লেশ-এর আলোক কেন্দ্র দিয়ে যাবে, প্রতিসরণের পর এর দিক অপরিবর্তিত থাকবে। নিচের চিত্রে তা দেখানো হলো।

২। বস্তু হতে আগত আলোক রশ্মি প্রধান অক্ষের সমান্তরালে গমন করে লেন্সের ওপর আপতিত হলে প্রতিসৃত রশ্মি দ্বিতীয় প্রধান ফোকাস দিয়ে যাবে অথবা দ্বিতীয় প্রধান ফোকাস হতে ছড়িয়ে পড়ছে বলে মনে হয়।

৩। কোনো রশ্মি উত্তল লেন্সের প্রথম প্রধান ফোকাস দিয়ে গমন করে বা অবতল লেন্স এর প্রথম প্রধান ফোকাসের দিকে অগ্রসর হয়ে লেন্সে আপতিত হলে তা প্রতিসরণের পর প্রধান অক্ষের সমান্তরাল হবে।


৬-৬ লেন্সের সাধারণ সমীকরণ General equation of lenses

লেন্সের আলোক কেন্দ্র হতে বস্তু-দূরত্ব, প্রতিবিম্ব-দূরত্ব এবং কোকাস-দূরত্বকে যথাক্রমে u, v এবং f দারা প্রকাশ করা হয়। এই রাশিগুলোর মধ্যে একটি সম্পর্ক আছে। এই সম্পর্ক প্রকাশের জন্য আমরা যে সমীকরণ ব্যবহার করে থাকি, তাকে লেন্সের সাধারণ সমীকরণ বলে।

আমরা জানি দুই প্রকারের লেন্স আছে; যথা—একটি উত্তল লেন্স, অপরটি অবতল লেন্স। নিম্নে এই দুই প্রকার লেন্সের জন্য একটি সাধারণ সমীকরণ প্রতিপাদন করতে গিয়ে প্রথমে উত্তল লেন্স এবং পরে অবতল লেন্স বিবেচনা করা হলো।

অবশ্য উত্তল লেন্দে লক্ষ্যবস্ত্র বাস্তব ও অবাস্তব প্রতিবিক্ষ গঠনের ক্ষেত্রে দৃটি এবং অবতল লেন্দে বস্ত্র সর্বদা অবাস্তব প্রতিবিক্ষ গঠনের বিষয়টি সাধারণভাবে আলোচনা করা হবে। এখানে উল্লেখ করা যায় যে, অবতল লেন্দে লক্ষ্যবস্ত্র বাস্তব প্রতিবিক্ষ হয় না।

(১) বাস্তব প্রতিবিন্দের ক্ষেত্রে উত্তল লেন্স: মনে করি AB একটি সরু উত্তল লেন্সের প্রধান ছেদ [চিত্র ৬ ১৫]। O হলো এর আলোক কেন্দ্র, F দ্বিতীয় প্রধান ফোকাস এবং QOq প্রধান অক্ষ; মনে করি একটি বস্তু PQ প্রথম প্রধান ফোকাসের বাইরে অর্থাৎ লেন্সের ফোকাস দূরত্ব অপেক্ষা বেশি দূরে প্রধান অক্ষের ওপর লন্মভাবে অবস্থিত। বস্তুটির সর্বোচ্চ বিন্দু P হতে আগত PM আলোক রশ্মি প্রধান অক্ষের সমান্তরালে লেন্সে M বিন্দুতে আপতিত হয়ে MFT পথে

চিত্ৰ ৬ ১৫

প্রতিসৃত হলো। অপর একটি রশ্মি PO আলোক কেন্দ্রের মধ্য দিয়ে সোজা POL রেখায় OL-এর দিকে প্রতিসৃত হলো। এই প্রতিসৃত রশ্মি দৃটি p বিন্দুতে ছেদ করল। সৃতরাং p হলো P বিন্দুর বাস্তব প্রতিবিন্দ। p হতে প্রধান অক্ষের ওপর pq লম্ম টানি। অতএব pq বস্তু PQ-এর বাস্তব এবং উন্টা প্রতিবিন্দ্র হবে।

এখন POQ এবং pOq দৃটি সদৃশ ত্রিভুজ।

$$\frac{PQ}{pq} = \frac{OQ}{Oq} \qquad \dots \qquad (6.12)$$

আবার, MOF এবং pqF দৃটি সদৃশ ত্রিভুজ।

$$\therefore \frac{MO}{pq} = \frac{OF}{qF} \qquad \dots \qquad \dots \qquad \dots \qquad \dots \tag{6.13}$$

কিন্তু , যেহেতু PM প্রধান অক্ষের সমান্তরাল এবং MOও PQ প্রধান অক্ষের ওপর লম্ম , কাজেই PQ = MO সমীকরণ (6.13) হতে আমরা পাই ,

$$\frac{PQ}{pq} = \frac{OF}{qF} \qquad \dots \qquad \dots \qquad \dots \qquad \dots$$

এখন সমীকরণ (6.12) এবং (6.14) হতে আমরা পাই,

$$\frac{OQ}{Oq} = \frac{OF}{qF} = \frac{OF}{Oq - OF} \qquad ... \tag{6.15}$$

চিহ্নের বাস্তব ধনাত্মক প্রথা অনুযায়ী লক্ষ্যবস্তুর দূরত্ব OQ=u. প্রতিবিন্দের দূরত্ব Oq=v এবং OF=f ধনাত্মক।

$$\therefore$$
 সমীকরণ (6.15) হতে আমরা পাই, $\frac{u}{v} = \frac{f}{v-f}$ বা, $vf = uv - uf$

বা, uf + vf = uv

উভয় পার্শ্বকে 'uvf' দারা ভাগ করে আমরা পাই,

$$\frac{uf}{uvf} + \frac{vf}{uvf} = \frac{uv}{uvf}$$

$$\therefore \qquad \frac{1}{v} + \frac{1}{u} = \frac{1}{f} \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots$$
(6.16)

(২) অবাস্তব প্রতিবিন্দের ক্ষেত্রে উত্তল লেশ : মনে করি AB একটি সরু উত্তল লেশের প্রধান ছেদ [চিত্র ৬'১৬]। O হলো এর আলোক কেন্দ্র, F দ্বিতীয় প্রধান ফোকাস এবং QOF প্রধান অক্ষ।

মনে করি একটি বস্তু PQ লেন্স ও প্রথম প্রধান ফোকাসের মাঝে প্রধান অক্ষের ওপর লন্মভাবে অবস্থিত। বস্তুটির সর্বোচ্চ বিন্দু P হতে আগত PM আলোক রশ্মি প্রধান অক্ষের সমান্তরালে লেন্দের ওপর M বিন্দুতে আপতিত হয়ে দ্বিতীয় প্রধান ফোকাস F দিয়ে MF পথে প্রতিসৃত হলো। অপর একটি রশ্মি PO আলোক কেন্দ্রের মধ্য দিয়ে সোজা POL রেখায় প্রতিসৃত হলো। এই দুটি প্রতিসৃত রশ্মিকে পিছনের দিকে বর্ধিত করায় এরা p বিন্দুতে ছেদ করদ। স্তরাং p হলো P-এর অবাস্তব প্রতিবিন্দ। p হতে প্রধান অক্ষের ওপর pq লন্দ্যবস্তু PQ-এর অবাস্তব এবং সিধা প্রতিবিন্দ।

এখন POQ এবং pOq দুটি সদৃশ ত্রিভুজ।

$$\therefore \frac{PQ}{pq} = \frac{OQ}{Oq} \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad (6.17)$$

আবার MOF এবং pqF দৃটি সদৃশ ত্রিভুজ।

$$\therefore \frac{MO}{pq} = \frac{OF}{qF} \qquad \dots \qquad \dots \qquad \dots \tag{6.18}$$

কিন্তু যেহেতু PM প্রধান অক্ষের সমান্তরাল এবং MO ও PQ প্রধান অক্ষের ওপর লম্ম; কাজেই PQ = MO : সমীকরণ (6.18) হতে আমরা পাই,

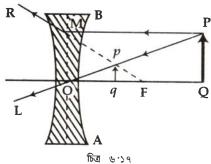
$$\frac{PQ}{pq} = \frac{OF}{qF} \qquad \dots \qquad \dots \tag{6.19}$$

এখন সমীকরণ (6.17) এবং (6.19) হতে আমরা পাই,

$$\frac{OQ}{Oq} = \frac{OF}{qF} = \frac{OF}{Oq + OF} \qquad ... \qquad ... \qquad (6.20)$$

চিহ্নের বাস্তব ধনাত্মক রীতি : বস্তু বাস্তব। অতএব u ধনাত্মক। প্রতিবিদ্দা অলীক বা অবাস্তব। সূতরাং v ঋণাত্মক। প্রধান ফোকাস বাস্তব বিন্দু। অতএব f ধনাত্মক।

$$\therefore$$
 সমীকরণ (6.20) হতে আমরা পাই, $\frac{u}{-v} = \frac{f}{-v+f}$


বা, -uv + uf = -vf বা, uf + vf = uv

উভয় পার্শ্বকে 'uvf' দারা ভাগ করে আমরা পাই,

$$\frac{uf}{uvf} + \frac{vf}{uvf} = \frac{uv}{uvf} \quad \text{al}, \quad \frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

$$\therefore \quad \frac{1}{v} + \frac{1}{u} = \frac{1}{f} \quad \dots$$

অবতদ লেক : মনে করি AB একটি সরু অবতদ লেকের প্রধান ছেদ [চিত্র ৬'১৭]। O হলো এর জালোক কেন্দ্র, F দিতীয় প্রধান ফোকাস এবং OFQ প্রধান জক্ষ। মনে করি একটি বস্তু PQ লেকের প্রধান অক্ষের ওপর দম্মভাবে অবস্থিত।

বস্তুটির সর্বোচ্চ বিন্দু P হতে আগত PM আলোক রশ্মি প্রধান অক্ষের সমান্তরালে লেঙ্গের ওপর M বিন্দুতে আপতিত হয়ে MR পথে প্রতিসৃত হলো। একে পিছনের দিকে বর্ধিত করলে প্রধান ফোকাস F দিয়ে যাবে। অপর একটি রশ্মি PO আলোক কেন্দ্রের মধ্য দিয়ে POL রেখায় সোজা OL-এর দিকে প্রতিসৃত হলো। এই প্রতিসৃত রশ্মি দুটিকে পিছনের দিকে বর্ধিত করলে তারা p বিন্দুতে ছেদ করল। সূতরাং p হলো P-এর অবাস্তব প্রতিবিন্দ্র। p হতে প্রধান অক্ষের উপর pq লম্ম টানি। অতএব pq লম্ম্যবস্তুর PO-এর অবাস্তব বা অনীক এবং সিধা প্রতিবিন্দ্র। এই প্রতিবিন্দ্র লক্ষ্যবস্তুর চেয়ে আকারে ছোট হয়।

এখানে POQ এবং pOq দুটি সদৃশ ত্রিভুজ।

$$\therefore \frac{PQ}{pq} = \frac{OQ}{Oq} \qquad \dots \tag{6.22}$$

আবার, MOF এবং pqF দুটি সদৃশ ত্রিভুজ।

$$\frac{MO}{pa} = \frac{OF}{aF} \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots$$

কিন্তু যেহেতু PM প্রধান অক্ষের সমান্তরাল এবং MO ও PQ প্রধান অক্ষের ওপর লম্ব; কাজেই PQ = MO

∴ সমীকরণ (6.23) হতে আমরা পাই,

$$\frac{PQ}{pq} = \frac{OF}{qF} \qquad \dots \tag{6.24}$$

এখন সমীকরণ (6.22) এবং (6.24) হতে আমরা পাই,

$$\frac{OQ}{Oq} = \frac{OF}{qF} = \frac{OF}{OF - Oq} \qquad ... \qquad (6.25)$$

চিহ্নের বাসতব ধনাজ্মক রীতি : এখানে বসতু বাসতব ও প্রতিবিন্দ অবাসতব। সূতরাং u ধনাজ্মক এবং v ঋণাজ্মক। প্রধান ফোকাস অবাসতব বিন্দু। অতএব f ঋণাজ্মক।

সমীকরণ (6.25) হতে আমরা পাই,

$$\frac{u}{-v} = \frac{-f}{-f - (-v)}$$

বা, vf = -uf + uv

বা, uf + vf = uv

উভয় পার্শ্বকে 'uvf' ঘারা ভাগ করে আমরা পাই,

$$\frac{uf}{uvf} + \frac{vf}{uvf} = \frac{uv}{uvf}$$

$$\forall i, \quad \frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

$$\therefore \quad \left[\frac{1}{v} + \frac{1}{u} = \frac{1}{f}\right] \qquad \dots \qquad (6.26)$$

উল্লেখ্য : সমীকরণ (6.26)-ই উত্তল বা অবতল লেঙ্গে ফোকাস যুগলের অবস্থান নির্দেশক সমীকরণ।

কাজ: লেন্স স্পর্শ না করে কীভাবে শনাক্ত করবে কোনটি কোন লেন্স ?

উত্তল লেন্সের ফোকাস দূরত্বের মধ্যে কোনো লক্ষ্যবস্তৃ থাকলে সেই বস্তুর অবাস্তব, সোজা ও বিবর্ধিত বিন্দ গঠিত হয়। আবার অবতল লেন্সের সামনে লক্ষ্যবস্তৃ থাকলে তার অবাস্তব, সোজা ও ধর্বিত বিন্দ গঠিত হয়। সুতরাং লেন্স শনাক্ত করার জন্য লেন্সের সামনে খুব কাছাকাছি একটু আঙুল রেখে অপর দিক থেকে দেখলে যদি আঙুলের সোজা ও বিবর্ধিত বিন্দ গঠিত হয় তাহলে বুঝতে হবে লেন্সটি উত্তল আর যদি সোজা কিন্তু ধর্বিত বিন্দ গঠিত হয় তাহলে বুঝতে হবে লেন্সটি অবতল।

গাণিতিক উদাহরণ ৬.৩

১। একটি উত্তল লেগ থেকে 90 cm দূরে একটি বস্তুকে রাখা হলে 45 cm দূরের পর্দায় একটি বাস্তব প্রতিবিদ্দ তৈরি করে। এই লেগের গা ঘেঁষে একটি অবতল লেগ লাগানো হলে আরও 75 cm দূরে একটি বাস্তব প্রতিবিদ্দ সৃষ্টি হয়। অবতল লেগের ফোকাস দূরত্ব নির্ণয় কর। [BUET Admission Test, 2016–17]

আমরা জানি,

$$\frac{1}{f_1} = \frac{1}{u} + \frac{1}{v} = \frac{1}{90} + \frac{1}{45} = \frac{1}{30}$$
 আবার, $\frac{1}{f} = \frac{1}{u} + \frac{1}{v'} = \frac{1}{90} + \frac{1}{(45 + 75)} = \frac{7}{360}$

আমরা জানি.

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$$

$$\frac{1}{f_2} = \frac{1}{f} - \frac{1}{f_1} = \frac{7}{360} - \frac{1}{30} = \frac{-1}{72}$$
∴ $f_2 = -72 \text{ cm}$

২। 0'25 m ফোকাস দূরত্ববিশিষ্ট একটি অবতল দর্গণ হতে 0'4 m দূরে একটি বস্তু স্থাপন করা হলো। যদি বস্তুটি 0'2 m দীর্ঘ হয়, তবে প্রতিবিন্দেরে অবস্থান, প্রকৃতি ও আকার নির্ণয় কর।

[RUET Admission Test, 2008-09]

$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$

$$\therefore \qquad \frac{1}{0.25} = \frac{1}{0.4} + \frac{1}{v}$$

$$v = 0.667 \,\mathrm{m}$$

জাবার,
$$l'=ml=\left(\frac{v}{u}\right)l=\left[\begin{array}{c} \frac{0.667}{0.4} \end{array}\right]\times 0.2=0.333 \ \mathrm{m}$$
 এবং বিষ্ণের প্রকৃতি বাস্তব।

৬-৭ বিবর্ধন

Magnification

বিবর্ধন শব্দের অভিধানগত অর্থ "বিশেষ বর্ধন" বা "বিশেষ বৃদ্ধি"। বিজ্ঞানের ভাষায় বিবর্ধন শব্দের অর্থ— "বস্তুর তুলনায় এর প্রতিবিম্ব কত গুণ বড় বা কভ গুণ ছোট।" বস্তুত বিবর্ধন বলতে রৈখিক বিবর্ধন (Linear Magnification) বুঝায় যার সংজ্ঞা নিমে দেওয়া হলো।

সংজ্ঞা : রৈখিক বিবর্ধন বলতে প্রতিবিশ্বের দৈর্ঘ্য বা উচ্চতা এবং বস্তুর দৈর্ঘ্য বা উচ্চতার অনুগাতকে বুঝায়। একে 'm' দারা ব্যক্ত করা হয়।

ৰ্যাখ্যা : মনে করি, বস্তুর দৈর্ঘ্য বা উচ্চতা = PQ = x এবং প্রতিবিন্দের দৈর্ঘ্য বা উচ্চতা = pq = y

∴ আমরা পাই,

বিবর্ধন,
$$m = \frac{2 \sqrt{80 + 100}}{\sqrt{100 + 100}}$$
 কমতা $\frac{-py}{PQ} = \frac{-y}{x}$

RMDAC

(6.27)


প্রতিবিন্দ্র লক্ষ্যবস্তুর সাপেকে উন্টা তাই ঝণাত্মক চিহ্ন ব্যবহৃত হয়েছে।

কিন্তু সাধারণভাবে বিবর্ধন বদতে প্রতিবিশ্বের আকার এবং বস্তুর আকারের অনুগাতকে বুঝার। অতএব,

বির্বধন,
$$m = \frac{20 \text{বিবিম্মের আকার}}{\text{বস্তুর আকার}}$$

$$= \frac{pq}{PQ} \qquad \cdots \qquad (6.28)$$

কিন্তু প্রতিবিন্দের আকার এবং বস্তুর আকারের অনুপাত প্রতিবিন্দের দূরত্ব এবং বস্তুর দূরত্বের অনুপাতের সমান। কেননা, $\frac{pq}{PQ} = \frac{Oq}{OO}$ [চিত্র ৬-১৬, ৬-১৭ ও ৬-১৮]

চিহ্নের বাস্তব ধনাতাক প্রথা জনুসারে, বস্তুর দূরত্ব, OQ = u এবং প্রতিবিন্দা অবাস্তব বলে প্রতিবিন্দের দূরত্ব Oq = -v

:. বির্বধন,
$$m = \frac{$$
প্রতিবিন্দের দূরত্ব $}{$ বস্তুর দূরত্ব $} = \frac{v}{u}$... (6.29)

এক্টতাবে অবতল লেন্সের ক্ষেত্রেও [চিত্র ৬·১৭] পাওয়া $\sqrt{113}$, $m=-rac{v}{v}$

সূতরাং, লেন্স উত্তল বা অবতল, বিম্ব সোজা বা উন্টা, বাস্তব বা অবাস্তব সকল ক্ষেত্রেই $m=-rac{v}{u}$ হবে।

লেন্স-এর সাধারণ সমীকরণের সাহায্যে বিবর্ধনের সমীকরণণ্ড নির্দেশ করা যায়। লেন্স-এর সাধারণ সমীকরণ হলো $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$

(ক) উভয় পার্শ্বকে 'v' দারা গুণ করে আমরা পাই,

ৰা,
$$m = 1 - \frac{v}{f}$$

ৰা, $m = \frac{f - v}{f}$ (6.30)

(খ) আবার লেস-এর সাধারণ সমীকরণকে 'u' দারা গুণ করে আমরা পাই,

$$\frac{u}{v} + 1 = \frac{u}{f}$$

$$\forall i, \quad \frac{u}{v} = -1 + \frac{u}{f} = \frac{u - f}{f}$$

$$\forall i, \quad m = -\frac{v}{u} = \frac{f}{f - u}$$

$$\therefore \quad m = \frac{f}{f - u}$$

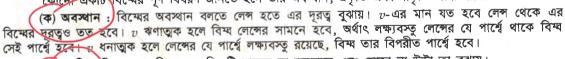
$$(6.31)$$

গাণিতিক উদাহরণ ৬.৪

১। একটি পর্দা থেকে 30 cm দূরে একটি মোমবাতি রাখা আছে। পর্দার ওপর মোমবাতির তিনগুণ বিবর্ধিত একটি বিম্ব পেতে কত ফোকাস দূরত্বের কী ধরনের দর্পণ ব্যবহার করতে হবে? [KUET Admission Test, 2006–07]

$$m = \frac{v}{u}$$

বা, 3u = v


আবার, v = u + 30

· u = 15 এবং v = 45

$$f = \left(\frac{1}{v} + \frac{1}{u}\right)^{-1} = 11^{\circ}25 \text{ cm (অবতল দৰ্পণ)}$$

৬-৮ বিশ্বের পূর্ণ বিবরণ Complete description of an image

কোনো একটি বিন্দের পূর্ণ বিবরণ জানতে হলে তার অবস্থান, প্রকৃতি এবং আকৃতি জানা দরকার।

খি প্রকৃতি: বিস্দের প্রকৃতি বলতে বিস্দটি বাস্তব না অবাস্তব এবং সোজা না উন্টা তা বুঝায়।

এখন ৮-এর চিহ্ন দেখে বিন্দ্র বাসতব না অবাসতব তা নির্ণয় করা হয় এবং m-এর চিহ্ন দেখে বিন্দ্র সোজা না উন্টা ভা নির্ণয় করা হয়।

v ধনাতাক হলে বিন্দ বাসতব হয়, v ঋণাতাক হলে বিন্দ অবাসতব হয়।

m ধনাতাক হলে বিন্দ সোজা হয়, m ঋণাতাক হলে বিন্দ উন্টা হয়।

গ) আকৃতি : বিন্দের আকৃতি বলতে বিন্দটি লক্ষ্যবস্তুর তুলনায় বড় না ছোট, না লক্ষ্যবস্তুর সমান, তা বুঝায় আকৃতি নির্দেরে জন্য m -এর শুধু মান নিতে হয়। m-এর পরম মান,

$$|m| = |\frac{v}{u}|$$
 হয়।

m– এর মান 1–এর বড় হলে বিন্দটি বিবর্ধিত অথবা লক্ষ্যবস্তুর চেয়ে বড়। 1–এর কম হলে বিন্দটি লক্ষ্যবস্তুর চেয়ে ছোট। আবার |m|=1 হলে ব্ঝতে হবে যে বিন্দ লক্ষ্যবস্তুর সমান।

বিম্বের দৈর্ঘ্য নির্ণয় : লক্ষ্যবস্তুর দৈর্ঘ্য 'l' জানা থাকলে বিম্বের দৈর্ঘ্য ।' নিম্নোক্ত সমীকরণ থেকে পাওয়া যায়।

$$l' = |m| l \qquad \dots \qquad \dots \tag{6.32}$$

একে লেল প্রস্তুতকারকের সূত্র বলা হয়। একে লেলের ফোকাস দ্রত্বের সূত্রও বলা হয়। এটি লেলের মাধ্যম, বেইনকারী মাধ্যম এবং লেলের দৃটি তলের বক্ষতার ব্যাসার্ধ দ্বারা নির্ধারিত।

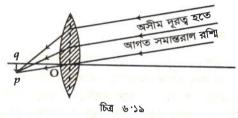
1. OZMIT , A (4) = FILMINT (UNA) N(-) = Controller (DISTAGE) 2. (93/10- 2 N(A) > alsta, 27 $\sqrt{(-)}$ (a) $\sqrt{(+)}$ m>1 -> 42/39L उ, आकृषि ; m <1 -> con By

AIRE C- 1 = M

৬৯ জ্যামিতিক উপায়ে লক্ষ্যবস্ত্র বিভিনু অবস্থানের জন্য প্রতিবিম্বের অবস্থান, প্রকৃতি ও আকার নির্ণয়

Determination of location, nature and size of images by geometrical means of an object located at different positions

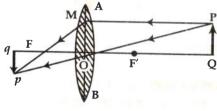
কোনো একটি লক্ষ্যবস্তুকে অসীম দূরত্ব হতে ক্রমাগত লেন্সের আলোক কেন্দ্রের দিকে আনতে থাকলে বস্তুর বিভিন্ন অবস্থানের জন্য প্রতিবিন্দের অবস্থান, প্রকৃতি এবং আকৃতিও বিভিন্ন হবে। উল্লেখ্য প্রতিবিন্দের পূর্ণ বিবরণের জন্য এর অবস্থান, প্রকৃতি এবং আকার নির্দেশ করতে হয়।


উত্তল লেন্স: মনে করি নিচের প্রত্যেকটি চিত্রে AOB একটি সরু উত্তল লেন্সের প্রধান ছেদ, O এটির আলোক কেন্দ্র, F দ্বিতীয় প্রধান ফোকাস এবং F' প্রথম প্রধান ফোকাস। ধরি OQ এর প্রধান অক্ষ ও PQ প্রধান অক্ষের ওপর লম্মভাবে অবস্থিত একটি লক্ষ্যবস্তু এবং f লেন্সের ফোকাস দূরতু।

(ক) বস্তু অসীম দূরত্বে অবস্থিত (অর্থাৎ $u=\infty$) : অসীম দূরত্বে অবস্থিত কোনো বস্তু হতে আগত রশ্যিসমূহ পরস্পর সমান্তরাল্ভাবে প্রধান অক্ষের সাথে একটি কোণ উৎপন্ন করে লেন্সে প্রবেশ করে এবং লেন্সে প্রতিসরিত হওয়ার

পর কোনো একটি বিন্দুতে মিলিত হয়। চিত্র ৬:১৯-এ প্রতিসরিত রশ্মিসমূহ p বিন্দুতে মিলিত হয়েছে। এখন p হতে প্রধান অক্ষের ওপর pq লম্ম টানি। অতএব pq -ই বস্তুটির প্রতিবিম্ম।

অবস্থান : ফোকাস তলে অর্থাৎ |v|=f


প্র**কৃতি**: বাস্তব ও উন্টা ৷

আকার : বস্ত্র সাপেক্ষে অত্যন্ত ছোট। কেননা,
$$|m| = \frac{|v|}{u} = \frac{f}{\infty} \approx 0$$

উত্তল লেন্সের এই ধর্মকে কাজে লাগিয়ে দূরবীক্ষণ যন্ত্রের অভিলক্ষ্য (objective) তৈরি করা হয়।

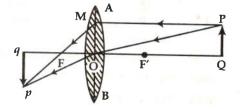
(খ) বস্তু উত্তল লেন্স থেকে 2f এর বেশি দূরে অবস্থিত (অর্থাৎ u>2f) : মনে করি PQ একটি লক্ষ্যবস্তু [চিত্র ৬ ২০]। এটি প্রধান অক্ষের ওপর লেন্স হতে 2f অপেন্যা অধিক দূরে অবস্থিত। বস্তুর সর্বোচ্চ প্রান্ত P হতে একটি

চিত্র ৬ ২০

আলোক রশ্মি PM-কে প্রধান অক্ষের সমান্তরাল এবং অপর একটি রশ্মি PO-কে আলোক কেন্দ্র বরাবর বিবেচনা করলে প্রতিসরণের পর প্রথম রশ্মিটি ফোকাস F দিয়ে ও দ্বিতীয় রশ্মিটি না বেঁকে সোজা যাবে ও এরা p বিন্দুতে মিলিত হবে। অতএব p-ই P বিন্দুর বাসতব প্রতিবিন্দ। এখন p হতে প্রধান অক্ষের ওপর pq লম্ম টানি। অতএব pq-ই PQ-এর প্রতিবিন্দ।

জবস্থান : f এবং 2f-এর মধ্যে জর্থাৎ 2f > |v| > f প্রকৃতি : বাস্তব ও উন্টা ।

আকার : বস্তুর তুলনায় ছোট। কেননা, $\mid m\mid =\frac{\mid v\mid}{u}<1$

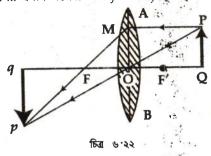

লেন্সের এই ধর্মকে কাজে লাগিয়ে ক্যামেরা তৈরি করা হয়।

্গে) বস্তু লেন্স থেকে 2f দূরে অবস্থিত (অর্থাৎ u=2f) : মনে করি PQ একটি লক্ষ্যবস্তু [চিত্র ৬ ২১]। এটি লেন্সের প্রধান অক্ষের ওপর লেন্স হতে 2f দূরে অবস্থিত। বস্তুর সর্বোচ্চ প্রান্ত P হতে একটি আলোক রশ্মি PM-কে

প্রধান অক্ষের সমান্তরাল এবং অপর একটি রশ্মি PO-কে আলোক কেন্দ্র বরাবর বিবেচনা করলে প্রতিসরণের পর প্রথম রশ্মিটি ফোকাস F দিয়ে ও দ্বিতীয় রশ্মিটি না বেঁকে সোজা যাবে ও এরা p বিন্দুতে মিলিত হবে। অতএব p-ই p বিন্দুর বাস্তব প্রতিবিন্দ্র। এখন p হতে প্রধান অক্ষের ওপর pq লম্ম টানি। সুতরাং pq-ই pq-এর বাস্তব প্রতিবিন্দ্র।

অবস্থান : 2f দূরে অর্থাৎ |v| = 2f

প্র**কৃতি**: বাস্তব ও উন্টা।



চিত্র ৬ ২১

আকার : লক্ষ্যবস্তুর সমান। কেননা, $\mid m \mid = \frac{\mid v \mid}{u} = \frac{2f}{2f} = 1$

লেন্দের এই ধর্মকে কাজে লাগিয়ে ভূ-দূরবীকণ যন্ত্রে উন্টা প্রতিবিন্দকে একই জাকারের সমশীর্ষ প্রতিবিন্দে পরিণত করা হয়।

(ষ) বস্তু f এবং 2f-এর মধ্যে অবস্থিত (অর্থাৎ 2f > u > f) : মনে করি PQ একটি লক্ষ্যবস্তু [চিত্র ৬ ২২]। এটি লেন্দের প্রধান অক্ষের ওপর f এবং 2f দূরত্বের মধ্যে অবস্থিত। বস্তুর সর্বোচ্চ প্রান্ত P হতে একটি আলোক রশ্মি PM-কে

প্রধান অক্ষের সমান্তরাল এবং অপর একটি রশ্মি PO-কে আলোক কেন্দ্র বরাবর বিবেচনা করলে প্রতিসরণের পর প্রথম রশ্মিটি ফোকাস F দিয়ে ও দ্বিতীয় রশ্মিটি না বেঁকে সোদ্ধা যাবে ও এরা pবিন্দুতে মিলিত হবে। অতএব p-ই P-এর বাস্তব প্রতিবিন্দ। এখন p হতে প্রধান অক্ষের ওপর pq লম্ম টানি। সুতরাং pq-ই PO-এর প্রতিবিন্দ।

অবস্থান : 2f অপেক্ষা বেশি দূরে অর্থাৎ $\mid v \mid > 2f$

প্রকৃতি : বাস্তব ও উন্টা।

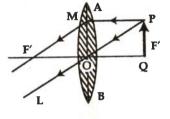
আকার : বস্তুর সাপেকে বিবর্ধিত অর্ধাৎ আকারে বড়।

কেননা,
$$|m| = \frac{|v|}{u} > 1$$

লেলের এই ধর্মকে কাজে লাগিয়ে জণুবীক্ষণ যন্ত্রে অভিলক্ষ্য (objective) তৈরি করা হয়।

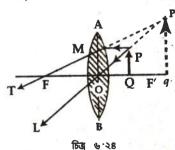
(%) বস্তু প্রধান কোকাসে অব্যক্তিত (অর্থাৎ u=f) : মনে করি, PQ একটি লক্ষ্যবস্তু [চিত্র ৬ ২৩]। এটি প্রধান অক্ষের ওপর লেল হতে f দূরে অবস্থিত। বস্তুর সর্বোচ্চ প্রান্ত P হতে একটি আলোক রশ্মি PM-কে প্রধান অক্ষের সমান্তরাল এবং অপর একটি রশ্মি PG-কে আলোক কেন্দ্র বরাবর বিবেচনা করলে প্রতিসরণের পর প্রথম রশ্মিটি কোকাস

F দিয়ে এবং দ্বিতীয় রশ্মিটি না বেঁকে সোদ্ধা যাবে ও এরা পরস্পরের সমান্তরালে গমন করবে এবং অসীমে প্রফুবিন্দ গঠন করবে।


जवन्धान : जनीत्म जर्था९ ए = ∞।

প্রকৃতি : বাস্তব ও উন্টা <mark>অথ</mark>বা অবাস্তব ও সিধা।

আকার : বস্তুর তুলনায় খুবই বিবর্ধিত।


কেননা,
$$|m| = \frac{|v|}{u} = \frac{\infty}{f} \approx \infty$$

বর্ণালি বীক্ষণ যন্ত্রে উত্তল লেন্সের এই ধর্মকে কাজে লাগিয়ে সমান্তরাল রশ্মি গুচ্ছ তৈরি করা হয়।

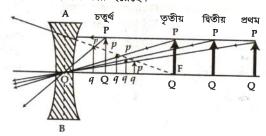
চিত্র ৬ ২৩

(চ) বস্ত্ আলোক কেন্দ্র ও প্রথম প্রধান কোকাসের মধ্যে অবস্থিত (অর্থাও u < f): মনে করি PQ একটি লক্ষ্যবস্ত্ [চিত্র ৬ ২৪]। এটি প্রধান অন্তক্ষর ওপর শেলের আলোক কেন্দ্র O এবং প্রথম প্রধান ফোকাস F'-এর মধ্যে

জবস্থিত। বস্তুর সর্বোচ্চ বিন্দু P হতে একটি আলোক রিন্ম PM-কে প্রধান অক্ষের সমান্তরাল এবং অপর একটি রিন্মি PO-কে আলোক কেন্দ্র বরাবর বিবেচনা করলে প্রতিসরণের পর প্রথম রিন্মিটি ফোকাস দিয়ে এবং দিতীয় রিন্মিটি না বেঁকে সোজা যাবে ও এরা পরস্পর অপসারী হবে। এই দুটি রিন্মিকে পিছনের দিকে বর্ধিত করলে এরা p বিন্দু হতে অপসৃত হয়েছে বলে মনে হবে। অতএব p-ই P বিন্দুর প্রতিবিন্দ্ম। এখন p হতে প্রধান অক্ষের ওপর pq লম্ম টানি। সুতরাং pq-ই PQ-এর প্রতিবিন্দ্ম। এখানে, v>u।

অবস্থান : লেন্দের যে পার্শ্বে বস্তু অবস্থিত প্রতিবিন্দ্রও সেই পার্গ্বে অবস্থিত।

প্রকৃতি : অবাস্তব এবং সিধা।


আকার : বিবর্ধিত। কেননা, $|m| = \frac{v}{u} > 1$

উন্তল লেন্দের এই ধর্মকে কাচ্চে লাগিয়ে বিবর্ধন কাচ, অণুবীক্ষণ ও দূরবীক্ষণ যন্ত্রের অভিনেত্র (eye piece) তৈরি করা হয়।

৬-১০ অবতল লেন্স Concave lens

৬ ২৫নং চিত্রে AOB একটি সরু অবতল লেন্সের প্রধান ছেদ। লেন্সটির আলোক কেন্দ্র O, দ্বিতীয় প্রধান ফোকাস F এবং প্রধান অক্ষ OQ-এর ওপর দন্ডায়মান PQ একটি বস্তৃ। বস্তৃটির বিভিন্ন অবস্থানে তার প্রতিবিন্দ লেন্সে কীভাবে উৎপন্ন হবে তা বস্তুর সর্বোচ্চ বিন্দু P হতে দুটি রশ্মির গতিপথ দেখিয়ে নির্দেশ করা হয়েছে।

বস্তুর সর্বোচ্চ বিন্দু P হতে প্রধান অক্ষের সমান্তরালে লেন্সে আপতিত আলোক রশ্মিটি লেন্স হতে এমনভাবে নির্গত হবে যে তাকে F বিন্দু হতে নির্গত হচ্ছে মনে হবে। আবার P হতে লেন্সের আলোক কেন্দ্র O অভিমুখী লেন্সে আপতিত PO রশ্মিটি লেন্স হতে না বেঁকে সোজা PO বরাবর নির্গত হবে। নির্গত পরস্পর অপসারী এই রশ্মি দুটির ছেদবিন্দু p-ই P-এর অবাস্তব প্রতিবিন্দ্র এবং p হতে প্রধান অক্ষের ওপর অজ্ঞিত লম্ব pq-ই সমগ্র বস্তু PQ-এর প্রতিবিন্দ্র হবে।

চিত্ৰ ৬ ২৫

অবস্থান : বস্তু ও প্রতিবিদ্দা লেন্সের একই পার্শ্বে অবস্থিত।

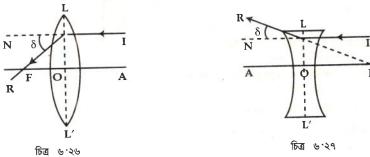
প্রকৃতি: অবাস্তব এবং সিধা:

আকার: বস্তুর তুলনায় ছোট। কেননা, $\mid m\mid =\frac{v}{u}<1$

চিত্রে PQ বস্তুটির ১ম, ২য়, ৩য় ও ৪র্থ অবস্থানে থাকলে তার প্রতিবিদ্দ ক্রমশ লেন্সের দিকে অনুরূপভাবে সরে কীভাবে উৎপন্ন হবে দেখানো হয়েছে। চিত্রগুলো লক্ষ্য করে অনায়াসে বলা যায় যে—

- (১) লক্ষ্যবস্তুর প্রতিবিন্দ সর্বদা সিধা, অবাস্তব ও আকারে বস্তুর চেয়ে ছোট হবে এবং বস্তুর একই পার্শ্বে উৎপন্ন হবে।
 - (২) আলোক কেন্দ্র হতে প্রতিবিন্দের দূরত্ব লক্ষ্যবস্তুর দূরত্ব অপেক্ষা কম হবে।
- (৩) বস্তু যতই আলোক কেন্দ্রের দিকে অগ্রসর হবে প্রতিবিন্দ ততই আকারে বৃদ্ধি পাবে কিন্তু কোনো সময় আকারে বস্তুর সমান হবে না।

৬-১১ লেন্সে প্রতিবিন্দেবর অবস্থান ও প্রকৃতি নির্ণয় Determination of position and nature of images formed by lenses


(बार्ब	লেন্সের সাপেক্ষে বস্তুর	প্রতিবিম্বের অবস্থান	micd by lenses				
હ	অবস্থান	वारायदम्ब अवस्थान	প্রতিবিন্দেরর প্রকৃতি ও				
	অসীম দূরত্ব (u = ∞)	দ্বিতীয় প্রধান ফোকাস তলে	বস্ত্র সাপেকে আকার				
		দিতীয় প্ৰধান ফোকাস তলে (v = f)।	বাস্তব, উন্টা ও আকারে বস্তুর চেয়ে অত্যন্ত ছোট $(\mid m\mid pprox 0)$ ।				
	2f অপেক্ষা বেশি দূরে (u > 2f) ।	লেন্সের পশ্চাতে f ও 2f দূরত্বের	বাস্তব, উন্টা ও আকারে বস্তুর				
1	2 (12472 (মাঝে (2f> v > f)।	চেয়ে ছোট (m < 1)				
6	2f দূরত্বে $(u=2f)$	লেন্সের পচাতে 2f দূরত্বে	বাস্তব, উন্টা ও আকারে বস্তুর				
F		(v=2f)	সমান (m = 1)				
ख ख	f ও 2f দূরত্বের মাঝে	লেন্সের পকাতে 2f অপেক্ষা বেশি	বাস্তব, উন্টা ও আকারে বড়				
(eg	(2f > u > f)	দূরে (v > 2f)।	(m > 1)				
	f দূরত্বে (u = f)	षत्रीम मृतरः (ए = ∞)	বাস্তব, উন্টা ও আকারে অত্যন্ত বড় $(m \approx \infty)$ ।				
	আলোক কেন্দ্র ও f দূরত্ত্বের মাঝে	বস্ত্র একই পার্শ্বে এবং সামনে	অবাস্তব, সিধা ও আকারে বড়				
	(f>u > 0)	(v > u)	(m > 1)				
8	আলোক কেন্দ্র ও অসীম দূরত্ত্বের	বস্তুর একই পার্শ্বে আলোক কেন্দ্র ও দিতীয় প্রধান ফোকাসের মাঝে	অবাস্তব, সিধা ও ছোট $(m < 1)$ ।				
অবতেশ লেন্স	মাঝে (∞>u>0)	(f>v>0)	THE RESERVE OF THE PARTY.				
	অসীম দূরত্বে (u = ∞)	দিতীয় প্রধান ফোকাস তলে বস্তুর একই পার্শ্বে $(v=f)$ ।	অবাস্তব, সিধা ও ছোট $(m<1)$ ।				

$$V = 6 - u$$

জানার বিষয় : যদি পারিপার্শ্বিক মাধ্যমের প্রতিসরাজ্ঞ্চ লেন্সের উপাদানের প্রতিসরাজ্ঞ্চ অপেক্ষা বেশি হয় তাহলে উত্তল লেন্স অবতল লেন্সের ন্যায় এবং অবতল লেন্স উত্তল লেন্সের ন্যায় আচরণ করে।

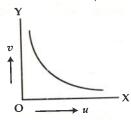
৬ ১২ লেন্সের ক্ষমতা Power of a lens

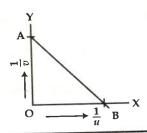
কোনো লেন্স দারা আলোক রশ্মিগুচ্ছের অভিসারিতা (convergence) বা অপসারিতা (divergence) টিত্র ৬ ২৬ ও ৬ ২৭ উৎপাদনের সামর্থ্যকে তার ক্ষমতা বলে। যদি কোনো লেন্স একগৃচ্ছ সমান্তরাল আলোক রশ্মিকে বেশি পরিমাণে অভিসারিত বা অপসৃত করতে পারে, তবে তার ক্ষমতা বেশি আর যদি কম পরিমাণে অভিসারিত বা অপসৃত করতে পারে, তবে তার ক্ষমতা বেশি আর যদি কম পরিমাণে অভিসারিত বা অপসৃত করতে পারে তবে তার ক্ষমতা কম। কাজেই লেন্সে আপতিত প্রধান অক্ষের সমান্তরাল আলোক রশ্মির প্রতিসরণজ্ঞনিত কৌণিক বিচ্যুতি ১ দারাই লেন্সের ক্ষমতা নির্ধারিত হবে। যে লেন্সের ক্ষেত্রে ১ যত বেশি হবে ওই লেন্সের ক্ষমতাও

তত বেশি। আবার যে লেন্সের ফোকাস দূরত্ব যত কম, তা দারা তত কম দূরত্বের মধ্যে সমান্তরাল রশ্মিণুচ্ছ অভিসারী বা অপসারী রশ্মিগুচ্ছে পরিণত হয়। অর্থাৎ ওই লেন্সের ক্ষমতা বেশি। এজন্য কোনো লেন্সের কোকাস দূরত্বের বিপরীত সংখ্যাকে তার ক্ষমতা বলা হয়।

মনে করি কোনো লেন্সের ফোকাস দূরত্ব =f; অতএব এর ক্ষমতা, $P=rac{1}{f}$ ।

লেন্সের ক্ষমতার একক : লেন্সের ক্ষমতা একটি পরিমেয় রাশি। অতএব এর একক আছে। লেন্সের ক্ষমতার একক ডায়েপ্টার সংক্ষেপে 'D' দ্বারা সূচিত করা হয়। 1 মিটার কোকাস দূরত্বের কোনো লেন্সের ক্ষমতাকে 1 ডায়প্টার (D) বলে। লেন্সের ফোকাস দূরত্বকৈ মিটারে প্রকাশ করে তার বিপরীত রাশি নিলে ডায়প্টারে লেন্সের ক্ষমতা পাওয়া যায়।


ধরি লেন্সের ফোকাস দূরত্ব $f(\mathbf{m})$ । অতএব এর ক্ষমতা,


মার লেখের কোঝার স্মৃত্যু
$$f(\Pi)$$
 নিবন্ধ নাম $f(\Pi)$ নিবন্ধ নাম $f($

উত্তল লেন্সের ক্ষমতা ধন রাশি এবং অবতল লেন্সের ক্ষমতা ঋণ রাশি।

কাজ: লেপে u বনাম v লেখচিত্র কীরূপ হবে ?

লেসের ক্ষেত্রে u-v লেখচিত্র নিম্মরূপ হবে :

কাজ : ঘন মাধ্যমে কাচ লেন্সের ক্ষমতা হ্রাস পায় কেন ?

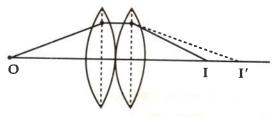
লেন্স প্রস্তৃতকারক সূত্র এবং সাধারণ সমীকরণ থেকে দেখা যায় যে, বায়ু থেকে ঘনতর কোনো মাধ্যমে যেমন পানি, কেরোসিন, গ্লিসারিন ইত্যাদিতে একটি কাচের লেন্স রাখলে এর ফোকাস দূরত্ব বৃদ্ধি পায়। আর যেহেতৃ লেন্সের ক্ষমতা তার ফোকাস দূরত্বের ব্যস্তানুপাতিক, তাই বায়ুর চেয়ে ঘনতর কোনো মাধ্যমে কাচ লেন্সের ক্ষমতা হ্রাস পায়। **'একটি চপমার ক্ষমতা + 4 ডায়প্টার'**——এর **ন্দর্থ কী**ং এখানে, P = + 4 ডায়প্টার।

 $f = +\frac{1}{4} m = +0.25 m$ [DAT: 16-17]

তা হলে 'চশমার ক্ষমতা + 4 ডায়প্টার' কথাটির অর্থ হলো— ব্যবহৃত লেসটি উত্তল এবং এর ফোকাস দূরত্ব 0°25 m।

আবার কোনো লেন্সের ক্ষমতা — 2D বলতে বুঝায় লেন্সটি অবতল

এবং এর ফোকাস দূরত্ব, $f = -\frac{1}{2} \text{ m} = -0.5 \text{ m}$


[MAT: 15-16; 14-15]

দৃটি লেন্সের ক্ষমতা P_1 এবং P_2 হলে লেন্স দৃটিকে সংস্পর্ণে রেখে সমবায় গঠন করলে ওই সমবায় ক্ষমতা, $P=P_1+P_2$ হবে।

লেলের সমবায় ও তুল্য লেন্স

Combination of lenses and equivalent lens

 f_1 ও f_2 ফোকাস দ্রত্বের দুটি লেম্ব L_1 ও L_2 পরস্পরের সংস্পর্শে সমাক্ষীয়ভাবে রয়েছে [চিত্র ৬ ২৮]। সমবায়ের অক্ষের ওপর O একটি বিন্দু বস্তু।

The secon

প্রথমে L_1 লেন্সটি I' বিন্দুতে বস্তুর প্রতিবিন্দ গঠন করে।

$$\therefore \frac{1}{f_1} = \frac{1}{v_1} - \frac{1}{u} \qquad \qquad \dots$$
 (i)

এখানে u= বস্তু দূরত্ব এবং $v_1=\mathrm{L}_1$ লেঙ্গের প্রতিবিন্দ দূরত্ব। P' বিন্দু L_2 লেঙ্গের অসদ বস্তু হিসেবে জাচরণ করে এবং চূড়ান্ত প্রতিবিন্দ I বিন্দুতে গঠিত হয়।

$$\therefore \quad \frac{1}{f_2} = \frac{1}{v} - \frac{1}{v_1} \qquad \qquad \dots \qquad \dots$$
 (ii)

এখন, সমীকরণ (i) ও (ii) হতে পাই,

$$\frac{1}{f_1} + \frac{1}{f_2} = \frac{1}{v} - \frac{1}{u} \qquad ... \qquad ...$$
 (iii)

লেন্স সমবায়টির পরিবর্তে F ফোকাস দূরত্বের একটি লেন্স নেওয়া হলো যা বস্তু O-এর প্রতিবিন্দ্র I বিন্দুতে গঠন করে। তাহলে 'F' ফোকাস দৈর্ঘ্যের লেন্সটি তুল্য লেন্স।

$$\therefore \quad \frac{1}{F} = \frac{1}{v} - \frac{1}{u} \qquad \qquad \dots \tag{iv}$$

সমীকরণ (iii) ও (iv) তুলনা করলে আমরা পাই,

$$\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2}$$

তুল্য লেন্সের ক্ষমতা $P=rac{1}{F}$, L_1 লেন্সের ক্ষমতা $P_1=rac{1}{f_1}$ এবং L_2 লেন্সের ক্ষমতা $P_2=rac{1}{f_2}$

$$P = P_1 + P_2 \qquad ... \qquad (6.34)$$

 \therefore মোট বিবর্ধন, $m=m_1 imes m_2$, এখানে m_1 এবং m_2 যথাক্রমে \mathbf{L}_1 এবং \mathbf{L}_2 লেন্স কর্তৃক উৎপন্ন বিবর্ধন।

কোনো লেন্স সমবায়ের N সংখ্যক লেন্সের ফোকাস দূরত্ব যদি যথাক্রমে f_1, f_2, \ldots, f_n এবং তুল্য লেন্সের ফোকাস দূরত্বF হয় তা হলে,

$$\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2} + \frac{1}{f_3} + \dots + \frac{1}{f_n}$$

সুতরাং, তুল্য লেলের ক্ষমতা,

$$P = P_1 + P_2 + P_3 + \dots P_n$$

... 6·34(a)

... 6[.]34(b)

গালিতিক উদাহরণ ৬.৫

১। 6 cm দম্বা একটি বস্তুকে 16 cm কোকাস দূরত্ত্বের উত্তল লেল থেকে 12 cm দূরে স্থাপন করা হলো। বিম্পের আকার বের কর।

আমরা জানি,

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$

$$\sqrt{1}$$
 $\frac{1}{12} + \frac{1}{v} = \frac{1}{16}$

$$\frac{1}{v} = \frac{1}{16} - \frac{1}{12}$$

$$= \frac{3-4}{48} = -\frac{1}{48}$$

v = -48 cm

জাবার,
$$\frac{2 \log \log x}{\log x}$$
 জাকার $\frac{(l)}{\log x} = \frac{2 \log \log x}{\log x}$ দূরত্ব $\frac{(v)}{\log x}$

 \therefore প্রতিবিন্দের আকার, $l = \frac{v}{u} \times l' = \frac{48}{12} \times 6 = 24 \text{ cm}$

২। কোনো লেলের ক্ষমতা +4 D। লেলটি থেকে কত দূরে বস্তু রাখলে বস্তুর অর্থেক আকারের প্রতিবিদ্দ সৃষ্টি হবে ? [KUET Admission Test, 2019-20]

আমরা জানি,

$$P = \frac{1}{f(m)}$$

বা,
$$f = \frac{1}{P}$$

আবার,
$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

$$m = \frac{v}{u} = \frac{25 \log \ln x}{\sqrt{25}} = \frac{1}{2}$$

$$v = \frac{u}{2}$$

সমীকরণ (ii) হতে পাই,

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

বা,
$$\frac{1}{u} + \frac{1}{u} = \frac{1}{f}$$

$$\frac{2}{u} + \frac{1}{u} = \frac{1}{f}$$

বা,
$$\frac{3}{u} = \frac{1}{f} = \frac{1}{0.25}$$
 $f = \frac{1}{P} = \frac{1}{4} = 0.25 \text{ m}$

$$u = 3 \times 0.25 = 0.75 \text{ cm}$$

৩। সূর্যের আলোতে একটি উদ্ভব লেন্স রেখে লেন্স থেকে $30~{
m cm}$ দূরে একটি পর্দায় সবচেয়ে স্পর্ট ও উদ্ভব আলোর স্পট পাওয়া গেন। লেন্সটির প্রত্যেক পৃষ্ঠের বক্রতার ব্যাসার্থ $30~{
m cm}$ হলে পানিতে তার ক্ষমতা নির্ণয় কর। পানির প্রতিসরাক্ষ $\frac{4}{3}$ ।

আমরা জানি,

$$\frac{1}{v} + \frac{1}{u} = (\mu_g - 1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$
বা,
$$\frac{1}{30} + \frac{1}{\infty} = (\mu_g - 1) \left(\frac{1}{30} - \frac{1}{-30} \right)$$
বা,
$$\frac{1}{30} = (\mu_g - 1) \left(\frac{2}{30} \right)$$
বা,
$$\mu_g - 1 = \frac{1}{2} \qquad \therefore \quad \mu_g = 1.5$$
ভাবার.

$$P = \frac{1}{f} = \left(\frac{\mu_c}{\mu_w} - 1\right) \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

$$= \left(\frac{1.5}{4/3} - 1\right) \left(\frac{1}{0.30} - \frac{1}{-0.30}\right)$$

$$= \left(\frac{4.5}{4} - 1\right) \left(\frac{2}{0.30}\right)$$

$$= 0.83 \text{ D} \quad (এখানে } r_1 \cdot s_1 \cdot r_2 \quad \text{মিটারে প্রকাশিত})$$

8। 13 cm কোকাস দ্রত্ববিশি**ঠ উত্তল লেল থে**কে কত দূরে বস্তু স্থাপন কর**লে** বাস্তব বিন্দের আকার বস্তুর আকারের তিন গুণ হবে ?

> f =+15 cm বিবৰ্ধন, m = 3 u =?

আমরা জানি,

$$m = \frac{v}{u} = 3$$

বা, v = 3u

বাস্তব বিম্বের জন্য v ধনাত্মক

$$v = +3u$$
এখন $\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$
বা, $\frac{1}{u} + \frac{1}{3u} = \frac{1}{f} = \frac{1}{15}$
বা, $\frac{3+1}{3u} = \frac{1}{15}$
বা, $\frac{4}{3u} = \frac{1}{15}$

বা, 3u = 60

∴ u = 20 cm সামনে।

ে। একটি উভোত্তন লেন্দের ফোকাস দূরত্ব f [চিত্র ১]। যদি লেন্দটি AB বরাবর দুটি অংশে কাটা হয় তবে প্রতিটি লেন্দের ফোকাস দূরত্ব কত হবে ?

ধরা যাক, উভোত্তল লেন্সের প্রতিটি তলের বক্ততার ব্যাসার্ধ r এবং এর উপাদানের প্রতিসরাভক μ । লেন্স তৈরির ফর্মুলা থেকে পাই,

$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{r_1} + \frac{1}{r_2} \right)$$

$$= (\mu - 1) \left(\frac{1}{r} + \frac{1}{r} \right)$$

$$= \frac{2}{r} (\mu - 1)$$
...
(i)

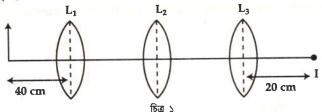
প্রতিটি অর্ধাংশের বব্রুতার তলের ক্ষেত্রে, $r_1=r$ এবং সমতল পৃষ্ঠের ব্যাসার্ধ, $r_2=\infty$ ধরা যাক, কাটা প্রতিটি অংশের ফোকাস দূরত্ব = x

$$\therefore \frac{1}{x} = (\mu - 1) \times \frac{1}{r} = \frac{1}{2f}$$
 (সমীকরণ (i) হতে)

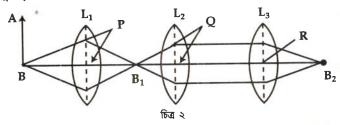
 $\therefore x = 2f$

৬। একটি উভোত্তল লেন্সের ফোকাস দূরত্ব এর বক্ততার ব্যাসার্ধের সাথে সম্পর্ক হলো f=r। লেন্সের উপাদানের প্রতিসরাজ্ঞ নির্ণয় কর।

আমরা জানি,


$$\frac{1}{f}=(\mu-1)\left(\frac{1}{r_1}-\frac{1}{r_2}\right)$$

উভোত্তল লেন্সের ক্ষেত্রে, $r_1=r, r_2=-r$


$$\therefore \quad \frac{1}{f} = (\mu - 1) \left(\frac{1}{r} + \frac{1}{r} \right)$$
$$= (\mu - 1) \left(\frac{1+1}{r} \right) = (\mu - 1) \frac{2}{r}$$

$$\overline{1}$$
, $(\mu - 1) = \frac{1}{2} \overline{1}$, $\mu = \frac{3}{2} = 1.5$

৭। তোমাকে L_1 , L_2 ও L_3 তিনটি লেন্স দেওয়া হলো যাদের প্রত্যেকটির কোকাস দূরত্ব 20 cm । L_1 এর 40 cm সামনে একটি বস্তু রাখা হলো [চিত্র -১ এর অনুরূপ]। চূড়াস্ত প্রতিবিম্ব L_3 লোলের কোকাস বিন্দু I-তে উঃপনু হয়। L_1 , L_2 ও L_3 এর মধ্যে দূরত্ব নির্ণয় কর।

চিত্র ২-এ শুধু দুরত্বের মান বিবেচনা করা হয়েছে।

 L_1 লেখের জন্য, $u = PB = 40 \text{ cm} = 2 \times 20 \text{ cm} = 2f$

অতএব, $u = 2f = 2 \times 20 \text{ cm} = 40 \text{ cm} = PB$

চূড়ান্ত প্রতিবিদ্দ B_2 ফোকাস বিন্দু L_3 -তে দেখানো হয়েছে।

সূতরাং, AB₂ = 20 cm

জতএব, L_2 এবং L_3 এর রশ্মিসমূহ জবশ্যই পরস্পর সমান্তরাল হবে। এতে দেখা যায় যে B_1 হচ্ছে L_2 এর ফোকাস বিন্দু। সূতরাং $B_1Q=20~{
m cm}$ ।

জতএব, L_1 এবং L_2 মধ্যে দূরত্ব $= PQ = PB_1 + B_1Q = 40 + 20 = 60$ cm

পুনরায়, L_2 ও L_3 লেন্সের মধ্যে সমান্তরাল রশ্মি নির্দেশ করে। এই দুটি লেন্স এদের মধ্যবর্তী যেকোনো অবস্থানে রাখা যেতে পারে।

পদার্থবিজ্ঞান (২য়) - ১৬(ক)

৮। একটি 2'5D ক্ষমতার অবতদ দেল এবং একটি 2'0D ক্ষমতার উত্তল দেলহরের সমন্বরে একটি যৌগিক দেল তৈরি করা হলো। উক্ত যৌগিক লেলের সামনে 300 cm দ্রে একটি বস্তু রাখনে বস্তুটির প্রতিবিদ্দ কোথার পাওরা যাবে?

আমরা জানি, তুল্য ক্ষমতা.

$$P = P_1 + P_2 = 2 - 2.5 = -0.5D$$

জাবার,
$$f = \frac{1}{P} = -\frac{1}{0.5} = -2 \text{ m}$$

এখন,
$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

$$\frac{1}{v} = \frac{1}{f} - \frac{1}{u} = -\frac{1}{2} - \frac{1}{3}$$

$$= -\frac{-3 - 2}{6} = -\frac{5}{6}$$

$$\therefore v = \frac{-6}{5} = -12 \,\mathrm{m}$$

প্রতিবিম্বটি জবাস্তব এবং সোজা হবে।

১। যদি একটি বস্তু উদ্ভল লেল থেকে 4 cm দূরে রাখা হয়, ভবে লেল থেকে 20 cm দূরে একটি বাস্তব প্রতিবিদ্দ্দ গঠিত হয়। যদি লেলটি বিবর্ধক কাচ হিসাবে ব্যবহার করা হয় ভবে এ থেকে সর্বোচ্চ কভ বিবর্ধন পাওরা যাবে? স্পর্ক দৃঠির ন্যুনতম দূরত্ব 25 cm।

আমরা জানি,

$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$$

$$\boxed{4}, \ \frac{1}{20} - \frac{1}{-4} = \frac{1}{f}$$

$$\overline{4}, \ \frac{1+4}{20} = \frac{1}{f}$$

বা,
$$f=5$$
cm

এখন, বিবর্ধক কাচের সর্বোচ্চ বিবর্ধন,

$$m=1+\frac{D}{f}$$

$$\therefore m = 1 + \frac{25}{5} = 1 + 5 = 6$$

১০। একটি অবতলোত্তল লেলের দৃটি তলের বক্ততার ব্যাসার্ধ সমান। লেলের কোকাস দ্রত্ব ও ক্ষমতা নির্ণয় কর। এই ধরনের দেল কোধায় ব্যবহার হয়।

ধরি লেশের ফোকাস দূরত্ব, f

লেনের তৈরির ফর্মূলা থেকে আমরা জানি.

$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

$$= (\mu - 1) \left(\frac{1}{r} - \frac{1}{r} \right)$$

$$[\because r_1 = r_2]$$

$$\therefore \quad \frac{1}{f} = 0 \quad \text{al}, \ f = \infty$$

পুনরায়, লেনের ক্ষমতা,
$$P = \frac{1}{f} = \frac{1}{\infty} = 0$$

সানগ্রাসে এই ধরনের লেন্স ব্যবহার করা হয়।

এখানে .

$$u = -4 \,\mathrm{cm}$$

অবতল লেন্সের ক্ষমতা, $P_2 = -2.5D$

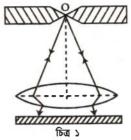
উত্তল লেন্সের ক্ষমতা, P₁ = 2.0D

বস্তুর দূরত্ব, u = 300 cm = 3 m

$$v = 20 \,\mathrm{cm}$$

$$D = 25 \, \text{cm}$$

১১। একটি সমতল দর্পণের ওপর 25 cm ফোকাস দ্রত্ত্বের একটি উত্তল লেগ স্থাপন করা হলো। যদি একটি বস্তু [চিত্র ১] লেগের অক্ষ বরাবর কেন্দ্রে লেগ থেকে 25 cm ওপরে স্থাপন করা হয় তবে প্রতিবিম্ব কোথায় গঠিত হবে?


আমরা জানি.

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

$$\boxed{4}, \quad \frac{1}{v} + \frac{1}{25} = \frac{1}{25}$$

$$\boxed{4}, \quad \frac{1}{v} = \frac{1}{25} - \frac{1}{25} = \frac{1-1}{25} = \frac{0}{25}$$

∴ v = ∞

এখানে,

 $u = 25 \,\mathrm{cm}$ $f = 25 \,\mathrm{cm}$

অতএব, প্রতিসরিত রশ্মি লেন্সের অক্ষের সমান্তরালে অগ্রসর হয়ে সমতল দর্পণের অভিলম্ম বরাবর আপতিত হবে। সূতরাং প্রতিফলিত রশ্মি একই পথ অনুসরণ করবে এবং প্রতিবিদ্দ গঠন না করে বস্তু 🔾 এর সাথে মিলে যাবে [চিত্র ১]।

অনুসন্ধান কর : সান গ্রাস (গগলস্)-এর দুটি বক্র তল রয়েছে, অথচ এদের ক্ষমতা শূন্য, কেন ?

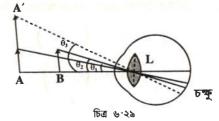
প্রানের লেঙ্গে ব্যবহৃত দৃটি তলের বক্রতার ব্যাসার্ধ সমান এবং একই চিহ্নের (একই দিকে বাঁকা) [চিত্র ১]।

:. কমতা,
$$P = \frac{1}{f} = (_{a}\mu_{g} - 1)\left(\frac{1}{r_{1}} - \frac{1}{r_{2}}\right)$$

$$= 0 \quad [:: r_{1} = r_{2}]$$

৬·১৩ বীক্ষণ যন্ত্ৰাবলি Visual instruments

একটি বস্তু আকারে খুব ছোট হলে অথবা দূরে অবস্থান করলে তাকে খালি চোখে সপফ দেখা যায় না। এ কারণে উপযোগী যন্ত্রের সাহায্যে কাছের অতি ক্ষুদ্র বস্তুর বড় প্রতিবিদ্দ গঠন করে অথবা দূরের বস্তুর প্রতিবিদ্দ নিকটে উৎপন্ন করে দর্শন উপযোগী করা হয়। এসব যন্ত্রগুলোকে দূর্ফি সহায়ক বীক্ষণ যন্ত্র বলে। যেমন অণুবীক্ষণ যন্ত্র, দূরবীক্ষণ যন্ত্র, বাইনোকুলার, পেরিস্কোপ ইত্যাদি। এসব যন্ত্রে এমন ধরনের লেন্স ব্যবহার করা হয়, যা চোখে বেশি মানের বীক্ষণ কোণ বা দৃষ্টি কোণ উৎপন্ন করে। এখন আমরা বীক্ষণ কোণ বা দৃষ্টি কোণ কী এবং কৌণিক বিবর্ধন আলোচনা করব।


৬-১৩-১ বীক্ষণ কোণ বা দৃষ্টি কোণ ও কৌণিক বিবর্ধন Visual angle and angular magnification

বীক্ষণ কোণ বা দৃষ্টি কোণ

একটি বস্তু চোখে যে কোণ উৎপন্ন করে তাকে দৃষ্টি কোণ বা বীক্ষণ কোণ বলে। চোখে একটি বস্তু বড় না ছোট দেখবে তা নির্ভর করে বস্তু কর্তৃক উৎপন্ন দৃষ্টি কোণের ওপর।

ব্যাখ্যা : চিত্র ৬·২৯-এ A ও B একই বস্তু দুটি ভিন্ন অবস্থানে রয়েছে। B অবস্থানে বস্তুটি থাকায় একে A অবস্থানের চেয়ে বড় দেখায়।

যদিও বস্তু দৃটি একই দৈর্ঘ্যের; কিন্তু বীক্ষণ কোণ বা দৃষ্টি কোণ $\theta_2 > \theta_1$ হওয়ায় কাছের বস্তু বড় মনে হচ্ছে। সূতরাং, দেখা যাছে যে বিস্ফোর উচ্চতা বা দৈর্ঘ্য দৃষ্টি কোণের সমানুপাতিক। একই অবস্থানে A ও A থাকলেও $\theta_3 > \theta_1$ হওয়ায় A' > A। দৃষ্টি কোণ যত বড় বস্তু তত বড় দেখায়।

দর্পণ এবং লেন্স আলোচনায় বিন্দের আকার বস্তুর আকারের চেয়ে কত বড় বা ছোট তা রৈখিক বিবর্ধন সূচক (index) দ্বারা প্রকাশ করা হয়েছে। কিন্তু অনেক দৃষ্টি সহায়ক যন্ত্রে যে বিন্দ সৃষ্টি হয় তা লক্ষ্যবস্তুর তুলনায় খুবই ছোট। সেক্ষেত্রে বিন্দের আকৃতি নির্ণয়ের জন্য রৈখিক বিবর্ধন সূবিধাজনক সূচক নয়। তাই ওই সকল যন্ত্রের ক্ষেত্রে রৈখিক বিবর্ধনের পরিবর্তে কৌণিক বিবর্ধনকেই উপযোগী সূচক হিসেবে ব্যবহার করা হয়।

পদার্থবিজ্ঞান (২য়) - ১৬(খ)

কৌণিক বিবর্ধন বা বিবর্ধন

বীক্ষণ যন্ত্রে বস্তু এবং প্রতিবিম্ব চোখে যে কোণ উৎপন্ন করে তাদের অনুপাতকে কৌণিক বিবর্ধন বা সংক্ষেপে বিবর্ধন বলে। একে m দারা চিহ্নিত করা হয়। m-কে অনেক সময় বিবর্ধন ক্ষমতাও বলা হয়।

ব্যাখ্যা: দৃষ্টি সহায়ক বীক্ষণ যন্ত্রে গঠিত কোনো লক্ষ্যবস্তুর প্রতিবিন্দ চক্ষু লেন্সের সাপেক্ষে বস্তু হিসেবে ক্রিয়া করে। কিন্তু চোখে এই প্রতিবিন্দ ও প্রকৃত বস্তু সমান কোণ উৎপন্ন করে না। এই কারণে অক্ষিপটে বস্তুর আকার হতে ভিন্ন আকারের প্রতিবিন্দ গঠিত হয়। চোখে বস্তুর আপাত আকার নির্ভর করে প্রকৃত বস্তু ও তার প্রতিবিন্দের দৃষ্টি-কোণের ওপর। এই কারণে বীক্ষণ যন্ত্রে বস্তু এবং প্রতিবিন্দ চোখে যে কোণ উৎপন্ন করে তাদের অনুপাত দ্বারা বিবর্ধন নির্দিষ্ট হয়।

যদি বস্তু ও প্রতিবিন্দ চোখে যথাক্রমে lpha ও eta দৃষ্টিকোণ উৎপন্ন করে, তবে $m=rac{eta}{lpha}$ (6.35)

৬-১৩-২ মাইকোন্সোপ (অণুবীক্ষণ যন্ত্ৰ) Microscope

আমাদের সামনে এমন অনেক কিছু আছে যাদেরকে আমরা খালি চোখে দেখি না। আবার এমন অনেক কিছু আছে যাদেরকে খালি চোখে দেখলেও খুব ছোট দেখা যায়। এই সকল বস্তুকে বিবর্ধিত করে স্পফ্টভাবে দেখার ব্যবস্থা হলো অণুবীক্ষণ যন্ত্র।

যে আলোক যন্ত্রের সাহায্যে নিকটবর্তী অতি ক্ষুদ্র বস্ত্র খুঁটিনাটি প্রতিবিম্বের মাধ্যমে বর্ধিত করে দেখা যায় তাকে অণুবীক্ষণ যন্ত্র বলে। অণুবীক্ষণ যন্ত্র দুই প্রকার; যথা —

(ক) সরল অণুবীক্ষণ যন্ত্র বা বিবর্ধক কাচ (Simple Microscope or Magnifying glass) ও

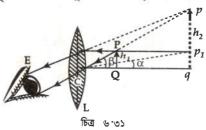
(খ) জটিল বা যৌগিক অণুবীক্ষণ যন্ত্ৰ (Compound Microscope)।

জানার বিষয় : অণুবীক্ষণ যন্ত্রের ক্ষমতা বৃদ্ধিতে ব্যবহার করা হয় অতিবেগুনি রশ্মি।

৬-১৩-৩ সরল অণুবীক্ষণ যন্ত্র বা বিবর্ধক কাচ Simple microscope or magnifying glass

খুব বেশি বিবর্ধন প্রয়োজন না হলে এটি ব্যবহৃত হয়। এতে একটি হাতলযুক্ত ফ্রেমে অল্প ফোকাস দূরত্বের একটি

উত্তল লেন্স বসানো থাকে [চিত্র ৬ ৩০]। সাধারণত এটি সৃষ্ম কারকার্য, অতি ক্ষুদ্র লেখা, হাতের ছাপ, অতি ক্ষুদ্র যন্ত্রপাতি ইত্যাদি দেখার কাজে ব্যবহার করা হয়।


মূলনীতি: আমরা জানি, উত্তল লেঙ্গের ফোকাস দূরত্ব অপেক্ষা কম দূরত্বে একটি বস্তু রাখলে লেঙ্গে তার একটি সিধা, অবাস্তব ও আকারে বড় প্রতিবিদ্ধ বস্তুর একই পার্শ্বে গঠিত হয় এবং বস্তু লেঙ্গের যত নিকটে অবস্থান করে বিবর্ধন তত বেশি হয় বা লেঙ্গ হতে তত দূরে প্রতিবিদ্ধ গঠিত হয়। লেঙ্গের অপর পার্শ্বে চোখ রাখলে

চিত্র ৬ ৩০

বস্তুর পরিবর্তে এই বিবর্ধিত প্রতিবিদ্দ দেখতে পাওয়া যায়। অবশ্য প্রতিবিদ্দটি চোখের স্পর্য্ট দর্শনের নিকট বিন্দুতে গঠিত হলে তাকে বিনা ক্লেশে সবচেয়ে বেশি স্পষ্ট দেখা সম্ভব হয়। এটিই সরল অণুবীক্ষণ যন্ত্রের ক্রিয়া প্রণান্দির মূলনীতি।

বিবর্ধন: ধরা যাক একটি সরল অণুবীক্ষণ যন্ত্রের উত্তল লেন্স L-এর ফোকাস দূরত্ব f অপেক্ষা কম দূরত্বে প্রধান অক্ষের ওপর লম্মভাবে একটি বস্ত্ PQ স্থাপন করা হয়েছে [চিত্র ৬'৩১]। এতে লেন্সের পিছনে স্থাপিত চোখ E-এর স্পর্ফ দৃষ্টির নিকট বিন্দুতে তার সিধা, অবাসতব ও আকারে বড় প্রতিবিন্দ pq গঠিত হলো।

 \therefore বিবর্ধন, $m = \frac{v}{u} = 1 + \frac{v}{f}$

এখন লেন্সের সাধারণ সমীকরণ হতে অবাস্তব প্রতিবিন্দের ক্ষেত্রে লেখা যায়,

$$-\frac{1}{v}+\frac{1}{u}=\frac{1}{f}$$
 [ে শেন্সটি উত্তল তাই f ধনাত্মক এবং প্রতিবিম্ব অবাস্তব বলে, v ঋণাত্মক] অথবা, $\frac{1}{u}=\frac{1}{v}+\frac{1}{f}$ বা, $\frac{v}{u}=1+\frac{v}{f}$ [উভয় পক্ষকে v ঘারা গুণ করে]

(6.36)

m = 1 + 1

চক্ষু যদি লেন্স হতে a দূরত্বে অবস্থান করে, তবে D=v+a

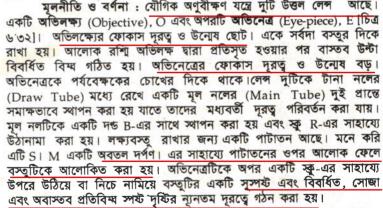
সমীকরণ (6.35) অনুসারে পাওয়া যায়,

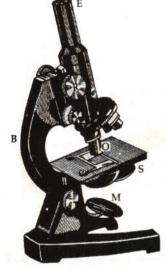
$$m = 1 + \frac{D - a}{f}$$
 ... (6.38)

ইহাই সরল অণুবীক্ষণ যন্ত্রের বিব**র্ধনের** রাশিমালা। উপরোক্ত সমীকরণ হতে সিন্ধান্ত গ্রহণ করা যায় যে.

(১) লেন্সের ফোকাস দূরত্ব f যত কম হবে তার বিবর্ধন ক্ষমতা তত বৃশ্বি পাবে।

(২) স্বাভাবিক চোখ অপেক্ষা ক্ষীণ দৃষ্টিসম্পন্ন চোখে প্রতিবিম্ব ছোট এবং দূর দৃষ্টিসম্পন্ন চোখে প্রতিবিম্ব বড় [MAT: 12-13] দেখাবে।

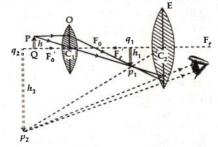

(৩) পর্যবেক্ষকের চোখ হতে লেন্সের দূরত্ব যত কম হবে বিবর্ধন তত বেশি হবে।


এ কারণে চোখ যথাসম্ভব লেন্সের নিকটে রাখলে প্রতিবিন্দ সবচেয়ে স্পন্ট ও বিবর্ধি<mark>ত দেখাবে</mark>।

জটিল বা যৌগিক অণুবীক্ষণ যন্ত্ৰ B.0.50 Compound microscope

সরল অণুবীক্ষণ যন্ত্রের বিবর্ধন ক্ষমতা তার লেন্সের ফোকাস দূরত্ত্বের ওপর নির্ভর করে। ফোকাস দূরত্ব যত কম হবে বিবর্ধন ক্ষমতা তত বেশি হবে। ফোকাস দূরত্ব যত ইচ্ছা কমানো সম্ভব নয়। অতএব অতি ক্ষুদ্র বস্তুকে

প্রয়োজনমতো বিবর্ধিত করা যায় না। সেজন্য জটিল বা যৌগিক অণুবীক্ষণ যন্ত্র ব্যবহার করা হয়। 1610 খ্রিস্টাব্দে দেখা যায়। এটি সরল অণুবীক্ষণ যন্ত্র অপেক্ষা অধিক মাত্রার বিবর্ধন ক্ষমতার অধিকারী। কোনো বস্তু থেকে আগত আলোক রশ্মি আমাদের চোখে যে কোণ করে তাকে বীক্ষণ কোণ বলে। বীক্ষণ কোণ বড় হলে বস্তু বড় দেখায় আর ছোট হলে বস্তু ছোট দেখায়। মূলনীতি ও বর্ণনা : যৌগিক অণুবীক্ষণ যন্ত্রে দুটি উত্তল লেন্স



চিত্র ৬ ৩২

অভিলক্ষ্য একটি উত্তল লেন্স-এর সামনে কোনো লক্ষ্যবস্কুকে ফোকাস দূরত্বের বাইরে রেখে দিলে, লক্ষ্যবস্কু থেকে আগত আলোক রশ্মি প্রতিসরণের পর বিবর্ধিত প্রতিবিন্দ গঠন করে। এই প্রতিবিন্দ যত বড় হবে অর্থাৎ অভিলক্ষ্যে

প্রতিবিন্দ্র যত দূরে গঠিত হবে, শেষ প্রতিবিন্দ্র আকারে তত বড় হবে। আবার অভিনেত্রের ফোকাস দূরত্ব ছোট হওয়ার জন্য সৃষ্ট প্রতিবিম্ম অনেকগুণ বড দেখায়। ৬ ৩৩ চিত্রে বিবর্ধিত প্রতিবিন্দ দেখানো হলো।

বিবর্ধন : বিবর্ধন বলতে প্রতিবিম্পের আকার এবং বস্তুর আকারের অনুপাতকে বুঝায়। যৌগিক অণুবীক্ষণ যন্ত্রে দুই পর্যায়ে বিবর্ধন সংঘটিত হয়। প্রথমে অভিলক্ষ্যের জন্য এবং পরে অভিনেত্রের জন্য।

চিত্র ৬ ৩৩

মনে করি, মোট বিবর্ধন = m

 \therefore আমরা পাই, $m=rac{2' \log \log x}{3}$ আকার তাকার

্ = $m_1 \times m_2$... এখানে, $m_1 = \frac{p_1q_1}{\mathrm{PQ}} =$ অভিলক্ষ্য দারা সৃষ্ট বিবর্ধন

এবং $m_2 = \frac{p_2 q_2}{p_1 q_1} =$ অভিনেত্র দারা সৃষ্ট বিবর্ধন।

ধরি, অভিশক্ষ্য হতে PQ এবং p_1q_1 -এর দূরত্ব যথাক্রমে u এবং v

$$m_1 = \frac{p_1 q_1}{PQ} = -\frac{v}{u}$$
 (প্রতিবিদ্দ উন্টা, তাই ঋণ চিহ্ন) ... (6.40)

ধরি, অভিনেত্র হতে p_1q_1 ও p_2q_2 -এর দূরত্ব যথাক্রমে u_2 এবং v_2 অভিনেত্রের ফোকাস দূরত্ব f_e , স্পর্ফ দৃষ্টির ন্যূনতম দূরত্ব প্রতিবিন্দ গঠিত হলে, $v_2=D$ হয়।

এখন, অভিনেত্র দারা সৃষ্ট বিন্দের ক্ষেত্রে লেন্সের সমীকরণ হতে পাই,

$$-\frac{1}{v_2} + \frac{1}{u_2} = \frac{1}{f_c}$$
 [চূড়ান্ত প্রতিবিদ্ধ অবাস্তব বলে v_2 ঋণাত্মক]

$$\label{eq:delta_eq} \P \mbox{,} \quad \frac{v_2}{u_2} = 1 \, + \frac{v_2}{f_e} \ = 1 \, + \frac{D}{f_e}$$

কিন্তু
$$m_2 = \frac{p_2 q_2}{p_1 q_1} = \frac{v_2}{u_2}$$

জতএব,
$$m_2 = 1 + \frac{D}{f_a}$$
 ... (6.41)

এখন সমীকরণ (6.40) এবং (6.41) হতে m_1 ও m_2 -এর মান সমীকরণ (6.39)-এ বসিয়ে পাই,

$$m = \left(-\frac{v}{u}\right)\left(1 + \frac{D}{f_c}\right) \qquad \dots \qquad \dots \qquad \dots \qquad \dots \tag{6.42}$$

ইহাই জটিল অণুবীকণ যন্ত্রের বিবর্ধনের রাশিমালা।

ঋণাত্মক বিবর্ধন দ্বারা প্রতিবিন্দ উন্টা বুঝায়।

জানার বিষয় : এই যন্ত্রে বস্তুর বিবর্ধন 2000 গুণ পর্যন্ত হয়ে থাকে।

সিন্ধান্ত: ওপরের সমীকরণ হতে নিম্নলিখিত সিন্ধান্ত গ্রহণ করা যায়-

- (ক) u যত ছোট হবে অর্থাৎ বস্তু অভিলক্ষ্যের যত নিকটে অবস্থান করবে, প্রতিবিদ্ধ আকারে তত বড় দেখাবে। কিন্তু লক্ষ্যবস্তুকে সর্বদা অভিলক্ষ্যের ফোকাস দূরত্বের বাইরে রাখতে হবে। সূতরাং অভিলক্ষ্যের ফোকাস দূরত্ব যতদূর সম্ভব ছোট হতে হবে।
- (খ) v যত বড় হবে অর্থাৎ অভিলক্ষ্যে প্রতিবিন্দ যত দূরে গঠিত হবে, শেষ প্রতিবিন্দ আকারে তত বড় হবে। এতে যন্ত্রের দৈর্ঘ্য বড় হতে হবে।
 - (গ) অভিনেত্রের ফোকাস দূরত্ব f_c যত ছোট হবে, যন্ত্রে তত বড় প্রতিবিম্ব গঠিত হবে।
 - (ঘ) যে চোখের স্পষ্ট দৃষ্টির ন্যূনতম দূরত্ব D যত বেশি হবে, সে চোখে প্রতিবিন্দ্র তত বড় দেখাবে। এখন সদ বা বাস্তব প্রতিবিন্দ গঠনের ক্ষেত্রে অভিলক্ষ্য-লেন্সের সাধারণ সমীকরণ,

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f_0}$$

 $\therefore \frac{v}{u} = \left(\frac{v}{f_0} - 1\right)$, সূতরাং সমীকরণ (6.42)-এ এই মান বসিয়ে পাই,

$$m = -\left(\frac{v}{f_0} - 1\right) \left(1 + \frac{D}{f_c}\right)$$
 ... (6.43)

যন্ত্রের দৈর্ঘ্য : $L = \overline{v}$ দ্রের দৈর্ঘ্য $= C_1C_2 = C_1q_1 + C_2q_1 = v + C_2q_1$ $= \overline{v}$ প্রতিবিন্দের দূরত্ব + অভিনেত্রে বস্তুর দূরত্ব

হিসাব করে দেখা যায়, যন্ত্রের দৈর্ঘ্য, L = $v + rac{\mathrm{D} imes f_c}{\mathrm{D} + f_c}$ হয়।

নিজে কর : অভিলক্ষ্যের ফোকাস দৈর্ঘ্য কমালে অণুবীক্ষণের বিবর্ধন ক্ষমতা কীভাবে পরিবর্তিত হয় ?

<u>গাণিতিক উদাহরণ ৬.৬</u>

১। একটি সরল অণুবীক্ষণ যন্ত্রে ব্যবহৃত লেগের কোকাস দ্রত্ব 0'15 m। স্পর্ট দৃষ্টির ন্যুনতম দূরত্ব 0'25 m হলে গুই যন্ত্রের বিবর্ধন বের কর। [ঢা. বো. ২০০৮; য. বো. ২০০২]

আমরা জানি, সরল অণুবীক্ষণ যন্ত্রের ক্ষেত্রে,

$$m = 1 + \frac{D}{f}$$

 $\therefore m = 1 + \frac{0.25}{0.15} = 2.667$

এখানে,

$$D = 0.25 \,\mathrm{m}$$

 $f = 0.15 \,\mathrm{m}$
 $m = ?$

২। একটি অণুবীক্ষণ যন্ত্রের অভিনক্ষ্য ও অভিনেত্রের কোকাস দ্রত্ব যথাক্রমে $0.02~\mathrm{m}$ এবং $0.07~\mathrm{m}$ ও তাদের মধ্যবর্তী দ্রত্ব $0.20~\mathrm{m}$ । অভিনক্ষ্যের সামনে কত দ্রে কোনো বস্তু স্থাপন করলে অভিনেত্র হতে $0.25~\mathrm{m}$ দ্রে তার প্রতিবিদ্দ দেখা যাবে ?

আমরা জানি,

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f} \qquad \dots \qquad \dots$$
 (i)

এখানে অভিনেত্রের ক্ষেত্রে $v = -0.25 \,\mathrm{m}$ এবং $f = 0.07 \,\mathrm{m}$

∴ সমীকরণ (i) হতে পাই,
$$-\frac{1}{0.25} + \frac{1}{v} = \frac{1}{0.07}$$

$$\boxed{4}, \quad \frac{1}{u} = \frac{1}{0.07} + \frac{1}{0.25} = \frac{0.25 + 0.07}{0.07 \times 0.25}$$

$$\overline{1}, \quad \frac{1}{u} = \frac{128}{7}$$

$$\therefore u = \frac{7}{128} \,\mathrm{m}$$

অভিলক্ষ্য হতে এটা দারা গঠিত প্রতিবিন্দ দূরত্ব,

$$v = \left(0.20 - \frac{7}{128}\right) = \frac{93}{640}$$
m

এখন অভিলক্ষ্যের জন্য, $v=\frac{93}{640}\,\mathrm{m}$ এবং $f=0.02\,\mathrm{m}$

∴ অভিলক্ষ্যের জন্য পাই,

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

$$\boxed{40, \quad \frac{640}{93} + \frac{1}{u} = \frac{1}{0.02}}$$

$$\boxed{4}, \quad \frac{1}{u} = \frac{1}{0.02} - \frac{640}{93} = \frac{80.20}{1.86}$$

$$u = \frac{1.86}{80.20} = 0.023 \,\mathrm{m}$$

অর্থাৎ অভিলক্ষ্য হতে বস্তু দূরত্ব = 0:023 m

৩। অভিলক্ষ্য ও অভিনেত্রের কোকাস দূরত্ব যথাক্রমে 1 cm এবং 4 cm। এদের মধ্যে দূরত্ব 14'5 cm। যদি 2 mm উচ্চতার একটি বস্তু অভিলক্ষ্য হতে 1'1 cm দূরে স্থাপন করা হয় তবে মাইক্রোস্কোপের সাহায্যে প্রভিবিন্দেরর অবস্থান এবং আকৃতি কেমন হবে?

আমরা জানি,
$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$$
 বা,
$$\frac{1}{v} - \frac{1}{-11} = \frac{1}{1}$$
 বা,
$$\frac{1}{v} + \frac{1}{1 \cdot 1} = \frac{1}{1}$$
 বা,
$$\frac{1}{v} + \frac{10}{11} = 1$$
 বা,
$$\frac{1}{v} = 1 - \frac{10}{11} = \frac{1}{11}$$

এখানে,

$$f_0 = 1 \text{ cm}$$

 $f_e = 4 \text{ cm}$
 $u = -11 \text{ cm}$
 $v = ?$

সূতরাং, অভিলক্ষ্য দারা এর বিপরীত পার্শ্বে সৃষ্ট প্রতিবিন্দের দূরত্ব 11 cm এবং এটি বাস্তব প্রতিবিন্দ। এই প্রতিবিন্দ অভিনেত্রের বস্তু হিসেবে কান্ধ করে।

$$\therefore m_1 = \frac{v}{u} = \frac{11}{1\cdot 1} = 10$$

বা, $v = 11 \, \mathrm{cm}$

এখন, অভিনেত্রের সাপেক্ষে বস্তুর দূরত্ব = -(14.5-11) = -3.5 cm যদি অভিনেত্র থেকে v দূরত্বে প্রতিবিন্দ্র সৃষ্টি হয় তবে আমরা পাই,

$$\frac{1}{v} + \frac{1}{3.5} = \frac{1}{4}$$

$$\boxed{4}, \quad \frac{1}{v} = -\frac{2}{7} + \frac{1}{4} = \frac{1}{28}$$

$$v = -28 \text{ cm}$$

প্রতিবিন্দ অবাস্তব এবং অভিনেত্র থেকে 28 cm দূরে গঠিত হবে।

$$m_2 = \frac{28}{3.5} = 8$$

সূতরাং, চূড়ান্ত বিস্ফের বিবর্ধন, $m=m_1 imes m_2 = 10 imes 8 = 80$

∴ চূড়ান্ত প্রতিবিম্পের আকার = 80 × 2 = 160 mm = 16 cm

৬-১৪ টেলিকোপ (দূরবীক্ষণ যন্ত্র)

Telescope

ভূমগুলে বা নভামগুলে অবস্থিত দূরবর্তী বস্তু খালি চোখে স্পাইটভাবে দেখা যায় না। এসব বস্তু দূরবীক্ষণ যন্ত্রে দেখা হয়। অতএব দূরের বস্তুকে ভালোভাবে পর্যবেক্ষণের জ্বন্য যে আলোক যন্ত্র ব্যবহূত হয় তাকে দূরবীক্ষণ যন্ত্র বলে। দূরবীক্ষণ যন্ত্র দূই প্রকার; যথা—

(১) প্রতিসরণ দূরবীক্ষণ যন্ত্র (Refracting telescope) এবং — দুরবীক্ষণ যন্ত্র (Refracting telescope)

(২) প্রতিফলক দূরবীক্ষণ যন্ত্র (Reflecting telescope)।

প্রতিসরণ দূরবীক্ষণ যম্ভ্রে বড় উন্মেষ এবং ফোকাস দূরত্বের লেন্স থাকে। প্রতিসরণ দূরবীক্ষণ যম্ভ্রকে তিন ভাগে ভাগ করা হয়েছে। যথা—

- (ক) নভো বা জ্যোতিষ দূরবীক্ষণ যন্ত্র (Astronomical telescope),
- (খ) ভূ-দূরবীক্ষণ যন্ত্র (Terrestrial telescope) এবং
- (গ) ग्रानिनीय पृतवीक्षण यञ्च (Galilean telescope)। [DAT: 20-21]

প্রতিফলক দূরবীক্ষণ যন্ত্রে অভিলক্ষ্য <mark>অবতল দর্পণের</mark> তৈরি। প্রতিফলক দূরবীক্ষণ যন্ত্রকে আবার তিন ভাগে ভাগ করা হয়েছে, যথা—

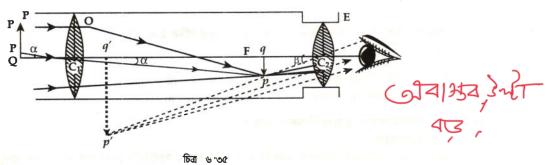
- (ক) নিউটনের দূরবীক্ষণ যন্ত্র, [DAT: 16-17]
- (খ) গ্রেগরির দূরবীক্ষণ যন্ত্র এবং
- (গ) হারসেলের দূরবীক্ষণ যন্ত্র।

विवेद्यं ग्रम

এ অধ্যায়ে কয়েকটি দূরবীক্ষণ যন্ত্রের গঠন এবং কার্যপন্ধতি আলোচনা করা হবে।

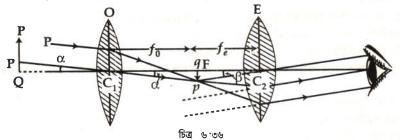
৬-১৪-১ নভো-দূরবীক্ষণ যন্ত্র Astronomical telescope

চন্দ্র, সূর্য, গ্রহ, নক্ষত্র প্রভৃতি নভোমন্ডলীয় বস্তু পর্যবেক্ষণে যে দূরবীক্ষণ যন্ত্র ব্যবহৃত হয় তাকে নভো-দূরবীক্ষণ যন্ত্র বলে [চিত্র ৬'৩৪]। ডেনমার্কের বিখ্যাত জ্যোতির্বিদ কেপলার 1611 খ্রিস্টাব্দে এটি সর্বপ্রথম উদ্ভাবন করেন।



বর্ণনা : এই যন্ত্র প্রধানত দুটি উত্তল লেন্স দ্বারা গঠিত—একটি অভিলক্ষ্য (Objective), O এবং অপরটি অভিনেত্র (Eye-piece) E [চিত্র ৬'৩৪]। অভিলক্ষ্য ক্রাউন কাচের তৈরি। একে সর্বদা লক্ষ্যবস্তুর দিকে রাখা হয়। এর ফোকাস দূরত্ব f_o এবং উন্মেষ বড়। অভিনেত্র ফ্লিন্ট কাচের তৈরি। একে দর্শক চোখের দিকে রেখে বস্তু দেখে। এর ফোকাস দূরত্ব f_o এবং উন্মেষ ছোট। লেন্স দুটিকে দুটি টানা নলের মধ্যে রেখে একটি লম্মা নলের দুই প্রান্তে সমাক্ষভাবে স্থাপন করা হয়। ফলে প্রয়োজন মতো লেন্স দুটির মধ্যবর্তী দূরত্ব পরিবর্তন করা যায়।

নভো-দূরবীক্ষণ যন্ত্রের বিবর্ধন বেশি, অথচ দৃষ্টিক্ষেত্র অন্ধ বলে তার গায়ে ভিউ ফাইন্ডার (view finder) নামে একটি ছোট যন্ত্র লাগানো থাকে। এই যন্ত্রটির বিবর্ধন অন্ধ, কিন্তু এর দৃষ্টিক্ষেত্র অপেক্ষাকৃত প্রশস্ত।


চিত্র ৬ ৩৪

মৃশনীতি (Principle) : বহুদ্রবর্তী বস্তু থেকে আগত রশ্মিগুচ্ছ অভিলক্ষ্যের ওপর পরস্পরের সমান্তরালে আপতিত হয়ে প্রতিসরণের পর প্রতিসৃত রশ্মিগুচ্ছ একটি বিন্দুতে মিলিত হয়। এই বিন্দুতে বস্তুর একটি বাসতব, উন্টা ও খুবই ছোট প্রতিবিন্দ গঠিত হয়। এই অবস্থায় অভিনেত্রকে এমনভাবে উপযোজন করা হয় যেন pq অভিনেত্রের ফোকাস ও আলোক কেন্দ্র C_2 এর মধ্যে থাকে। ফলে pq অভিনেত্রের জন্য লক্ষ্যবস্তুর কাজ করবে। pq থেকে নির্গত আলোকরশ্মিগুচ্ছ অভিনেত্রে প্রতিসরণের পর অভিনেত্র চোখের নিকট বিন্দুতে অর্থাৎ স্পেই দর্শনের ন্যূনতম দ্রত্বে শেষ

জবাস্তব, বিবর্ধিত এবং সিধা তবে মূল বস্তুর সাপেক্ষে উল্টো প্রতিবিদ্দ p'q' গঠন করে [চিত্র ৬'৩৫]। এ ধরনের ফোকাসিংকে স্পষ্ট দর্শন ফোকাসিং (focusing for distinct vision) বলা হয়। চিত্র জনুযায়ী F অভিনেত্র ও অভিদক্ষ্যের ফোকাস বিন্দু। নিকট ফোকাসিং-এর ক্ষেত্রে q ও F দুটি ভিন্ন বিন্দু।

অভিনেত্র খানিকটা সরিয়ে pq-কে তার ফোকাস তলে গঠন করলে pq হতে আগত আলোক রশ্মিগুলো অভিনেত্রে পরস্পরের সমান্তরালে প্রতিসৃত হয় [চিত্র ৬ ৩৬]। ফলে অভিনেত্রের পশ্চাতে চোখ রাখলে অসীম দূরত্বে এর একটি উল্টো

অতিবিবর্ধিত প্রতিবিন্দ দৃষ্টিগোচর হয়। দূরবীক্ষণ যন্ত্রের এই ফোকাসিংকে অসীম দূরত্বে বা স্বাভাবিক দৃষ্টির কোকাসিং বলা হয়।

এই দুই ধরনের ফোকাসিং-এর জন্য বিবর্ধন ক্ষমতা বা বিবর্ধনের রাশিমালা ভিন্নতর হবে। নিম্নে উভয় ধরনের ফোকাসিং-এর বিবর্ধন ক্ষমতার রাশিমালা প্রতিপাদন করা হলো।

(১) অসীম দ্রত্বে বা স্বাভাবিক দৃষ্টির কোকাসিং-এর বিবর্ধন : অসীম দ্রত্বে ফোকাসিং-এর ক্ষেত্রে pq ফোকাস তলে গঠিত হয়। এমতাবস্থায় q বিন্দু অভিলক্ষ্য ও অভিনেত্রের ফোকাস বিন্দু। pq হতে আলোক রশ্মিগুলো পরস্পর সমান্তরালে প্রতিসৃত হয় [চিত্র ৬-৩৬]। ফলে অভিনেত্রের বাম দিকে অসীম দ্রত্বে একটি অবাস্তব, অতি বিবর্ধিত প্রতিবিন্দ সৃষ্টি হয়। অসীম ফোকাসিং-এ q এবং F একই বিন্দু। এমতাবস্থায়, C_2q = অভিনেত্রের ফোকাস দ্রত্ব = f_e এবং C_1q = অভিলক্ষ্যের ফোকাস দ্রত্ব = f_0 । স্তরাং অসীম দ্রত্বে বা স্বাভাবিক দৃষ্টির ফোকাসিং-এর ক্ষেত্রে বিবর্ধন

$$m = \frac{\beta}{\alpha} = \frac{C_1 q}{C_2 q} = \frac{f_0}{f_e} \qquad \dots \tag{6.44}$$

সমীকরণ (6.43) হতে দেখা যায় যে অসীম দূরত্বে ফোকাসিং-এর ক্ষেত্রে বিবর্ধন m দুটি উপায়ে বৃষ্ণি করা

ক্রিলক্ষ্যের ফোকাস দূরত্ব বৃদ্ধি করে এবং

(খ) অভিনেত্রের ফোকাস দূরত্ব কমিয়ে।

(২) স্থাই দৃষ্টির ন্যূনতম দূরত্বে কোকাসিং-এর বিবর্ধন : এক্ষেত্রে $C_2q=u_2=$ অভিনেত্রে প্রতিসরণের ক্ষেত্রে বস্তুর দূরত্ব। শেষ প্রতিবিন্দের অবস্থান q' ধরলে,

 $C_{2}q'=$ অভিনেত্র হতে শেষ প্রতিবিন্দের দূরত্ব $=-v_{2}$ $[\cdot\cdot\cdot$ প্রতিবিন্দ অবাস্তব, তাই ঋণচিহ্ন]

: $C_2q'=v_2=-$ D= স্পার্ফ দৃষ্টির ন্যুনতম দূরত্ব।

অতএব*, লেলে*র সমীকরণ

$$\frac{1}{v_2} + \frac{1}{u_2} = \frac{1}{f_e}$$
 হতে পাই,
$$-\frac{1}{D} + \frac{1}{u} = \frac{1}{f_e}$$

$$\overline{\mathbf{q}}, \quad \frac{1}{u} = \frac{1}{f_e} + \frac{1}{D} = \frac{D + f_e}{D \times f_e}$$

$$\therefore \qquad u = \frac{D \times f_e}{D + f_e}$$

এখন, $C_1q\cong$ অভিলক্ষ্যের ফোকাস দূরত্ব $=f_0$

অতএব, বিবর্ধন ক্ষমতা,

$$m = \frac{C_1 q}{C_2 q} = \frac{f_0}{u} = f_0 \left(\frac{D + f_e}{D \times f_e} \right) = f_0 \left(\frac{1}{D} + \frac{1}{f_e} \right) \dots$$
 (6.45)

$$m = \frac{f_0}{f_0} \left(1 + \frac{f_e}{D} \right) \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots$$

যন্ত্রের দৈর্ঘ্য : অভিলক্ষ্য ও অভিনেত্রের মধ্যবর্তী দূরত্ব হলো যন্ত্রের দৈর্ঘ্য । ধরি, যন্ত্রের দৈর্ঘ্য = L এবং অভিলক্ষ্য ও অভিনেত্রের দূরত্ব = C_1C_2

∴ যন্ত্রের দৈয়্য, L = C₁C₂

(i) অসীম দূরত্বে ফোকাসিং-এর ক্ষেত্রে :

এক্ষেত্রে যন্ত্রের দৈর্ঘ্য , $L = C_1C_2 = C_1q + C_2q$

এখন, অসীম দ্রত্বে ফোকাসিং-এর ক্ষেত্রে q বিন্দু অভিনেত্র ও অভিনক্ষ্যের ফোকাস বিন্দু।

অতএব,
$$C_1 q = f_e$$
 এবং $C_2 q = f_0$

$$\therefore \quad L = C_1 q + C_2 q = f_c + f_0 \qquad \dots \tag{6.47}$$

অর্থাৎ, অসীম দূরত্বে ফোকাসিং-<u>এর ক্ষেত্রে যন্ত্রের</u> দৈর্ঘ্য লেন্স দূটির ফোকাস দূরত্বের যোগফলের সমান।

(ii) স্পর্ট দৃটির ন্যুন্তম দুরতে কোকাসিং-এর ক্ষেত্রে :

এক্ষেত্রে যন্ত্রের দৈর্ঘ্য,
$$L = C_1C_2 = C_1q + C_2q$$
 এক্ষেত্রে $C_2q = f_0$ এবং $C_1q = u$

ভাবার,
$$u = \frac{D \times f_e}{D + f_e}$$

অতএব, যন্ত্রের দৈর্ঘ্য, L = C1q + C2q = f0 + u

$$= f_0 + \frac{D \times f_{\epsilon}}{D + f_{\epsilon}}$$

= অভিশক্ষ্যে প্রতিবিন্দের দূরত্ব + অভিনেত্রে বস্তুর দূরত্ব

(6.48)

 $f_0 = 200 \text{ cm} = 2.00 \text{ m}$ $f_e = 5 \text{ cm} = 0.05 \text{ m}$ D = 25 cm = 0.25 m

কাজ: একটি অয়চ্ছ কাগন্ধ দারা নভো-দূরবীক্ষণের অভিলক্ষ্য লেন্সের অর্থেক ঢেকে দিলে কি লক্ষ্যবস্তুর অর্থেক দেখা যাবে ?

অষক্ষ কাগন্ধ দারা নভো -বীক্ষণের অভিলক্ষ্য লেন্সের অর্ধাংশ ঢেকে দিলে লক্ষ্যবস্তুর পূর্ণ প্রতিবিশ্বই দেখা যাবে; তবে প্রতিবিশ্বের উদ্ধানতা কিছু হ্রাস পাবে। এর কারণ হলো যে বস্তুর বিভিন্ন অংশ হতে আলোকরন্মি এনে লেনের উভয় অর্বেই পড়ে, তবে আচ্ছাদিত অর্ধাংশের ওপর আপতিত হয়ে আলো প্রতিসৃত হতে পারে না কিন্তু অনাচ্ছাদিত অর্ধাংশের ওপর আপতিত হয়ে আলো প্রতিসৃত হয় এবং বস্তুর পূর্ণাক্ষা প্রতিবিশ্ব গঠন করে। আপতিত মোট আলোক-রশ্বির এক অর্ধ প্রতিসৃত হতে পারে না বলে প্রতিবিশ্বের উদ্ধানতা খানিকটা হ্রাস পায়।

গাণিতিক উদাহরণ ৬.৭

১। একটি নভো-দূরবীক্ষণ যন্ত্রের অভিনক্ষ্যের কোকাস দৈর্ঘ্য 200 cm এবং অভিনেত্রের কোকাস দৈর্ঘ্য 5 cm। দূরবীক্ষণ যন্ত্র দ্বারা সৃষ্ট বিবর্ধন নির্ণয় কর, বখন বস্তুটিকে (i) অসীমে এবং (ii) 25 cm দূরে রাখা হয়। উভয় ক্ষেত্রেই লেগ দূটির মধ্যবর্তী দূরত্ব নির্ণয় কর।

[চ. বো. ২০০১]

মনে করি, বিবর্ধন ক্ষমতা = m

আমরা পাই,

(i)
$$m = \frac{f_0}{f_c} = \frac{2.00}{0.05} = 40$$

এবং L =
$$f_0 + f_e = 2.00 + 0.05 = 2.05$$
 m

(ii)
$$m = f_0 \times \left(\frac{1}{D} + \frac{1}{f_e}\right) = 2 \times \left(\frac{1}{0.25} + \frac{1}{0.05}\right) = 48$$

এবং L =
$$f_0 + \left(\frac{D \times f_e}{D + f_e}\right) = 2 + \left(\frac{0.25 \times 0.05}{0.25 + 0.05}\right) = 2.04 \text{ m}$$

২। বাভাবিক দর্শনের জন্য 4 বিবর্ধনবিশিষ্ট একটি নভো-দূরবীক্ষণ যন্ত্রের দেক দূটির মধ্যবর্তী দূরত্ব 0'36 m (বা 36 cm) হলে লেক দূটির ফোকাস দূরত্ব নির্ণয় কর।

[সি. বো. ২০১১; রা. বো. ২০০৯; দি. বো. ২০০৯; কু. বো. ২০০৮; চ. বো. ২০০৮; ঢা. বো. ২০০৪] মনে করি, ফোকাস দূরত্ব যথাক্রমে f_0 এবং f_1 !

∴ আমরা পাই,

$$f_0 + f_e = 0.36$$
 ... (i)

এবং
$$m = \frac{f_0}{f_e}$$

বা,
$$4 = \frac{f_0}{f_c}$$

$$\therefore f_0 = 4f_e \qquad \dots \qquad \dots \qquad \dots$$

এখন সমীকরণ (i) এবং (ii) হতে পাই,

$$4f_c + f_e = 0.36$$

$$5f_c = 0.36$$

$$f_c = \frac{0.36}{5} = 0.072 \,\mathrm{m}$$

এখন সমীকরণ (ii) হতে পাই,

$$f_0 = 4 \times 0.072 = 0.288 \,\mathrm{m}$$

∴ অভিশক্ষ্যের ফোকাস দূরত্ব = 0°288 m এবং অভিনেত্রের ফোকাস দূরত্ব = 0°072 m

৩। একটি নভো-দূরবীক্ষণ যম্ভ্রের অভিলক্ষ্য এবং অভিনেত্রের কোকাস দূরত্ব যথাক্রমে 45 cm ও 5 cm। সাইট দৃক্তির ন্যুনতম দূরত্বে কোকাসিং-এর ক্ষেত্রে যম্ভটির দৈর্ঘ্য এবং এর হারা সৃষ্ট বিবর্ধন নির্ণয় কর।

আমরা জানি,

নলের দৈর্ঘ্য ,
$$l=f_0+\left(rac{\mathrm{D} imes f_e}{\mathrm{D}+f_e}
ight)$$

এবং বিবর্ধন,
$$m = \frac{f_0}{f_c} \left(1 + \frac{f_c}{D} \right)$$

$$l = 45 + \left(\frac{25 \times 5}{25 + 5}\right)$$
$$= 45 + \frac{25}{6} = 49.2 \text{ cm}$$

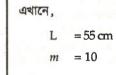
এবং
$$m = \frac{45}{5} \left(1 + \frac{5}{25} \right)$$
$$= 9 \times \left(1 + \frac{1}{5} \right)$$
$$= 9 \times \frac{6}{5} = 10.8$$

এখানে

অভিনক্ষ্যের ফোকাস দূরত্ব, $f_0=45\,\mathrm{cm}$ অভিনেত্রের ফোকাস দূরত্ব, $f_e=5\,\mathrm{cm}$ সপঠ দর্শনের ন্যূনতম দূরত্ব, $D=25\,\mathrm{cm}$ নলের দৈর্ঘ্য, l=? বিবর্ধন, m=?

8। একটি নভো-দূরবীক্ষণ যন্ত্রের নলের দৈর্ঘ্য 55 cm এবং কৌণিক বিবর্ধন 10। এর অভিলক্ষ্যের ফোকাস কৃত ?

আমরা জানি, বিবর্ধন,


$$m = \frac{f_0}{f_e}$$

বা,
$$f_e = \frac{f_0}{m}$$

এখন, নলের দৈর্ঘ্য,

L =
$$f_0 + f_e = f_0 + \frac{f_0}{m}$$

= $f_0 \left(1 + \frac{1}{m} \right) = f_0 \left(\frac{m+1}{m} \right)$
All, $f_0 = L \left(\frac{m}{m+1} \right)$
= $55 \times \left(\frac{10}{10+1} \right)$
= $55 \times \frac{10}{11} = 50 \text{ cm}$

অতএব, অভিলক্ষ্যের ফোকাস দূরত্ব 50 cm।

Repting

নভো-দূরবীক্ষণ যন্ত্রের সুবিধা:

নভো-দূরবীক্ষণ যন্ত্রে চারটি সুবিধা পরিলক্ষিত হয়; যথা---

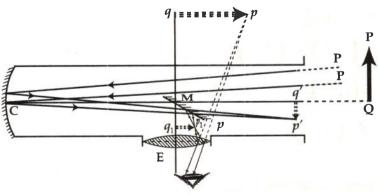
- (ক) এটি অধিক পরিমাণে বিবর্ধন সৃষ্টি করে,
- (খ) এর দৃষ্টিক্ষেত্র প্রশস্ত,
- (গ) প্রতিবিন্দ প্রায় ত্রটিমুক্ত (aberration free) এবং
- (ঘ) প্রয়োজনে ক্রসওয়ার এবং মাইক্রোমিটার স্কু ব্যবহার করা হয়।

নভো-দূরবীক্ষণ যন্ত্রের অসুবিধা :

- এই যন্ত্রের দটি অসুবিধা পরিলক্ষিত হয়; যথা---
- (ক) নলটি খুবই দীর্ঘ হওয়ায় যন্ত্রটি বেশ বড় হয়, এবং
- (খ) এই যন্ত্র বস্তুর উন্টা প্রতিবিন্দ সৃষ্টি করে বলে ভূপৃষ্ঠের দূরের বস্তু পর্যবেক্ষণে ব্যবহারযোগ্য হয় না।

কাজ: ভ্-দূরবীক্ষণ যন্ত্র কী ? বর্ণাপেরণ কী ? প্রতিসারক দূরবীক্ষণ যন্ত্রে বর্ণাপেরণের সৃষ্টি হলেও প্রতিফলক দূরবীক্ষণ যন্ত্রে বর্ণাপেরণের সৃষ্টি হয় না কেন ?

ভূপৃষ্ঠের দূরবর্তী কোনো বস্তুকে দেখার জন্য যে দূরবীক্ষণ যন্ত্র ব্যবহার করা হয় তাকে ভূ-দূরবীক্ষণ যন্ত্র বলে। লেন্সের মধ্য দিয়ে সাদা আলোক রশ্মি প্রতিসরণের সময় এক এক বর্ণের আলোর দরুন লক্ষ্যবস্তুর প্রতিবিদ্দ প্রধান অক্ষের এক এক জায়গায় গঠিত হয়ে একটি তুটিপূর্ণ বর্ণিল ও ঝাপসা প্রতিবিদ্দ গঠন করে। লেন্সের এ ধরনের ত্রটির নাম বর্ণাপেরণ।


প্রতিসারক দূরবীক্ষণ যন্ত্রে অভিলক্ষ্য হিসেবে লেন্স ব্যবহার করা হয় লেন্সের মধ্য দিয়ে প্রতিসরণের সময় সাদা আলোক রশ্মি সাতটি বর্ণের রশ্মিতে বিশ্লিষ্ট হয়ে পড়ে। ফলে এক এক বর্ণের আলোর দরুন লক্ষ্যবস্তুর প্রতিবিদ্ধ বর্ণিল ও ঝাপসা প্রতিবিদ্ধ গঠন করে যা বর্ণাপেরণ নামে পরিচিত। অন্যদিকে প্রতিফলন দূরবীক্ষণ যন্ত্রে অভিলক্ষ্য হিসেবে দর্পণ ব্যবহার করা হয়। ফলে এতে বর্ণাপেরণ সৃষ্টির সুযোগ থাকে না। এজন্য প্রতিসারক দূরবীক্ষণ যন্ত্রে বর্ণাপেরণের সৃষ্টি হয়ে না।

৬-১৪-২ রিফুেক্টিং টেলিক্ষোপ বা প্রতিফলক দূরবীক্ষণ যন্ত্র Reflecting telescope

1663 খ্রিস্টাব্দে প্রেগরি নামক একজন বিজ্ঞানী সর্বপ্রথম এই যন্ত্র উদ্ভাবন করেন। 1668 খ্রিস্টাব্দে স্যার আইজ্যাক নিউটন সর্বাপেক্ষা প্রচলিত প্রতিফলক দূরবীক্ষণ যন্ত্র প্রথম নির্মাণ করেন। পরবর্তীতে হার্সেল (Herschel)-ও প্রতিফলক দূরবীক্ষণ যন্ত্র আবিক্ষার করেন।

সাধারণভাবে বলা যায় যে, একটি দ্রবীক্ষণ যন্ত্রের অভিলক্ষ্যের ফোকাস দ্রত্ব ও উন্মেষ যত বড় হবে তাতে লক্ষ্যবস্ত্র প্রতিবিন্দ্র তত বড় ও উজ্জ্বল দেখাবে। কিন্তু বড় আকারের অভিলক্ষ্য লেঙ্গে সাদা আলোকের বর্ণ বিচ্যুতি ঘটে বলে লক্ষ্যবস্ত্র প্রতিবিন্দের বর্ণ বৃটি ও আকার বিকৃতি ঘটে। প্রতিফলক দ্রবীক্ষণ যন্ত্রে প্রতিবিন্দের এই বৃটিগুলো মোটাম্টি বড় ফোকাস দ্রত্ব ও উন্মেষের অবতল দর্পণের তৈরি অভিলক্ষ্য ছারা দ্র করা হয়। এই কারণে পৃথিবীর বড় বড় মান-মন্দিরের নভো-দ্রবীক্ষণ যন্ত্রপুলো প্রতিফলক দ্রবীক্ষণ যন্ত্র—প্রতিসরণ দ্রবীক্ষণ যন্ত্র নয়।

এই যন্ত্রে একটি ফাঁপা নলের এক প্রান্তে বড় ফোকাস দূরত্ব ও উন্মেষের একটি অবতল দর্পণ C থাকে এবং অপর প্রান্ত খোলা থাকে [চিত্র ৬৩৭]। এই নলের এক পার্শ্বে এবং অবতল দর্পণ হতে তার ফোকাস দূরত্ব অপেক্ষা কম দূরত্বে

চিত্ৰ ৬ ৩৭

একটি ফাঁপা পার্শ্বনল থাকে। এই নলে একটি উত্তল লেন্স E অভিনেত্র হিসেবে বসানো থাকে। এ ছাড়া অবতল দর্পণ ও উত্তল লেন্সের প্রধান অক্ষের ছেদ বিন্দুতে একটি সমতল দর্পণ M অবতল দর্পণের প্রধান অক্ষের সাথে 45° কোণে আনত অবস্থায় নলের অভ্যন্তরে বসানো থাকে। পর্পণের প্রতিফলক পৃষ্ঠ অবতল দর্পণ ও লেন্সের দিকে মুখ করে থাকে।

মৃলনীতি ও বর্ণনা : বহু দূরের বস্তু PQ-এর যেকোনো বিন্দু হতে আগত আলোক রশ্মি যন্ত্রের অবতল দর্পণ C-এ প্রায় পরস্পর সমান্তরালে আপতিত হয় এবং রশিগুলো অবতল দর্পণ C-এ প্রতিফলিত হবার পর দর্পণের ফোকাস তলে বস্তুর আকারের চেয়ে অতি ছোট প্রতিবিন্দ p'q' উৎপন্ন করার চেফা করে। কিন্তু প্রতিফলিত রশিগুলো প্রতিবিন্দ p'q' গঠন করার পূর্বে সমতল দর্পণ M-এ প্রতিফলিত হয়ে পার্শ্ব নলে বস্তুর বাস্তব প্রতিবিন্দ p_1q_1 গঠন করে।

স্পান্ট দর্শনে প্রতিবিম্ম গঠনের বা ফোকাসিং-এর জন্য অভিলক্ষ্য E-কে সামনে-পিছনে সরিয়ে এমন এক স্থানে রাখা হয় যাতে লেঙ্গের মধ্য দিয়ে তাকালে লক্ষ্যবস্তুর একটি সুস্পান্ট বিবর্ধিত ও সিধা প্রতিবিম্ম pq চোখের স্পান্ট দর্শনের নিকট বিন্দুতে গঠিত হয়।

অসীম দূরত্বে বা ষাভাবিক দৃষ্টির ফোকাসিং-এর জন্য উত্তল লেন্সের অবস্থান এমনভাবে ঠিক করা হয় যেন প্রতিবিন্দ্র p_1q_1 উত্তল লেন্সটির ফোকাস তলে গঠিত হয়। এ অবস্থায় p_1q_1 হতে আগত আলোক রশািগুলো উত্তল লেন্সে পরস্পরের সমান্তরালে প্রতিসৃত হয়। ফলে একটি অবাস্তব, সিধা এবং বিবর্ধিত প্রতিবিন্দ্র অসীম দূরত্বে গঠিত হয়।

এখন, অবতল দর্পণ ও উত্তল লেন্সের ফোকাস দূরত্ব যথাক্রমে f_0 ও f_e হলে স্পষ্ট দর্শনের ন্যূনতম দূরত্বে ফোকাসিং-এর ক্ষেত্রে দেখানো যায় যে,

বিবর্ধন,
$$m = f_0 \left(\frac{1}{D} + \frac{1}{f_c}\right)$$
 ... (6.49)

এখানে, D হলো স্পষ্ট দৃষ্টির ন্যূনতম দূরত্ব।

অসীম দূরতে বা কভাবিক দৃষ্টির ফোকাসিং-এর ক্ষেত্রে দেখানো যায় যে,

বিবৰ্ধন,
$$m = \frac{f_0}{f_c}$$
 ... (6.50)

কাজ: দূরবীক্ষণ যন্ত্রে নভো-দূরবীক্ষণ যন্ত্রের চেয়ে অতিরিক্ত একটি লেপ ব্যবহার করা হয় কেন ?

অথবা, নভো-দূরবীক্ষণ যন্ত্র দিয়ে পৃথিবীর দূরবর্তী বস্তুকে দেখতে হলে অভিলম্ম এবং অভিনেত্রের মাঝে একটি অতিরিক্ত উত্তল লেপ ব্যবহার করতে হয় কেন ?

নভো-দূরবীক্ষণ যন্ত্রে সৃষ্ট চূড়ান্ত প্রতিবিন্দ লক্ষ্যবস্ত্র সাপেক্ষে বাস্তব ও উন্টা হয়। নভো-দূরবীক্ষণ যন্ত্রের অভিলক্ষ্য এবং অভিনেত্রের মাঝে একটি উত্তল লেন্স ব্যবহার করলে প্রতিবিন্দকে আরও একবার উন্টিয়ে লক্ষ্যবস্ত্র সাপেক্ষে সোজা চূড়ান্ত প্রতিবিন্দ গঠন করে। এজন্য অভিলন্দ এবং অভিনেত্রের মাঝে একটি উত্তল লেন্স ব্যবহার করতে হয়।

প্রতিফলক দূরবীক্ষণ যদ্তের সুবিধা ও অসুবিধা সৃবিধা:

- ১। এই দূরবীক্ষণে বর্ণ ত্টি বা গোলকীয় তুটি থাকে না। ফলে উজ্জ্বল ও তুটিমুক্ত প্রতিবিদ্দ পাওয়া যায়।
- ১ বড় উন্মেষের লেন্স তৈরির চেয়ে বড় উন্মেষের দর্পণ তৈরি অনেক সহজ।
- ৩। একই আকৃতির প্রতিসারক দূরবীক্ষণ যন্ত্রের চেয়ে প্রতিফলক দূরবীক্ষণ যন্ত্র তৈরিতে খরচ অনেক কম হয়। অসুবিধা:
 - ১। দর্পণটি সহজে নড়ে যেতে পারে, ফলে নলের সমাক্ষ লাভ হতে পারে।
- ২। সুবিধাজনক জায়গায় বিন্দ দেখার জন্য একটি গৌণ দর্পণ ব্যবহার করতে হয়। এই দর্পণ এবং তার ধারক অপবর্তন ঘটাতে পারে।
 - ৩। প্রতিফলক দূরবীক্ষণের নলের বাইরের মুখ খোলা থাকায় দর্পণ প্রায়শই পরিবর্তনের প্রয়োজন হয়।

৬-১৫ অণুবীক্ষণ যন্ত্ৰ ও দূরবীক্ষণ যন্ত্ৰের বৈশিষ্ট্য Characteristics of microscope and telescope

অণুবীক্ষণ যন্ত্রের বৈশিষ্ট্য :

- ১। নিকটবর্তী অতি ক্ষুদ্র বস্তু পর্যবেক্ষণের কাজে ব্যবহৃত হয়।
- 🔇 অভিনেত্রের সাপেক্ষে অভিলক্ষ্য লেন্সের উন্মেষ ও ফোকাস দূরত্ব ছোট হয়।
 - ত। অভিদক্ষ্য ও অভিনেত্র উভয় দারা প্রতিবিন্দ কম-বেশি বিবর্ধিত হয়।
 - 8। অভিলক্ষ্যে লুক্ষ্যবস্তুর প্রতিবিন্দ্র তার ফোকাস দূরত্ব অপেক্ষা অধিক দূরত্বে গঠিত হয়।
 - 🖍 চূড়ান্ত প্রতিবিশ্ব লক্ষ্যবস্তুর সাপেক্ষে উন্টা হয়।

দূরবীক্ষণ যন্ত্রের বৈশিষ্ট্য:

১। দূরের বস্তু দেখার কাজে ব্যবহৃত হয়।

্ব্যুত্ত অভিনেত্রের সাপেক্ষে অভিলক্ষ্য লেন্সের ফোকাস দূরত্ব ও উন্মেষ বড় হয়।

- ত। অভিলক্ষ্যে লক্ষ্যবস্ত্র আকারের চেয়ে ছোট আকারের প্রতিবিন্দ গঠিত হয় এবং ওই প্রতিবিন্দ অভিনেত্র দারা গঠিত হয়।
 - ৪। অভিলক্ষ্যে লক্ষ্যবস্তুর প্রতিবিম্ম তার ফোকাস তলে গঠিত হয়।
- ৫। চূড়ান্ত প্রতিবিন্দ্র কোনো কোনো দূরবীক্ষণ যন্ত্রে লক্ষ্যবস্তুর সাপেক্ষে সিধা ও কোনো কোনো দূরবীক্ষণ যন্ত্রে উন্টা হয়।

৬-১৫-১ আলোকীয় যন্ত্রের বিশ্লেষণী ক্ষমতা Resolving power of optical instruments

আমাদের চোখ একটি আলোকীয় যন্ত্র। যদি দুটি বস্তৃ বা তাদের প্রতিবিন্দ খুবই কাছাকাছি অবস্থিত হয় তবে পুনাদাদের চোখের পক্ষে এদেরকে আলাদাভাবে দেখা সম্ভব হয় না। এদেরকে একই বস্তৃ বা একই প্রতিবিন্দ বলে মনে হয়।

ব্যাখ্যা : ধরা যাক একটি সাদা দেয়ালের ওপর কতকগুলো সমান্তরাল কালো রেখা 1 mm ব্যবধানে আঁকা । ১৯০০ বি হয়েছে। খুব কাছে থেকে তাকালে এদেরকে আলাদাভাবে দেখা সম্ভব, কিন্তু দেয়াল থেকে দূরে সরে আসলে এক সময় রেখাগুলো পরস্পরের সাথে মিশে গেছে বলে মনে হয়। অর্থাৎ রেখাগুলোকে আর আলাদাভাবে চিহ্নিত করা সম্ভব ১৮ হয় না।

এখন, পাশাপাশি যে কোনো দুটি বস্তুকে আলাদাভাবে দেখা নির্ভর করে বস্তু দুটি চোখে যে কোণ উৎপন্ন করে তার ওপর। ওপরের উদাহরণে রেখাগুলো থেকে দূরে যাওয়ার কারণে চোখে উৎপন্ন কোণের মান কমে যায়। তাই একটি নির্দিষ্ট দূরত্বের পর আর আলাদাভাবে চেনা যায় না।

পরীক্ষা থেকে দেখা গেছে যে, বস্তু দৃটি হতে চোখে সৃষ্ট কোণ যদি 1 মিনিটের বা $\frac{1}{60}$ ডিগ্রির কম হয় তবে চোখ বস্তু দৃটিকে আলাদাভাবে দেখতে পায় না। এই কোণকে চোখের বিশ্লেষণী সীমা বলে।

আলোকীয় যন্ত্রেরও কাছাকাছি অবস্থানে অবস্থিত দুটি বস্তুর পৃথক প্রতিবিন্দ গঠনের অনুরূপ সীমা রয়েছে। সূতরাং বিশ্লেষণী ক্ষমতার নিম্নোক্ত সংজ্ঞা দেয়া যায়।

বিশ্লেষণী সীমা : কোনো আলোকীয় যন্ত্রের মাধ্যমে কাছাকাছি অবস্থানে অবস্থিত দুটি বস্তুকে পারস্পরিক যে ন্যানতম দূরত্বের ব্যবধানে পৃথকভাবে দুটি স্পষ্ট প্রতিবিম্প গঠন করা যায়, তাকে ওই যন্ত্রের বিশ্লেষণী সীমা বলে।

বিশ্লেষণী ক্ষমতা : দুটি বস্তুর পৃথক প্রতিবিম্ব গঠনের সামর্থ্যকে বিশ্লেষণী ক্ষমতা বলে। অর্থাৎ কোনো আলোকীয় যন্ত্রের বিশ্লেষণী ক্ষমতা বলতে কাছাকাছি অবস্থানে অবস্থিত দুটি বস্তুর পৃথক প্রতিবিম্ব গঠনের সামর্থ্যকে বোঝায়।

৬-১৫-২ অণুবীক্ষণ ও দূরবীক্ষণ যদ্তের বিশ্লেষণী ক্ষমতা

Resolving power of a microscope and a telescope

অণুবীক্ষণ যন্ত্রের বিশ্লেষণী ক্ষমতা : কাছাকাছি অবস্থানে অবস্থিত দুটি বস্তুকে অণুবীক্ষণ যন্ত্র যদি আলাদাভাবে দেখতে সক্ষম হয় তবে ওই বস্তু দুটির মধ্যবর্তী দ্রত্বের বিপরীত (inverse) রাশিকে অণুবীক্ষণ যন্ত্রের বিশ্লেষণী ক্ষমতা বলে। একে R দারা প্রকাশ করা হয়।

বস্তুদয়ের মধ্যবর্তী দূরত Δd হলে অণুবীক্ষণ যন্ত্রের বিশ্লেষণী ক্ষমতা,

 $R=rac{1}{\Delta d}=rac{2\mu\sin heta}{\lambda}$, এখানে, $\lambda=$ ব্যবহৃত আলোর তরজাদৈর্ঘ্য, $\mu=$ বস্তুষ্য় ও অণুবীক্ষণ যন্ত্রের

মধ্যবর্তী মাধ্যমের প্রতিসরাঙ্ক এবং $\theta = অভিদক্ষ্যের ব্যাসার্ধ কর্তৃক যে কোনো একটি বস্তৃতে উৎপন্ন কোণ।$

দূরবীক্ষণ যন্ত্রের বিশ্লেষণী ক্ষমতা : পরস্পরের কাছাকাছি অবস্থানে অবস্থিত দূটি বস্তুকে যখন নভোবীক্ষণ যন্ত্র আলাদাভাবে বিশ্লেষণ করতে পারে তখন ওই বস্তু দূটি যন্ত্রের অভিলক্ষ্যে যে কোণ উৎপন্ন হয় তার বিপরীত (inverse) রাশিকে দূরবীক্ষণ যন্ত্রের বিশ্লেষণী ক্ষমতা বলে। বস্তু দুটি কর্তৃক অভিলক্ষ্যে সৃষ্ট কোণ $\Delta \theta$ হলে,

 $R = \frac{1}{\Delta \theta} = \frac{a}{1.22 \, \lambda}$, এখানে, a = নভোবীক্ষণের অভিলক্ষ্যের ব্যাস।

কাজ: একটি দূরবীক্ষণ যন্ত্রের অভিলক্ষ্যের ব্যাসকে তিনগুণ করা হলে ওই যন্ত্রের বিশ্লেষণী ক্ষমতার কী পরিবর্তন ঘটবে?

নভোবীক্ষণ যন্ত্রের বিশ্লেষণী ক্ষমতা $R=rac{a}{1.22\;\lambda}$ । এখন যন্ত্রের বিশ্লেষণ ক্ষমতা অভিলক্ষ্যের ব্যাসের সমানুপাতিক হওয়ায় ব্যাস তিনগুণ বৃদ্ধি করা হলে নভোবীক্ষণ যন্ত্রের বিশ্লেষণী ক্ষমতাও তিনগুণ বৃদ্ধি পাবে।

 $L = 20 \, cm$

গাণিতিক উদাহরণ ৬.৮

১। একটি অণুবীক্ষণ যন্ত্রের অভিলক্ষ্যের ও অভিনেত্রের কোকাস দূরত্ব যথাক্রমে 2 cm ও 6 cm। এদের মধ্যে ব্যবধান 20 cm। চ্ড়ান্ত প্রতিবিম্ব স্পাই দর্শনের ন্যুনতম দূরত্বে গঠিত হলে যন্ত্রের বিবর্ধন ক্ষমতা নির্ণয় কর।

জামরা জানি, জভিনেত্রের ক্ষেত্রে

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f_e}$$

অভিনেত্র অসদ বা অবাস্তব বিন্দ গঠন করে, তাই $v = -25 \, \mathrm{cm}$

[: বিশ্ব স্পর্কী দর্শনের ন্যুন্ত্ম দূরত্বে গঠিত]

$$\therefore \quad \frac{1}{-25} + \frac{1}{u} = \frac{1}{6}$$

$$\boxed{1}, \quad \frac{1}{u} = \frac{1}{6} + \frac{1}{25}$$

$$\sqrt[4]{1}$$
, $u = \frac{6 \times 25}{31} = 4.83 \text{ cm}$

সূতরাং অভিনক্ষ্যের প্রতিবিশ্বের দূরত্ব, $v_1 = (\mathrm{L} - u) = 20 - 4.83 = 15.17~\mathrm{cm}$

: মোট বিবৰ্ধন,
$$m = \left(\frac{v_1}{f_0} - 1\right) \left(1 + \frac{D}{f_e}\right)$$

$$= \left(\frac{15\cdot17}{2} - 1\right) \left(1 + \frac{25}{6}\right)$$

$$= (6\cdot58) (5\cdot167) \approx 34$$

২। একটি দূরবীক্ষণ যন্ত্রের অভিলক্ষ্যের ব্যাস 205 cm। দূরবীক্ষণ যন্ত্রটির সাহায্যে একটি নক্ষত্রকে দেখা হয়। নক্ষত্র থেকে যে আলো দূরবীক্ষণ যন্ত্রে আসছে তার তরজাদৈর্ঘ্য 5800 Å হলে যন্ত্রটির বিশ্লেষণী ক্ষমতার মান নির্ণয় কর।

আমরা জানি,

দূরবীকণ যদ্রের বিশ্লেষণী ক্ষমতা,

$$R = \frac{a}{1.22 \,\lambda} = \frac{205}{1.22 \times 5800 \times 10^{-8}}$$
$$= 2.897 \times 10^{6}$$

এখানে.

অভিলক্ষ্যের ব্যাস, $a=205~\mathrm{cm}$ আপতিত আলোর তরজ্ঞাদৈর্ঘ্য, $\lambda=5800~\mathrm{\AA}=5800\times10^{-8}~\mathrm{cm}$

অভিৰক্ষ্যের ফোকাস দূরত্ব, $f_0 = 2 \, \mathrm{cm}$ অভিনেত্রের ফোকাস দূরত্ব, $f_e = 6 \, \mathrm{cm}$

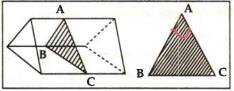
স্পান্ট দর্শনের ন্যুনতম দূরত্ব, D = 25 cm

লেন্সের মধ্যবর্তী দূরত্বু,

৬·১৬ প্রিজমে আব্দোর প্রতিসরণ ও বিচ্ছুরণ Refraction and dispersion of light in a prism

প্রিফ্রম Prism /

প্রিচ্ছমের সংজ্ঞা সম্পর্কে বিভিন্ন পদার্থবিদ বিভিন্ন ধারণা পোষণ করেন। এসব ধারণার প্রেক্ষিতে প্রিচ্ছমের নিমুলিখিত যে কোনো একটি সংজ্ঞা দেয়া যেতে পারে—

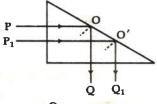

্বি) তিনটি পরস্পরছেদী সমতল পৃষ্ঠ হারা সীমাবন্ধ একটি স্বচ্ছ সমসত্ত্ব মাধ্যমকে প্রিঞ্জম বলে।

্র্পে দুটি পরস্পর হেলানো সমতল পৃষ্ঠ দ্বারা সীমাবন্ধ কোনো স্বচ্ছ সমসন্ত্র প্রতিসারক মাধ্যমকে প্রিজম বলে।

্রিল তিনটি আয়তক্ষেত্রাকার এবং দুটি ত্রিভ্জাকার সমতল পৃষ্ঠ ঘারা সীমাবন্ধ কোনো স্বচ্ছ সমসত্ত্ব প্রতিসারক মাধ্যমকে প্রিজম বলে। প্রিজমের মোটু পাঁচটি তল থাকে।

(8) একটি বাদ্ধ বস্তুকে যদি ছিয়টি আয়তক্ষেত্রিক তল দারা এমনভাবে সীমাবন্ধ করা হয় যে, যেকোনো দুই জোড়া বিপরীত তল সমান্তরাল, কিন্তু অপর দুটি তল সমান্তরাল না হয়ে পরস্পর আনত অবস্থায় থাকে, তা হলে তাকে প্রিক্তম বলে।

প্রিজমের যে তল দিয়ে আলোক রশ্মি প্রবেশ করে এবং যে তল দিয়ে আ<mark>লোক রশ্মি বের হয়ে যায় তাদেরকে</mark> প্রিজমের প্রতিসরণ তল (Refracting surface) বলে। প্রতিসরণ তলদ্বয় যে রেখায় ছেদ করে তাকে প্রিজমের শীর্ষ (edge)


চিত্র ৬ ৩৮

বলে এবং তাদের মধ্যবর্তী কোণকে প্রিক্তম কোণ (Angle of the prism) বা প্রতিসরণ কোণ (Refracting angle) বলে। প্রিজম কোণের বিপরীত তলকে প্রিজমের ভূমি (Base) বলে। প্রিজমের মধ্য দিয়ে প্রতিসরণ তল্বয়ের সাথে লম্ম হয় এমন যেকোনো একটি কল্পিড সমতলকে প্রিজমের ছেদ (Section) বলে।

৬ ৩৮নং চিত্রে AB এবং AC প্রিজমের প্রতিসরণ তল, ∠A প্রিজম কোণ, BC প্রিজমের ভূমি এবং ABC প্রিজমের ছেদ।

পূৰ্ণ প্ৰতিফলক প্ৰিজম (Total reflecting prism)

মসৃণ তলবিশিষ্ট স্বচ্ছ কাচের সমদ্বিবাহু সমকোণী প্রিজমের মধ্য দিয়ে আলোর প্রতিফলন ঘটে [চিত্র ১ ৩৮ (ক)]। তাই এ ধরনের প্রিজমকে পূর্ণ প্রতিফলক প্রিজম বলে।

চিত্ৰ ৬ ৩৮ (ক)

চিত্ৰ ৬ ৩৮ (খ)

জানার বিষয়: পূর্ণ প্রতিফলক প্রিজম ব্যবহার করে অবশীর্ষ প্রতিবিম্বকে সমশীর্ব করা যায় বলে এভাবে ব্যবহুত প্রিজমকে সমশীর্ষকারী প্রিজম বলে [চিত্র ৬.৩৮(খ)]।

প্রিজমের মধ্য দিয়ে আলোকের প্রতিসরণ 6.76.7 Refraction of light through prism

RMDAC

মনে করি, ABC একটি প্রিজমের প্রধান ছেদ। AB এবং AC প্রতিসরণ তল, $\angle A$ প্রিজম কোণ এবং BC প্রিজমের ভূমি [চিত্র ৬ ৩৯]।

মনে করি PQ কোনো আপতিত রশ্মি বায়ু হতে প্রিজমের AB তলের Q বিন্দুতে তির্যকভাবে আপতিত হলো। এক্ষেত্রে আলোক রশ্মি লঘুতর মাধ্যম হতে ঘনতর মাধ্যমে প্রবেশ করার ফলে প্রতিস্ত রশ্মি O বিন্দুতে AB তলের

ওপর অভিকত অভিকল্ম NQO'-এর অভিমুখে সরে গিয়ে QR পথে প্রতিসৃত হবে। এর পর ওই রশ্মি AC তলের R বিন্দুতে আপতিত হবে এবং জাবার বায়ু মাধ্যমে RS পথে নির্গত হবে। তা হলে আবার রশ্মিটির প্রতিসরণ ঘটবে এবং কাচ হতে বায়ুতে যাবার ফলে প্রতিসৃত রশ্মি AC তলের R বিন্দুতে অভিকত অভিনন্দ N'R হতে দূরে সরে যাবে। এখানে PORS ভালোক রশ্যির পথ নির্দেশ করে। যদি আলোকের পথে প্রিজমটি না থাকত তা হলে আপতিত রশ্মি PO সোজাপথে চলে যেত। প্রিজ্বমের উপস্থিতির ফলে আলোক রশ্মির পথ পরিবর্তিত হয়েছে অর্ধাৎ আলোক রশ্মির বিচ্যতি ঘটেছে। এখন আপতিত রশ্মি PQ-কে সামনের দিকে L পর্যস্ত এবং নির্গত রশ্মি RS-কে পিছনের দিকে বর্ধিত করলে এরা

চিত্ৰ ৬ তঠ O विन्मूर् प्रिमिष्ठ হবে। এখানে ওই तिमात बना ∠SOL विद्युष्टि कांग निर्मिंग करत। এটিকে δ বা D बाता সূচিত कता

হয় ৷ ∠SOL = δ বা D

বিচ্যুতি কোণের সংজ্ঞা : প্রিজমে আপতিত রশ্মিকে সামনের দিকে এবং নির্গত রশ্মিকে পিছনের দিকে বর্ষিত করলে এদের অন্তর্ভক্ত কোণকে বিচ্যুতি কোণ বা বিচ্যুতি বলে। এক কথায় বলা যায়, আপতিত রশ্যি এবং নির্গত রশ্যির অস্তর্ভুক্ত কোণকে বিচ্যুতি কোণ বলে। একে δ বা D দারা সূচিত করা হয়।

অঞ্চন : ধরি N'R-কে পিছনের দিকে বর্ধিত করায় তা NQO'-এর সাথে O' বিন্দুতে মিলিত হলো। বিচ্যুতির হিসাব : মনে করি \angle PQN = i_1 , \angle O'QR = r_1 , \angle SRN' = i_2 এবং \angle O'RQ = r_2 । তা হলে মোট বিচ্যুতি, δ = Q বিন্দুতে বিচ্যুতি + R বিন্দুতে বিচ্যুতি

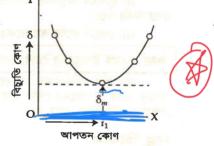
এখন, O'QR গ্রিভূজে,
$$\angle$$
O' + $\angle r_1$ + $\angle r_2$ = দুই সমকোণ ... (6.53)

পুনরায়
$$AQO'R$$
 চতুর্ভুচ্জে, $\angle AQO' = \angle ARO' = এক সমকোণ$

এখন সমীকরণ (6.52)-এ $(r_1 + r_2)$ -এর মান বসিয়ে আমরা পাই,

এটিই হলো প্রিজমের মধ্য দিয়ে আলোক রশ্মির বিচ্যুতির পরিমাণ নির্দেশক রাশিমালা।

অতএব, প্রথম আপতন কোণ, দ্বিতীয় প্রতিসরণ কোণ এবং প্রিজ্বম কোণের মান জেনে প্রিজ্বমের মধ্য দিয়ে অতিক্রমশীল রশ্মির বিচ্যুতি নির্ণয় করা যায়।


ন্যুনভম বিচ্যুতি কোণ, δ_m (Angle of minimum deviation, δ_m)

আমরা জানি, কোনো একটি প্রিজমের মধ্য দিয়ে আলোক রশ্যি গমন করলে প্রতিসরণজনিত কারণে তার বিচ্যুতি ঘটে এবং আপতিত ও নির্গত রশ্মির মধ্যবর্তী কোণই বিচ্যুতির পরিমাণ নির্দেশ করে। এই বিচ্যুতির মান আপতন কোণের

ওপর নির্ভর করে। নিম্নমান হতে শুরু করে আপতন কোণের মান ক্রমাগত বাড়াতে থাকলে বিচ্যুতির মান কমতে থাকে এবং আপতন কোণের এক নির্দিষ্ট মানের জন্য বিচ্যুতি সর্বাপেক্ষা কম হয় [চিত্র ৬ 8০]। এর পর আপতন কোণ বাড়ালে বিচ্যুতি বাড়তে থাকে। বিচ্যুতির এ সর্বনিম্ন মানকে ন্যুনত্ম বিচ্যুতি কোণ বলে এবং একে δ_m বা D_m দারা ব্যক্ত করা হয়।

সংজ্ঞা : প্রিজমে আপতিত রশ্মির আপতন কোণের একটি নির্দিষ্ট মানের জন্য বিচ্যুতি কোণের মান সর্বনিম্ন হয়। বিচ্যুতি কোণের এই সর্বনিম্ন মানকেই ন্যুনতম বিচ্যুতি কোণ বলে।

প্রিজমের যে অবস্থানে ন্যূনতম বিচ্যুতি হয়, সেই অবস্থানকে প্রিজমের ন্যূনতম বিচ্যুতির অবস্থান (Position of minimum deviation) বলে। /

চিত্র ৬ ৪০

আপতন কোণ i_1 -কে X-অক্ষে এবং বিচ্চৃতি কোণ δ -কে Y-অক্ষে স্থাপন করে একটি লেখচিত্র অজ্ঞন করলে যে আপতন কোণের জন্য বিচ্চৃতি কোণের মান সবচেয়ে কম, ওই বিচ্চৃতি কোণই ন্যূনতম বিচ্চৃতি কোণ। চিত্র ৬:৪০-এ δ_m ন্যূনতম বিচ্চৃতি কোণ।

পরীক্ষালব্দ ফলাফল হতে দেখা যায় যে, ন্যুনতম বিচ্যুতির ক্ষেত্রে $i_1=i_2$ ও $r_1=r_2$ । কাজেই ন্যুনতম বিচ্যুতিতে আলোক রশ্মি নিমের কয়েকটি শর্ত মেনে চলবে।

ন্যুনভম বিচ্যুতির শর্জ (Conditions for minimum deviation)

ন্যূনতম বিচ্যুতির তিনটি শর্ত আছে, যথা—

্রে ন্যূনতম বিচ্যুতির ক্ষেত্রে,
$$\angle i_1=\angle i_2=\angle \frac{\mathrm{A}+\delta_m}{2}$$
 হবে $\angle r_1=\angle r_2=\angle \frac{\mathrm{A}}{2}$ হবে

(৩) ন্যূনতম বিচ্যুতির ক্ষেত্রে আলোক রশ্মি প্রিজমের মধ্য দিয়ে প্রতিসমভাবে (symmetrically) গমন করে অর্থাৎ প্রিজমের শীর্ষ হতে প্রথম ও দ্বিতীয় প্রতিসরণ পৃষ্ঠে আলোক রশ্মির আপতন বিন্দুর দূরত্ব সমান হবে [চিত্র ৬ ৩৪ AQ = AR]। এ অবস্থায় প্রতিসৃত রশ্মি সমদ্বিবাহু বা সমবাহু প্রিজমের ভূমির সমান্তরাল হবে।

৬-১৭ প্রিজম পদার্থের প্রতিসরাক্ষ এবং ন্যুনতম বিচ্যুতি কোণের মধ্যে সম্পর্ক Relation between the refractive index of the material of the prism and angle of minimum deviation

মনে করি, চারপাশের মাধ্যমের সাপেক্ষে প্রিজম পদার্থের প্রতিসরাজ্ঞ = μ

: আমরা পাই,
$$\mu = \frac{\sin i_1}{\sin r_1} = \frac{\sin i_2}{\sin r_2}$$
 (6.59)

আমরা জানি, $\delta = i_1 + i_2$ — A এবং $A = r_1 + r_2$

কিন্তু ন্যূনতম বিচ্যুতিতে আলোক রশ্মি প্রিজমের মধ্য দিয়ে অতিক্রম করলে, $i_1=i_2$ এবং $r_1=r_2$

$$\therefore \quad \delta_m = i_1 + i_2 - A = 2i_1 - A$$

$$\therefore 2i_1 = A + \delta_m$$

বা,
$$i_1 = \frac{A + \delta_m}{2}$$
 এবং $A = r_1 + r_2 = 2r_1$

$$\therefore r_1 = \frac{A}{2}$$

এখন সমীকরণ (6.59)-এ i_1 এবং r_1 -এর মান বসিয়ে আমরা পাই,

$$\mu = \frac{\sin \frac{A + \delta_m}{2}}{\sin \frac{A}{2}} \qquad \dots \qquad = \frac{\sin \frac{A}{2}}{\sin \frac{A}{2}} \qquad \dots \qquad (6.60)$$

উপরের সমীকরণ প্রিক্ষম পদার্থের প্রতিসরাজ্ঞ এবং ন্যূনতম বিচ্যুতির মধ্যে সম্পর্ক স্থাপন করে।

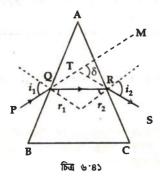
কোনো প্রিক্সমের ন্যূনতম বিচ্যুতি 36° বলতে বুঝায় প্রিক্সমের আপতিত আলোক রশ্মির <mark>আপতন কোণের একটি</mark> নির্দিক্ট মানের জন্য বিচ্যুতি কোণের সর্বনিম্ন মান <u>36</u>° হয়। 36° কে ন্যূনতম বিচ্যুতি কোণণ্ড বলে।

এখানে উল্লেখ করা যায় যে,

(i) ন্যুন্তম বিচ্যুতির মান প্রিজমের উপাদান, চারপার্থস্থ মাধ্যু, প্রিজমের কোণ ও আপতিত আলোকের বর্ণের নির্ভর করে।

(ii) বেগুনি বর্ণের আলোকের চেয়ে লাল বর্ণের আলোকের জন্য ন্যুন্তম বিচ্যুতি কোণ ক্ষ।

কাজ: একই উপাদানের তৈরি একটি ছোট প্রিজম ও একটি বড় প্রিজম উভয়ের প্রতিসরাক্ষ সমান হবে কী ?


মাধ্যমের প্রতিসরাজ্ঞ্ক এক জ্বোড়া নির্দিন্ত মাধ্যম ও একই বর্ণের আলোর ওপর নির্ভরশীল। তাই প্রিক্তম দুটি যেহেতৃ একই উপাদানের তৈরি তাই প্রিজম ছোট বা বড় এর ওপর প্রতিসরাজ্ঞ্ক নির্ভর করে না। এক্ষেত্রে তাই উভয় প্রিজমের প্রতিসরাজ্ঞ্ক একই হবে।

সরু প্রিজম

Thin prism

যে প্রিজমের প্রতিসারক কোণ কুদ্র (10° এর বেশি নয়) তাকে সরু প্রিজম বলে। সরু প্রিজম কর্তৃক সৃষ্ট বিচ্যুতি (Deviation produced by thin prism)

ধরা যাক, ABC একটি সর্ প্রিজম [চিত্র ৬ 8১]। PQ রশ্মি AB প্রতিসারক তলের ওপর প্রায় অভিশন্ধভাবে আপতিত হয়েছে। প্রায় অভিশন্ধ অপতনের জন্য,

$$i_1=0$$
 \therefore $i_1\simeq 0$ যদি μ প্রিক্তম পদার্থের প্রতিসরাক্ত হয় তবে, $\mu=\frac{\sin\,i_1}{\sin\,r_1}=\frac{i_1}{r_1}$ বা, $i_1=\mu r_1$ এবং $\frac{\sin\,i_2}{\sin\,r_2}=\frac{i_2}{r_2}$ বা, $i_2=\mu r_2$

এবং $\frac{r_2}{\sin r_2} = \frac{r_2}{r_2}$ বা, $i_2 = \mu r_2$ সূতরাং রশার বিচ্যুতি,

$$\delta = i_1 + i_2 - A = \mu r_1 + \mu r_2 - A = \mu (r_1 + r_2) - A$$

= $\mu A - A$ [: $r_1 + r_2 = A$]
= $(\mu - 1)A$

পুনরায় যদি PQ রশ্মি AB তলে অভিলম্মভাবে আপতিত হয়, তবে

$$i_1 = i_2 = 0$$
 1, $A = r_2$

সুতরাং রশ্মির বিচ্যুতি,

$$\delta = i_1 + i_2 - A = \mu r_2 - A = \mu A - A = (\mu - 1)A$$

সুতরাং, অভিলম্ম এবং প্রায় অভিলম্ম আপতনের জন্য সরু প্রিজম বিচ্যুতি

$$\delta = (\mu - 1)A$$

সমীকরণ (6.61) থেকে দেখা যায় যে অভিলম্ব বা প্রায় অভিলম্ব আপতনের জন্য সরু প্রিজমে রশ্মির বিচ্যুতি প্রিজমের প্রতিসারক কোণ এবং উপাদানের প্রতিসরাজ্ঞের ওপর নির্ভর করে। সুতরাং, যদি আপতীন কোণ ছোট হয় তবে সরু প্রিজমে রশ্মির বিচ্যুতি স্থির থাকে।

গাণিতিক উদাহরণ ৬.৯

১। একটি সর্ প্রিজম একটি আলোক রশ্মিকে 4º কোণে বিচ্যুতি ঘটায়। প্রিজম পদার্থের প্রতিসরাক্ষ 1'5 হলে প্রিজম কোণ কত?

আমরা জানি প্রিজমের বিচ্যুতি কোণ,

$$\delta = (\mu - 1)A$$

$$\mathfrak{A}^{\circ} = (1.5 - 1)A$$

বা,
$$0.5A = 4^{\circ}$$

$$\therefore A = \frac{4^{\circ}}{0.5} = 8^{\circ}$$

২। 6° প্রতিসারক কোণ এবং 1'6 প্রতিসরাজ্ঞ বিশিষ্ট একটি সরু প্রিজমকে 1'5 প্রতিসরাজ্ঞবিশিষ্ট অন্য একটি সর প্রিজমের পাশে রাখা হলো যাতে একটি অপরটির সাথে উন্টোভাবে থাকে। খাড়াভাবে আপতিত একটি রশ্মি প্রথম প্রিজমে আপতিত হয়ে দ্বিতীয় প্রিজমের মধ্য দিয়ে কোনো বিচ্যুতি ছাড়াই নির্গত হয়। দ্বিতীয় প্রিজমের প্রতিসারক কোণ নির্ণয় কর।

আমরা জানি সরু প্রিজমের ক্ষেত্রে বিচ্যুতি কোণ.

$$\delta = (\mu - 1)A$$

শর্তানুসারে এখানে.

$$(\mu_1 - 1)A_1 = (\mu_2 - 1)A_2$$

$$\overline{4}$$
, $(1.6-1) \times 6^{\circ} = (1.5-1)A_2$

$$A_2 = \frac{0.6 \times 6}{0.5} = 7.2^\circ$$

$$A_1 = 6^{\circ}$$

$$u_2 = 1.5$$

$$A_2 = ?$$

বিজে কর : লাল আলো এবং বেগুনি আলোর জন্য প্রতিসরাজ্ঞের মানের কোনো তারতম্য হবে কী ?

মাধ্যমের প্রতিসরাজ্ঞ আলোর তরজ্ঞাদৈর্ঘ্যের ওপর <mark>নির্ভরশীল। তরজ্ঞাদৈর্ঘ্যের মান বেশি হলে প্রতিসরাজ্ঞের</mark> মান কমে যায়। আবার তরজাদৈর্ঘ্যের মান কমে গেলে প্রতিসরাজ্ঞের মান বেড়ে যায়। তাই লাল আলোর তরজাদৈর্ঘ্য বেশি হওয়ায় এই আলোর জন্য মাধ্যমের প্রতিসরাজ্ঞ কম হবে। অন্যদিকে বেগুনি আলোর তরজ্ঞাদৈর্ঘ্য কম হওয়ায় বেগুনি আলোর জন্য মাধ্যমের প্রতিসরাজ্ঞ বেশি হবে।

জানা দরকার : যদি প্রিজম পদার্থের প্রতিসরাজ্ঞ পারিপার্শ্বিক মাধ্যমের প্রতিসরাজ্ঞ অপেক্ষা কম হয়, তবে প্রিজম থেকে নির্গত আলোক রশ্মি ভূমির দিকে না বেঁকে শীর্ষ কোণের দিকে বেঁকে যাবে।

গাণিতিক উদাহরণ ৬.১০

১। 1'5 প্রতিসরাজ্ঞের কোনো কাচ প্রিজমের এক পৃষ্ঠের ওপর আলোক রশ্মি লম্বভাবে আপতিত হয় এবং প্রিজমের বিতীয় পৃষ্ঠের গা ঘেঁবে নির্গত হয়। প্রিজম কোণ নির্ণয় কর।

$$r_1 + r_2 = A \qquad \dots \qquad \dots$$

এবং
$$\mu = \frac{1}{\sin \theta_c}$$
 ... (ii)

$$r_2 = \theta_c$$

সমীকরণ (ii) থেকে পাই,
$$1.5 = \frac{1}{\sin \theta_c}$$

$$\therefore \sin \theta_c = \frac{1}{1.5}$$

$$\therefore \quad \theta_c = 41.81^\circ = r_2$$
এখন, $i_1 = 0$

$$\therefore \quad r_1 = 0$$
সমীকরণ (i) থেকে পাই,
$$0 + 41.81^\circ = A$$

$$\therefore \quad A = 41.81^\circ$$

$$+ 41.81^{\circ} = A$$

 $\therefore A = 41.81^{\circ}$

২। একটি প্রিজমকে ন্যূনতম বিচ্যুতি অবস্থানে স্থাপন করে আপতন কোণে<mark>র মান 40° পাওয়া যায়।</mark> প্রিজমটির যে. বো. ২০০৪] উপাদানের প্রতিসরাজ্ঞ 1.5 হলে প্রিজম কোণ কত ?

 $i_1 = i_2 = 40^{\circ}$ $\mu = 1.5$ A = ?

আমরা জানি,

$$\mu = \frac{\sin\frac{A + \delta_m}{2}}{\sin\frac{A}{2}}$$

বা,
$$1.5 = \frac{\sin\frac{A+i_1+i_2-A}{2}}{\sin\frac{A}{2}}$$

ৰা,
$$1.5 = \frac{\sin\frac{i_1 + i_2}{2}}{\sin\frac{A}{2}}$$
 [ন্যুনতম বিচুতি $\delta_m = i_1 + i_2$ — A এবং $i_1 = i_2$]

$$\boxed{4}, \quad 1.5 = \frac{\sin i_1}{\sin \frac{A}{2}}$$

a,
$$\sin \frac{A}{2} = \frac{\sin 40^{\circ}}{1.5} = \frac{0.6428}{1.5} = 0.4285$$

41,
$$\frac{A}{2} = \sin^{-1} 0.4285 = 25.37^{\circ}$$

$$\therefore$$
 A = 2 × 25.37° = 50.74° = 50°44′

৩। একটি প্রিজমে কোনো একটি রশির নির্গমন কোণ প্রিজম কোণের সমান কিন্তু ওই তলের আগতন কোণের ৰিগুণ। প্ৰিজম উপাদানের প্ৰতিসরাক্ত √3 হলে দেখাও যে, প্ৰিজম কোণ 60°।

আমরা জানি, আশোক রশ্মিটি কাচ থেকে বায়ুতে গেলে,

$$g\mu_{a} = \frac{\sin i}{\sin r}$$

$$\therefore \frac{1}{\sqrt{3}} = \frac{\sin \frac{A}{2}}{\sin A}$$

$$= \frac{\sin \frac{A}{2}}{2\sin \frac{A}{2}\cos \frac{A}{2}}$$

$$\therefore \cos \frac{A}{2} = \frac{\sqrt{3}}{2}$$

$$\therefore \frac{A}{2} = 30^{\circ}$$

ৰ্থানে,
নিৰ্গমন কোণ,
$$i_2 = A = r$$
আপতন কোণ, $i_1 = \frac{r_2}{2} = \frac{A}{2} = i$
 $a\mu_g = \sqrt{3}$
 $\therefore \qquad g\mu_a = \frac{1}{\sqrt{3}}$
 $A = ?$

8। প্রতিসারক কোণ 60° এবং 1.6 প্রতিসরাক্ষবিশিক্ট একটি কাচের প্রিজমকে গানিতে ($_{\mu_w}=1.33$) নিমজ্জিত করলে, এর বিচ্যুতি কোণ কত পাওয়া যাবে ?

পানিতে নিমচ্ছিত করলে ধরা যাক, ন্যূনতম বিচ্যুতি কোণ = δ_m আমরা জানি,

$$_{a}\mu_{g}=\frac{\sin\frac{A+\delta_{m}}{2}}{\sin\frac{A}{2}}$$

ৰা, 1'2 =
$$\frac{\sin\frac{60^{\circ} + \delta_m}{2}}{\sin\frac{60^{\circ}}{2}}$$

বা,
$$1.2 \times \sin 30^\circ = \sin \left(\frac{60^\circ + \delta_m}{2}\right)$$

$$\boxed{4}, \quad \sin\left(\frac{60^{\circ} + \delta_m}{2}\right) = 1.2 \times \frac{1}{2} = 0.6 = \sin 36.87^{\circ}$$

$$41, \frac{60^{\circ} + \delta_m}{2} = 36.87^{\circ}$$

17.
$$\delta_m = 36.87^{\circ} \times 2 - 60^{\circ} = 73.74^{\circ} - 60^{\circ} = 13.74^{\circ}$$

৫। একটি প্রিজমের প্রতিসারক কোণ 60° এবং এর উপাদানের প্রতিসরাজ্ঞ 1'48। ন্যূনতম বিচ্যুতি কোণ নির্ণয় কর। ন্যূনতম বিচ্যুতির অবস্থায় আপতন কোণ কত ? সি. বো. ২০১০; ব. বো. ২০০৯; চ. বো. ২০০৪;

জামরা জানি, $\mu = \sin \frac{\frac{A + \delta_m}{2}}{\sin \frac{A}{2}}$

বা, 1.48 =
$$\frac{\sin\frac{60^\circ + \delta_m}{2}}{\sin\frac{60^\circ}{2}}$$

$$\overline{48} = \frac{\sin\frac{60^\circ + \delta_m}{2}}{\sin 30^\circ}$$

বা, 1'48 =
$$\frac{\sin\frac{60^{\circ} + \delta_m}{2}}{\frac{1}{2}}$$

$$\sqrt[4]{60^{\circ} + \delta_m} = \sin^{-1} \frac{1.48}{2}$$

$$\sqrt[4]{60^{\circ} + \delta_m} = 47.73$$

বা,
$$60^{\circ} + \delta_m = 95.46^{\circ}$$

$$\delta_m = 35.46^{\circ}$$

এখানে.

A = 60°

$$a\mu_g = 1.6$$

 $a\mu_w = 1.33$
 $a\mu_g = \frac{a\mu_g}{a\mu_w} = \frac{1.6}{1.33} = 1.2$

KUET Admission Test, 2017-181

আবার, ন্যুনতম বিচ্যুতির অবস্থায়---

$$r_1 = r_2$$

$$\therefore A = r_1 + r_2 = r_1 + r_1 = 2r_1$$
বা, $r_1 = \frac{60^{\circ}}{2} = 30^{\circ}$
এখন, $\mu = \frac{\sin i_1}{\sin r_1}$

$$41, \quad 1.48 = \frac{\sin i_1}{\sin 30^{\circ}}$$

 $\overline{4}$, $\sin i_1 = 1.48 \times \sin 30^\circ = 1.48 \times 0.5 = 0.74 = \sin 47.8^\circ$

 $i_1 = 47.8^{\circ}$

৬। একটি ফ্রিন্ট কাচের তৈরি প্রিজমের প্রতিসারক কোণ 12°। লাল আলোর জন্য উপাদানের প্রতিসরাক্ষ 1'64 হলে বিচ্যুতি কোণ নির্ণয় কর।

আমরা জানি.

$$\delta = (\mu - 1)A$$

$$= (1.64 - 1) \times 12^{\circ}$$

$$= 0.64 \times 12^{\circ} = 7.68^{\circ}$$

এখানে, A = 12° μ = 1 64 δ = ?

৭। একটি কাচ প্রিপ্তমের প্রতিসারক কোণ 60° এবং প্রতিসরাক্ত 1'6। যদি প্রথম প্রতিসরাক তলে আপতন কোণ 45° হয় তবে রশ্মির বিচ্যুতি নির্ণয় কর।

প্রথম তলে প্রতিসরণের জন্য,

$$\mu = \frac{\sin i_1}{\sin r_1}$$

$$\text{If, } \sin r_1 = \frac{\sin i_1}{\mu} = \frac{\sin 45^\circ}{1.6}$$

$$= \frac{1}{\sqrt{2} \times 1.6} = 8.449 = \sin 26.23^\circ$$

এখানে, A = 60° μ = 1'6 i₁ = 45°

 $r_1 = 26^{\circ}23^{\circ}$

আমরা জানি,

$$A = r_1 + r_2$$
 $\exists t$, $r_2 = A - r_1 = 60^{\circ} - 26^{\circ}23^{\circ} = 33^{\circ}77^{\circ}$

দিতীয় তলের প্রতিসরণের জন্য,

$$\mu = \frac{\sin i_2}{\sin r_2}$$
 \P , $1.6 = \frac{\sin i_2}{\sin 33.77^\circ}$

17. $\sin i_2 = 1.6 \times \sin 33.77^\circ = 1.6 \times 0.5559 = 0.8894 = \sin 62.8^\circ$

:. $i_2 = 62.8^{\circ}$

অতএব, বিচ্যুতি কোণ, $\delta = i_1 + i_2 - A$

$$=45^{\circ}+62.8^{\circ}-60=47.8^{\circ}$$

৮। একটি কাঁপা সমবাহু প্রিজম একটি বিশেষ তরল হারা পূর্ণ। যদি আলোক রশ্মির প্রিজম 60° প্রতিসরণ কোণের জন্য নৃন্যতম বিচ্যুতি কোণ 30° হয় তবে তরলের প্রতিসরাজ্ঞ নির্ণয় কর।

আমরা জানি.

$$\mu = \frac{\sin\frac{A + \delta_m}{2}}{\sin\frac{A}{2}} = \frac{\sin\frac{60^\circ + 30^\circ}{2}}{\sin\frac{60^\circ}{2}}$$
$$= \frac{\sin 45^\circ}{\sin 30^\circ} = \frac{1}{\sqrt{2}} \times \frac{2}{1} = \sqrt{2} = 1.414$$

এখানে,
$$A=60^{\circ}$$
 $\delta_m=1.6$ $\mu=?$

Digest - 110 page

জ্যামিতিক আলোকবিজ্ঞান

600

কাজ: লেন্স এবং প্রিজমের আলোর প্রতিসরণ তুলনা কর।

লেঙ্গের মধ্য দিয়ে একগুচ্ছ আলোকরশ্মি গমনকালে কোথাও মিলিত হবে না (অবতল লেঙ্গে) অথবা কোনো কিছু থেকে অপসৃত হচ্ছে বলে মনে হয় (অবতল লেঙ্গে)। অপর পক্ষে, প্রিজমের মধ্য দিয়ে সাদা আলোক রশ্মি প্রতিসরণের ফলে সাতটি মূল বর্ণের একটি সজ্জা পাওয়া যায় যাকে বর্ণালি বলে। বিচ্ছুরিত আলোক রশ্মিসমূহ প্রত্যেকেই একবর্ণী।

৬-১৮ আলোর বিচ্ছুরণ Dispersion of light जिस्तित्यः मेस्र १ विस्ति ?

হীরা, মূল্যবান রত্ন, স্ফটিক ইত্যাদির মধ্য দিয়ে আলো প্রবেশ করলে তা বিভিন্ন উজ্জ্বল বর্ণের সৃষ্টি করে, এই অভিজ্ঞতা মানুষের প্রাচীনকাল থেকেই ছিল। বিভিন্ন উজ্জ্বল বর্ণ সৃষ্টির ক্ষমতার ওপর নির্ভর করেই রত্নরাজির মূল্য কম-বেশি হতো। কিন্তু সাধারণ আলো প্রবেশে কেন উজ্জ্বল বর্ণের আলো সৃষ্টি হয় তার ব্যাখ্যা কারো জানা ছিল না। 1666 খ্রিস্টাব্দে বিখ্যাত বিজ্ঞানী স্যার আইজ্যাক নিউটন পরীক্ষার সাহায্যে প্রথম প্রমাণ করেন যে, সাদা আলোর প্রকৃতি যৌগিক।

সূর্যের সাদা রশ্মি কাচ প্রিজমের মধ্য দিয়ে গমন করলে প্রতিস্ত রশ্মি সাতটি ভিন্ন বর্ণে বিচ্ছুরিত হবার কারণ কী ? কেনই বা রশ্মিগুলো প্রিজমের দিকে বেঁকে যায় ? কাচের মতো বিচ্ছুরক মাধ্যমে বিভিন্ন বর্ণের আলোকরশ্মির গতিবেগ বিভিন্ন। লাল আলোর গতিবেগ বর্ণাপক্ষা বেশি এবং বেগুনি বর্ণের সর্বাপেক্ষা কম। বিভিন্ন গতিবেগের ফলে প্রিজমের বেধ অতিক্রম করতে বাল, নীল প্রভৃতি আলোকরশ্মি বিভিন্ন সময় নেয় এবং পরস্পর হতে পৃথক হয়ে পড়ে। শূন্য মাধ্যমে অথবা বায়ুতে বিভিন্ন বর্ণের আলোকরশ্মির গতিবেগ সমান বলে শূন্য মাধ্যম অথবা বায়ু মাধ্যম দিয়ে যাবার সময় সাদা আলোর কোনো বিচ্ছুরণ হয় না সাদা রঙের আলোর এই সাতটি রঙে বিশ্লিফ হওয়ার প্রক্রিয়াকে বিচ্ছুরণ বলে। প্রিজম হতে নির্পত রশ্মিকে পর্দার ওপর ফেললে সাতটি রঙের এক মনোরম পটি (Band) দেখা যায়। এই রঙিন পটির নাম বর্ণালি (Spectrum)। সূতরাং, বিচ্ছুরণ বর্ণালির নিম্নোক্ত সংজ্ঞা দেয়া যায়।

সংজ্ঞা : সাদা আলোক রশ্মি প্রিজমের মধ্য দিয়ে প্রতিসরণের ফলে সাতটি মূল বর্ণের আলোকে বিভক্ত হুওয়াকে আলোর বিচ্ছুরণ বলে।

সাধারণভাবে বলা যায় যে, কোনো যৌগিক আলোক রশ্মির বিভিন্ন বর্ণে বিভক্ত হওয়াকে বিচ্ছুরণ বলে। বিচ্ছুরণের ফলে মূল বর্ণসমূহের যে সজ্জা পাওয়া যায় তাকে বর্ণালি বলে।

বিচ্ছুরক মাধ্যম : যে মাধ্যম এ ধরনের বিচ্ছুরণ ঘটায় তাকে বিচ্ছুরক মাধ্যম (Dispersive medium) বলে।

সাদা আলোক বিশ্লিষ্ট হলে যে সাতটি বর্ণ পাওয়া যায় এদের প্রত্যেকটির একটিমাত্র তরজ্ঞাদৈর্ঘ্য থাকে, তাই প্রত্যেকটিকে একবর্ণী আলোক বলে।

অর্থাৎ যে আলোক রশ্যির একটিমাত্র তরজ্ঞাদৈর্ঘ্য থাকে তাকে একবর্ণী আলো (monochromatic light) বলে।

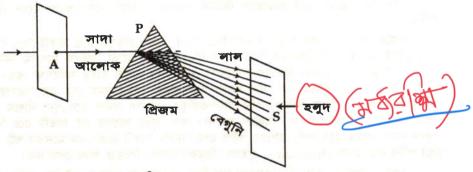
আলো যখন কোনো মাধ্যমের মধ্য দিয়ে অগ্রসর হয় তখন পদার্থের ইলেকট্রন দ্বারা উক্ত বিকিরণ শোষিত হয়। ফলে ওই সকল ইলেকট্রন অতিরিক্ত শক্তির কারণে নতুনভাবে ছন্দিত গতিসম্পন্ন হয় এবং অণ্—অণু সংঘর্ষ কিংবা পুনরায় বিকিরণের মাধ্যমে এই শক্তি হাস পায়। সূত্রাং ছন্দিত গতিসম্পন্ন ইলেকট্রন শোষিত বিকিরণ পুনরায় স্পেসে বিকিরণ করতে পারে। এই প্রক্রিয়াকে বিকিরণের বিক্ষেপণ বলে।

সাদা আলোক বিশ্লিষ্ট হলে যে সাতটি বর্ণ পাওয়া যায় ওই বর্ণগুলো যথাক্রমে বেগুনি (Violet), নীল (Indigo), আসমানি (Blue), সবৃজ (Green), হনুদ (Yellow), কমলা (Orange) এবং লাল (Red)। এই বর্ণগুলোর এক প্রান্তে থাকে লাল এবং অপর প্রান্তে থাকে বর্গুনি। লাল এবং বেগুনি বর্ণের মধ্যে থাকে বাকি পাঁচটি বর্ণ। বর্ণালির বর্ণ সজ্জাকে সহজ্ঞে মনে রাখার জন্য বর্ণগুলোর নামের বাংলা প্রথম জক্ষর নিয়ে বেনীআসহকলা পদ গঠন করা হয়েছে। ইংরেজিতে জনুরূপ পদ 'VIBGYOR'।

এই সাতটি বর্ণকে বিশুন্থ বর্ণ বলা হয়। বর্ণালির সাতটি বর্ণের তিনটি বিশেষ বর্ণকে উপযুক্ত পরিমাণে মিলিয়ে জন্য সব বর্ণই সৃষ্টি করা সম্ভব। এই বর্ণ তিনটি হলো লাল, সবুজ ও নীল। এদেরকে প্রাথমিক বর্ণ বলে। যেমন লাল ও সবুজ বর্ণের মিশ্রণে হলুদ বর্ণ পাওয়া যায়। আবার সবুজ, নীল ও লাল বর্ণের মিশ্রণে সাদা বর্ণ সৃষ্টির জন্য তিনটি বর্ণের মিশ্রণ জরুরি নয়; দুটি বর্ণ মিশিয়েও সাদা বর্ণ তৈরি করা যায়। যে দুটি বর্ণের মিশ্রণে সাদা বর্ণ তৈরি করা হয়, তাদেরকে পরিপূরক (complementary) বর্ণ বলে। যেমন হলুদ ও নীল বা সবুজ ও ম্যাজেন্টা মিশিয়ে সাদা বর্ণ সৃষ্টি হয়। সুতরাং হলুদ ও নীল বা সবুজ ও ম্যাজেন্টা পরিপূরক বর্ণ।

অনুসন্ধানমূলক কাজ: সাদা কাপড় ধোয়ার পর নীল দেওয়া হয় কেন ?

সাদা কাপড় ধোয়ার পর কিছুটা হলদেটে দেখায়। নীল ও হলুদ যেহেতু পরিপূরক বর্ণ, তাই নীল দিলে হলদেটে ভাব কেটে যায় এবং জামাকাপড় সাদা হয়।


জানার বিষয় : I. কাচের মধ্যে লাল আলোর বেগ বেগুনি বর্ণের আলোর বেগের চেয়ে 1'8 গুণ বেশি।

II. মাধ্যমে আলোর বেগ তরজাদৈর্ঘ্যের সমানুপাতিক $(c \propto \lambda)$ ।

III. মাধ্যমে প্রতিসরাহ্ক তরহ্গাদৈর্ঘ্যের ব্যস্তানুপাতিক $(\mu \propto \frac{1}{\lambda})$ ।

আলোর বিচ্ছুরণ প্রদর্শন Demonstration of dispersion of light

(১) মনে করি, অষচ্ছ পর্দায় A একটি সরু ছিদ্র, P একটি কাচ প্রিজম এবং প্রিজমের অপর পার্শ্বে কিছু দূরে অবস্থিত S একটি পর্দা টিত্র ৬ 8২ 1। সরু ছিদ্র দিয়ে সাদা আলোক রশ্মি প্রিজমে আপতিত হলে প্রতিসৃত রশ্মিটি সাতটি

চিত্ৰ ৬ ৪২

[DAT: 23-23] [MAT: 17-18]

মূল বর্ণে বিভক্ত হবে এবং পর্দার ওপরে একটি রঙিন পটি পাওয়া যাবে। এই পটির এক প্রান্তে থাকে লাল বর্ণ এবং জপর প্রান্তে থাকে বেগুনি বর্ণ। বিভিন্ন বর্ণের সাপেক্ষে প্রিজমের উপাদানের প্রতিসরাজ্ঞ বিভিন্ন বলে এই বর্ণালির সৃষ্টি হয়। দেখা যাবে লাল বর্ণের আলোক রশ্মির বিচ্যুতি সর্বাপেক্ষা কম এবং বেগুনি বর্ণের আলোক রশ্মির বিচ্যুতি সর্বাপেক্ষা বেশি। আবার পর্দায় বেগুনি বর্ণের আলোক সর্বাপেক্ষা বেশি এবং লাল বর্ণের আলোক সর্বাপেক্ষা কম স্থান দখল করে থাকে। হলুদ বর্ণের আলোক রশ্মির বিচ্যুতি লাল ও বেগুনি বর্ণের আলোক রশ্মির বিচ্যুতির মাঝামাঝি। এজন্য এর বিচ্যুতিকে গড় বিচ্যুতি (Mean deviation) এবং হলুদ বর্ণের রশ্মিকে মধ্য রশ্মি (Mean ray) বলা হয়। [DAT: 16-17]

(২) মুখে পানি নিয়ে সূর্যকে পিছনে রেখে মুখ দিয়ে আস্তে আস্তে পানি ছিটিয়ে দিলে পানি বিন্দুর মধ্য দিয়ে সূর্য রশ্মির প্রতিসরণের ফলে সাতটি বর্ণবিশিষ্ট একটি ধনুকাকৃতি (arched) বর্ণালি দেখা যাবে।

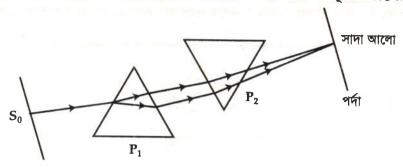
(৩) সূর্যের আলোক রশ্মি মেঘের গোলাকৃতি পানি বিন্দুর ওপর আপতিত হবার পর প্রতিসরণের ফলে আকাশের গারে রংধনু বা রামধনু (Rainbow) সৃষ্টি করে। আকাশের যে দিকে সূর্য তার বিপরীতে সাধারণত এই বর্ণালি দেখা যায়।

MAT: (१-1)

লাল, নীল, আসমানি ইত্যাদিকে মূল বর্ণ বলা হয়। এর কারণ বর্ণগুলোর যেকোনো একটি প্রিজমের মধ্য দিয়ে গ্রমন করলে এদের কোনো বিজ্বেণ ঘটবে না।

অনুসন্ধানমূলক কাজ : সাদা আলো কাচ প্রিজমে প্রবেশ করলে বর্ণালি সৃষ্টি হয় কেন ?

সাদা আলোতে সাতটি বর্ণের আলোক রশ্মি থাকে। প্রতিটি আলোক রশ্মির জন্য প্রিজমের প্রতিসরাজ্ঞ্চ ভিন্ন মানের। তাই এরা প্রিজমের মধ্য দিয়ে গমনকালে ভিন্ন ভিন্ন মানে বিচ্যুত হয়। তখন আলোক রশ্মিগুলো ভিন্ন ভিন্ন কোণে আমাদের চোখে প্রবেশ করলে সাতটি বর্ণ আমরা আলাদাভাবে বুঝতে পারি। এ কারণে সাদা আলো প্রিজমে প্রবেশ করলে বর্ণালি সৃষ্টি হয়।


भूनाम्थात्न जारनात विष्ठूतं रय ना कांत्र मव वर्षत जारना भूना म्थात्न এकर विराध हरना

31 A A

পরীকণ : বর্ণালির বিভিন্ন বর্ণকে সঠিক অনুপাতে মিশালে পুনরায় সাদা আলো পাওয়া যায়।

পরীক্ষণটি করার জন্য প্রথম প্রিজম P_1 -এর মতো ঠিক একই রকম অপর একটি প্রিজম P_2 নিতে হবে। একে উন্টাভাবে P_1 প্রিজমের পিছনে এমনভাবে রাখা হলো যাতে উভয় প্রিজমের প্রতিসারক ধারগুলো এবং S রেখাছিদ্র সমান্তরাল

চিত্ৰ ৬ ৪৩

হয় [চিত্র ৬'8৩]। দেখা যায় যে, সাদা আলো প্রথম প্রিক্তম দারা বিভিন্ন বর্ণে বিশ্লিষ্ট হওয়ার পর দ্বিতীয় প্রিক্তম কর্তৃক পুনর্যোজিত হয়। দ্বিতীয় প্রিক্তম হতে নির্গত হবার পর রশাগুলো পর্দার ওপর একটি সাদা পট্টি গঠন করে।

কাল: উড্ডীয়মান উড়োজাহাজের ছায়া মাটিতে পড়ে না কেন ? ব্যাখ্যা কর।

আমরা জানি, উড্জীয়মান উড়োজাহাজ মেঘের ওপর দিয়ে চলাচল করে। ফলে ছায়া ভূমিতে পড়ার পূর্বেই তা মেঘের ওপর পড়ে যা মেঘ ভেদ করে আর মাটিতে আসে না। এজন্যই উড্জীয়মান উড়োজাহাজের ছায়া মাটিতে পড়ে না।

গাণিতিক উদাহরণ ৬.১১

১। একটি আলোক রশাগুচ্ছে লাল, সবুজ ও নীল তিনটি বর্ণ বিদ্যমান। রশাগুচ্ছটি একটি সমকোণী প্রিজমে আপতিত হলো। লাল, সবুজ ও নীল বর্ণের ক্ষেত্রে প্রিজমটির উপাদানের প্রতিসরাক্ষের মান যথাক্রমে 1'39, 1'44 এবং 1'47। প্রিজমটি কোনো বর্ণকে পৃথক করবে কী ?

চিত্র থেকে দেখা যায় যে, বিভিন্ন বর্ণের রশািগুলো অতিভূচ্চের ওপর 45° কোণে আপতিত হবে। সংশ্লিফ সংকট কোণ যদি 45° হয় তবে প্রতিসরাজ্ঞ

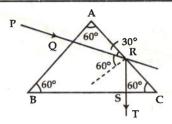
$$\mu = \frac{1}{\sin \theta_c} = \frac{1}{\sin 45^\circ} = \sqrt{2} = 1.414$$

এখন লাল আলোর ক্ষেত্রে, $\mu_r = 1.39 < 1.414$

অর্থাৎ লাল আলোর পূর্ণ প্রতিফলনের জন্য আপতন কোণের মান 45° অপেক্ষা বেশি হওয়া উচিৎ। অভএব লাল আলো প্রতিসৃত হয়ে অতিভুজ তল দিয়ে বায়ুতে নির্গত হবে। পক্ষান্তরে সবুজ ও নীল আলোর ক্ষেত্রে মাধ্যমের প্রতিসরাজ্ঞক > 1'414। সুতরাং এই দুই বর্ণের আলোর পূর্ণ প্রতিফলনের জন্য আপতন কোণের মান 45° অপেক্ষা ছোট। অতএব, ওই দুই বর্ণের আলোর পূর্ণ প্রতিফলন ঘটবে।

অনুধাবনমূলক কাজ: সূর্য ও চন্দ্রের আকারের মধ্যে অনেক পার্থক্য থাকলেও আমাদের চোখে উভয়কেই প্রায় সমান মনে হয় কেন ? ব্যাখ্যা কর।

চোখের রেটিনায় গঠিত প্রতিবিন্দের আকার নির্ভর করে বীক্ষণ কোণের ওপর। বীক্ষণ কোণ বাড়লে বস্তুর আকার বাড়ে, আবার বীক্ষণ কোণ কমলে আকার ছোট হয়। এখন সূর্য ও চল্র আমাদের চোখে প্রায় একই বীক্ষণ কোণ উৎপন্ন করে বিধায় এদেরকে প্রায় সমান বলে মনে হয়।

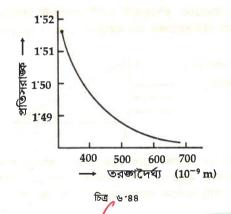

অনুসন্ধানমূলক কাজ : বর্ণালি বীক্ষণে কোন রাশিটি অধিকতর মৌলিক—কম্পাঞ্জ না তরজাদৈর্ঘ্য ?

বর্ণালি বীক্ষণে কম্পাল্ক তর্ক্জাদৈর্ঘ্য অপেক্ষা অধিকতর মৌলিক। কারণ একবর্ণী অলো বা বিকিরণের কম্পাল্ক বিভিন্ন মাধ্যমে অপারবর্তিত থাকে।

কাজ : বীক্ষণ যন্ত্র দৃষ্টি সহায়ক যন্ত্র—ব্যাখ্যা কর।

যেসব যন্ত্র কোনো বস্তুকে দেখার জন্য আমাদের চোখকে সহায়তা করে তাদেরকে বীক্ষণ যন্ত্র বলে। যেমন বাইনোকুলার, অণুবীক্ষণ যন্ত্র, দূরবীক্ষণ যন্ত্র ইত্যাদি। সুতরাং, এটি সাফ্ট যে বীক্ষণ যন্ত্র দৃষ্টি সহায়ক যন্ত্র।

অনুধাবনমূলক কাজ : একটি সমবাহু প্রিজমের কোনো তলে যদি আলোক লম্মভাবে আপতিত হয় তবে কী রশ্মি নির্গত হবে ?



ত্রিভূজটি সমবাহু হওয়ায় ত্রিভূজের দিতীয় তলে কাচের আলোক রশ্মি 60° কোণে আপতিত হবে। সূতরাং আলোকের পূর্ণ প্রতিফলন হবে; কেননা কাচের সংকট কোণ 60° এর কম। তাই কোনো রশ্মি নির্গত হবে না।

৬-১৯ বর্ণালি উৎপত্তির কারণ Cause of formation of spectrum

প্রিজম পদার্থের প্রতিসরাজ্ঞ পদার্থের প্রকৃতি ছাড়াও আলোকের বর্ণের ওপর নির্ভর করে। বিভিন্ন আলোক বর্ণের তরজ্ঞাদৈর্ঘ্য বিভিন্ন। লাল বর্ণের আলোক রশ্মির তরজ্ঞাদৈর্ঘ্য বেশি, প্রায় $8000~\text{\AA}$, তাই এর বিচ্যুতি কম হয়। বেগুনি বর্ণের আলোক রশ্মির তরজ্ঞাদৈর্ঘ্য কম, প্রায় $4000~\text{\AA}$ বলে প্রিজমের মধ্য দিয়ে যাবার সময় এর বিচ্যুতি বেশি হয়।

আরও বলা যায় যে, বিভিন্ন বর্ণের আলোকের প্র**তিসরণীয়তা** (Refrangibility) বিভিন্ন। উপরোক্ত ব্যাখ্যাপুলো হতে আলোকের বিচ্ছুরণ বা বর্ণানি উৎপত্তির কারণ সম্পর্কে আমরা নিম্ননিথিত দুটি সিম্পান্তে উপনীত হতে পারি—

- (১) বিভিন্ন বর্ণের আলোক রশ্মির বিচ্চৃতি তরজ্ঞা-দৈর্ঘ্যের পার্থক্যভেদে বিভিন্ন হয় বলে বর্ণালি উৎপন্ন হয়।
- (২) সাদা আলোকের মধ্যে যে সাতটি মূল বর্ণের আলোক আছে তাদের জন্য মাধ্যমের প্রতিসরাক্ষের বিভিন্নতা হেতু বর্ণালি উৎপন্ন হয়।

চিত্র ৬-৪৪-এ প্রতিসরাজ্ঞ্ক বনাম তরজাদৈর্ঘ্যের লেখচিত্র দেখানো হয়েছে। লেখচিত্র থেকে দেখা যায় যে, যে আলোর তরজাদৈর্ঘ্য বেশি সে আলোর প্রতিসরাজ্ঞ্ঞ কম, ফলে কম বেঁকে যায়। এ কারণে লাল আলোর প্রতিসরাজ্ঞ্ঞ বেশি। ফলে বেগুনি আলোর প্রতিসরণ বেশি, ফলে বেশি বেঁকে যায়।

জানার বিষয়

- আলোর বিক্ষেপণ তরজাদৈর্ঘ্যের চতুর্থ ঘাতের ব্যুস্তানুপাতিক।
- II. বিজ্ঞানী ওল্যাস্টন সর্বপ্রথম সৌর বর্ণালির রেবাগুলি লক্ষ করেন।

79 7

কাজ: বিপদ সংকেতে ঘর সময় লাল আলো ব্যবহার করা হয় কেন ?

দৃশ্যমান আলোর সাতটি বর্ণের মধ্যে লাল আলোর তরজাদৈর্ঘ্য সর্বাপেক্ষা বেশি। আবার, তরজের বিক্ষেপণ তরজাদৈর্ঘ্যের চতুর্থ ঘাতের ব্যুস্তানুপাতিক বলে বায়ুমগুলের মধ্য দিয়ে যাবার পথে অন্যান্য বর্ণের আলোর তুলনায় লাল বর্ণের আলোর বিক্ষেপণ কম হবে। এ কারণে লাল আলো বায়ুমগুলে অধিক দূর পর্যন্ত বিস্তার লাভ করতে পারে। ফলে কোনো বিপজ্জনক স্থানে আসার অনেক আগে থেকেই গাড়ির, জাহাজের বা বিমানের চালক লাল আলো দেখতে পেয়ে বিপদ সম্পর্কে সতর্ক হতে পারে। তাই বিপদ সংকেতে সর্বদা লাল আলো ব্যবহার করা হয়।

পুরিক্তিপুর্মির পিন্সপুর ব — জামিতিক আলোকবিজ্ঞান

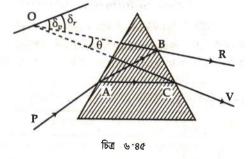
₹ 0°09

নিজে কর : সূর্যোদয় ও সূর্যাস্তের সময় দিগন্ত রেখায় আকাশের রং লাল দেখায় কেন ?

সূর্যোদয় ও স্থাস্তের সময় স্থ দিগন্ত রেখার কাছাকাছি অবস্থান করে এবং এই সময় স্থালোককে সর্বাপেক্ষা অধিক দূরত্ব অতিক্রম করে পৃথিবীতে আসতে হয়। এতটা দীর্ঘ পথ অতিক্রমের অবকাশে বায়ৢমগুলের অণু ও ধূলিকণা কর্তৃক স্থালোক প্নঃপুন বিক্ষেপিত হয়। লাল বর্ণ এবং লাল বর্ণের কাছাকাছি বর্ণ ব্যতীত অন্যান্য বর্ণসমূহ অধিক বিক্ষেপিত হয়ে দৃষ্টি পথ হতে অন্যদিকে চলে যায়। কিন্তু লাল ও তার কাছাকাছি দীর্ঘ তরজ্ঞাদৈর্ঘ্যের বর্ণসমূহের বিক্ষেপণ কম হওয়ায় এরা পৃথিবীতে চলে আসে। তাই সুর্যোদয় ও সুর্থাস্তের সময় আকাশ লাল দেখায়।

কাজ : ক্রিকেট খেলায় সাধারণত সাদা বল ব্যবহার করা হয় কেন ?

শূন্য বা বায়ু মাধ্যমে বিভিন্ন বর্ণের আলোক রশ্যির গতিবেগ সমান বলে শূন্য মাধ্যম বা বায়ু মাধ্যম দিয়ে যাওয়ার সময় সাদা আলোর কোনো বিচ্ছুরণ হয় না। ফলে এটি অনেক দূর পর্যন্ত বিস্তার লাভ করতে পারে। তাই এটি সহচ্ছে দৃশ্যমান হয়। এজন্য ক্রিকেট খেলায় সাধারণত সাদা বল ব্যবহার করা হয়।


৬·২০ বিচ্ছুরণের পরিমাপ Magnitude of dispersion

আমরা জ্ঞানি, সাদা আলোক রশ্মি কাচ প্রিজমের মধ্য দিয়ে গমন করলে প্রতিসরণের ফলে নির্গত রশ্মি সাতটি বর্ণে বিভক্ত হয় এবং এরা প্রিজমের ভূমির দিকে বেঁকে যায়। এই বর্ণসমূহের এক প্রান্তে লাল এবং অপর প্রান্তে বেগুনি

বর্ণ থাকে। প্রান্তস্থ লাল এবং বেগুনি রশ্মির কৌণিক বিচ্যুতির পার্থক্য বিচ্ছুরণের মান নির্দেশ করে। যেকোনো দৃটি বর্ণের রশ্মির বিচ্যুতি কোণের পার্থক্যকে কৌণিক বিচ্ছুরণ বলে। সূতরাং, বেগুনি ও লাল বর্ণের রশ্মির বিচ্যুতি কোণের পার্থক্য ওই দুই বর্ণের সাপেক্ষে কৌণিক বিচ্ছুরণ বলে।

মনে করি, δ , এবং δ , যথাক্রমে লাল এবং বেগুনি বর্ণের আলোক রশ্মির বিচ্যুতি [চিত্র ৬ ৪৫] ।

$$\therefore$$
 কৌণিক বিচ্ছুরণ, $\theta = \delta_v - \delta_r$
বা, $\theta = \delta_v - \delta_r$... (6.62)

এখন পাতলা প্রিজমের ক্ষেত্রে $\delta = A(\mu-1)$ । এখনে A= প্রিজমের প্রতিসরণ কোণ।

তবে মধ্য রশ্যির বিচ্যুতিকেই মূল রশ্যির বিচ্যুতি ধরা হয়। বিচ্যুতি এবং বিচ্ছুরণ প্রিজম পদার্থের উপাদান, আপতন কোণ এবং প্রিজম কোণের ওপর নির্ভর করে। প্রিজমটি ন্যুনতম বিচ্যুতি অবস্থানে স্থাপিত হলে প্রতিটি রশ্যির বিচ্যুতি ন্যুনতম হবে।

৬·২০·১ বিচ্ছুরণ ক্ষমতা Dispersive power

কোনো একটি ষচ্ছ মাধ্যম কর্তৃক সৃষ্ট বর্ণালিতে দুই অন্তিম রশ্মির (বা যেকোনো দুটি বর্ণের আলোক রশ্মির) কৌণিক বিচ্চুতির পার্থক্য এবং মধ্য বা গড় রশ্মির কৌণিক বিচ্চুতির অনুপাতকে উক্ত মাধ্যমের বিচ্ছুরণ ক্ষমতা বলে। একে W দ্বারা প্রকাশ করা হয়।

$$\therefore$$
 বিচ্ছুরণ ক্ষমতা, $W = \frac{\delta_v - \delta_r}{\delta}$ (6.64)

এখানে δ_v = বেগুনি বর্ণের বিচ্যুতি , δ_r = লাল বর্ণের বিচ্যুতি এবং δ = মধ্য বা গড় রশ্মির বিচ্যুতি । অতএব , $W=\frac{A\ (\mu_v-\mu_r)}{A\ (\mu-1)}=\frac{\mu_v-\mu_r}{\mu-1}$

গাণিতিক উদাহরণ <u>৬.</u>১২

্ঠ। লাল ও নীল বর্ণের ক্ষেত্রে ক্রাউন কাচের প্রতিসরাজ্ঞ যথাক্রমে $\mu_r=1.52$ এবং $\mu_r=1.53$ । ওই দুই বর্ণের সাপেক্ষে ক্রাউন কাচের বিচ্ছুরণ ক্ষমতা নির্ণয় কর।

আমরা জানি,

$$W = \frac{\mu_b - \mu_r}{\mu - 1}$$
 의해, $\mu = \frac{\mu_b + \mu_r}{2} = \frac{1.53 + 1.52}{2} = 1.525$

$$\therefore W = \frac{1.53 - 1.52}{1.525 - 1} = \frac{0.01}{0.525} = 0.019$$

এখানে, $\mu_r = 1.52$ $\mu_v = 1.53$ W = ?

হিসাব : 12° প্রতিসারক কোণবিশিফ্ট একটি পাতলা প্রিজমে সাদা আলো আপতিত হলো। লাল এবং বেগুনি বর্ণের ক্ষেত্রে কৌণিক বিচ্ছুরণ কত ? লাল বর্ণের জন্য প্রতিসরাজ্ঞ, $\mu_r=1.64$ এবং বেগুনি বর্ণের জন্য প্রতিসরাজ্ঞ $\mu_p=1.67$ ।

আমরা জানি, কৌণিক বিচ্ছুরণ,

$$\theta = \delta_v - \delta_r = (\mu_v - \mu_r) A$$

$$\therefore \quad \theta = 12^\circ (1.67 - 1.64) = 12^\circ \times 0.03 = 12 \times 60 \times 0.03$$

$$= 21.6 \text{ minute}$$

৬-২১ র্যালের বিক্ষেপণ সূত্র Scattering law of Rayliegh

বিখ্যাত বিজ্ঞানী র্য়ালে বিক্ষিপত আলোর তীব্রতা ও তরজ্ঞাদৈর্ঘ্য সম্পর্কিত একটা সূত্র আবিক্ষার করেন। এই সূত্র অনুসারে, বিক্ষিপত আলোর তীব্রতা আলোর তরজ্ঞাদৈর্ঘ্যের চতুর্থ ঘাতের ব্যস্তানুপাতিক। ফলে ক্ষুদ্র কুদ্র কণা দীর্ঘ তরজ্ঞাদৈর্ঘ্যের আলোর চেয়ে ক্ষুদ্র তরজ্ঞাদৈর্ঘ্যের আলোকে বেশি বিক্ষেপণ করে।

কারে: পরিক্ষার আকাশ নীল দেখায় কেন ?

[কু. বো. ২০১৯]

বায়ুমগুলে বিভিন্ন গ্যাসের অণু কর্তৃক সূর্যালোকের বিক্ষেপণের (scattering) জন্য আকাশ নীল দেখায়। বায়ুমগুলে ভাসমান ধূলিকণাও সূর্যালোককে বিক্ষিণত করতে পারে; সেক্ষেত্রে ধূলিকণার আকার দৃশ্যমান আলোর দীর্ঘতম তরজ্ঞাদৈর্ঘ্য অপেক্ষা ক্ষুদ্রতর হওয়া প্রয়োজন। বিক্ষিণত আলোর তীব্রতা তরজ্ঞাদৈর্ঘ্যের চতুর্থ ঘাতের ব্যস্তানুপাতে পরিবর্তিত হয়। ফলে সূর্যালোকের নীল রশ্মিগুলো লাল রশ্মিগুলো অপেক্ষা বেশি বিক্ষিণত হয়। ফলে আকাশের দিকে তাকালে আকাশ নীল দেখায়।

সম্প্রসারিত কাজ: চাঁদের আকাশ কালো দেখায় কেন ?

পৃথিবীর বায়ুমণ্ডল না থাকলে বিক্ষেপণ হতো না। ফলে আকাশ হতে কোনো আলো আমাদের চোখে পৌছাত না। এমন কি তথন দিনের বেলাতেও আকাশকে কালো দেখাত। নভোচারিগণ মহাকাশযানে বায়ুমণ্ডল অতিক্রম করার পর বস্তুত এই অভিজ্ঞতার সম্মুখীন হয়েছেন। চাঁদে কোনো বায়ুমণ্ডল নেই বলে একই কারণে চাঁদের আকাশকে কালো দেখায়।

হিসাব কর: একটি কাচের প্রিজমের প্রতিসরণ কোণ ৪° এবং নীল ও লাল বর্ণের আলোর বেলায় প্রতিসরাজ্ঞ যথাক্রমে 1°532 ও 1°514। প্রিজম যে কৌণিক বিচ্ছুরণ উৎপন্ন করে তা নির্ণয় কর। প্রিজমের উপাদানের বিচ্ছুরণ ক্ষমতা কত ?

নীল ও লাল বর্ণের ভেতর কৌণিক বিচ্ছুরণ $(\mu_b-\mu_r)~A=(1.532-1.514)~8^\circ=0.144^\circ$

বিচ্ছুরণ ক্ষমতা,
$$W = \frac{\mu_b - \mu_r}{\mu - 1}$$
 এখন, $\mu = \frac{\mu_b + \mu_r}{2} = \frac{1.532 + 1.514}{2}$ = 1.523
 $\therefore W = \frac{1.532 - 1.514}{1.532 - 1} = \frac{0.018}{0.523} = 0.034$

গাণিতিক উদাহরণ ৬.১৩

১। বেগুনি ও লাল আলোর জন্য এক প্রকার কাচের প্রতিসরাজ্ঞ যথাক্রমে 1'65 ও 1'57। এই দুই বর্ণের আলোর মধ্যে আলোচ্য কাচের বিচ্ছুরণ ক্ষমতা নির্ণয় কর।

আমরা জানি.

$$W = \frac{\mu_v - \mu_r}{\mu - 1}$$
 এখানে, $\mu = \frac{\mu_v + \mu_r}{2} = \frac{1.65 + 1.57}{2} = 1.61$

$$\therefore W = \frac{1.65 - 1.57}{1.61 - 1} = 0.13$$

২। একটি ক্রাউন কাচের তৈরি প্রিজমের প্রতিসারক কোণ 10°, হলুদ ও নীল আলোর জন্য এর প্রতিসরাক্ষ যথাক্রমে 1'51 ও 1'54 হলে কৌণিক বিচ্ছুরণ কত হবে ?

আমরা জানি,

$$\delta_b - \delta_y = (\mu_b - \mu_y) A$$

= (1.54 - 1.51) 10°
= 0.30°

৩। লাল আলোর জন্য ক্রাউন গ্লাস ও ফ্লিন্ট গ্যাসের প্রতিসরাজ্ঞ যথাক্রমে 1'515 এবং 1'644। আবার বেগুনি আলোর জন্য ক্রাউন ও ফ্লিন্ট গ্লাসের প্রতিরাজ্ঞ যথাক্রমে 1'532 এবং 1'6685। চশমার কাচ তৈরির জন্য কোন গ্লাসটি উপযোগী এবং কেন ?

ক্রাউন গ্লাসের বিচ্ছুরণ ক্ষমতা,

$$W_{C} = \frac{1.532 - 1.515}{\left(\frac{1.532 + 1.515}{2}\right) - 1} = \frac{0.017}{0.5233} = 0.0325$$

ফ্লিন্ট গ্লাসের বিচ্ছুরণ ক্ষমতা,

$$W_{F} = \frac{1.685 - 1.644}{\left(\frac{1.685 + 1.644}{2}\right) - 1} = \frac{0.041}{0.6645} = 0.0617$$

এখানে লাল আলোর জন্য,

$$\mu_1 = 1.532$$
 $\mu_2 = 1.515$

এখানে বেগুনি আলোর জন্য,

$$\mu_1 = 1.685$$
 $\mu_2 = 1.644$

চশমার জন্য, লেন্সের বিচ্ছুরণ ক্ষমতা বর্ণাপেরণ কমের জন্য সর্বনিম্ন হওয়া উচিৎ। অতএব, ক্রাউন গ্লাস চশমার লেন্স তৈরির জন্য অধিক উপযোগী।

অনুসন্ধানমূলক কাজ : শূন্য মাধ্যমে আলোর বিচ্ছুর্ণ ঘটে কী?

না; শূন্য মাধ্যমে আলোর বিচ্ছুরণ ঘটে না, কেন<mark>ু</mark>না আলোর সব বর্ণের জন্য শূন্য মাধ্যম বেণের মান একই থাকে।

কাজ: মেঘ সাধারণত সাদা দেখায় কেন ? ব্যাখ্যা কর।

র্য়ালের সূত্র অনুসারে বিক্ষেপণের মাত্রা তরজ্ঞাদৈর্ঘ্যের চতুর্থ ঘাতের ব্যস্তানুপাতিক। বিক্ষেপণ সৃষ্টিকারী কণার আকার আলোর তরজ্ঞাদৈর্ঘ্যের চেয়ে বড় হলে ওই সূত্র প্রযোজ্য হয় না। মেঘে উপস্থিত জলকণা, ধূলিকণা ইত্যাদি হতে সকল বর্ণের আলোরই প্রায় সমান বিক্ষেপণ হয়, তাই মেঘকে সাধারণত সাদা দেখায়।

বর্ণালি পাঠের প্রয়োজনীয়তা

Necessity for studying spectrum
বর্ণালি পাঠের নানারপ প্রয়োজনীয়কা আক্র

বর্ণালি পাঠের নানার্প প্রয়োজনীয়তা আছে। নিম্নে তা উল্লেখ করা হলো— বর্ণালি বিশ্লেষণ দারা :

RMDAC

- (১) বিভিন্ন বর্ণের তরজাদৈর্ঘ্য নির্ণয় করা যায়।
- (২) বিভিন্ন বর্ণের ক্ষেত্রে মাধ্যমের প্রতিসরাঙ্ক নির্ণয় করা যায়।
- (৩) বিভিন্ন ধাতুর বৈশিষ্ট্য নির্ণয় করা যায়।
- (৪) কোনো মিশ্রণে উপস্থিত অজ্ঞাত ধাতুর নাম ও প্রকৃতি নির্ণয় করা যায়।
- (৫) বর্ণালি বিশ্লেষণ দ্বারা বিভিন্ন মৌলক পদার্থ শনাক্ত করা যায়।
- (৬) সূর্য নক্ষত্রের আবহমগুলের গঠন সম্পর্কে ধারণা পাওয়া যায়।

 $L = f_0 + \frac{D \times f_s}{D + f}$

 $\delta = i_1 + i_2 - A$

প্রয়োজনীয় গাণিতিক সূ	ত্রাবলি	
------------------------	---------	--

(23)

(24)

$$A = r_1 + r_2 \qquad \dots \qquad \dots \tag{25}$$

$$\mu = \frac{\sin\frac{A + \delta_m}{2}}{\sin\frac{A}{2}} \qquad ... \qquad ... \tag{26}$$

$$\delta = A (\mu - 1) \qquad ... \qquad (27)$$

$$\theta = \delta_v - \delta_r \qquad ... \qquad ... \qquad (28)$$

$$\theta = A \left(\mu_v - \mu_r \right) \qquad \dots \qquad \dots \tag{29}$$

$$W = \frac{\delta_v - \delta_r}{\delta} \qquad ... \qquad ... \qquad (30)$$

বিশ্লেষণাত্মক ও মূল্যায়নধর্মী গাণিতিক সমস্যাবলির সমাধান

১। দেশ প্রস্তৃতকারক কারখানায় সমবক্রতার ব্যাসার্থের 25 cm কোকাস দ্রত্ত্বের একটি উভোদ্ধদ দেশ তৈরি করা হলো, যার উপাদানের প্রতিসরাক্ষ 1'6। পরে এটিকে 1'6, 1'33 ও 1'4 প্রতিসরাক্ষের মাধ্যমে আতশী কাচ হিসেবে ব্যবহার করা হলো।

(क) লেপটির বক্রতার ব্যাসার্ধ নির্ণয় কর।

(খ) কোন মাধ্যমে দেলটি সর্বাধিক ক্ষমতার ব্যবহৃত হরেছিল তার গাণিতিক বিশ্লেষণ কর। [কু. বো. ২০১৯] আমরা জানি.

$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

$$\frac{1}{25} = (1.6 - 1) \left(\frac{1}{r} - \frac{1}{-r} \right)$$

$$= 0.6 \times \frac{2}{r}$$

বা,
$$r = 0.6 \times 2 \times 25 = 30 \text{ cm}$$

(খ) আবার
$$P = \frac{1}{f(m)}$$

μ = 1 6 এর ক্রের, f = 25 cm

ক্ষাতা,
$$P_1 = \frac{1}{0.25} = +4D$$

 $\mu = 1.33$ হলে

$$\frac{1}{f_2} = (1.33 - 1) \left(\frac{1}{30} + \frac{1}{30} \right)$$
$$= 0.33 \times \frac{1}{15}$$

বা,
$$f_2 = \frac{15}{0.33} = 45.45 \,\mathrm{cm}$$

$$P_2 = \frac{1}{0.4545} = +2.2D$$

আবার, μ = 1'4 হলে,

$$\frac{1}{f_3} = (1.4 - 1) \left(\frac{1}{30} + \frac{1}{30} \right) = 0.4 \times \frac{1}{15}$$

∴
$$f_3 = \frac{15}{0.4} = 37.5 \text{ cm}$$
 এবং

$$P_3 = \frac{1}{0.375} = +2.67D$$

 $P_1,\,P_2,\,P_3$ তুলনা করে দেখা যায় যে, 1.6 প্রতিসরাচ্ছের মাধ্যমে ক্ষমতা সর্বাধিক।

- ২। উদ্ভিদবিজ্ঞান ল্যাবে সরল অণুবীক্ষণ যন্ত্রে ব্যবহৃত লেশের ফোকাস দূরত্ব 14 cm। ছাত্রগণ একটি ক্ষুদ্র বস্তুকে বড় করে দেখার জন্য শিক্ষক বস্তুটিকে উক্ত সরল অণুবীক্ষণ যন্ত্র হতে স্পষ্ট দর্শনের ন্যুনতম দূরত্বের সমান দূরত্বে রাখল এবং অপর পাশ হতে বিবর্ধিত বিম্ব দেখার চেন্টা করল।
 - (क) न্যাবে ব্যবহৃত সরল অণুবীক্ষণ যন্ত্রটির বিবর্ধন নির্ণয় কর।
 - (খ) যন্ত্রে বিবর্ধন 2.5 হওয়া কি সম্ভব--- গাণিতিকভাবে বক্তব্যটির যথার্থতা বিশ্লেষণ কর।
 - (ক) সরল অণুবীক্ষণ যন্ত্রের ক্ষেত্রে

বিবর্ধন
$$m=1+\frac{D}{f}=1+\frac{25}{14}$$
 এখানে,
$$D=25\,\mathrm{cm}$$

$$f=14\,\mathrm{cm}$$

(খ) লেন্সের সমীকরণ থেকে পাই

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

$$\text{at,} \quad -\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

$$\text{at,} \quad \frac{1}{u} = \frac{1}{v} + \frac{1}{f}$$

$$\text{at,} \quad \frac{v}{u} = 1 + \frac{v}{f}$$

[প্রতিবিশ্ব অবাস্তব তাই v এর মান শণাত্মক]

বিবৰ্ধন $m = \frac{v}{u} = 1 + \frac{v}{f}$

এখানে v= স্পষ্ট দর্শনের নিকটতম দূরত্ব = D

$$\therefore m = 1 + \frac{D}{f}$$

এখানে ধরে নেওয়া হয়েছে যে, চোখ লেঙ্গের খুব কাছাকাছি। এখন লেঙ্গ ও চোখের মধ্যবর্তী দূরত্ব d হলে v=D-d

$$\therefore m = 1 + \frac{D - d}{f}$$

এই সমীকরণ থেকে দেখা যায় d কমলে m বাড়ে। d=0 হলে m সর্বাধিক হয়। কাজেই বিবর্ধনের জন্য চোখ যতটা সম্ভব লেন্সের নিকটে রাখতে হবে।

উপরের প্রাশ্ত মান m=2.7857 কিন্তু বাস্তবে বিবর্ধন এর কমও হতে পারে।

m = 2.5 হলে d এর মান শূন্য হবে না।

তখন
$$m = 1 + \frac{D - d}{f}$$

বা, $2.5 = 1 + \frac{25 - d}{14}$

বা, d=4 হয়

চোখ হতে 4 cm দূরে লেন্স রাখলে বিবর্ধন 2.5 হবে।

- ৩। 1.5 প্রতিসরাক্ষের একটি উত্তল লেন্সের বক্রতার ব্যাসার্ধ যথাক্রমে $0.2~\mathrm{m}$ এবং $0.3~\mathrm{m}$ । বায়ু সাপেক্ষেক্ষাকের প্রতিসরাক্ষ $\frac{3}{2}$ এবং পানির প্রতিসরাক্ষ $\frac{4}{3}$ ।
 - (ক) রায়ু মাধ্যমে **রেলটির** ফোকাস দূরত্ব নির্ণয় কর।
 - পার্নিতে লেশটির কোকাস দ্রত্ত্বের তারতম্য হবে কী ? গাণিতিকভাবে রিশ্লেষণ কর।

[দি. বো. ২০১৯ (মান ভিন্ন); য. বো. ২০১৫]

(ক) আমরা জানি, 1

$$\frac{1}{f_a} = (_a\mu_g - 1) \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

$$= (1.5 - 1) \left(\frac{1}{0.2} - \frac{1}{-0.3}\right)$$

$$= 4.167 \text{ m}^{-1}$$

$$\therefore f_a = \frac{1}{4.167} \text{ m} = 0.24 \text{ m}$$

এখানে, $_{a}\mu_{g} = 1.5$ $r_{1} = 0.2 \, \mathrm{m}$ $r_{2} = -0.3 \, \mathrm{m}$ বায়ুতে ফোকাস দূরত্ব, $f_{a}=?$

পদার্থবিজ্ঞান (২য়) - ১৭(ক)

(খ) পানিতে লেন্সটির ফোকাস দূরত্ব f_w হলে,

$$\frac{1}{f_w} = (_w \mu_g - 1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

$$= \left(\frac{a \mu_g}{a \mu_w} - 1 \right) \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

$$= \left(\frac{3/2}{4/3} - 1 \right) \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

$$= \left(\frac{1}{8} \right) \left(\frac{1}{0.2} - \frac{1}{-0.3} \right)$$

$$\frac{1}{f_w} = \frac{1}{8} \times \frac{25}{3} = \frac{25}{24}$$

$$\therefore f_w = \frac{24}{25} = 0.96 \text{ m}$$

এখানে, $a\mu_g = \frac{3}{2}$ $a\mu_w = \frac{4}{3}$

যেহেতু $f_m \neq f_a$ কান্ধেই পানিতে লেন্সটির ফোকাস দূরত্ত্বের তারতম্য হবে।

- 8। চিত্রে ABC একটি কাচ প্রিজমের প্রধান ছেদ। এখানে AB = BC = CA। প্রিজমের উপাদানের প্রতিসরাক্ষ্ম 1'5। AB প্রতিসারক পৃষ্টে জালোক রশিরে আপতন কোণ 27° ।
 - (क) প্রিজমটির ন্যূনতম বিচ্যুতি কোণ নির্ণয় কর।
- (খ) উদ্দীপকের আলোকে রশ্বিটি AC পৃষ্ঠ দিয়ে নির্গত হবে কি-না ? যথাযথ গাণিতিক বিশ্লেষণসহ মন্তব্য কর।
 - (ক) আমরা জানি,

$$\mu = \frac{\sin\frac{A + \delta_m}{2}}{\sin\frac{A}{2}}$$

ৰা, 1.5 =
$$\frac{\sin\frac{60^{\circ} + \delta_m}{2}}{\sin\frac{60^{\circ}}{2}}$$

$$\sqrt[4]{1}, \quad \sin\frac{60^\circ + \delta_m}{2} = 1.5 \times \sin 30^\circ = 0.75$$

$$\sqrt[4]{sin} \frac{60^\circ + \delta_m}{2} = 0.75$$

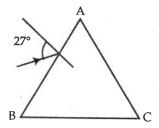
$$\sqrt[4]{60^{\circ} + \delta_m} = \sin^{-1}(0.75) = 48.6^{\circ}$$

বা,
$$60^{\circ} + \delta_m = 97.2^{\circ}$$

$$\delta_m = 97.2^{\circ} - 60^{\circ} = 37.2^{\circ}$$

(খ) ধরি প্রিজমটির ho_1 প্রতিসরণ কোণ = r_1 ২য় প্রতিসরণ কোণ = r_2

আমরা জানি,


১ম পৃষ্ঠের ক্ষেত্রে,
$$\mu = \frac{\sin i_1}{\sin r_1}$$

$$41, \quad \sin r_1 = \frac{\sin i_1}{\mu} = \frac{\sin 27^\circ}{1.5} = 0.3026$$

$$\therefore r_1 = \sin^{-1}(0.3026) = 17.62^{\circ}$$

এখানে,

$$AB = BC = CA$$
 অর্থাৎ প্রিক্ষমটি সমবাহু
প্রিক্তম কোণ, $A = 60^\circ$
প্রতিসরাঙ্ক, $\mu = 1.5$
১ম আপতন কোণ, $i_1 = 27^\circ$

এখানে,
$$\mu = 1.5$$
 আপাতন কোণ, $i_1 = 27^\circ$ প্রিক্তম কোণ, $A = 60^\circ$

আবার,
$$r_1 + r_2 = A$$

$$\therefore$$
 $r_2 = A - r_1 = 60^{\circ} - 17.62^{\circ} = 42.38^{\circ}$

২য় পৃষ্ঠের ক্ষেত্রে,
$$\mu = \frac{\sin i_2}{\sin r_2}$$

af,
$$\sin i_2 = \mu \sin r_2 = 1.5 \times \sin (42.38^\circ) = 1.011$$

কিন্তু sin এর যে কোনো মান 1 এর চেয়ে বেশি হতে পারে না।

$$\therefore \quad \sin i_2 \neq 1.011$$

অর্থাৎ আলোক রশ্মি AC পৃষ্ঠ দিয়ে নির্গত না হয়ে অভ্যন্তরীণ প্রতিফলন ঘটবে।

৫। একটি অণুবীক্ষণ যম্ভের অভিলক্ষ্য এবং অভিনেত্রের ফোকাস দূরত্ব যথাক্রমে 3 cm এবং 4 cm। লেন্দ্রয়ের মধ্যবর্তী দূরত্ব 14.5 cm। 0.50 mm দৈর্ঘ্যের একটি বস্তু অভিলক্ষ্য হতে 3.1 cm দূরে স্থাপন করা হলো।

[য. বো. ২০১৭]

(ক) ধরি, অভিদক্ষ্যের প্রতিবিস্মের দূরত্ব,
$$v_0$$
 আমরা জানি,

$$\frac{1}{v_0} + \frac{1}{u_0} = \frac{1}{f_0}$$

$$\frac{1}{v_0} + \frac{1}{u_0} = \frac{1}{f_0}$$

$$\boxed{1}, \quad \frac{1}{v_0} + \frac{1}{3} = \frac{1}{3}$$

$$\boxed{4}, \quad \frac{1}{v_0} = \frac{1}{3} - \frac{1}{3 \cdot 1} = \frac{3 \cdot 1 - 3}{3 \times 3 \cdot 1} = \frac{0 \cdot 1}{9 \cdot 3}$$

$$v_0 = \frac{9.3}{0.1} = 93 \text{ cm}$$

সূতরাং অভিলক্ষ্যের প্রতিবিন্দের দূরত্ব 93 cm

(খ) উদ্দীপক অনুসারে, লেন্স দৃটির মধ্যবর্তী দূরত্ব, $L=14.5\,\mathrm{cm}$

ক থেকে প্রান্ত অভিনক্ষ্যের প্রতিবিন্দের দূরত্ব, $v_0 = 93~{
m cm}$ এই প্রতিবিশ্ব অভিনেত্রের জন্য লক্ষ্যবস্তু হিসেবে কাজ

করবে।

অভিনেত্র হতে লক্ষ্যবস্তুর দূরত্ব u, হলে,

$$u_e + v_0 = L$$

বা,
$$u_e + 93 = 14.5$$

$$a_e = 14.5 - 93 = -78.5 \text{ cm}$$

আমরা জানি.

$$\frac{1}{v_e} + \frac{1}{u_e} = \frac{1}{f_e}$$

$$\frac{1}{v_e} = \frac{1}{f_e} - \frac{1}{u_e} = \frac{1}{4} - \frac{1}{-78.5} = \frac{1}{4} + \frac{1}{78.5}$$

$$v_e = \frac{4 \times 78.5}{(78.5 + 4)} = \frac{314}{82.5} = 3.8 \text{ cm}$$

$$v_c = 3.8 \, \mathrm{cm}$$

জাবার, অভিলক্ষ্যের বিবর্ধন,
$$M_0=1-\frac{v_0}{f_0}$$

$$=1-\frac{93}{3}=-\frac{90}{3}=-30$$

এবং অভিনেত্রের বিবর্ধন,
$$M_c = 1 - \frac{v_c}{f_c}$$

$$=1-\frac{3.8}{4}=\frac{4-3.8}{4}=\frac{0.2}{4}=0.05$$

অর্থাৎ $m M_0 > M_c$; অতএব ওপরের গাণিতিক বিশ্লেষণ হতে বলা যায় যে, অভিলক্ষ্যের বিবর্ধন অভিনেত্রের বিবর্ধনের চেয়ে বেশি হবে।

অভিলক্ষ্যের ফোকাস দূরত্ব, $f_0 = 3 \, \text{cm}$ অভিলক্ষ্য হতে লক্ষ্যবস্তুর দূরত্ব, $u_0 = 3.1 \, \mathrm{cm}$

এখানে,

অভিনেত্রের ফোকাস দূরত্ব, 📑 🐔

অভিলক্ষ্যের ফোকাস দূরত্ব, $f_0 = 3 \, \text{cm}$

অভিলক্ষ্যের বিবর্ধন. $M_0 = ?$

অভিনেত্রের বিবর্ধন, $M_c = ?$

 $v_e = ?$ চুড়ান্ত প্রতিবিন্দের দূরত্ব,

গদার্থবিজ্ঞান (২য়) - ১৭(খ)

পদার্থবিজ্ঞান (২য়) - ১৭(গ)

- ৬। জেমিমা বায়ুতে একটি কাচের উত্তল লেল নিয়ে কাজ করছিল, যার তলন্বয়ের বক্রতার ব্যাসার্থ যথাক্রমে 15 cm এবং 30 cm। $[_a\mu_g=rac{3}{2}$ এবং $_a\mu_w=rac{4}{3}]$
 - (ক) লেখটির ফোকাস দূরত্ব নির্ণয় কর।
 - (খ) লেপটিকে পানিতে নিমজ্জিত করলে এর ক্ষমতার কোনো পরিবর্তন হবে কি-না—বিশ্লেষণসহ মতামত দাও।
 ঢা. বো. ২০১৫
 - (ক) আমরা জানি,

$$\frac{1}{f_a} = (_a\mu_g - 1) \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

$$= \left(\frac{3}{2} - 1\right) \left(\frac{1}{0.15} + \frac{1}{0.30}\right)$$

$$= \frac{1}{2} \times \frac{(2+1)}{0.30} = \frac{3}{2} \times \frac{1}{0.30} = \frac{1}{0.20}$$

:. $f_a = 0.20 \text{ m}$

অতএব, লেন্সটির ফোকাস দূরত্ব, $f_a=0.20~{
m m}$

(খ) বায়ুতে লেলটির ক্ষমতা,

$$P = \frac{1}{f_a}D = \frac{1}{0.2}D = 5D$$

পানিতে ফোকাস দূরত্ব,

$$\frac{1}{f_w} = (_w \mu_g - 1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right)
= \left(\frac{_a \mu_g}{_a \mu_w} - 1 \right) \left(\frac{1}{0.15} + \frac{1}{0.30} \right)
= \left(\frac{\frac{3}{2}}{\frac{4}{3}} - 1 \right) \left(\frac{2+1}{0.30} \right) = \left(\frac{9}{8} - 1 \right) \left(\frac{1}{0.10} \right)
= \left(\frac{1}{8} \times \frac{1}{0.1} \right) = \frac{1}{0.8}$$

- $\therefore f_w = 0.8 \text{ m}$
- : পানিতে ক্ষমতা, $P_w = \frac{1}{f_w} = \frac{1}{0.8} D = 1.25 D$

সূতরাং দেখা যাচ্ছে যে লেন্সের ক্ষমতা পানিতে কমবে।

- ৭। একটি কাচ প্রিজমের প্রতিসারক কোণ 60° ও উপাদানের প্রতিসরাক্ত $\sqrt{2}$ ।
- (क) উদ্দীপকের প্রিজমটির ন্যূনতম বিচ্যুতি কোণ নির্ণয় কর।
- (খ) উদ্দীপকের প্রিক্সমটির ন্যুনতম বিচ্যুতি অবস্থানে প্রথম আগতন কোণ নির্ণয় সম্ভব—উক্তিটির যথার্থতা গাণিতিকভাবে বিশ্লেষণ কর। যি. বো. ২০১৬।
 - (ক) আমরা জানি,

$$\mu = \frac{\sin\frac{A + \delta_m}{2}}{\sin\frac{A}{2}}$$

$$\therefore \quad \sqrt{2} = \frac{\sin\left(\frac{60^\circ + \delta_m}{2}\right)}{\sin\frac{60^\circ}{2}}$$

$$\therefore \quad \sin\left(30^\circ + \frac{\delta_m}{2}\right) = \sqrt{2}\sin 30^\circ = \frac{1}{\sqrt{2}}$$

এখানে.

লেন্সের প্রথম পৃষ্ঠের বক্ততার ব্যাসার্ধ, $r_1=15~{\rm cm}=0.715~{\rm m}$ লেন্সের দিতীয় পৃষ্ঠের বক্ততার ব্যাসার্ধ, $r_2=-30~{\rm cm}=-0.30~{\rm m}$ লেন্সের উপাদানের প্রতিসরাক্ষ, $_a\mu_g=\frac{3}{2}$ লেন্সের ফোকাস দূরত্ব, $f_a=?$

এখানে.

$$a\mu_{x} = \frac{3}{2} \text{ and } a\mu_{w} = \frac{4}{3}$$
 $r_{1} = 0.15 \text{ m}$
 $r_{1} = -0.30 \text{ m}$
 $f_{w} = ?$
 $P_{w} = ?$

এখানে,

প্রিজমের প্রতিসারক কোণ বা প্রিজম কোণ, $A=60^\circ$ প্রিজম পদার্থের প্রতিসরাচ্চ, $\mu=\sqrt{2}$ প্রিজমটির ন্যূনতম বিচ্যুতি কোণ, $\delta_{m}=?$

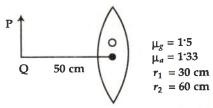
$$\therefore 30^{\circ} + \frac{\delta_m}{2} = \sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = 45^{\circ}$$

$$\delta_m = (45^\circ - 30^\circ) \times 2$$
$$= 15^\circ \times 2 = 30^\circ$$

সূতরাং, প্রিজমের ন্যূনতম বিচ্যুতি কোণ, $\delta_m = 30^\circ$

(খ) প্রিজমের প্রথম পৃঠে আপতন কোণ i_1 এবং দ্বিতীয় পৃঠে নির্গমন কোণ i_2 হলে, ন্যূনতম বিচ্যুতি অবস্থানে আমরা জানি, $i_1=i_2$ ।

বিচ্যুতি, $\delta = i_1 + i_2 - A$ সূতরাং ন্যূনতম বিচ্যুতি,


$$\delta_{m} = i_{1} + i_{2} - A$$

$$= 2i_{1} - A$$

$$2i_{1} = \delta_{m} + A = 30^{\circ} + 60^{\circ} = 90^{\circ}$$
[:: $i_{1} = i_{2}$]

 $\therefore i_1 = \frac{90^{\circ}}{2} = 45^{\circ}$

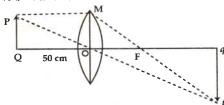
অতএব, ন্যূনতম বিচ্যুতি অবস্থানে প্রথম আপতন কোণ নির্ণয় সম্ভব এবং তা 45°। ৮।

চিত্রে লক্ষ্যবস্তুর অবস্থান দেখানো হলো।

- (क) উদ্দীপক থেকে লেন্সের ফোকাস দূরত্ব নির্ণয় কর।
- (খ) লেন্সটিকে পর্যায়ক্রমে বায়ু ও পানিতে স্থাপন করলে বিস্পের প্রকৃতি কেমন হবে ? গাণিতিকভাবে ব্যাখ্যা কর। [রা. বো. ২০১৭ (মান ভিন্ন); দি. বো. ২০১৭

$$\frac{1}{f_a} = (\mu_g - 1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

$$= (1.5 - 1) \left(\frac{1}{0.30} + \frac{1}{0.60} \right)$$


$$= (0.5) \left(\frac{2+1}{0.60} \right)$$

$$= 0.5 \times \frac{1}{0.20} = \frac{0.5}{0.20} = 2.5$$

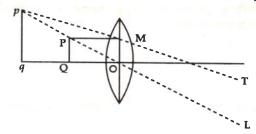
$$\mu_g = 1.5$$
 $\mu_a = 1.33$
১ম পৃষ্ঠের বক্তার ব্যাসার্ধ,
 $r_1 = 30 \text{ cm} = 0.30 \text{ m}$
২য় পৃষ্ঠের বক্তার ব্যাসার্ধ,
 $r_2 = -60 \text{ cm} = -0.60 \text{ m}$

লেনটির ফোকাস দূরত্ব,
$$f_a = ?$$

- $f_a = \frac{1}{2.5} = 0.40 \text{ m} = 40 \text{ cm}$
- (খ) উদ্দীপকের 'ক' হতে বায়ু মাধ্যমে লেন্সের ফোকাস দূরত্ব $f_a=40~{
 m cm}$, যা বস্তুর দূরত্ব u অপেক্ষা ছোট। অর্থাৎ $u>f_a$ বস্তু f_a এবং $2f_a$ এর মধ্যে অবস্থিত।

এখন বস্তুর সর্বোচ্চ প্রান্ত P হতে একটি আলোক রশ্মি PM-কে প্রধান অক্ষের সমান্তরালে এবং অপর একটি আলোক রশ্মি PO-কে আলোক কেন্দ্র বরাবর বিবেচনা করলে প্রতিসরণের পর প্রথম রশ্মিটি ফোকাস F দিয়ে ও ঘিতীয় রশ্মিটি না বেঁকে সোজা যাবে ও এরা p বিন্দুতে মিলিত হবে। অতএব p-ই P এর বাস্তব প্রতিবিন্দ্র। এখন p হতে প্রধান অক্ষের ওপর pq লম্ম টানি। সূতরাং pq-ই PQ-এর প্রতিবিন্দ্র।

প্রতিবিন্দের অবস্থান 2f অপেক্ষা দূরে হবে। বিন্দ্র বাসতব ও উন্টা হবে এবং বস্তুর সাপেক্ষে বিবর্ধিত হবে।


ধরি, লেসটি পানিতে স্থাপন করলে এর ফোকাস দূরত্ব f_w হয়। আমরা জানি.

$$\frac{1}{f_w} = \left(\frac{a\mu_g}{a\mu_w} - 1\right) \left(\frac{1}{r_1} - \frac{1}{r_2}\right)
= \left(\frac{1.5}{1.33} - 1\right) \left(\frac{1}{0.3} + \frac{1}{0.6}\right)
= 0.1278 \times \frac{1}{0.20} = 0.639$$

$$_{a}\mu_{g} = 1.5$$
 $_{a}\mu_{w} = 1.33$
 $r_{1} = 0.30 \text{ m}$
 $r_{2} = -0.60 \text{ m}$

$$f_w = \frac{1}{0.639} = 1.56 \text{ m}$$

অর্থাৎ পানিতে লেন্সটির ফোকাস দূরত্ব বেড়ে যাবে। এখন $f_w=1.56~\mathrm{m}$ বস্তু দূরত্ব, $u=0.50~\mathrm{m}$ অপেক্ষা দ্বিগুণেরও বেশি। অর্থাৎ $u< f_w$ ।

মনে করি, লক্ষ্যবস্তু PQ প্রধান অক্ষের ওপর আলোক কেন্দ্র ও প্রধান ফোকাস F' এর মধ্যে অবস্থিত। বস্তুর সর্বোচ বিন্দু P হতে একটি আলোক রশ্মি PM-কে প্রধান অক্ষের সমান্তরালে এবং অপর একটি রশ্মি PO-কে আলোক কেন্দ্র বরাবর বিবেচনা করলে প্রতিসরণের পর প্রথম রশ্মিটি ফোকাস দিয়ে এবং দ্বিতীয় রশ্মিটি না বেঁকে সোজা যাবে ও এরা পরস্পর অপসারী হবে। এই দুই রশ্মিকে পিছনের দিকে বর্ধিত করলে এরা p বিন্দু হতে অপসৃত হয়েছে বলে মনে হবে। অভএব p-ই P বিন্দুর প্রতিবিন্দ্র। এখন p হতে প্রধান অক্ষের ওপর pq লন্দ্র টানি। সুতরাং, pq, PQ এর প্রতিবিন্দ্র। এখানে v>u।

লেন্দের যে পার্শ্বে বস্তু অবস্থিত প্রতিবিন্দ্রও সে পার্শ্বে অবস্থিত। বিন্দের প্রকৃতি অবাস্তব ও সিধা। এর জাকার বিবর্ধিত। কেননা | m | = $\frac{v}{v}$ > 1 ।

- ৯। একটি নভো-দূরবীক্ষণ যন্ত্রের অভিলক্ষ্য ও অভিনেত্রের কোকাস দূরত্ব যথাক্রমে 200 cm ও 5 cm।
- (क) নিকট কোকাসিং-এর ক্ষেত্রে যন্ত্রটির নলের দৈর্ঘ্য নির্ণয় কর।
- (খ) যখন একটি বস্তুকে অসীমে ও সাইট দর্শনের নিকটতম দ্রত্বে রাখা হয় তখন কোন কেত্রে উদ্দীপকের যন্ত্রটির বিবর্ধন বেশি হয় তা গাণিতিকভাবে বিশ্লেষণ করে দেখাও। [রা. বো. ২০১৭; কু. বো. ২০১৫ (মান ভিন্ন)]
 - (ক) আমরা জানি,

$$l = f_0 + \left(\frac{D \times f_e}{D + f_e}\right)$$

$$\therefore l = 2.0 + \left(\frac{0.25 \times 0.05}{0.25 + 0.05}\right)$$

$$= 2.0 + \left(\frac{0.0125}{0.30}\right)$$

$$= 2.0 + 0.04 = 2.04 \text{ m}$$

. নিকট ফোকাসিং-এর ক্ষেত্রে যন্ত্রটির নলের দৈর্ঘ্য = 2'04 m

অভিশক্ষ্যের ফোকাস দ্রত্ব, $f_0 = 200 \text{ cm} = 2.0 \text{ m}$ অভিনেত্রের ফোকাস দ্রত্ব, $f_c = 5 \text{ cm} = 0.05 \text{ m}$ সপফ দর্শনের ন্যূনতম দ্রত্ব, D = 25 cm = 0.25 mনপের দৈর্ঘ্য, I = ?

এখানে.

(খ) অসীম দরতে ফোকাসিং এর ক্ষেত্রে আমরা জানি বিবর্ধন,

$$m = \frac{\beta}{\alpha} = \frac{f_0}{f_c} = \frac{2.0}{0.05} = 40$$

এখানে, $f_0 = 2m$

 $f_c = 0.05 \,\mathrm{m}$ D = 0.25 m

এবং সৃষ্ট দৃষ্টির ন্যূনতম দূরত্বে ফোকাসিং-এর বিবর্ধন,

$$m = \frac{f_0}{f_e} \left(1 + \frac{f_e}{D} \right)$$

$$\therefore m = \frac{2.0}{0.05} \left(1 + \frac{0.05}{0.25} \right)$$

 $= 40 \times (1 + 0.2) = 40 \times 1.2 = 48$

সূতরাং, দেখা বাচ্ছে যে সৃষ্ট দৃষ্টির ন্যূনতম দ্রত্ত্বে বিবর্ধন অসীম দ্রত্বে ফোকাসিং-এর বিবর্ধনের চেরে বেশি হয়।

- ১০। একটি উত্তল লেগের সামনে 20 cm দূরে কোনো বস্তু রাখলে 3 পুণ বিবর্ষিত উন্টা প্রতিবিদ্দ পঠিত হয়।
- (ক) লেকটির কোকাস দূরত্ব কত ?
- (খ) বস্তুর সামনে লেলটিকে কোনদিকে কডটুকু সরালে 3 গুণ বিবর্ধিত সমলীর্ব প্রতিবিদ্ধ দেখা বাবে ? গাণিতিক বিপ্লেবণের মাধ্যমে মতামত দাও।
 - (ক) যেহেতু প্রতিবিন্দ উন্টা, সূতরাং, m = -3 আমরা জানি,

$$m = \frac{v}{u} = -3$$

 $v = -3u = -3 \times (-20)$
= 60 cm

[এখানে $u = -20 \, \mathrm{cm}$]

আবার,

(খ) এক্ষেত্রে সমশীর্ষ প্রতিবিদ্দ পেতে হলে লেকটিকে বস্তুর দিকে সরাতে হবে যাতে বস্তু দূরত্ব ফোকাস দূরত্বের চেয়ে কম হয়।

ধরা যাক, লেকটিকে x cm বস্তুর দিকে সরাতে হবে।

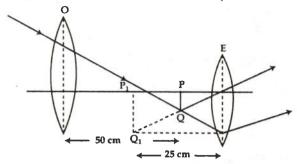
∴ বস্তু দূরত্ব, $u_1 = -(20 - x)$ cm

ধরা যাক, প্রতিবিম্ম দূরত্ব $= v_1 \, \mathrm{cm}$

প্রশানুসারে,

$$\frac{v_1}{u_1} = m = 3$$

এখন, লেব্দের সাধারণ সমীকরণ,


$$\frac{1}{v_1} - \frac{1}{u_1} = \frac{1}{f}$$

$$\boxed{4}, \quad \frac{1}{-3(20-x)} + \frac{1}{20-x} = \frac{1}{15}$$

বা, x = 10 cm

অতএব, শেশটিকে বস্তুর দিকে 10 cm সরাতে হবে।

১১। একটি নভোবীক্ষণ যন্ত্রের অভিলক্ষ্য ও অভিনেত্রের কোকাস দূরত্ব যথাক্রমে 50 cm এবং 5 cm। যন্ত্রটিকে সূর্যের দিকে ফোকাস করা হলে চূড়ান্ত প্রতিবিদ্দা অভিনেত্র থেকে 25 cm দূরে গঠিত হয়।

- (ক) যন্ত্রের কৌণিক বিবর্ধন কভ ?
- (খ) যদি সূর্যের ব্যাস অভিলক্ষ্যের কেন্দ্রে 32' কোণ উৎপন্ন করে তবে প্রতিবিন্দেরর উচ্চতা কত হবে? গাণিতিক বিশ্লেষণের মাধ্যমে উদ্ভর দাও।
 - (ক) যন্ত্রের কৌণিক বিবর্ধন, $m = \frac{f_0}{f_e} \left(1 + \frac{f_e}{D} \right)$

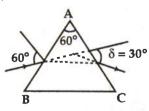
$$m = \frac{50}{5} \left(1 + \frac{5}{25} \right)$$
$$= 10 \times \frac{30}{25} = 10 \times \frac{6}{5} = 12$$

 $f_0 = 50 \text{ cm}$ $f_e = 5 \text{ cm}$ D = 25 cm $\alpha = 32'$

(খ) চ্ড়ান্ত প্রতিবিম্দ দারা অভিনেত্রে উৎপন্ন কোণ β এবং সূর্যের দারা অভিলক্ষ্যের কেন্দ্রে উৎপন্ন কোণ α হলে,

$$m = \frac{\beta}{\alpha}$$

বা,
$$\beta = m\alpha$$


এখানে,
$$\alpha = 32' = \frac{32}{60} \times \frac{\pi}{180} \text{ rad}$$

$$\beta = 12 \times \frac{32}{60} \times \frac{\pi}{180} = \frac{32}{5} \times \frac{\pi}{180}$$
 প্রতিবিন্দের উচ্চতা I হলে,

 $\beta = \frac{I}{D}$

$$\boxed{1, \quad I = \beta D = \frac{32}{5} \times \frac{\pi}{180} \times 25 = 2.79 \text{ cm.}}$$

১২। উদ্দীপক অনুসারে নিচের প্রশুর্গুলোর উন্তর দাও:

- (ক) প্রিজমের প্রতিসরাক্ত কত ?
- (খ) ন্যুনতম বিচ্যুতি ঘটাতে আপতন কোণের কীরূপ পরিবর্তন করতে হবে গাণিতিকভাবে বিশ্লেষণ কর।

[অভিনু প্রশ্ন (খ সেট) ২০১৮]

$$\delta = i_1 + i_2 - A$$

$$30^{\circ} = 60^{\circ} + i_2 - 60^{\circ}$$

$$i_2 = 30^\circ$$

এখানে

আপতন কোণ, $i_1=60^\circ$

বিচ্যুতি কোণ, $\delta = 30^{\circ}$

প্রজম কোণ, A = 60°

প্রিজম উপাদানের প্রতিসরাক্ষ μ হলে,

$$\mu = \frac{\sin i_1}{\sin r_1} = \frac{\sin i_2}{\sin r_2}$$

$$\text{II}, \quad \frac{\sin 60^{\circ}}{\sin r_1} = \frac{\sin 30^{\circ}}{\sin (60^{\circ} - r_1)}$$

ৰা,
$$\sin 30^{\circ} \sin r_1 = \frac{\sqrt{3}}{2} (\sin 60^{\circ} \cos r_1 - \cos 60^{\circ} \sin r_1)$$

$$\sqrt{3}$$
, 0.5 sin $r_1 = 0.750 \cos r_1 - 0.433 \sin r_1$

$$\boxed{4}, \quad 0.933 \sin r_1 = 0.750 \cos r_1$$

17.
$$\tan r_1 = \frac{0.933}{0.750} = 1.244$$

বা,
$$r_1 = \tan^{-1}(1.244) = 51.2^\circ$$

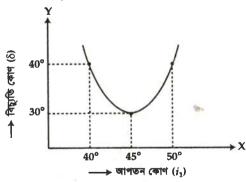
$$\mu = \frac{\sin 60^{\circ}}{\sin 51.2^{\circ}} = 1.11$$

(খ) ন্যূনতম বিচ্যুতির শর্ত অনুযায়ী,

$$i_1=i_2$$
 এবং $r_1=r_2$
A 60° - 200

এবং
$$r_1 = \frac{A}{2} = \frac{60^{\circ}}{2} = 30^{\circ}$$

প্রিজমের উপাদানের প্রতিসরাক্ত,


$$\mu = \frac{\sin i_1}{\sin r_1}$$

$$\sqrt{111} = \frac{\sin i_1}{\sin r_1}$$

$$i_1 = \sin^{-1}(0.558) = 33.92^{\circ}$$

সূতরাং গাণিতিক বিশ্লেষণ থেকে দেখা যায়, ন্যূনতম বিচ্যুতির জন্য জাপতন কোণ 33.92° হওয়া প্রয়োজন অর্থাৎ জাপতন কোণ $60^\circ-33.92^\circ=26.08^\circ$ কমাতে হবে।

১৩। নিচের চিত্রটি লক্ষ কর এবং প্রশুগুলোর উত্তর দাও:

উপরের চিত্রে একটি সমবাহু প্রিজমের ভিনু ভিনু আপতন কোণের জন্য বিচ্যুতি কোণ বনাম আপতন কোণ লেখচিত্রে দেখানো হয়েছে।

- (ক) উল্লিখিত প্রিজমটির উপাদানের প্রতিসরাক্ত কত ?
- (খ) উদ্দীপকের চিত্রে প্রদর্শিত তিনটি আপতন কোণের জন্য নির্গত কোণের স্ব স্থ মান সমান হবে কী ? গাণিতিক ব্যাখ্যা দাও।
 - (ক) আমরা জানি,

$$\mu = \frac{\sin\left(A + \frac{\delta m}{2}\right)}{\sin\frac{A}{2}} = \frac{\sin\frac{60^{\circ} + 30^{\circ}}{2}}{\sin\frac{60^{\circ}}{2}} = \frac{\sin 45^{\circ}}{\sin 30^{\circ}} = 1.414$$

$$δ$$
 = $i_1 + i_2 - A$
 $40°$ = $40° - 60° + i_2$

∴ i_2 = $60°$

ত্থাবার,

$$δ$$
 = $i_1 + i_2 - A$
 $30°$ = $45° + i_2 - 60°$
 i_2 = $45°$

আমরা জানি.

$$\delta = i_1 + i_2 - A$$

$$40^{\circ} = 50^{\circ} - 60^{\circ} + i_2$$

$$i_2 = 50^{\circ}$$

প্রথম ক্ষেত্রে.

$$\delta = 40^{\circ}$$

$$i_1 = 40^{\circ}$$

$$A = 60^{\circ}$$

দিতীয় ক্ষেত্রে,

$$\delta = 30^{\circ}$$
 $i_1 = 45^{\circ}$
 $A = 60^{\circ}$
 $i_2 = ?$

তৃতীয় ক্ষেত্রে,

$$\delta = 40^{\circ}$$

$$i_1 = 50^{\circ}$$

$$A = 60^{\circ}$$

$$i_2 = ?$$

চিত্র অনুযায়ী আপতন কোণ ও বিচ্যুতি কোণের মান ধরে হিসাব করলে দেখা যায় যে, দ্বিতীয় এবং তৃতীয় ক্ষেত্রে নির্গত কোণের ষ ষ আপতন কোণের মানের সমান হবে। প্রকৃতপক্ষে কেবল ন্যুনতম বিচ্যুতির ক্ষেত্রে আপতন কোণ ও নির্গত কোণ সমান হওয়ার কথা। মনে হচ্ছে চিত্রটি নির্থুত হয়নি এবং মানগুলিও সঠিক নয়।

১৪। 15 cm ও 30 cm বক্রতার ব্যাসার্ধবিশিক্ট একটি উভোত্তল লেন্সের সামনের 60 cm দূরে একটি বস্তু স্থাপন করনে 30 cm পিছনে প্রতিবিম্ব পাওয়া যায়।

- (क) লেলটির উপাদানের প্রতিসরাক্ত নির্ণয় কর।
- (খ) উদ্দীপকের অন্যান্য শর্তাবলি ঠিক রেখে কী ব্যবস্থা নিলে লেগটির ক্ষমতা 1.54D করা যায় । গাণিতিকভাবে ব্যাখ্যা কর। [রা. বো. ২০১৯; চ. বো. ২০১৯]

$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$

₹1, $\frac{1}{f} = \frac{1}{60} + \frac{1}{30} = \frac{1+2}{60}$

∴ $f = 20 \text{ cm}$

আবার.

$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

$$\boxed{4}, \quad \frac{1}{20} = (\mu - 1) \left(\frac{1}{15} - \frac{1}{-30} \right)$$

$$\boxed{4}, \quad \frac{1}{20} = (\mu - 1) \left(\frac{1}{15} + \frac{1}{30} \right)$$

$$= (\mu - 1) \left(\frac{2+1}{30} \right)$$

$$= (\mu - 1) \times \frac{1}{10}$$

$$\overline{1}$$
, $\mu - 1 = \frac{1}{2} \overline{1}$, $\mu = \frac{1}{2} + 1 = \frac{3}{2} = 1.5$

এখানে

$$r_1 = 15 \text{ cm}$$

 $r_2 = -30 \text{ cm}$
 $u = 60 \text{ cm}$

(খ) এখানে ক্ষমতা, P = 1.54 D

এখন,
$$P = \frac{1}{f(m)}$$
 বা, $f(m) = \frac{1}{P} = \frac{1}{1.54} = 0.649 \text{ m} = 64.9 \text{ cm}$

প্রশ্নানুসারে, অন্যান্য সকল শর্তাবলি ঠিক রেখে ওই মানের ফোকাস দূরত্ব পেতে হলে সিস্টেমটি তরলে নিমজ্জিত করলে ফোকাস দূরত্ব পরিবর্তন করা যায়। ধরা যাক, তরলের প্রতিসরাঙ্ক = $_a\mu_1$

অভএব,
$$\frac{1}{f_0} = \left(\frac{a\mu_g}{a\mu_l} - 1\right) \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

বা, $\frac{1}{64^{\circ}9} = \left(\frac{1\cdot 5}{a\mu_l} - 1\right) \left(\frac{1}{15} - \frac{1}{-30}\right)$
 $= \left(\frac{1\cdot 5}{a\mu_l} - 1\right) \left(\frac{2+1}{30}\right)$
 $= \left(\frac{1\cdot 5}{a\mu_l} - 1\right) \frac{1}{10}$

বা, $\frac{1\cdot 5}{a\mu_l} = \frac{10}{64^{\circ}9} + 1 = \frac{74\cdot 9}{64^{\circ}9} = 1^{\circ}154$
 $\therefore a\mu_l = \frac{1\cdot 5}{1\cdot 154} = 1^{\circ}30$

সূতরাং, লেপটিকে 1'30 প্রতিসরাজ্ঞ্ক সম্পন্ন তরলে নিমজ্জিত করে পরীক্ষণ সম্পন্ন করলে লেপটির ক্ষমতা 1'54D করা যাবে।

১৫। কোনো প্রিজমের উপাদানের প্রতিসরাক্ত $\sqrt{rac{3}{2}}$ এবং প্রতিসারক কোণ 90°।

- প্রিজমের ন্যুনতম বিচ্যুতি কোণ এবং ন্যুনতম বিচ্যুতির অবস্থানে আপতন কোণ নির্ণয় কর।
- (খ) আপতন কোণ 45° অপেকা কম হলে কোনো নির্গত রশ্মি পাওয়া যাবে কি–না—গাণিতিক বিশ্লেষণের মাধ্যমে তোমার মতামত দাও।
- (ক) এখানে, প্রতিসারক কোণ $A=90^\circ$, প্রতিসরাচ্চ , $\mu=\sqrt{\frac{3}{2}}$ আমরা জানি,

$$\mu = \frac{\sin\left(\frac{A + \delta_m}{2}\right)}{\sin\frac{A}{2}}$$

$$\therefore \sqrt{\frac{3}{2}} = \frac{\sin\left(\frac{90^\circ + \delta_m}{2}\right)}{\sin\frac{90^\circ}{2}}$$

$$\boxed{4, \quad \sqrt{\frac{3}{2}} \sin 45^\circ = \sin \left(\frac{90^\circ + \delta_m}{2}\right)}$$

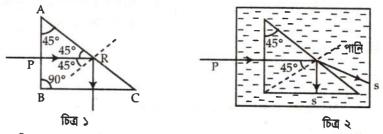
$$\boxed{4, \quad \left(\frac{90^\circ + \delta_m}{2}\right) = 60^\circ}$$

বা,
$$\delta_m + 90^\circ = 120^\circ$$

$$\delta_m = 120^\circ - 90^\circ = 30^\circ$$

ন্যূনতম বিচ্যুতির ক্ষেত্রে আপতন কোণ,

$$i = \frac{A + \delta_m}{2}$$
and, $i = \frac{90^\circ + 30^\circ}{2} = 60^\circ$


(খ) প্রিক্তম থেকে নির্গত রশাি পাওয়ার জন্য আপতন কোণের সঠিক মান i_1 হলে লেখা যায়,

$$\therefore i_1 = 45^{\circ}$$

সূতরাং, দেখা যাচ্ছে যে জাপতন কোণ $i_1=45^\circ$ -এর চেয়ে কম হলে নির্গত রশ্মি পাওয়া যাবে না।

১৬। আলোকরশ্যি একটি সমকোণী সমন্বিবাহু প্রিজমের (চিত্র-১) একটি বাহুর ওপর দম্বভাবে আপতিত হয়ে অপর বাহু কর্তৃক পূর্ণ প্রতিকলিত হলো।

- (ক) প্রিজমের উপাদানের প্রতিসরাক্তের নিম্মতম মান কত ং
- খে) প্রিজমকে পানিতে নিমক্ষিত করা হলে ওই আপতিত রশ্মির পূর্ণ প্রতিফলন হবে কি–না—চিত্রসহকারে গাণিতিকভাবে দেখাও। [পানির প্রতিসরাক্ষ, $\mu = \frac{4}{3}$]
- (क) চিত্র ১-এ ABC একটি সমদ্বিবাহু ত্রিভুজ। এখানে AB = BC

PQ আলোক রশ্মি AB তলে শন্দভাবে আপতিত হয়ে সরাসরি প্রিজমের মধ্যে প্রবেশ করে এবং AC তলের R বিন্দুতে আপতিত হয়। চিত্র থেকে স্পর্কী যে R বিন্দুতে আপতিত কোণ 45° । এখন ওই রশ্মিকে R বিন্দুতে পূর্ণ প্রতিফলিত হতে হলে ওই আপতন কোণকে প্রিজমের উপাদানের সংকট কোণের সমান বা কম হতে হবে; অর্ধাৎ সর্বোচ্চ সংকট কোণ 45° । প্রিজমের উপাদানের ন্যূন্তম প্রতিসরাজ্ঞ μ হলে,

$$\sin \theta_c = \frac{1}{\mu} \, \text{ (3)}, \sin 45^\circ = \frac{1}{\mu}$$

বা, $\mu = 1.414$

(খ) প্রিজমটি পানিতে নিমজ্জিত করলে পানির সাপেক্ষে কাচের প্রতিসরাক্ষ,

$$_{w}\mu_{g} = \frac{\mu_{w}}{\mu_{g}} = \frac{\sqrt{2}}{\frac{4}{3}} = \frac{3\sqrt{2}}{4} = 1.06$$

প্রিজম এবং পানির মধ্যে সংকট কোণ θ_{C} হলে,

$$\theta_{C}' = \sin^{-1}\left(\frac{1}{u^{1}u_{S}}\right) = \sin^{-1}\left(\frac{1}{1.06}\right)$$

$$= \sin^{-1}\left(0.9434\right) = 70^{\circ}48'$$

কিন্তু R বিন্দুতে আপতন কোণ 45° এবং এটি সংকট কোণ অপেক্ষা কম। সূতরাং, R বিন্দুতে আলোকরশ্মির পূর্ণ প্রতিফলন হবে না। আলোক রশ্মি প্রতিসৃত হয়ে পানিতে প্রবেশ করবে [চিত্র ২]।

এখন প্রতিসরণ কোণ r হলে,

$$\sqrt{2} \sin 45^\circ = \frac{4}{3} \sin r$$

41, $\sin r = \sqrt{2} \times \frac{3}{4} \times \frac{1}{\sqrt{2}} = 0.75 = \sin 48^\circ 36'$

 $\therefore \quad r = 48^{\circ}36'$

১৭। একটি পরীক্ষণে, একটি বস্তুকে একটা উভোক্তন লেন্সের 75 cm সামনে স্থাপন করা হলো। যার বক্ততার ব্যাসার্থ যথাক্রমে 15 cm ও 30 cm। এতে 30 cm পিছনে প্রতিবিম্ব গঠিত হয়। অন্য একটি পরীক্ষণে, লেসটিকে 1 33 প্রতিসরাক্তের মাধ্যমে স্থাপন করা হলো।

(ক) প্রথম ক্ষেত্রে লেকটির কোকাস দূরত্ব নির্ণয় কর।

(খ) দ্বিতীয় পরীক্ষায় একই দূরত্বে বস্তুটি স্থাপন করলে প্রতিবিন্দেরর প্রকৃতি প্রথম পরীক্ষার অনুরূপ হবে কি না— গাণিতিক বিশ্লেষণের মাধ্যমে মন্তব্য কর।

ঢো. বো. ২০১৮; রা. বো. ২০১৮; য. বো. ২০১৮; চ. বো. ২০১৮; ব. বো. ২০১৮; কু. বো. ২০১৮]

(ক) আমরা জানি,

$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v} = \frac{1}{75} + \frac{1}{30}$$
$$= \frac{2+5}{150} = \frac{7}{150}$$

$$f = \frac{150}{7} = 21.43 \text{ cm}$$

(খ) এখন,
$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

$$\boxed{4, \quad \frac{1}{21\cdot 43} = (\mu_r - 1) \left(\frac{1}{15} + \frac{1}{30}\right)}$$

$$\boxed{4, \quad (\mu_r - 1) = \frac{\frac{1}{21.43}}{\frac{1}{15} + \frac{1}{30}} = 0.47}$$

$$\mu_r = 1 + 0.47 = 1.47$$

ধরা যাক, $1^{\circ}33$ প্রতিসরাজ্ঞের মাধ্যমে লেশটির ফোকাস দূরত্ব f'

$$\therefore \frac{f'}{f} = \frac{\mu_r - 1}{\frac{\mu_r}{1.33} - 1}$$

$$\boxed{41, f'} = \frac{1.47 - 1}{1.47} \times f = 4.465 \times 21.43 = 95.68 \text{ cm}$$

আবার ,
$$\frac{1}{f'} = \frac{1}{u} + \frac{1}{v}$$

$$\boxed{4}, \ \frac{1}{95.68} = \frac{1}{75} + \frac{1}{v}$$

$$\overline{q}$$
, $\frac{1}{v} = \frac{1}{95.68} - \frac{1}{75} = -2.88 \times 10^{-3}$

$$v = -\frac{1}{2.88 \times 10^{-3}} = -346.93 \text{ cm}$$

যেহেতু v ঝণাত্মক। সুতরাং বিশ্ব অবাস্তব।

সূতরাং, দ্বিতীয় পরীক্ষায় একই দ্রত্বে বস্তুটি স্থাপন করলে প্রতিবিন্দের প্রকৃতি প্রথম পরীক্ষার অনুরূপ হবে না।

লক্ষ্যবস্থুর দূরত্ব, u = 75 cm

প্রতিবিন্দের দূরত্ব, v = 30 cm ফোকাস দূরত্ব, f = ?

$$f=21^{\circ}43~{
m cm}$$
 বক্রতার ব্যাসার্ধ, $r_1=15~{
m cm}$ বক্রততার ব্যাসার্ধ, $r_2=-30~{
m cm}$ প্রতিসরাজ্ক, $\mu_r=?$

সার-সংক্ষেপ কোনো মাধ্যমের মধ্য দিয়ে জালোক রশ্মি কোনো নির্দিষ্ট সময়ে যে পথ জতিক্রম আলোক পথ করে তার সমতুল্য আলোক পথ বলতে বোঝায় ওই নির্দিঊ সময়ে আলোক রশ্মি যে পথ অতিক্রম করে তা। আলোক পথ = মাধ্যমের প্রতিসরাজ্ঞ × মাধ্যমে আলো কর্তৃক অতিক্রান্ত পথের দৈর্ঘ্য; অর্থাৎ, $l=\mu_0 \times l$ সংকট কোণ আলোক রশ্মি ঘন মাধ্যম থেকে হাল্কা মাধ্যমে প্রতিসৃত হওয়ার সময় যে আপতন কোণের জন্য প্রতিসরণ কোণ 90° হয় এবং প্রতিসৃত রশ্মি দুই মাধ্যমের বিভেদ তল ঘেঁষে যায়, তাকে সংকট কোণ বলে। একটি তন্তু যা আলোক রশ্মি এক স্থান হতে অন্য স্থানে পূর্ণ অভ্যন্তরীণ প্রতিফলনের আলোকবাহী তম্ভ মাধ্যমে পাঠাতে পারে তাকে আলোকবাহী তন্তু বলে। আলোর প্রতিসরণ আলোক রশ্মি এক স্বচ্ছ মাধ্যম থেকে অন্য স্বচ্ছ মাধ্যমে যাওয়ার সময় মাধ্যমদ্যের বিভেদতলে তির্যকভাবে আপতিত আলোক রশ্মির দিক পরিবর্তন করার ঘটনাকে আলোর প্রতিসরণ বলে। বিম্ব যদি কোনো বিন্দু থেকে নিঃসৃত আলোক রশ্মিগুচ্ছ প্রতিফলন বা প্রতিসরণের পর দিতীয় কোনো বিন্দুতে মিলিত হয় বা দিতীয় কোনো বিন্দু হতে অপসৃত হচ্ছে বলে মনে হয়ঁ, তবে ওই দিতীয় বিন্দুকে প্রথম বিন্দুর বিন্দ বা প্রতিবিন্দ বলে। কোনো বিন্দু হতে নিঃসৃত আলোক রশািগুচ্ছ প্রতিফলন বা প্রতিসরণের পর দিতীয় বাস্তব বিশ্ব কোনো বিন্দুতে মিলিত হলৈ ওই দিতীয় বিন্দুকে প্রথম বিন্দুর বাস্তব প্রতিবিন্দ বলে। অবাস্তব বিশ্ব কোনো বিন্দু হতে নিঃসৃত আলোক রশ্মিগুচ্ছ প্রতিফলন বা প্রতিসরণের পর দ্বিতীয় কোনো বিন্দু থেকে অপসৃত হচ্ছে বলে মনে হলে দিতীয় বিন্দুকে প্রথম বিন্দুর অবাস্তব বিশ্ব বলে। প্রতিসরাজ্ঞ আলোক যখন এক স্বচ্ছ মাধ্যম হতে অন্য স্বচ্ছ মাধ্যমে তির্যকভাবে প্রবেশ করে তখন নির্দিন্ট এক জোড়া মাধ্যম এবং নির্দিন্ট বর্ণের আলোর জন্য আপতন কোণের সাইন এবং প্রতিসরণ কোণের সাইনের অনুপাত একটি ধ্রব সংখ্যা হয়। এই ধ্রব সংখ্যাকে ওই বর্ণের জন্য প্রথম মাধ্যমের সাপেক্ষে দ্বিতীয় মাধ্যমের প্রতিসরাজ্ঞ বলে। অর্থাৎ, $\frac{\sin i}{\sin r} = \mu =$ ধুব সংখ্যা = প্রতিসরাজ্ঞ আপেক্ষিক প্রতিসরাজ্ঞ জালোক রশ্মি যখন এক ষচ্ছ মাধ্যম হতে জন্য কোনো ষচ্ছ মাধ্যমে তির্যকভাবে প্রবেশ করে তখন নির্দিফ বর্ণের আলোর জন্য আপতন কোণের সাইন ও প্রতিসরণ কোণের সাইনের অনুপাতকে ওই বর্ণের জন্য ওই মাধ্যমের আপেক্ষিক প্রতিসরাক্ষ পরম প্রতিসরাক্ত আলোক রশ্মি যখন শূন্য মাধ্যম হতে অন্য কোনো মাধ্যমে প্রবেশ করে তখন নির্দিষ্ট বর্ণের আলোর জন্য আপতন কোণের সাইন ও প্রতিসরণ কোণের সাইনের অনুপাতকে ওই বর্ণের জন্য ওই মাধ্যমের পরম প্রতিসরাজ্ঞ বলে। লেন দুটি গোলীয় বা একটি সমতল অথবা দুটি বেলনাকৃতি অর্থাৎ একটি বেলনাকৃতি ও একটি সমতল পৃষ্ঠ দারা সীমাবন্ধ কোনো ষচ্ছ প্রতিসারক মাধ্যমকে লেন্স বলে। যে লেন্সের মধ্যভাগ মোটা ও প্রান্ত সরু তাকে উত্তল লেন্স বলে। এই লেন্স সাধারণত উত্তল লেঙ্গ একণুচ্ছ আলোক রশ্মিকে অভিসারী করে বলে ওকে অভিসারী লেন্সও বলে। অবতল লেক যে লেন্সের মধ্যভাগ সরু ও প্রান্তের দিক মোটা তাকে অবতল লেন্স বলে। এই লেন্স সাধারণত একগৃচ্ছ আলোক রশ্মিকে অপসারিত করে বলে একে অপসারী **লেন্স বলে**।

মেরু বিন্দু

বক্রতার কেন্দ্র

প্রধান অক

প্রধান ছেদ

গোলকীয় দর্পণের প্রতিফলক তলের মধ্যবিন্দুকে দর্পণের মেরু বিন্দু বলে।

গোলকীয় দর্পণ যে গোলকের অংশ বিশেষ তার কেন্দ্রকে ওই দর্পণের বক্রতার কেন্দ্র

গোলকীয় দর্পণের বক্রতার কেন্দ্র এবং মেরুর মধ্য দিয়ে অতিক্রান্ত সরলরেখাকে ওই দর্পণের প্রধান অক্ষ বলে।

কোনো গোলকীয় দর্পণের প্রধান অক্ষের মধ্য দিয়ে অতিক্রমকারী কোনো তল যে

বৃত্তাকার রেখায় দর্পণকে ছেদ করে তাকে ওই দর্পণের প্রধান ছেদ বলে।

প্রধান ভল : গোলকীয় দুর্পণের মেরু বিন্দুর মধ্য দিয়ে প্রধান অক্ষের সাথে লম্বভাবে অধ্কিত

তলকে দর্পণের প্রধান তল বলে।

উন্মেষ : গোলকীয় দৰ্প

: গোলকীয় দর্পণে প্রধান ছেদ বক্রতার কেন্দ্রে যে কোণ উৎপন্ন করে, তাকে দর্পণের

উন্মেষ বলে।

বক্রতার ব্যাসার্ধ : গোলকীয় দর্পণ যে গোলকের অংশ বিশেষ উক্ত গোলকের ব্যাসার্ধকে ওই দর্পণের

বক্রতার ব্যাসার্ধ বলে।

প্রধান ফোকাস বা মুখ্য

কোকাস

একগুচ্ছ সমান্তরাল আলোক রশ্মি প্রধান অক্ষের সমান্তরালে কোনো একটি গোলকীয় দর্পণে আপতিত হওয়ার পর প্রতিফলিত রশ্মিসমূহ প্রধান অক্ষের যে বিন্দুতে মিলিত হয় (অবতল দর্পণে) বা প্রধান অক্ষের যে বিন্দু হতে ছড়িয়ে পড়েছে বলে মনে হয় (উত্তল

দর্পণে) ওই বিন্দুকে দর্পণের প্রধান বা মুখ্য ফোকাস বলে।

ফোকাস দৃরত্ব : গোলকীয় দর্পণের মেরু বিন্দু এবং প্রধান ফোকাসের মধ্যবর্তী দূরত্বকে তার ফোকাস

দূরত্ব বলে।

কোকাস তল : গোলকীয় দর্পণের প্রধান ফোকাসের মধ্য দিয়ে প্রধান অক্ষের লম্বভাবে কল্লিভ বা

জঙ্কিত তদকে তার ফোকাস তল বলে।

গৌণ কোকাস : একগুচ্ছ সমান্তরাল আলোক রশ্মি প্রধান অক্ষের সাথে আনতভাবে চলে দর্পণের ওপর

আপতিত হওয়ার পর প্রতিফলিত রশািগুছ দর্পণের ফোকাস তলের যে বিন্দুতে মিলিত হয় (অবতল দর্পণে) বা ফোকাস তলের যে বিন্দু হতে ছড়িয়ে পড়েছে বলে মনে হয়

(উত্তল দর্পণে) ওই বিন্দুকে একটি গৌণ ফোকাস বলে।

গৌণ অক্ষ : মেরু ব্যতীত দর্পণের কোনো একটি বিন্দু এবং বব্রুতার কেন্দ্রে সংযোজক রেখাকে গৌণ

অক্ষ বলে।

রৈখিক বিবর্ধন : রৈখিক বিবর্ধন বলতে প্রতিবিন্দের দৈর্ঘ্য বা উচ্চতা এবং বস্তুর দৈর্ঘ্য বা উচ্চতার

অনুপাতকে বুঝায়। একে m দারা প্রকাশ করা হয়। লেস উত্তল বা অবতল, বিন্দ

সোজা বা উন্টা, বাস্তব বা অবাস্তব সকল ক্ষেত্ৰেই $m=-rac{v}{v}$ হবে।

वियम्बत्र विवत्र :

অবস্থান : বিম্বের অবস্থান বলতে লেন্স হতে এর দূরত্ব বুঝায়।

প্রকৃতি : বিন্দের প্রকৃতি বলতে বিন্দটি বাস্তব না অবাস্তব এবং সোজা না উন্টা তা বুঝায়।

আকৃতি : বিন্দের আকৃতি বলতে বিন্দটি লক্ষ্যবস্তুর তুলনায় বড় না ছোট, না লক্ষ্যবস্তুর

সমান তা বুঝায়।

বিশ্লেষণী সীমা : কোনো আলোকীয় যন্ত্রের মাধ্যমে কাছাকাছি অবস্থানে অবস্থিত দৃটি বস্তুকে

পারস্পরিক যে ন্যূনতম দূরত্বের ব্যবধানে পৃথকভাবে দুটি স্পষ্ট প্রতিবিন্দ গঠন করা

যায়, তাকে ওই যন্ত্রের বিশ্লেষণী সীমা বলে।

বিশ্লেষণী ক্ষমতা : দৃটি বস্তুর পৃথক প্রতিবিন্দের গঠনের সামর্থ্যকে বিশ্লেষণী ক্ষমতা বলে। অর্থাৎ কোনো

আলোকীয় যন্ত্রের বিশ্লেষণী ক্ষমতা বলতে কাছাকাছি অবস্থানে অবস্থিত দুটি বস্তূর

পৃথক প্রতিবিন্দ গঠনের সামর্থ্যকে বুঝায়।

অণুবীক্ষণ যম্ভের বিশ্লেষণী ক্ষমতা

কাছাকাছি অবস্থানে অবস্থিত দৃটি বস্তুকে অণুবীক্ষণ যন্ত্র যদি আলাদাভাবে দেখতে সক্ষম হয় তবে ওই বস্তু দৃটির মধ্যবর্তী দূরত্বের বিপরীত রাশিকে অণুবীক্ষণ যন্ত্রের বিশ্রেষণী ক্ষমতা বলে।

দূরবীক্ষণ যন্তের বিশ্লেষণী

ক্ষমতা

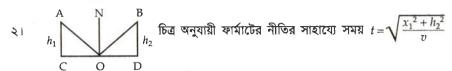
পরস্পরের কাছাকাছি অবস্থানে অবস্থিত দুটি বস্তৃকে যখন নভোবীক্ষণ যন্ত্র আলাদাভাবে বিশ্লেষণ করতে পারে তখন ওই বস্তৃ দুটি যন্ত্রের অভিলক্ষ্যে যে কোণ উৎপন্ন করে তার বিপরীত রাশিকে দূরবীক্ষণ যন্ত্রের বিশ্লেষণী ক্ষমতা বলে।

প্রিজমের ছেদ : প্রিজমের মধ্য দিয়ে প্রতিসরণ তল্বয়ের সাথে লম্ম হয় এমন যেকোনো একটি কল্পিত

সমতলকে প্রিজমের ছেদ বলে।

পূর্ণ প্রতিফলক প্রিজম : মসৃণ সমতলবিশিষ্ট স্বচ্ছ কাচের সমদ্বিবাহু সমুকোণী প্রিজমের মধ্য দিয়ে আলোর

প্রতিসরণ ঘটে। তাই এ ধরনের প্রিজমকে পূর্ণ প্রতিফলক প্রিজম বলে।


সরু প্রিজম	:	যে প্রিজমের প্রতিসারক কোণ ক্ষুদ্র (10°-এর বেশি নয়) তাকে সরু প্রিজম বলে।
মূল বৰ্ণ	:	লাল, নীল, আসমানি ইত্যাদিকে মূল বর্ণ বলা হয়। এর কম বর্ণগুলোর যেকোনো একটি প্রিজমের মধ্য দিয়ে গমন করলে এদের কোনো বিচ্ছুরণ ঘটবে না।
কৌণিক বিচ্ছুরণ	:	যেকোনো দুটি বর্ণের রশ্মির বিচ্যুতি কোণের পার্থক্যকে কৌণিক বিচ্ছুরণ বলে।
র্য়ালের বিচ্ছুরণ সৃত্র	:	বিক্ষিপত আলোর তীব্রতা ও তরজ্ঞাদৈর্ঘ্যের মধ্যে র্য়ালে একটি সূত্র আবিক্ষার করেন। এই সূত্র অনুসারে বিক্ষিপত আলোর তীব্রতা আলোর তরজ্ঞাদৈর্ঘ্যের চতুর্ধ ঘাতের ব্যস্তানুপাতিক।
ফার্মাট -এর নীতি	:	যখন কোনো আলোক রশাি প্রতিফলন বা প্রতিসরণ-এর সৃত্র মেনে কোনো সমতল পৃষ্ঠে প্রতিফলিত বা প্রতিসৃত হয় তখন তা সর্বদা ক্ষুদ্রতম পথ অনুসরণ করে।
গোলকীয় দৰ্পণ	:	কোনো দর্পণের প্রতিফলন তল যদি কোনো গোলকের অংশবিশেষ হয় বা গোলকীয় হয় তবে তাকে গোলকীয় দর্পণ বলে।
লেন্সের ক্ষমতা	;	কোনো লেন্স দ্বারা আলোক রশ্মিগুচ্ছের অভিসারিতা বা অপসারিতা উৎপাদনের সামর্থ্যকে তার ক্ষমতা বলে। কোনো লেন্সের ফোকাস দূরত্বের বিপরীত সংখ্যাকে তার
		ক্ষমতা বলা হয়।
লেন্সের ক্ষমতার একক	:	লেব্দের একক ডায়াপটার। লেব্দের ফোকাস দূরত্বকে মিটারে প্রকাশ করে তার বিপরীত রাশি নিলে ডায়াপটারে লেব্দের ক্ষমতা পাওয়া যায়।
বীক্ষণ যন্ত্ৰ	:	দূরের বস্তুকে কাছে দেখার জন্য এবং কাছের ক্ষুদ্র বস্তুকে বড় করে দেখার জন্য যে সব যন্ত্র ব্যবহার করা হয় সেগুলোকে বীক্ষণযন্ত্র বলে।
বীক্ষণ কোণ বা দৃট্টি কোণ	:	একটি বস্তু চোখে যে কোণ উৎপন্ন করে তাকে বীক্ষণ কোণ বা দৃষ্টি কোণ বলে।
কৌণিক বিবর্ধন	:	বীক্ষণ যন্ত্রে বস্তু এবং প্রতিবিদ্ধ চোখে যে কোণ উৎপন্ন করে তাদের অনুপাতকে কৌণিক বিবর্ধন বা সংক্ষেপে বিবর্ধন বলে।
অণুবীক্ষণ যন্ত্ৰ	:	যে আলোক যন্ত্রের সাহায্যে নিকটবর্তী অতি ক্ষুদ্র বস্তুর খুঁটিনাটি প্রতিবিন্দের মাধ্যমে বর্ধিত করে দেখা যায় তাকে অণুবীক্ষণ যন্ত্র বলে।
দূরবীক্ষণ যন্ত্র	÷	দ্রের বস্তুকে ভালোভাবে পর্যবেক্ষণের জন্য যে আলোক যন্ত্র ব্যবহার হয় তাকে দ্রবীক্ষণ যন্ত্র বলে।
নভো-দৃরবীক্ষণ যন্ত্র	:	চন্দ্র, সূর্য, গ্রহ, নক্ষত্র প্রভৃতি নভোমগুলীয় বস্তু পর্যবেক্ষণে যে দূরবীক্ষণ যন্ত্র ব্যবহৃত হয় তাকে নভো-দূরবীক্ষণ যন্ত্র বলে।
প্রিজম	:	তিনটি পরস্পরচ্ছেদী সমতল পৃষ্ঠ দারা সীমাবন্ধ একটি ষচ্ছ সমস্ত্ত্ব মাধ্যমকে প্রিজম বলে।
প্রিজমের প্রতিসরণ তল	:	প্রিজমের যে তল দিয়ে আলোক রশা প্রবেশ করে এবং যে তল দিয়ে আলোক রশা বের হয় তাদেরকে প্রিজমের প্রতিসরণ তল বলে।
প্রিজমের শীর্ষ	:	প্রিজমের তলদ্বয় যে রেখায় ছেদ করে তাকে প্রিজমের শীর্ষ বলে।
প্রিজম কোণ	:	প্রতিসরণ তলদ্বয়ের মধ্যবর্তী কোণকে প্রিজ্জম কোণ বা প্রতিসরণ কোণ বলে।
প্রিজমের ভূমি	:	প্রিজম কোণের বিপরীত তলকে প্রিজমের ভূমি বলে।
বিচ্যুতি কোণ বা বিচ্যুতি	:	প্রিজমে আপতিত রশ্মিকে সামনের দিকে এবং নির্গত রশ্মিকে পিছনের দিকে বর্ধিত করলে এদের অন্তর্ভুক্ত কোণকে বিচ্যুতি কোণ বা বিচ্যুতি বলে।
ন্যূনতম বিচ্যুতি কোণ	:	প্রিজমে আপতিত রশ্মির আপতন কোণের একটি নির্দিষ্ট মানের জন্য বিচ্যুতি কোণের মান সর্বনিম্ন হয়। বিচ্যুতি কোণের এই সর্বনিম্ন মানকেই ন্যূনতম বিচ্যুতি কোণ বলে।
বিচ্ছুরণ	:	সাদা আলোক রশ্মি প্রিজমের মধ্য দিয়ে প্রতিসরণের ফলে সাতটি মূল বর্ণের আলোকে বিভক্ত হওয়াকে আলোর বিচ্ছুরণ বলে।
বৰ্ণালি	:	বিচ্ছুরণের ফলে মূল বর্ণসমূহের যে সজ্জা পাওয়া যায় তাকে বর্ণালি বলে।
বিচ্ছুরণ ক্ষমতা	:	কোনো একটি ষদ্ধ মাধ্যম কর্তৃক সৃষ্ট বর্ণালিতে দুই অন্তিম রশার কৌণিক বিচ্যুতির পার্থক্য এবং মধ্য বা গড় রশার কৌণিক বিচ্যুতির অনুপাতকে উক্ত মাধ্যমের বিচ্ছুরণ
		ক্ষমতা বলে।

যে আলোক রশ্মির একটি মাত্র তরজ্ঞাদৈর্য্য থাকে তাকে একবর্ণী আলো বলে।

একবর্ণী আলো

বহুনির্বাচনি প্রশ্নের উত্তরের জন্য প্রয়োজনীয় বিষয়াবলির সার-সংক্ষেপ

১। ফার্মাটের নীতির সাহায্যে আলোর সরলরৈখিক গতি নির্ণয় করা যায়। চরম বা অবম দৈর্ঘ্যের পথের নীতি হলো ফার্মাট নীতি।

- ৩। ওপরের চিত্রে ফার্মাটের নীতি অনুযায়ী প্রযোজ্য $\frac{dt}{dx} = 0$.
- ৪। লেন্স প্রস্তুতকারকের সমীকরণ হলো $\frac{1}{f}=(\mu-1)$ $\left(\frac{1}{r_1}-\frac{1}{r_2}\right)$.
- গ্যালিলীয় দূরবীক্ষণ যন্ত্র হলো প্রতিসরণ দূরবীক্ষণ যন্ত্র। গ্যালিলিও জটিল অণুবীক্ষণ যন্ত্রের আবিক্ষারক।
- ৬। একটি জটিল অণুবীক্ষণ যন্ত্রের অভিলক্ষ্য ও অভিনেত্রের বিবর্ধন যথাক্রমে m_1 এবং m_2 .
- ৭। তুল্য লেন্সের দ্বারা সৃষ্ট প্রতিবিন্দ সোজা ও সমান দেখায়।
- ৮। একটি উত্তল লেঙ্গের ফোকাস দূরত্ব f। উত্তল লেঙ্গটি n গুণ বিবর্ধিত সদ প্রতিবিন্দ্র গঠন করলে বস্তুর দূরত্ব হবে $\frac{(n+1)f}{n}$.
- ১। প্রতিসরাক্ষ বেশি হলে আলো কম বেগে চলে। কোয়ার্টজ হলো দৈত প্রতিসারক মাধ্যম।
- ১০। আলোর বিভিন্ন বর্ণের কারণ হলো—তরজ্ঞাদৈর্ঘ্যের পার্থক্য।
- ১১। জালো ঘনতর মাধ্যম থেকে হালকা মাধ্যমে প্রবেশ করলে বেগ বেশি হয়।
- ১২। লাল আলোর বেগ বেগুনি আলোর বেগের চেয়ে 1.8 গুণ বেশি।
- ১৩। বেগুনি রঙের আলোর জন্য নির্দিষ্ট মাধ্যমের প্রতিসরাজ্কের মান সবচেয়ে বেশি হয়।
- ১৪। স্বাভাবিক ফোকাসিং-এর জন্য টেলিস্কোপে বিবর্ধনের মান $rac{f_0}{f_c}$ $\left(1+rac{f_c}{\mathrm{D}}
 ight)$ ।
- ১৫। 1.5 প্রতিসরাক্ষের উত্তল লেম্পের উত্য় পৃষ্ঠের বব্রুতার ব্যাসার্ধ সমান হলে f=r হয়।
- ১৬। লেন্সের ফোকাস দূরত্ব ও বক্রতার ব্যাসার্ধের মধ্যে সম্পর্ক হলো $f=rac{r}{2}$ ।
- ১৭। জটিল অণুবীক্ষণ যন্ত্রে 2 বার প্রতিবিন্দ গঠিত হয়। জটিল অণুবীক্ষণ যন্ত্রের অভিনেত্রে সৃষ্ট প্রতিবিন্দ অবাস্তব ও বিবর্ধিত হয়।
- ১৮। বেতার তরজা পর্যবেক্ষণের জন্য ব্যবহৃত হয় রেডিও টেলিস্কোপ।
- ১৯। কোনো নির্দিষ্ট সময়ে μ প্রতিসরাজ্কের কোনো মাধ্যমের ভেতর দিয়ে x দূরত্ব অতিক্রম করলে আলোকীয় পথ হবে μx ।
- ২০। প্রতিফলক টেলিস্কোপের ক্ষেত্রে বর্ণ ত্রুটি বা গোলকীয় ত্রুটি থাকে না।
- ২১। জটিল অণুবীক্ষণ যন্ত্রের বিবর্ধন বাড়ানোর জন্য যা কারণীয়—(i) অভিনেত্রের ফোকাস দূরত্ব কমাতে হবে (iii) লক্ষ্যবস্তুর দূরত্ব কমাতে হবে (iii) অভিলক্ষ্য দ্বারা সৃষ্ট বিন্দের দূরত্ব বাড়াতে হবে।
- ২২। আলোর প্রতিফলন ও প্রতিসরণ সূত্র প্রতিপাদন করা যায় (i) ফার্মাটের নীতির সাহায্যে (ii) হাইগেনস-এর নীতির সাহায্যে।
- ২৩। প্রতিসরাজ্ঞের মান নির্ভর করে (i) ষচ্ছ মাধ্যম দুটির প্রকৃতির ওপর, (ii) আলোক রশ্মির বর্ণের ওপর।
- ২৪। মাধ্যমের প্রতিসরাজ্ঞের পরিবর্তন হলে প্রতিবিন্দের পরিবর্তন হয়।
- ২৫। বাসতব বিন্দ গঠিত হয় অবতল দর্পণে এবং উত্তল লেন্সে। আর অবাসতব বিন্দ গঠিত হয় উত্তল দর্পণে, সমতল দর্পণে এবং অবতল লেন্সে।
- ২৬। অবাস্তব প্রতিবিশ্ব—পর্দায় ফেলা যায় না, চোখে দেখা যায়।
- ২৭। নিউটনের দূরবীক্ষণ যন্ত্রে সমতল দর্পণ অবতল দর্পণের অক্ষের সাথে 45° কোণে আনত থাকে।
- ২৮। টেলিস্কোপে স্পষ্ট দর্শনের ন্যূনতম দূরত্বে ফোকাসিং-এ অভিলক্ষ্য ঘাত সৃষ্ট বিশ্ব——(i) অভিলক্ষ্যের ফোকাস তলে গঠিত হয়, (ii) অভিনেত্রের ফোকাস দূরত্বের মধ্যে গঠিত হয়।

- ২৯। নভো দূরবীক্ষণ যন্ত্রে ষাভাবিক ফোকাসিং-এর জন্য নলের দৈর্ঘ্য হবে অভিলক্ষ্য ও অভিনেত্রের ফোকাস দূরত্বদ্বয়ের যোগফল।
- ৩০। একটি লেন্সকে পানির মধ্যে রাখলে লেন্সের ফোকাস দূরত্ব বৃদ্ধি পায়।
- ৩১। লাল বর্ণের আলোর বিচ্যুতি সর্বনিম।
- ৩২। সরল অণুবীক্ষণ যন্ত্রের বিবর্ধন, $m=\frac{v}{u}$, $m=1+\frac{D}{f}$, $m=1\pm\frac{D-a}{f}$
- ৩৩। লেপের ক্ষমতার মাত্রা L-1।
- ৩৪। পাতলা প্রিজমের ক্ষেত্রে $\delta=A~(\mu-1)$ প্রযোজ্য।

অনুশীলনী

(ক) বহুনির্বাচনি প্রশ্ন

১। কোন বর্ণের রশ্মিকে মধ্যরশ্মি বলা হয়।

ঢা. বো. ২০১৭; কৃ. বো. ২০১৬; সি. বো. ২০১৭, ২০১৬]

- ক্ত সবুজ
- ৰ) নীল
- প হলুদ
- (ঘ) আসমানি
- ২। কোন রং এর বিচ্যুতি সবচেয়ে বেশি ?

কু. বো. ২০১৭; চ. বো. ২০১৬; ব. বো. ২০১৬ Medical Admission Test, 2017-18:

Admission Test: IU 2019-20;

DU (HEC) 2020-21]

- ⊕ হলুদ
- ৰ লাল
- প্র
 পূর্নি
- ত্ব কমলা
- ত। সরল অণুবীক্ষণ যন্ত্রে কী ধরনের প্রতিবিন্দ গঠিত হয় ? [BSMRSTU Admission Test, 2016017]
 - ক্রি সোজা ও খর্বিত

[DAT: 22-23]

- সাজা ও বিবর্ধিত
- প উন্টো ও বিবর্ধিত
- ্বি উন্টোও থর্বিত
- ৪। সরল অণুবীক্ষণ যন্ত্রের বিবর্ধনের রাশি কোনটি ?
 - \mathfrak{F} $m = \frac{v}{u}$
 - $m = 1 + \frac{D}{f}$ $m = 1 + \frac{D a}{f}$
 - ि प्रति
- ৫। জটিল অণুবীক্ষণ যন্ত্রে গঠিত চূড়ান্ত বিন্দ কী রকম হয়? যি. বো. ২০১৫;
 - JKKNIU Admission Test, 2019-20] (ক) উন্টো ও খর্বিত
 - প্রাজা ও বিবর্ধিত
 - ভিল্টো ও বিবর্ধিত
 - ঘ) সোজা ও খর্বিত

- ৬। জটিল অণুবীক্ষণ যন্ত্ৰে অভিনেত্ৰ—
 - (i) চূড়ান্ত বিশ্ব তৈরি করে
 - (ii) প্রাথমিক বিন্দ তৈরি করে
 - (iii) অসদ বিন্দ তৈরি করে নিচের কোনটি সঠিক?

 - (4) iii
 - 1 i i iii
 - i, ii 😉 iii
- বখন সাদা আলো প্রিজমের মধ্য দিয়ে প্রতিসরিত হয় আলোর বিচ্যুতি——

[DU Admission Test, 2002-03]

- ক) নীল অপেক্ষা লালের জন্য বেশি
- হলুদ অপেক্ষা বেগুনির জন্য বেশি
- লালের চেয়ে সবুজের জন্য কম
- খি কমলার চেয়ে বেগুনির জন্য কম
- নভোবীক্ষণ যন্ত্রে গঠিত চূড়ান্ত বিন্দ কী রকম হয়?

[BSMRSTU Admission Test, 2017-18]

- ক সোজা ও খর্বিত
- প্রাজা ও বিবর্ধিত
- উল্টো ও খর্বিত
- ত্তি উল্টো ও বিবর্ধিত
 একটি সরল অণবীক্ষ্
 - একটি সরল অণুবীক্ষণ যন্ত্রে ব্যবহৃত লেঙ্গের ফোকাস দূরত্ব 0'15 m। স্পষ্ট দৃষ্টির ন্যূনতম দূরত্ব 0'25 m হলে ওই যন্ত্রের বিবর্ধন কত ?

[Admission Test : IUST-C 2017-18; IU-E 2017-18; JUST 2017-18; BRU 2016-17, 2014-15]

- ⊕ 1 · 5
- ② 2·667
- **1** 1.667
- **1** 1.65

একটি নভো-দূরবীক্ষণ যন্ত্রের অভিলক্ষ্য ও অভিনেত্রের ফোকাস দূরত্ব যথাক্রমে 0.5 m ଓ 0.05 m। ১০নং ও ১১নং প্রশ্রের উত্তর দাও : রো. বো. ২০১৯; য. বো. ২০১৯;

চ. বো. ২০১৭]

১০। যন্ত্রটির বিবর্ধন কত ?

[Admission Test:

JU 2019-20; CU 2017-18 (মান ভিন্ন)]

- **(4)** 10
- (₹) 12
- (A) 16
- 20
- ১১। যন্ত্রটির নলের দৈর্ঘ্য কত ? চি. বো. ২০১৫; Admission Test : BRU 2017-18 (মান ভিন্ন); CKRUET 2020-21 (মান ভিন্ন); IU 2020-21 (মান ভিন্ন)}
 - 0.60 m
 - **(4)** 0.50 m
 - (1) 0.55 m
 - 0.64 m
- ১২। নভো-দূরবীক্ষণ যন্ত্রে স্বাভাবিক দৃষ্টির ফোকাসিং-এর ক্ষেত্রে বিবর্ধন—

 - $\mathfrak{A} \qquad m = \frac{f_0}{f_a}$
 - $\mathfrak{I} \qquad m = \frac{f_0}{f_e} \left(1 + \frac{f_e}{D} \right)$

১৩। দূরবীক্ষণ যন্ত্রে ব্যবহার করা হয়—

[IU Admission Test, 2017-18]

- উত্তল লেন্স **(4)**
- (1) উভোত্তল লেন্স
- (F) অবতল লেন্স
- (ঘ) উভাবতল লেপ
- ১৪। একটি নভোবীক্ষণের অভিলক্ষ্য ও অভিনেত্রের ফোকাস দূরত্ব যথাক্রমে 200 cm এবং 10 cm। যন্ত্রটি দিয়ে স্বাভাবিক চোখে চাঁদকে পর্যবেক্ষণ করার সময় লেন্স দুটির মধ্যে দূরত্ব হবে---

[JU Admission Test, 2019-20 (মান ভিন্ন)]

- (a) 190 cm
- **(**a) 210 cm
- (A) 20 cm
- **(**\bar{\bar{q}} 1000 cm
- ১৫। কোনটি বিচ্ছুরক মাধ্যম নয় ?

[RU-G4 Admission Test, 2017-18]

- পানি **(4)**
- কাচ (খ)
- (a) গ্রিসারিন
- **(**\bar{\bar{q}} বায়ু

১৬। যে দুটি আলোর জন্য কৌণিক বিচ্ছুরণ সর্বাধিক তা হলো-

> সবজ ও লাল

(1)

লাল ও নীল

[MAT: 23-24]

- (গ) হল্দ ও সবজ
- (旬) নীল ও কমলা

১৭। দুটি বর্ণের আলোক রশ্মির জন্য একটি প্রিজমের উপাদায়েনতম বিচ্যুতি অবস্থানে—

> বি. বো. ২০১৯; ঢা. বো. ২০১৭; সি. বো. ২০১৫; দি. বো. ২০১৫;

MBSTU Admission Test, 2019-201

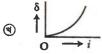
- (i) $\delta_m = 2i_1 - A$
- (ii) $r_1 = r_2$ (iii) $i_1 = i_2$
- নিচের কোনটি সঠিক ?
- i છ ii
- i '8 iii
- ii & iii
- (ঘ) i, ii G iii
- ১৯। একটি প্রিজমের প্রিজম কোণ এবং ন্যুনতম বিচ্যুতি কোণ যথাক্রমে 60° ও 30°। প্রিজম পদার্থের প্রতিসরাজ্ঞ্ক কত ?

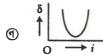
[দি. বো. ২০১৯ (মান ভিন্ন); রা. বো. ২০১৫; Admission Test: SUST, 2016-17:

- BRU 2019-20; CU 2018-19]
- 1.45
- $\widecheck{\mathfrak{A}}$ 1.53
- (1) 1.41
- **(**\bar{\bar{q}}) 1.23
- প্রিজম পদার্থের প্রতিসরাজ্ঞ্ক নির্ভর করে— 201 যে. বো. ২০১৬: দি. বো. ২০১৬]
 - আলোর তরজাদৈর্ঘ্য (i)
 - আলোর বর্ণ (ii)
 - (iii) প্রিজম কোণ নিচের কোনটি সঠিক ?
 - i 😉 ii
 - **(4)** i 'S iii
 - (1) ii 8 iii
 - (ঘ) i, ii V iii
- ২১। যৌগিক অণুবীক্ষণ যন্ত্রে বেশি বিবর্ধন পেতে হলে—
 - অভিলক্ষ্যের ফোকাস দূরত্ব বেশি হবে এবং অভিনেত্রের ফোকাস দূরত্ব কম হবে
 - অভিলক্ষ্যের ফোকাস দূরত কম হবে এবং অভিনেত্রের ফোকাস দূরত্ব বেশি হবে
 - অভিলক্ষ্য ও অভিনেত্র উভয়ের ফোকাস (1) দরত বেশি হবে
 - অভিলক্ষ্য ও অভিনেত্র উভয়ের ফোকাস **(**\bar{\bar{q}} দূরত্ব কম হবে
- ২২। একটি যৌগিক অণুবীক্ষণ যন্ত্রের বিবর্ধন ক্ষমতা 100। এর অভিনেত্র দারা বিবর্ধন 5 হলে অভিলক্ষ্য দ্বারা বিবর্ধন কত ?
 - 40
 - (খ) 30
 - (1) 20
 - 10

- ২৩। একটি নভো-দূরবীক্ষণ যন্ত্রের স্বাভাবিক ফোকাসিং এর ক্ষেত্রে চূড়ান্ত প্রতিবিদ্দ গঠিত হয়—
 - অভিনেত্রের ফোকাসে
 - পৃষ্ঠ দর্শনের ন্যুনতম দ্রত্বে
 - প্রতিশক্ষ্যের ফোকাসে
 - অসীমে
- ২৪। একটি নভো-দূরবীক্ষণের দেশ দূটির ক্ষমতা ০:5 D এবং 20 D। যন্ত্রটির বিবর্ধন ক্ষমতা হবে—

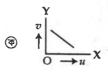
[Admission Test : RU-G 2017-18; BRU 2019-20; MBSTU 2017-18; IU 2018-19]

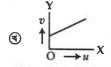

- **3** 8
- € 20
- **1** 30
- **(40)**
- ২৫। কাচের মধ্য দিয়ে বিভিন্ন বর্ণের আলো পরিভ্রমণ করলে কোন বর্ণের আলোর বেগ বেশি হবে ?

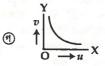

[Admission Test : RU-H 2017-18; BRU 2019-20]

- क नान
- ৰ নীল
- १ इनुम
- থ বেগুনি
- ২৬। একটি সমবাহু প্রিজমের প্রতিসরাজ্ঞ √2 হলে এর ন্যূনতম বিচ্যুতি কোণ কত ? [দি. বো. ২০১৬; Admission Test: JSTU 2019-20 (মান তিন্ন); JU 2018-19; Agri (cluster) সেট-A 2020-21]
 - ⊕ 15°
 - **④** 30°
 - ① 45°
 - (1) 60°
- ২৭। প্রিজমে i ~ δ শেখচিত্র নিচের কোনটি ?

রো. বো. ২০১৫)







২৮। **উত্তল লেন্সের ক্ষেত্রে কোন লেখ**চিত্রটি সঠিক ? [ব. বো. ২০১৫]

২৯। প্রিজমের ক্ষেত্রে—

[ঢা. বো. ২০১৬]

- (i) $\delta = (r_1 + r_2) (i_1 + i_2)$
- (ii) $A = r_1 + r_2$
- (iii) $\delta = (i_1 + i_2) A$ নিচের কোনটি সঠিক ?
- i e i
- (a) i v iii
- 1i S iii
- i, ii 🔊 iii
- ৩০। সূর্যের আলোর বিচ্ছুরণে কোন রঙটি থাকে না ? ঢা. বো. ২০১৬)
 - ক লাল
 - কমলা
 - ন্ বেগুনি
 - খ কালো
- ৩১। সরু প্রিজমের ক্ষেত্রে কোনটি সঠিক?

[রা. বো. ২০১৬]

- $\delta = A (\mu 1)$
- $\delta = A(1-\mu)$
- ৩২। পানি ও কাচের প্রতিসরাজ্ঞ যথাক্রমে $\frac{4}{3}$ ও $\frac{3}{2}$ । পানি ও কাচে আলোর বেগের অনুপাত কত ?

[রা. বো. ২০১৬]

- 3:2
- (4) 4:3
- (A) 8:9
- 9:8

1001

[রা. বো. ২০১৬]

৩৮। একটি আঁতশী কাচের লেন্সের ফোকাস দূরত্ব 0'2 cm এবং বিবর্ধন 2'60 হলে ন্যূনতম কত দূরত্বে বই রেখে স্পঊভাবে পড়া সম্ভব হবে ?

[ব. বো. ২০১৬]

- লেন্সটি কী নামে পরিচিত ?
- 奪 উত্তল তল
- গ্ৰ অবতলোত্তল
- (**ছ**) সমতলোত্তল

উদ্দীপকের আলোকে ৩৪নং ও ৩৫নং প্রশ্নের উত্তর দাও : শিলা 9 cm ফোকাস দ্রত্বের একটি উত্তল লেন্সের সামনে বস্তু রেখে 3 গুণ বিবর্ধিত অবাস্তব বিন্দ পেল। পরবর্তীতে সে লেন্সটিকে পূর্বের লেন্সের অর্ধেক ফোকাস দ্রত্বের অপর একটি উত্তল লেন্স দারা প্রতিস্থাপন করল।

যে. বো. ২০১৬]

- ৩৪। লেন্স থেকে বস্তুর দূরত্ব কত ?
 - 6 cm
 - (1) 8 cm
 - 何 10 cm
 - (T) 12 cm
- ৩৫। লেন্সটি প্রতিস্থাপনের ফলে সে কী ধরনের বিশ্ব দেখতে পেল ?
 - বিবর্ধন অপরিবর্তিত, বাস্তব বিশ্ব
 - বিবর্ধন বিবর্ধিত, অবাস্তব বিক্ষ
 - ি বিবর্ধন খর্বিত, অবাস্তব বিক্ষা
 - ছ) বিবর্ধন পরিবর্তিত, বাস্তব বিশ্ব
- ৩৬। 6 cm লম্মা একটি বস্তুকে 16 cm ফোকাস দ্রত্ত্বের একটি উত্তল লেন্স থেকে 12 cm দ্রে স্থাপন করা হলো। এক্ষেত্রে— [চ. বো. ২০১৬]
 - (i) বস্তু যে পার্শ্বে অবস্থিত বিস্মটি সে পার্শ্বে গঠিত হবে
 - (ii) বিম্বের আকার 24 cm হবে
 - (iii) বিম্ম বাস্তব ও উন্টো হবে নিচের কোনটি সঠিক ?
 - i vi
 - (a) i G iii
 - 1ii g iii
 - (T) i, ii 'S iii
- ৩৭। পুক্রের পানির ভেতর মাছকে কিছুটা ওপরে দেখা যাওয়ার কারণ আলোর কোন ঘটনা ?

বি. বো. ২০১৬; BDS Admission Test. 2017-18]

- ক্র প্রতিফলন
- প্রতিসরণ
- প্রত্বর্তন
- থে সমবর্তন

- ⊕ 0.16
- ② 0.32
- **⑨** 0.52
- **1** 0.64
- ৩৯। ফার্মাটের নীভির সাহায্যে ব্যাখ্যা করা যায়— [রা. বো. ২০১৯; ব. বো. ২০১৯, ২০১৬]
 -) আলোর সরলরৈখিক গতি
 - (ii) আলোর প্রতিফলন ও প্রতিসরণ
 - (iii) আলোর অপবর্তন ও সমবর্তন নিচের কোনটি সঠিক ?
 - Ti vii
 - (a) i G iii
 - ii e iii
 - (1) i, ii & iii

নিচের উদ্দীপকের আলোকে ৪০নং ও ৪১নং প্রশ্নের উত্তর দাও: [ঢা. বো. ২০১৯ (মান ভিন্ন); সি. বো. ২০১৬] একটি উত্তল লেন্সের ফোকাস দ্রত্ব 12 cm। লেন্সটির প্রধান অক্ষের ওপর একটি বস্তু রাখা হলে বস্তুর আকারের তিনগুণ বিবর্ধিত বিন্দ্র পাওয়া যায়।

- ৪০। বস্তুর দূরত্ব কত ?
 - 8 cm
 - (1) 9 cm
 - 16 cm
 - ^ℚ 18 cm
- ৪১। উদ্দীপকের লেসটিতে—
 - (i) সর্বদাই বাস্তব বিশ্ব পাওয়া যায়
 - (ii) বাস্তব ও অবাস্তব উভয় বিন্দ পাওয়া যায়
 - (iii) কেবল বস্তুর দূরত্ব ফোকাস দূরত্বের কম হলে অবাস্তব বিন্দ পাওয়া যায়

নিচের কোনটি সঠিক ?

- (₹) i v3 ii
- ii 🕏 ii
- 1 'S iii
- (i) i, ii 'S iii
- 8২। অপটিক্যাল টেলিস্কোপে বস্তুর প্রতিবিন্দ হয়— [সি. বো. ২০১৬; Admission Test: BRU 2019-20; KU 2018-19]
 - ক) অত্যন্ত বিবর্ধিত
 - খর্বিত
 - গ্র বস্তুর সমান
 - বিবর্ধিত

৪৩। বায়ু সাপেক্ষে পানি ও কাচের প্রতিসরাজ্ঞ যথাক্রমে $\frac{4}{3}$ এবং $\frac{3}{2}$ হলে কাচ সাপেক্ষে পানির প্রতিসরাধ্ক কত হবে ? াসি. বো. ২০১৬:

> Admission Test: IU 2019-20: SAU 2018-191

- **(a**)
- **(4)**
- 2 8 9 9 8 1
- **(**1)

৪৪। জটিল অণুবীক্ষণ যন্ত্র কয়টি উত্তল লেন্স দারা গঠিত? [দি. বো. ২০১৬]

- **(4)**
- (1) 2
- (1)
- **(**1)

৪৫। +2.0 D ক্ষমতার একটি লেন্সের ফোকাস দূরত্ব দি. বো. ২০১৬;

> Medical Admission Test, 2015-16; RU Admission Test, 2019-20 (মান ভিন্ন)]

- $-0.2 \, \text{m}$ **(a**)
- **(4)** $+0.2 \, \text{m}$
- (1) $+0.5 \, \text{m}$
- $(9) 0.5 \,\mathrm{m}$

৪৬। একটি জটিল অণুবীক্ষণ যন্ত্রের অভিলক্ষ্য ও অভি-নেত্রের বিবর্ধনের পরিমাণ যথাক্রমে m_1 এবং m_2 হলে যন্ত্রটির মোট বিবর্ধন কী ? চি. বো. ২০১৬

J.U. Admission Test, 2017-18]

- **(P**) $M = m_1 \times m_2$
- (1) $M=m_1+m_2$
- কোনোটিই নয়

৪৭। নিচের কোনটি লেন্স প্রস্তৃতকারক সমীকরণ ? [চ. বো. ২০১৫]

(a)
$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{r_1} + \frac{1}{r_2} \right)$$

$$\mathfrak{T} \qquad \frac{\mu}{v} + \frac{1}{u} = \frac{\mu - 1}{r}$$

৪৮। *বি*ফাকাস দূরত্বের দুটি উত্তল লেন্স পরস্পর সংস্পর্শে রাখলে তুল্য ফোকাস দূরত্ব হবে— [য. বো. ২০১৫; DU Admission Test, 2017-18]

- 1 f
- **(**旬) 2*f*

৪৯। অভিলক্ষের ফোকাস দূরত্ব বাড়ালে—

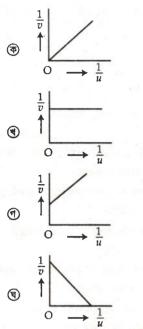
[কু. বো. ২০১৫]

- অণুবীক্ষণ যন্ত্রের বিবর্ধন বাড়বে, দূরবীক্ষণ যন্ত্রের বিবর্ধন কমবে
- অণুবীক্ষণ ও দূরবীক্ষণ যন্ত্র উভয়ের ক্ষেত্রে (1) বিবর্ধন কমবে
- অণুবীক্ষণ ও দূরবীক্ষণ যন্ত্র উভয়ের ক্ষেত্রে (T) বিবর্ধন বাডবে
- षण्वीक्रण यख्नुत विवर्धन कमरव, मृत्रवीक्रण (ঘ) যন্ত্রের বিবর্ধন বাডবে

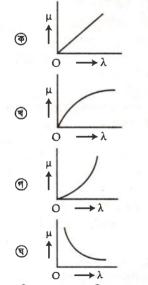
৫০। প্রতিসরণ দূরবীক্ষণ যন্ত্র কোনটি ?[দি. বো. ২০১৫]

- নিউটনের দূরবীক্ষণ যন্ত্র
- গ্রেগরির দূরবীক্ষণ যন্ত্র
- (A) গ্যালিলীয় দূরবীক্ষণ যন্ত্র
- হার্সেলের দূরবীক্ষণ যন্ত্র

৫১। প্রতিফলক টেলিস্কোপের ক্ষেত্রে


[কু. বো. ২০১৫]

- বৰ্ণ তুটি থাকে না (i)
- (ii) গোলীয় ত্রটি থাকে না
- (iii) অবতল লেন্স অভিলক্ষ্য হিসেবে কাজ করে নিচের কোনটি সঠিক ?
- i '9 ii (a)
- (4) i 😉 iii
- ii & iii
- i, ii 😉 iii


৫২। স্পষ্ট দর্শনের নিকট বিন্দুতে ফোকাসকৃত একটি দূরবীক্ষণ যন্ত্রের অভিনেত্রে চোখ রেখে কোনো বস্তুকে দেখলে— বি. বো. ২০১৬

- (i) বিম্ব দূরে দেখা যাবে
- (ii) বিশ্ব বিবর্ধিত দেখা যাবে
- (iii) বিন্দ উন্টো দেখা যাবে নিচের কোনটি সঠিক ?
- (a) i 3 ii
- (V) i 😉 iii
- (A) ii 😉 iii
- i. ii 'G iii

৫৩ + $\frac{1}{u} \sim \frac{1}{v}$ লেখচিত্র কীর্প হবে ? [কু. বো. ২০১৬; ঢা. বো. ২০১৫]

৫৪। আলোর তরজ্ঞাদৈর্ঘ্যর সাথে প্রতিসরাক্ষের লেখচিত্র নিচের কোনটি ?

৫৫। পানি ও কাচের প্রতিসরাজ্ঞ্ক যথাক্রমে 1°33 ও 1°52 হলে, কাচে আলোর দুতি কত ? পানিতে আলোর দুতি 2°28 × 10⁸ cms⁻¹ কু. বো. ২০১৬; ঢা. বো. ২০১৫।

- 3 2.61 × 108 ms⁻¹
- ① $2.02 \times 10^8 \,\mathrm{ms^{-1}}$
- 1 '99 × 10⁸ ms⁻¹

৫৬। নভো-দূরবীক্ষণ নলের দৈর্ঘ্য হলো—

[ঢা. বো. ২০১৫]

- (i) $L = f_0 + f_c$
- (ii) $L = f_0 + u_e$
- (iii) $L = v_0 + h_e$

নিচের কোনটি সঠিক ?

- i e i
- iii 🤡 i
- ii v ii
- (T) i. ii 'S iii

উদ্দীপকটি পড় এবং ৫৭নং ও ৫৮নং প্রশ্নের উন্তর দাও :
একজন হস্তরেখাবিদ হাতের রেখা পরীক্ষা করার জন্য যে
লেশটি ব্যবহার করেন তার ফোকাস দূরত্ব 12.5 cm।
তিনি একজন লোকের হাতের রেখা দেখার জন্য হাতটিকে
লেশ হতে একটি নির্দিষ্ট দূরত্বে রাখলেন এবং স্পষ্ট
দর্শনের ন্যুনতম দূরত্বে বিবর্ধিত বিন্দ পেলেন।

রোঁ. বো. ২০১৫; ব. বো. ২০১৫]

- ৫৭। হস্তরেখাবিদ লেনটির সাহায্যে কতগুণ বিবর্ধিত বিন্দ পেয়েছিলেন ?
 - ⊕ 0.2
 - (4) 1.5
 - ① 2
 - **(1)** 3
- ৫৮। উক্ত যন্ত্রটির সাহায্যে পূর্বের অবস্থানে 2.5 গুণ বিবর্ধিত বিন্দ পেতে হলে লেন্সটিকে পূর্বের অবস্থান থেকে কত দূরে সরাতে হবে ?
 - ② 2.5 cm
 - (4) 6'25 cm
 - (f) 16'66 cm
 - (1) 20 cm
- ৫৯। সমোন্তল ও সমাবতল লেলে আলোক কেন্দ্রের অবস্থান কোথায় ?

[Medical Admission Test, 2013-14]

- 🕸 শেশের ভেতর
- বক্তভের মেরুতে
- প পেনের বাইরে
- ত্ম লেনের ভেতরে মধ্য বিন্দুতে
- ৬০। অণুবীক্ষণ যন্ত্রের বেলায় কোন উক্তিটি সঠিক নয় ? [Medical Admission Test, 1998-99]
 - কিটবর্তী অতিকুদ্র বস্তু পর্যবেক্ষণের কাজে ব্যবহৃত হয়
 - অভিনেত্রের সাপেক্ষে অভিলক্ষ্য লেপের উন্মেষ ও ফোকাস দূরত্ব ছোট হয়
 - প্রভিলক্ষ্যে লক্ষ বস্ত্র প্রতিবিন্দ তার ফোকাস দুরত্ব ছোট হয়

৬১। একটি দূরবীক্ষণ যন্ত্রের সর্বনিম্ন বিবর্ধন ক্ষমতা M, যদি নলের ফোকাস দূরত্ব দ্বিগুণ করা হয়, তবে বিবর্ধন ক্ষমতা হবে—

[Medical Admission Test, 2014-15]

- ② 2m
- \mathfrak{T}
- $\sqrt{2}$ m
- (च) 3m
- ৬২। প্রতিসরাজ্ক $\mu > 1$ হলে— [সকল. বো. ২০১৮]
 - (i) আলোক রশ্মি ঘন মাধ্যম হতে হালকা মাধ্যমে যায়
 - (ii) আলোক রশাি হালকা মাধ্যম হতে ঘন মাধ্যমে যায়
 - (iii) আপতন কোণ প্রতিসরণ কোণ অপেক্ষা বড় হবে

নিচের কোনটি সঠিক ?

- i v ii
- iii 🕑 i
- ii v ii
- (a) i, ii e iii
- ৬৩। একটি টেলিস্কোপের অভিলক্ষ্য ও অভিনেত্রের ফোকাস দূরত্ব যথাক্রমে 4 m ও 80 cm। অসীম ফোকাসিং এর ক্ষেত্রে বিবর্ধন কত ?

[সি. বো. ২০১৭;

JU Admission Test, 2019-20]

- 4.8
- (4) 5
- **1** 6.56
- (9) 2
- ৬৪। অবতল দর্পণের বক্রতার কেন্দ্রের বাহিরে বস্তু স্থাপন করলে প্রতিবিম্ম সর্বদা হবে—

[BUET Admission Test, 2010-11]

- ক) বাস্তব, সোজা ও খর্বিত
- অবাস্তব, সোজা ও বিবর্ধিত
- প্রতাস্তব, উন্টা ও খর্বিত
- বি) বাস্তব, উন্টা ও খর্বিত
- ৬৫। একটি যৌগিক অণুবীক্ষণ যন্ত্রের অভিলক্ষ্য ও অভিনেত্রের দূরত্ব যথাক্রমে 2'5 cm এবং 5'6 cm স্পর্ট দর্শনের নিকটতম দূরত্বে গঠিত কোনো লক্ষ্যবস্তুর চূড়ান্ত বিন্দকে 6'25 cm লন্দা মনে হলো। বস্তুটির আসল দৈর্ঘ্য কতং যন্ত্রের নলের দৈর্ঘ্য 25 cm.

[KUET Admission Test, 2017-18]

- [®] 0.16 cm
- (a) 0.13 cm
- (1) 11 cm
- (a) 0.22 cm
- ③ 1.8 cm

৬৬। বায়ুর সাপেক্ষে কাচের সংকট কোণ 42° এবং বায়ুর সাপেক্ষে পানির সংকট কোণ 48° হলে, পানির সাপেক্ষে কাচের সংকট কোণ কত?

> [Admission Test : KUET 2015-16; RU 2012-13]

- ₱ 64.4°
- 62.2°
- ₱ 55.8°
- [®] 66°12′
- ® 63°58′

৬৭। কোনো যৌগিক অণুবীক্ষণ যন্ত্রের অভিলক্ষ্য ও অভিনেত্রের ফোকাস দূরত্ব 10 cm এবং 15 cm যদি অভিলক্ষ্য থেকে বাস্তব প্রতিবিন্দের দূরত্ব 50 cm হয় এবং অভিনেত্র থেকে অবাস্তব প্রতিবিন্দের দূরত্ব 60 cm হয়, তবে ওই অণুবীক্ষণ যন্ত্রের বিবর্ধন কত?

[KUET Admission Test, 2016-17]

- (a) 15
- **1**5
- ① 20② 50
- (s) 60
- ৬৮। একটি অণুবীক্ষণ যন্ত্রের অভিলক্ষ্য ও অভিনেত্রের ফোকাস দ্রত্ব যথাক্রমে 0 02 এবং 0 07 m। তাদের মধ্যবর্তী দ্রত্ব 0 20 m। অভিলক্ষ্যের সামনে কত দ্রে কোনো বস্তৃ স্থাপন করলে অভিনেত্র হতে 0 25 m দ্রে তার প্রতিবিন্দ দেখা যাবে? [CUET Admission Test, 2015-16]
 - (₹) 2.5 cm
 - (4) 2.3 m
 - (f) 0.023 cm
 - (9) 0.023 m
- ৬৯। একটি প্রিজমের উপাদানের প্রতিসরাঞ্চ √2 এবং এর ভেতর হতে নির্গত আলোক রশার ন্যুনতম বিচ্যুতি কোণ 30° হলে প্রিজম কোণ নির্ণয় কর। [RUET Admission Test, 2015-16]
 - ♠ 60°

 - 1 55°
 - (₹) 50°
 - (8) 45°
- ৭০। একটি অবতল দর্পণের ফোকাস দূরত্ব 20 cm। দর্পণিটি হতে কত দূরে একটি বস্তু স্থাপন করলে চারগুণ আকারের একটি বাস্তব প্রতিবিন্দ পাওয়া যাবে? [Admission Test: RUET 2015-16; BRU 2019-20]
 - ⊕ 20 cm
 - (4) 25 cm
 - ① 15 cm
 - (1) 30 cm
 - None

৭১। একটি দীর্ঘ দৃষ্টিসম্পন্ন ব্যক্তির স্পষ্ট দর্শনের নিকটতম দূরত্ব 50 cm। তিনি 2'5 D ক্ষমতার চশমা ব্যবহার করেন। এতে তার স্পষ্ট দর্শনের নিকটতম দূরত্ব কড়টুকু হ্রাস পাবে?

[RUET Admission Test, 2014-15]

- (4) 29.78 cm
- ① 22.22 cm
- (9) 27.78 cm
- ৭২। একটি লেন্সের ফোকাস দূরত্ব বাতাসে 25 cm এবং এর উপাদানের প্রতিসরাজ্ঞ 3/2। একে 4/3 প্রতিসরাজ্ঞের পানিতে ডুবালে এর ফোকাস দূরত্ব কত cm হবে?

[SUST Admission Test, 2016-17]

- 75
- **3** 85
- 100
- (T) 115
- (c) 125
- ৭৩। অপটিক্যাল ফাইবার কোন পন্ধতিতে কাজ করে?

[Admission Test : SUST 2016-17; KU 2012-13; BHEC 2017-18]

- ক) আলোকের প্রতিফলন
- আলোকের প্রতিসরণ
- ন্য আলোকের পূর্ণ অভ্যন্তরীণ প্রতিফলন
- আলার ব্যতিচার
- 98। একটি বিবর্ধক কাচ নিম্নোক্ত কোন বিস্বটি গঠন করে? [SUST-B Admission Test, 2017-18]
 - ক) সোজা ও খর্বিত
 - সোজা ও সমান আকারের
 - ন) উন্টোও বিবর্ধিত
 - থি সোজা ও বিবর্ধিত
- ৭৫। একটি উত্তল লেন্সের ফোকাস দূরত্ব 1000 cm হলে, লেন্সটির ক্ষমতা হবে— [MAT: 24-25]

[Admission Test : DU-A 2016-17;

Com.U 2019-20;

DU (প্রযুক্তি) 2020-21]

- (a) 100 D
- ① 1/10 D
- (1) 1D
- ৭৬। বায়ু থেকে অন্য কোনো মাধ্যমের ভেতর একটি আলোক রশ্মি প্রবেশের পর তার গতি 15% ফ্রাস পায়। ওই মাধ্যমের প্রতিসরাজ্ঞক কত?

[DU Admission Test, 2006-07]

- T 1.5
- **1** '33
- **1** 1.61
- (T) 1.18

৭৭। একটি জ্লাশয়ে এর প্রকৃত গভীরতা 6m। যদি পানির প্রতিসরাজ্ঞ 4/3 হয় তবে এর জাপাত গভীরতা কত?

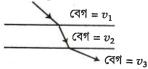
> [JnU-A Admission Test, 2016-17; JU Admission Test, 2014-15; Agri (cluster) সেট-A 2020-21]

- ^(∗) 5m
- ① 4.5 m
- (1) 5.5 m
- ৭৮। আলো চলার পথে শক্তির অপচয় কম করে যে পথে চলে সে নীতিকে বলে—

[JU Admission Test, 2017-18]

- ক) হাইজেনবার্গ নীতি
- পাউলীর বর্জন নীতি
- ভরবেগ ভারসাম্য
- ফার্মাটের নীতি
- ৭৯। একটি + 1'5D এবং 3'5D ক্ষমতার দৃটি উত্তল লেন্স পরস্পরের সংস্পর্শে রাখা হলো। সংযোগটির তুল্য ক্ষমতা— [JU Admission Test, 2017-18]
 - → 2D
 - (4) 2D

 - $\mathfrak{g} \quad \frac{1}{2} D$
- ৮০। লাল, বেগুনি, সবুজ ও কমলা বর্ণের জালোর জন্য কোনো মাধ্যমের প্রতিসরাজ্ঞ যথাক্রমে μ_R, μ_V, μ_G ও μ_O হলে নিচের কোন সম্পর্কটি সঠিক ?


ঢ়া. বো. ২০১৯]

- $\textcircled{P} \mu_{R} > \mu_{V} > \mu_{G} > \mu_{O}$
- $\Psi_R < \mu_V < \mu_G < \mu_O$
- \P $\mu_R < \mu_O < \mu_G < \mu_V$
- ৮১। আলোক রশ্মি পানি ($\mu_w=1.33$) থেকে কাচে ($\mu_g=1.5$) প্রবেশ করলে— [চ. বো. ২০১৯]
 - i. i > r
 - ii. $_{g}\mu_{w} < 1$
 - iii. $\frac{\sin i}{\sin r} < 1$

নিচের কোনটি সঠিক?

- ⊕ i ಆ ii
- (a) i G iii
- ரு ii 'iii
- (घ) i, ii ও iii

৮২। একটি আলোক রশ্মি চিত্রে প্রদর্শিত তিনটি মাধ্যম দিয়ে অতিক্রম করছে। বেগগুলোর কোন ক্রমটি সঠিক ? [DU Admission Test, 2018-19]

- (4) $v_3 > v_2 > v_1$
- $v_1 > v_2 > v_3$
- (1) $v_1 > v_3 > v_2$
- ৮৩। h উচ্চতার একটি সুইমিং পুলের কত গভীরতা পর্যন্ত পানি দিয়ে পূর্ণ করলে মনে হবে যে তা অর্থেক পূর্ণ হয়েছে।

[BUET Admission Test, 2011-12]

- $\mathfrak{F} \quad \frac{3}{4}h$
- \mathfrak{P} $\frac{2}{3}h$
- \mathfrak{G} $\frac{5}{7}h$
- ৮৪। একটি আলোক রশা বায়ু থেকে কাচে প্রেতিসরাজ্ঞ = 3/2) প্রবেশের সময় আংশিক প্রতিফলিত ও আংশিক প্রতিসরিত হয়। যদি আপতন কোণ 45° হয়, তবে প্রতিসরণ কোণ কত হবে?

[দি. বো. ২০১৯]

- \Im $\sin^{-1}\left(\frac{\sqrt{2}}{3}\right)$

- ৮৫। কোনো প্রিজমের ক্ষেত্রে A = 60° এবং δm = 45° হলে প্রতিসরাজ্ঞ কড? [দি. বো. ২০১৯; BRU Admission Test, 2019-20]
 - ♠ 1.21
 - (4) 1.58
 - (f) 1.6
 - (T) 1.62
- ৮৬। কোনো মাধ্যমের প্রতিসরাজ্ঞ কীসের ওপর নির্ভর করে না? [সি. বো. ২০১৯]
 - মাধ্যমদ্বয়ের প্রকৃতি
 - মাধ্যমের আলোকীয় ঘনত্ব
 - তালোর বর্ণ
 - থি আপতন কোণ

- ৮৭। ফার্মাটের নীতির সাহায্যে ব্যাখ্যা করা যায়— [ব. বো. ২০১৯]
 - . i. আলোর সরলরৈখিক গতি
 - ii. আলোর প্রতিফলন ও প্রতিসরণ
 - iii. আলোর অপবর্তন ও সমবর্তন নিচের কোনটি সঠিক?
 - i v i
 - iii 🕑 i 🏵
 - 1i o iii
 - (1) i, ii 'S iii
- ৮৮। কোনো উভোত্তল লেন্সের ফোকাস দূরত্ব 10 cm। লেন্সটি হতে কত দুরে বস্তু রাখলে বস্তুর জর্ধেক আকারের বিন্দ সৃষ্টি হবে? [কু. বো. ২০১৯]
 - ⊕ 10 cm
 - ³ 15 cm
 - ② 20 cm
 - (1) 30 cm
- ৮৯। উত্তল লেন্সের ক্ষেত্রে যখন ∞ > u > 2f হয়, তখন কোনটি সত্য? [কু. বো. ২০১৯; IU Admission Test, 2019-20 (মান ভিন্ন)]
 - \mathfrak{F} 2f > v > f
 - $\triangleleft \sim > v > r$
 - \mathfrak{T} v=f
 - $\nabla v = 2f$

নিচের উদ্দীপকের আলোকে ৯০ ও ৯১নং প্রশ্নের উত্তর দাও: [ঢা. বো. ২০১৯] 4 cm ফোকাস দ্রত্বের একটি উত্তল লেন্সের সামনে বস্তু স্থাপন করায় দ্বিগুণ বাস্তব বিন্দ গঠিত হয়।

৯০। বস্তুর দূরত্ব কত ?

[JUST Admission Test, 2017-18(মান ভিন্ন)

- 6 cm
- ② 2 cm
- ① 0'375 cm
- (1) 0°125 cm
- ১১। উত্তল লেন্সটির সহিত দ্বিগুণ ফোকাস দূরত্বের অপর একটি উত্তল লেন্স স্থাপন করলে সর্বশেষ প্রতিবিম্ম—
 - ক) বাস্তব ও বিবৃর্ধিত
 - বাস্তব ও খর্বিত
 - পিপপপপপপপপপপপপপপপপপপপপপপপপপপপপপপपपप</l
 - ত্বি অবাস্তব ও খর্বিত
- ৯২। লেন্সের বব্রুতার কেন্দুদ্বয়ের সংযোজক সরলরেখাকে বলে— [চ. বো. ২০১৯]
 - 🕸 উন্মেষ
 - প্ৰধান ছেদ
 - কাকাস দূরত্ব
 - (ছ) প্রধান অক
- ৯৩। কোন সম্পর্কটি সঠিক ? [য. বো. ২০১৯; CU-A Admission Test, 2020-21]
 - $\Phi \qquad {}_{a}\mu_{b} = C_{b}/C_{a}$
 - \mathfrak{A} $\mu_b = C_a/C_b$
 - $\mathfrak{A}\mu_b = 1/a\mu_b$
 - \P $_{a}\mu_{b} = \mu_{a}/\mu_{b}$

ক্তেম	160	পদাথাবঞ্জান-
৯৪।	বেগুনি, নীল ওহলুদ রং এর তিনটি অ যথাক্রমে υ_v , υ_v ও υ_v হলে সিঠিক?	লোর কম্পাঙ্ক নচের কোনটি . বো. ২০১৯]
\$ &	উত্তল লেঁলের ফোকাস দূরত্ব f এবং এর সম্পর্ক কীর্প হলে সদ প্রতিবিম্ম গঠিত হবে ?	্বস্তু দূর্থ ॥- এবং বিবর্ধিত
	(a) $f < u < 2f$ (d) $u = 2f$ (d) $u > 2f$	
৯৬ ৷	 থ < f <p>একটি লেম্বের ক্ষমতা 1 diop ফোকাস দৈর্ঘ্য কত ? কি 1 cm </p> 	tre হলে এর
	(4) 1m (7) -1 cm (8) -1 m	
৯৭।	5° কোণবিশিষ্ট একটি প্রিজমের স আলো পাঠানো হলো। লাল ও আলোর জন্য প্রিজমের উপাদারে যথাক্রমে 1'641 এবং 1'659। কৌণিক বিচ্ছুরণ কত ?	নীল বর্ণের নর প্রতিসরাজ্ঞ
ኤ ৮	 ক 5° 9° 0'09° 0'9° ব বর্ণের আলোক রশ্যির জন্য 	একটি প্রিজ্ঞম
	উপাদানের প্রতিসরাজ্ঞ যথাক্রমে প্রিজমের বিচ্ছুরণ ক্ষমতা কত ?	
	旬 0.01 旬 0.03	
991	3°। প্রিজম পদার্থের প্রতিসরাজ্ঞ ব [Admission Tes	ত
	€ 1	1-12 (মান ভিন্ন)
	(a) $\frac{4}{3}$ (b) $\frac{3}{2}$	
200	 থ 2 ০ একটি অবতল দর্পণের মেরু । মধ্যখানে একটি বস্তু স্থাপন কর্ হবে ? 	এবং ফোকাসের রলে বিবর্ধন কর্ড
	 ② 2 ③ ½ 	
	$ \begin{array}{ccc} $	

- ১০১। উত্তল দর্পণের সামনে বস্তু রাখলে প্রতিবিম্ম সর্বদা—
 - ক সদ এবং বিবর্ধিত হয়
 - অসদ এবং আকারে ছোট হয়
 - সদ এবং আকারে ছোট হয়
 - ত্ব অসদ এবং বিবর্ধিত হয়
- ১০২। একটি অবতল দর্পণ থেকে কত দূরত্বে বস্তু রাখলে প্রতিবিন্দের আকৃতি বস্তুর আকৃতির দ্বিগুণ হবে ? দর্পণের ফোকাস দৈর্ঘ্য = f।
 - \mathfrak{P} u=f

 - \mathfrak{A} $u = \frac{f}{2}$
- ১০৩। 20 cm ফোকাস দৈর্ঘ্যবিশিষ্ট উণ্ডল দর্পণে বস্তুর অর্ধেক আকৃতির প্রতিবিন্দ গঠিত হয়। দর্পণ থেকে বস্তুর দূরত্ব কত ?
 - ⊕ 10 cm
 - (₹) 20 cm
 - 30 cm
 - (1) 40 cm
- ১০৪। বায়ু সাপেক্ষে কোনো মাধ্যমের প্রতিসরাজ্ঞ √2 এবং বায়ু মাধ্যম থেকে 45° কোণে একটি আলোকরশ্মি ওই মাধ্যমে আপতিত হলো। প্রতিসরাজ্ঞের জন্য রশ্মিটির বিচ্যুতি নির্ণয় কর।

 - (4) 30°
 - 15°
 - ৰ 5°
- ১০৫। একটি সমতলোওল লেশ কাচের (µ = 15) তৈরি। এর ফোকাস দূরত্ব এবং বক্রতার ব্যাসার্ধের মধ্যে সম্পর্ক হলো—
- ১০৬। একটি বস্তু উত্তল লেঙ্গের দিকে চলছে। যখন লেঙ্গ থেকে দূরত্ব $60~{\rm cm}$, তখন বস্তুর বেগ $9~{\rm cms^{-1}}$ হলে প্রতিবিন্দের বেগ কত ? (লেঙ্গের $f=24~{\rm cm}$)

 - 9 cms⁻¹
 - ∮ 8 cms⁻¹
 - ⓐ 18 cms⁻¹
- ১০৭। সরল অণুবীক্ষণ দ্বারা গঠিত চূড়ান্ত প্রতিবিম্ম—
 - অসদ এবং অবশীর্ষ
 - সদ ও অবশীর্ষ
 - ল) অসদ এবং সমশীর্ষ
 - ছি সদ ও সমশীর্ষ

		জ্যামিতিক '	আলোক বি	জ্ঞান তেও
201	আলে	াক রশ্মি কাচ মাধ্যম থেকে পানিতে প্রবেশ	2261	লাল ও বেগুনি বর্ণের আলোর সাপেক্ষে কোনে
		ল কোন বর্ণের ক্ষেত্রে সংকট কোণ ন্যুনতম		মাধ্যমের প্রতিসরাজ্ঞক যথাক্রমে μ, এবং μ, হলে—
	হবে	_		\oplus $\mu_r > \mu_v$
				Ψ $\mu_r < \mu_v$
	⊕	नान		$\mathfrak{I} \qquad \mu_r = \mu_{\nu_r}$
	(4)	সবুজ		ত্ম কোনোটিই নয়
	•	হলুদ	7761	একটি সমবাহু কাচের প্রিজমের কোনো তলে যদি
	Ø	বেগুনি		আলো লম্বভাবে আপতিত হয়, তবে রশ্মির
7091	এক	ট জালোক রশাি শূন্য মাধ্যমে থেকে μ		বিচ্যুতি হবে—
	প্রাত	সরাজ্ফের মাধ্যমে প্রবেশ করল। যদি আপতন		
	কোণ	প্রতিসরণ কোণের দ্বিগুণ হয় তাহলে		€ 60°
		হন কোণ কত ?		(f) 90°
		$\cos^{-1}(\mu/2)$	6	120°
		$\sin^{-1}(\mu/2)$		উদ্দীপকের আলোকে ১১৭ ও ১১৮নং প্রশ্নের উন্তর
		$2\cos^{-1}(\mu/2)$	দাও :	
		$2\sin^{-1}(\mu/2)$	একটি	প্রিজমের উপাদানের প্রতিসরাঙ্ক $\sqrt{\frac{3}{2}}$ এবং
7701	একা	ট উত্তল লেলের ফোকাস দূরত্ব 👔 বস্ত্র		
	দূরত্ব	u কত হলে বিবর্ধিত সদ বিম্ম গঠিত হবে?		য়াক কোণ 90°।
	(4)	u < f	1866	প্রিজম দারা প্রতিসৃত রশাির ন্যূনতম বিচ্যুতি কোণ
	(4)	u > 4f		হবে— [Admission Test : CU 2018-19;
		f < u < 2f		KUET 2017-18; BSMRSTU 2017-18;
		u = 2f		JUST 2015-16 (মান ভিন্ন)]
2221		·m বর্ক্তা ব্যাসার্ধের একটি উত্তল গোলীয়		
		ার সামনে 49 cm দূরে একটি বস্তু আছে।		④ 35°
	বস্তৃ	থেকে কত দূরে এটি সমতল দর্পণ রাখলে		① 40°
		দর্পণের প্রতিবিম্ম একই স্থানে গঠিত হবে?		(1) 45°
	③	40 cm	7721	ন্যুনতম বিচ্যুতির ক্ষেত্রে আনুসঞ্চিক আপতন
	(4)	24 cm		কোণ হবে—
	①	36 cm		(a) 30°
	(9)	12 cm		(a) 35°
2221		ট যৌগিক অণুবীক্ষণ যন্ত্রের অভিলক্ষ্যের		① 40°
	ফোক	াস দূরত্ব f_0 এবং অভিনেত্রের ফোকাস দূরত্ব		 ৩ 60° একটি অবতল লেলে ফোকাস বিন্তুতে বস্ত্
	f. 1 V	श्रद्धा	اهدد	রাখলে প্রতিবিন্দ গঠিত হবে—
		$f_0 > f_c$		अत्रीटमअत्रीटम
		$f_0 < f_c$		 প্রধান অক্ষের ওপর আলোক কেন্দ্র ও
	_	$f_0 = f_e$		ফোকাসের মধ্যে
		কোনোটিই নয়		প্র আলোক কেন্দ্রে
1101		প্রতিসারক কোণের একটি প্রিচ্ছমকে একটি		ত্ত্ব ফোকাসে
2201	ভবাৰ	নিমজ্জিত করলে ন্যুনতম বিচ্যুতি কোণ	1086	একটি বস্তু অবতল লেল থেকে u দূরত্বে থাকলে
	30°	হয়। ওই তরল সাপেক্ষে কাচের সংকট কোণ	- (- (বস্তুটির একটি সদবিন্দ্র কী শর্তে গঠিত হবে ?
	কত			
	③	42°		
	(1)	45°		
	1	50°		ত্বি কোনো শর্ভেই সহবিন্দ্র গঠিত হবে না
	(P)	52°	1211	বায়ুতে একটি কাচ নির্মিত লেন্সের ফোকাস দূরত্ব
7781		না মাধ্যুমে আলোর বেগ 2×10 ⁸ ms ⁻¹ । ভই	- /- /	10 cm । পানিতে ওই লেন্সের ফোকাস দূরত্ব কত
	মাধ্য	মর প্রতিসরাক্ষ—		হবে ? (কাচের প্রতিসরাজ্ঞ্ব = 1.51 এবং পানির
	(₹)	1.4		প্রতিসরাজ্ঞ্ক = 1'33)
	(1)	2.3		
	•	1.5		
	(P)	1.0		① 18 cm
	9			(1) 37.7 cm

- ১২২। একটি উত্তল লেন্সের ফোকাস দূরত্ব f। কোনো বস্তু লেন্সটি থেকে u দূরত্বে থাকলে, বস্তুটির সমান আকারের একটি অবশিষ্ট প্রতিবিন্দ্র কী শর্কে গঠিত হবে ?

 - (4) u > 2f
 - f < u < 2f
 - (1) u < f
- ১২৩। 20 cm ও 25 cm ফোকাস দৈর্ঘ্যের দুটি পাতলা লেন্স ফাঁক না রেখে যুক্ত করা হলো। সুষম লেন্সের কার্যকর ক্ষমতা—

 - ³ 2D
 - ① 3D
 - 9 7D
- ১২৪। একটি অবতল লেন্সের ফোকাস দূরত্বে (f) একটি বস্তু রাখলে প্রতিবিন্দের দূরত্ব কত ?

 - \mathfrak{G} $\frac{2I}{3}$
- ১২৫। কাচ নির্মিত একটি লেন্সের বায়ুতে ফোকাস দূরত্ব $15~{
 m cm}$ । লেন্সটিকে $\frac{4}{3}$ প্রতিসরাজ্ঞবিশিফ্ট কোনো তরলে নিমজ্জিত করলে ফোকাস দূরত্ব হবে— (কাচের প্রতিসরাজ্ঞ্ক $=\frac{3}{2}$)

 - 190 cm
 - (1) 120 cm

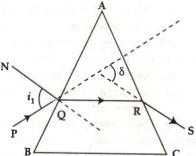
- ১২৬। একটি সমন্তোল লেন্সের বায়ুতে ফোকাস দূরত্ব তার বক্রতার ব্যাসার্ধের সমান। লেন্সটির উপাদানের প্রতিসরাজ্ঞ হলো—
 - \bigcirc $\frac{4}{3}$
 - [−]
 2.5
 - ① 0.8② 1.5
- ১২৭। একটি উত্তল লেন্সের ফোকাস দূরত্ব 30 cm $^{\circ}$ কোনো একটি বস্তুর প্রতিবিন্দ ওই লেঙ্গটি দারা গঠিত হলে তার জাকার বস্তুর জাকারের $\frac{1}{4}$ ভাগ

হয়। সেক্ষেত্রে বস্তুর দূরত্ব—

- (क) 150 cm
- ① 60 cm
- (1) 30 cm
- ১২৮। একটি প্রিজমের প্রতিসারক কোণ 60° এবং উপাদানের প্রতিসরাজ্ঞ 1'48। ন্যূনতম বিচ্যুতি কোণ কত?

[KUET Admission Test, 2017-18]

- (4) 45'46°
- (1) 28.75°
- (s) 31.52°


উত্তর :

১।গ	২। গ	ত। খ	৪। ঘ	ए। গ	৬। গ	৭।খ	৮। ঘ	৯। খ	201 ₹
১১। গ	১২। খ	३७। क	১৪। খ	১৫। ঘ	১৬। খ	১৭। গ	১৮। ঘ	১৯। গ	२०। গ
২১। ঘ	২২। গ	২৩। ঘ	২৪। ঘ	२৫। क	২৬। খ	২৭। গ	২৮। গ	২৯। গ	৩০। ঘ
৩১। খ	৩২। ঘ	৩৩। গ	৩৪। ক	৩৫। ক	৩৬। গ	৩৭। খ	৩৮। খ	ক। ৫৩	80 । গ
৪১। খ	8২। ঘ	৪৩। গ	৪৪। খ	8৫। গ	8७। क	৪৭। খ	৪৮। খ	৪৯। ঘ	CO19
७)। क	৫২। খ	৫৩। ঘ	৫৪। ঘ	एए। श	৫৬। ক	৫৭। ঘ	৫৮। খ	৫৯। ঘ	৬০। গ
७)। य	৬২। গ	৬৩। খ	৬৪। ঘ	৬৫। খ	৬৬। ७	৬৭। গ	৬৮। ঘ	৬৯। ক	90। খ
१५। घ	৭২। গ	৭৩। গ	৭৪। ঘ	৭৫। গ	৭৬। ঘ	৭৭। গ	৭৮। ঘ	१৯। क	৮০। ঘ
४)। क	४२। क	৮৩। খ	৮৪। খ	৮৫। খ	৮৬। গ	৮৭। ক	४४। घ	৮৯। ক	के । व
৯১। খ	৯২। ঘ	৯৩। খ	৯৪। ক	क । अ	৯৬। খ	৯৭। গ	৯৮। ঘ	৯৯। গ	2001 क
১০১। খ	১०२। य	১০৩। খ	১০৪। গ	১০৫। গ	১০৬। ক	১০৭। গ	১০৮। ঘ	১০৯। গ	১১০। গ
১১ ১। ₹	১১২। খ	১১৩। খ	১১৪। গ	১১৫। খ	১১৬। খ	2291 <u>Φ</u>	१७४। व	১১৯। খ	১২০। খ
১২১। घ	১२२। क	১২৩। ক	১ ২৪। क	১২৫। খ	১২৬। খ	১২१। क	१२४। क		

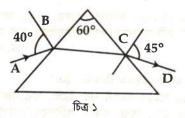
(খ) সূজনশীল প্রশু

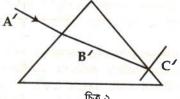
১। চিত্রে একটি কাচ প্রিজমের মধ্য দিয়ে একটি আলোক রশ্মির প্রতিসরণ দেখানো হয়েছে। এখানে 🗚 প্রিজম কোণ এবং δ বিচ্যুতি কোণ :

- (ক) $A=60^\circ$ এবং ন্যূনতম বিচ্যুতি কোণ $\delta_m=30^\circ$ হলে প্রিজম পদার্থের প্রতিসরাজ্ঞ নির্ণয় কব।
- উদ্দীপকের প্রিজমটি 1'33 প্রতিসরাজ্ঞের পানিতে সম্পূর্ণ নিমচ্জিত করলে ন্যুনতম বিচ্যুতি কোণের কী পরিবর্তন হবে গাণিতিকভাবে ব্যাখ্যা কর।

২। বিজ্ঞানের ছাত্র গোলাপের চোখ ত্র্টিহীন কিন্তু আজাদ 40 cm এর কাছের বস্তু দেখতে পায় না। তারা একটি কোষের স্লাইড পর্যবেক্ষণ করার জন্য একটি জটিল অণুবীক্ষণ যন্ত্রের অভিলক্ষ্য হতে 0.023 m দূরে স্লাইডটি রাখল। অভিলক্ষ্য ও অভিনেত্রের ফোকাস দূরত্ব যথাক্রমে 0.02 m এবং 0.07 m।

- (ক) গোলাপ কত বিবর্ধিত প্রতিবিম্ব দেখতে পাবে?
- (খ) স্লাইড পর্যবেক্ষণে উভয়ের ক্ষেত্রে যদ্রের দৈর্ঘ্য একই ছিল কী? গাণিতিকভাবে বিশ্লেষণ কর।


াসি. বো. ২০১৬]


৩। একটি সুইমিং পুল বেগুনি জালো দারা আলোকিত। বেগুনি আলোর জন্য কাচের প্রতিসরাজ্ঞ 1'5 এবং লাল আলোর জন্য প্রতিসরাক্ষ 1 48। একজন লোক 20 cm বক্রতার ব্যাসার্ধবিশিফ উভোত্তল লেন্সের চশমা পড়ে পানিতে ডুব দিলেন। তিনি 5 cm সামনে বস্তু রেখে 25 cm দূরে বিন্দ দেখতে পেলেন। কিন্তু বেগুনি আলো নিভিয়ে লাল আলো জ্বলতেই বিম্পের দূরত্বের পরিবর্তন হলো। পানির প্রতিসরাজ্ঞ 1 33।

- (ক) উদ্দীপকে উল্লিখিত বেগুনি আলোতে আলোকিত পানি মাধ্যমে লেন্সের ক্ষমতা কত?
- (খ) বর্ণ পরিবর্তনের সাথে প্রতিবিন্দের অবস্থানের পরিবর্তন হয়—গাণিতিক যুক্তি দাও। ক্রি. বো. ২০১৭] 8। একটি উভোত্তল লেন্সের বক্রতার ব্যাসার্ধ যথাক্রমে 30 সেমি. ও 40 সেমি.। বায়ু সাপেক্ষে কাচ ও পানির প্রতিসরাচ্চ যথাক্রমে 1'5 ও 1'33।
 - ক) বায়তে লেসটির ফোকাস দূরত্ব নির্ণয় কর।
 - (খ) লেপটিকে পানিতে নিমজ্জিত করলে ফোকাস দূরত্বের কীরূপ পরিবর্তন হবে? গাণিতিক বিশ্লেষণ কর। [দি. বো. ২০১৯]

 ৫। ল্যাবে ব্যবহৃত জটিল অনুবীক্ষণ যন্ত্রের অভিলক্ষ্য ও অভিনেত্রের ফোকাস দূরত্ব যথাক্রমে 2 cm এবং 5 cm। অভিলক্ষ্যের সামনে 0'24m দূরে একটি স্লাইড রাখায় অভিলক্ষ্যের পিছনে 0'12m দূরে বিন্দ গঠিত হলো।

- (ক) অভিলক্ষ্য ও অভিনেত্রের মধ্যবর্তী দূরত্ব নির্ণয় কর।
- (খ) লেন্স দুটি ফোকাস দূরত্ব বিনিময় করলে যন্ত্রের বিবর্ধনের কোনোরূপ পরিবর্তন হবে কি না—গাণিতিকভাবে বিশ্লেষণ কর। মোদরাসা বোর্ড ২০১৮]

চিত্র ১ ও চিত্র ২-এ একই উপাদানে তৈরি দুটি প্রিজমের প্রধান ছেদ দেখানো হয়েছে।

- ক) ১নং চিত্রের আলোকে ন্যুনতম বিচ্যুতি কোণ এর মান নির্ণয় কর।
- (খ) ১নং চিত্রের ABC আলোক পথ সরলরৈখিক নয় কিন্তু ২নং চিত্রের A'B'C' আলোক পথ সরলরৈখিক। এ ভিন্নতার কারণ গাণিতিকভাবে বিশ্লেষণ কর। মাদরাসা বোর্ড ২০১৯]

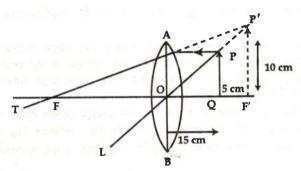
৭। একটি যৌগিক জণুবীক্ষণ যন্ত্রের অভিলক্ষ্য ও অভিনেত্রের ফোকাস দূরত্ব যথাক্রমে $4\times 10^{-3}~{
m m}$ এবং $5\times 10^{-2}~{
m m}$ । অভিলক্ষ্য দ্বারা গঠিত কোনো বস্তুর প্রতিবিন্দ্র এটি হতে $22\times 10^{-2}~{
m m}$ দূরে অবস্থিত। অভিনেত্র হতে চূড়ান্ত প্রতিবিন্দ্র $25\times 10^{-2}~{
m m}$ দূরে অবস্থিত।

(क) অণুবীক্ষণ যন্ত্রটির অভিনেত্রের বিবর্ধন নির্ণয় কর।

খে) উদ্দীপকে অণুবীক্ষণ যন্ত্রটির মোট বিবর্ধন অভিলক্ষ্য ও অভিনেত্রের বিবর্ধনের গুণফলের সমান। গাণিতিক-ভাবে বিশ্লেষণ কর।

৮। একটি যৌগিক অণুবীক্ষণ যন্ত্রের অভিলক্ষ্য এবং অভিনেত্রের ফোকাস দূরত্ব যথাক্রমে 0'02m এবং 0'05m ও তাদের মধ্যবর্তী দূরত্ব 0'16 m। 0'5 mm দীর্ঘ বস্তু অভিলক্ষ্যের সামনে 0'24m দূরে স্থাপন করা হলো।

(क) অণুবীক্ষণ যন্ত্রটির বিবর্ধন নির্ণয় কর।


(খ) অভিনেত্রের ফোকাস দূরত্ব অর্ধেক করা হলে বিবর্ধন পূর্বের তুলনায় কীর্প পরিবর্তন হবে ? গাণিতিকভাবে বিশ্রেষণ কর।

১। ঢাকা বিশ্ববিদ্যালয়ের বোস সেন্টারে রক্ষিত নভো-দূরবীক্ষণ যন্ত্রে অভিলক্ষ্যের ফোকাস দূরত্ব 60'5 cm এবং অভিনেত্রের ফোকাস দূরত্ব 6'5 cm। পদার্থবিজ্ঞানের ছাত্রী ঝিমি একদিন চন্দ্রগ্রহণ দেখার জন্য জসীম দূরে ফোকাসিং করল। কিন্তু সে চন্দ্রগ্রহণের দৃশ্য একেবারে কাছ খেকে দেখতে চায়। তাই যন্ত্রটিকে নিকট ফোকাসিং করে নিল।

(क) অসীমে রক্ষিত বস্তুর কেত্রে যন্ত্রের বিবর্ধন নির্ণয় কর।

(খ) স্পর্ট্ট দৃষ্টির ন্যূনতম দ্রত্বে রক্ষিত বস্তুর ক্ষেত্রে বিবর্ধনের রাশিমালা প্রতিপাদন কর। ঝিমি যন্ত্রটির দৈর্ঘ্যের কীর্প পরিবর্তন করে নিকট বিন্দুতে ফোকাসিং করেছিল ? গাণিতিকভাবে বিশ্লেষণ কর।

106

- (ক) উল্লিখিত লেন্সের ক্ষমতা নির্ণয় কর।
- (খ) লেন্সটিকে সরল অণুবীক্ষণ যন্ত্র হিসেবে ব্যবহার করে স্পর্ট প্রতিবিন্দ দেখতে হলে বস্তু থেকে কত দূরে লেন্সটি স্থাপন করতে হবে তা গাণিতিকভাবে বিশ্লেষণ করে দেখাও। [চ. বো. ২০১৬]
- ১১। বায়ুতে অবস্থিত একটি $\frac{3}{2}$ প্রতিসরাজ্ঞের কাচের তৈরি উভোর্যন লেন্সের বক্রতার ব্যাসার্ধ যথাক্রমে 6 cm এবং
 - (क) উদ্দীপকের আলোকে লেশটির ফোকাস দূরত্ব নির্ণয় কর।
 - (খ) উদ্দীপকের লেন্সটিকে যদি পানিতে ডুবানো হয় তবে এর ফোকাস দূরত্বের কীরূপ পরিবর্তন হবে গাণিতিক বিশ্লেষণসহ ব্যাখ্যা কর। $\left[_{a}\mu _{w}=rac{4}{3}
 ight]$ [দি. বো. ২০১৬]

১২। একটি উভোগ্তল লেন্সের বক্রতার ব্যাসার্থ যথাক্রমে 20 cm ও 40 cm। বায়ুতে লেন্সের 60 cm সামনে একটি লক্ষ্যবস্তু রাখলে 48 cm পেছনে প্রতিবিদ্দা সৃষ্টি হয়। লেলটিকে 1'67 প্রতিসরাজ্ঞের তরলে নিমজ্জিত করা হলো।

[চ. বো. ২০১৭]

কে) লেকটির উপাদানের প্রতিসরাভক নির্ণয় কর।

খে) তরলে নিমচ্ছিত করার পর লেকটির প্রকৃতি কী হবে তা গাণিতিকভাবে বিশ্লেষণ কর।
১৩। একটি পরীক্ষণে একটি বস্তুকে একটি উভোত্তল লেকের 75 cm সামনে স্থাপন করা হলো, যার বক্রতার ব্যাসার্ধ
যথাক্রমে 15 cm ও 30 cm। এতে 30 cm পিছনে প্রতিবিদ্দ গঠিত হয়। অন্য একটি পরীক্ষণে, লেকটিকে 1 33
প্রতিসরাজ্কের মাধ্যমে স্থাপন করা হলো।
ভিত্নি প্রশ্ন (ক সেট) ২০১৮]

প্রথম ক্ষেত্রে লেকটির ফোকাস দূরত্ব নির্ণয় কর।

(খ) দিতীয় পরীক্ষায়, একই দ্রত্বে বস্তৃটি স্থাপন করলে প্রতিবিন্দের প্রকৃতি প্রথম পরীক্ষার জনুরূপ হবে কি না? গাণিতিক বিশ্লেষণের মাধ্যমে মন্তব্য কর।

১৪। একটি 3 m বাহুবিশিফ্ট ঘনক আকৃতির ট্যাংকে পানিশূন্য অবস্থায় দুই দেয়ালের মধ্যবর্তী স্থানে একটি উত্তল লেন্স স্থাপন করলে এর বিপরীত দেয়ালে একটি বস্তুর দ্বিগুণ বিবর্ধিত বাস্তব বিন্দ পাওয়া যায়। পরবর্তীতে ট্যাংকটি পানিপূর্ণ করা হয়। [পানি ও কাচের প্রতিসরাজ্ঞক যথাক্রমে 1'33 এবং 1'5]

- (ক) লেন্সটির ফোকাস দূরত্ব কত?
- (খ) পানিপূর্ণ ট্যাংকে লেন্স ও বস্তুর অবস্থান অপরিবর্তিত রাখলে বিস্মের প্রকৃতির কোনোর্গ পরিবর্তন হবে কি না? গাণিতিক বিশ্লেষণের মাধ্যমে যাচাই করে মন্তব্য কর। [সি. বো. ২০১৯]

১৫। একজন ছাত্র 100 cm ফোকাস দূরত্বের একটি লেন্স নিয়ে 0'01 cm দৈর্ঘ্যের কণা পরীক্ষা করছিল। পরে সে একটি নলের এক প্রান্তে এই লেন্স ও অন্য প্রান্তে 4 cm ফোকাস দূরত্বের অন্য লেন্স লাগিয়ে আকাশ পর্যবেক্ষণ করল।

- (ক) ছোট কণাগুলোকে কত বড় দেখাচ্ছিল ?
- (খ) নল ব্যবহার করার পর আকাশের কোনো বস্তুকে দেখতে চাইলে কোন ফোকাসিং-এ বেশি বড় দেখাবে গাণিতিকভাবে যাচাই কর। [ঢা. বো. ২০১৯]

১৬। একটি নভো-দূরবীক্ষণ যন্ত্রের অভিলক্ষ্য ও অভিনেত্রের ফোকাস দূরত্ব যথাক্রমে 200 cm ও 5 cm।

(क्रु) নিকট ফোকাসিং-এর ক্ষেত্রে যন্ত্রটির নলের দৈর্ঘ্য নির্ণয় কর।

- (ব) যখন একটি বস্তুকে জসীমে ও স্পষ্ট দর্শনের নিকতটতম দূরত্বে রাখা হয় তখন কোন ক্ষেত্রে উদ্দীপকের যন্ত্রটির বিবর্ধন বেশি তা গাণিতিকভাবে বিশ্লেষণ করে দেখাও। [ব. বো. ২০১৭]
- ১৭। একটি কাচ নির্মিত উভোত্তল লেন্সের দুই তলের বক্রতার ব্যাসার্ধ 20 cm ও 30 cm।
 - (ক) বায়ুতে লেন্সের ফোকাস দূরত্ব কত ? $\left(a\mu_g = \frac{3}{2}\right)$
 - (খ) লেন্সটি পানিতে ডোবালে, এর ফোকাস দূরত্বের কোনো পরিবর্তন হবে কী ? যদি হয় তবে কীভাবে ? গাণিতিকভাবে ব্যাখ্যা কর। $\left(_a \mu_w = \frac{4}{3} \right)$ [দি. বো. ২০১৯ (মান ভিন্ন)]

১৮। সুন্দরবন বেড়াতে গিয়ে তামান্না একটি নভো-দূরবীক্ষণ যন্ত্র ব্যবহার করে, যার অভিলক্ষ্য এবং অভিনেত্রের ফোকাস দূরত্ব যথাক্রমে 20 cm এবং 5 cm। সে যন্ত্রটিকে অসীমে এবং স্পষ্ট দর্শনের ন্যূনতম দূরত্ব উভয় ক্ষেত্রে ফোকাসিং করে প্রাকৃতিক দৃশ্য অবলোকন করে।

- (ক) তামান্না যখন যন্ত্রটিকে অসীমে ফোকাসিং করে তখন যন্ত্রের দৈর্ঘ্য কত ?
- (খ) উভয় ক্ষেত্রে ফোকাসিং-এর জন্য তামান্নার পর্যবেক্ষণকৃত বিবর্ধনের তুলনামূলক গাণিতিক ব্যাখ্যা কর।

১৯। রুবেল পদার্থবিজ্ঞান ল্যাবরেটরিতে একটি উভোন্তল লেঙ্গের বক্রতার ব্যাসার্ধ যথাক্রমে 55 cm এবং 60 cm নির্ণয় করল। অতঃপর লেঙ্গের 50 cm সামনে বস্তু রেখে দেখল 200 cm পিছনে প্রতিবিন্দ সৃষ্টি হয়েছে।

- (ক) লেন্সটির ক্ষমতা কত ?
- (খ) লেসটির বক্ততার ব্যাসার্ধদ্বয় সমান হলে ফোকাস বিন্দু কোথায় পাওয়া যেতে পারে তা উদ্দীপকের আলোকে গাণিতিকভাবে বিশ্লেষণ কর।

২০। একটি আলোক রশ্মি একটি প্রিজমের একতলে আপতিত হয়ে অন্য একটি তল থেকে সম্পূর্ণভাবে প্রতিফলিত হয়। কাচের প্রতিসরাজ্ঞ , $_a\mu_g=1.5$ ।

- (ক) প্রিজমের মধ্যে সংকট কোণ কত ?
- (খ) প্রিজমটি পানিতে ডোবালে রশ্মিটি সম্পূর্ণরূপে প্রতিফলিত হবে কি-না এবং যদি না হয় তবে প্রতিসরণ কোণ কত হবে ? — গাণিতিক বিশ্লেষণসহ ব্যাখ্যা দাও। (পানির প্রতিসরাজ্ঞ 1 33)

(গ) সংক্ষিশত-উত্তর প্রশু

১। সর প্রিজম কাকে বলে ?

[রা. বো. ২০১৬]

২। আলোকের বিচ্ছুরণ কী ?

রা. বো. ২০১৮; কু. বো. ২০১৮; য. বো. ২০১৮; ব. বো. ২০১৮;

দি. বো. ২০১৬]

৩। কৌণিক বিবর্ধন কী ?

৪। ফার্মাটের নীতি লিখ।

৫। লেন্সের ক্ষমতা কাকে বলে ?

৬। লেন্সের ক্ষমতার একক কী ?

৭। অণুবীক্ষণ যন্ত্ৰ কী ?

[ঢা. বো. ২০১৮; সি. বো. ২০১৮; দি. বো. ২০১৮; রা. বো. ২০১৬] [য. বো. ২০১৯; কু. বো. ২০১৬; চ. বো. ২০১৬, ২০১৫] ৮। নভো-দূরবীক্ষণ যন্ত্র কী ? ৯। ভূ-দুরবীক্ষণ যন্ত্র কী ? ১০। প্রিজম কাকে বলে ? ১১। প্রিজমের শীর্ষ কী ? [দি. বো. ২০১৯] ১২। প্রিজম কোণ কী ? চি. বো. ২০১৯] ১৩। দৃষ্টিকোণ কাকে বলে ? ১৪। প্রিজমের প্রতিসরণ তল কাকে বলে ? ১৫। বিচ্যুতি কোণ কাকে বলে ? [ण. ता. २०১৮; त्रि. ता. २०১৮; ति. ता. २०১৮] ১৬। ন্যুনতম বিচ্যুতি কোণ বলতে কী বোঝ ? ১৭। আলোর বিচ্ছুরণ বলতে কী বোঝ ? ১৮। একবর্ণী আলো কী ? ১৯। মূল বর্ণ কোনগুলো ? ২০। র্য়ালের বিক্ষেপণ সূত্র বিবৃত কর। ২১। প্রিজম কী বর্ণ সৃষ্টি করে ? ২২। রংধনু কী ? ২৩। শূন্য স্থানে কী আলোর বিচ্ছুরণ হয় ? ২৪। বর্ণাপেরণ কী ? ২৫। আলোক কেন্দ্র কী ? [রা. বো. ২০১৭] [দি. বো. ২০১৭] ২৬। ফোকাস দূরত্ব কী ? ২৭। কৌণিক বিবর্ধন কী ? রা. বো. ২০১৫] [রা. বো. ২০১৬] ২৮। সর প্রিজম কাকে বলে ? [অভিন্ন প্রশ্ন ২০১৮; দি. বো. ২০১৬] ২৯। আলোকের বিচ্ছুরণ কী ? ৩০। প্রিজমের মধ্য দিয়ে একবর্ণী আলো পাঠালে বিচ্ছুরণ হবে কী ? ৩১। আলোর বিচ্ছুরণের একটি প্রাকৃতিক উদাহরণ দাও। ৩২। এক গুচ্ছ লাল গোলাপ ফুলকে নীল আলোয় দেখলে কী রং দেখাবে ? ৩৩। শুন্য মাধ্যমে আলোর বিচ্ছুরণ হয় কী ? ৩৪। কোন বর্ণের আলোর জন্য প্রিজমের উপাদানের প্রতিসরাজ্ঞ সর্বোচ্চ ? ৩৫। কোন বর্ণের আলোর জন্য প্রিজমের উপাদানের প্রতিসরাজ্ঞ সর্বনিম ? ৩৬। কোনো প্রিজ্বমকে পানিতে ডোবালে ন্যূনতম চ্যুতি কোণের কী পরিবর্তন হয় ? ৩৭। উত্তল লেন্সকে বাতাস থেকে পানিতে রাখলে ফোকস দূরত্ব বাড়বে না কমবে ? ৩৮। উত্তল লেন্স দারা গঠিত প্রতিবিম্ম কখন অসদ হবে ? ৩৯। লেন্সের ক্ষমতার একক কী ? ৪০। একটি লেন্সকে পানির মধ্যে রাখলে এর ক্ষমতা বাড়বে না কমবে ? ৪১। সমতল কাচের ফলকের ক্ষমতা কত ? ৪২। প্রতিবিন্দ গঠনের ক্ষেত্রে লেন্সের কোন ফোকাস কার্যকর ?

(ঘ) কাঠামোবন্ধ ও বর্ণনামূলক প্রশ্ন

৪৩। কাচের সজ্জট কোণ 42° বলতে কী বুঝ ?

- ১। ফার্মাটের নীতি বর্ণনা কর।
- ২। ফার্মাটের নীতির সাহায্যে আলোর প্রতিফলন সূত্র ব্যাখ্যা কর।
- ৩। দেশ তৈরির সমীকরণ প্রতিপাদন কর।
- ৪। একজন সাঁতারু পানির তলায় খালি চোখে বস্তুর প্রতিচ্ছবি ঘোলাটে দেখে। কিন্তু মুখোশ পরে খুবই পরিক্ষার দেখতে পায় কেন ? [দি. বো. ২০১৯]
- ৫। কাচের প্রতিসরাজ্ঞ 1.5; কাচে আলোর বেগ কত ?
- ৬। একটি সমতল কাচ ফলকে ফোকাস দূরত্ব ও ক্ষমতা কত ?
- ৭। লেন্সকে বায়ু থেকে পানিতে নিমচ্জিত করলে এর ফোকাস দূরত্ব ও ক্ষমতা বাড়ে না কমে ?—ব্যাখ্যা কর।
- ৮। कार्टित প্রতিসরাজ্ক কোন বর্ণের আলোর জন্য সবচেয়ে কম ?
- ৯। আলোর কম্পাভক বাড়লে মাধ্যমের প্রতিসরাভেকর কী পরিবর্তন হয় ?
- ১০। টেলিস্কোপের মূলনীতি লিখ।
- ১১। আলোর প্রতিসরণের সময় আলোর কোন ধর্মটি অপরিবর্তিত থাকে ?

```
পদাৰ্থবিজ্ঞান (২য়) - ১৮(ক)
```

```
১২। মাইক্রোম্কোপের মূলনীতি লিখ।
১৩। অণুবীক্ষণ যন্ত্রের চূড়ান্ত বিবর্ধন ঋণাত্মক—ব্যাখ্যা কর।
                                                                                    [দি. বো. ২০১৯]
১৪। যৌগিক অণুবীক্ষণ যন্ত্রে নলের দৈর্ঘ্য বৃদ্ধি করলে বিবর্ধন বৃদ্ধি পায়—উক্তিটি ভুল না ঠিক ?
১৫। যৌগিক অণুবীক্ষণ যন্ত্রে অভিলক্ষ্যের ফোকাস দূরত্ব অভিনেত্রের ফোকাস দূরত্ব অপেক্ষা বড় না ছোট ?
১৬। একটি প্রতিফলক দূরবীক্ষণে অভিলক্ষ্য হিসেবে কী ব্যবহৃত হয় ?
১৭। অভিলক্ষ্যের ফোকাস দৈর্ঘ্য কমালে অণুবীক্ষণের বিবর্ধন ক্ষমতা কীভাবে পরিবর্তিত হয়? [চ. বো. ২০১৯]
      দূরবীক্ষণের ক্ষেত্রে কী হবে ? দুটি উত্তরের পার্থক্য দেখাও।
১৮। একটি দূরবীক্ষণ যন্ত্র কী অণুবীক্ষণ যন্ত্রের কাজ করতে পারে ?
১৯। অণুবীক্ষণ ও দূরবীক্ষণ যন্ত্রের গঠনগত পার্থক্য লিখ।
                                                                                    [রা. বো. ২০১৬]
২০। সরল অণুবীক্ষণ যন্ত্রের ফোকাস দূরত্ব হ্রাস পেলে এর বিবর্ধন ক্ষমতা বৃদ্ধি পায়—ব্যাখ্যা কর।
                                                                                     [চ. বো. ২০১৬]
২১। षवण्ण लास्म वाञ्चव প্রতিবিদ্দ পাওয়া যায় किना—व्याখ্যা কর।
                                                                                    [ঢা. বো. ২০১৫]
২২। অবতল লেন্সে গঠিত প্রতিবিন্দ পর্দায় উৎপন্ন হয় কিনা—ব্যাখ্যা কর।
                                                                                    [চ. বো. ২০১৫]
২৩। কোনো প্রিজমের ন্যূনতম বিচ্যুতি কোণ 36° বলতে কী বুঝ ?
                                                                                    [কু. বো. ২০১৫]
২৪। উড্ডয়মান বিমানের ছায়া মাটিতে পড়ে না কেন ? ব্যাখ্যা কর।
                                                                                    [য. বো. ২০১৫]
২৫। সাদা আলো কাচ প্রিজমে প্রবেশ করলে বর্ণালি সৃষ্টি হয় কেন ?
                                                                                    [দি. বো. ২০১৫]
২৬। একটি চশমার ক্ষমতা +4 ডায়প্টার-এর অর্থ কী ?
২৭। লেন্সের চারপাশের মাধ্যম পরিবর্তন করলে তার ফোকাস দূরত্ব পরিবর্তন হয় কেন ? ব্যাখ্যা কর।
২৮। একটি অষচ্ছ কাগজ দারা নভো-দূরবীক্ষণের অভিলক্ষ্য লেন্সের অর্ধেক ঢেকে দিলে কি লক্ষ্যবস্তুর অর্ধেক
      দেখা যাবে? — ব্যাখ্যা কর।
২৯। প্রতিসারক দূরবীক্ষণ যন্ত্রে বর্ণাপের<mark>ণে</mark>র সৃষ্টি হলেও প্রতিফলক দূরবীক্ষণ যন্ত্রে বর্ণাপেরণের সৃষ্টি হয় না
      কেন ? ব্যাখ্যা কর।
৩০। একই উপাদানের তৈরি একটি ছোট প্রিজম ও একটি বড় প্রিজম উভয়ের প্রতিসরাক্ত সমান হবে কী ?
৩১। লাল আলো এবং বেগুনি আলোর জন্য প্রতিসরাজ্ঞের মানের কোনো তারতম্য হবে কী ? ব্যাখ্যা কর।
৩২। বর্ণালির বিভিন্ন বর্ণকে সঠিক অনুপাতে মিশালে পুনরায় সাদা আলো পাওয়া যায়—ব্যাখ্যা কর।
৩৩। ক্রিকেট খেলায় সাদা বল ব্যবহার করা হয় কেন ? — ব্যাখ্যা কর।
৩৪। চাঁদের আকাশ কালো দেখায় কেন ? —ব্যাখ্যা কর।
৩৫। সাদা আলো প্রিজমের মধ্য দিয়ে যাওয়ার সময় বিচ্ছুরিত হয় কেন ?
                                                                                    [কু. বো. ২০১৬]
৩৬। কাচের প্রতিসরাজ্ঞ কী আলোর বর্ণের ওপর নির্ভর করে, যদি করে তবে কীভাবে ?
৩৭। কী শর্তে কোনো প্রিজমের মধ্য দিয়ে প্রতিসরিত রশ্মির চ্যুতি ন্যুনতম হবে ?
৩৮। প্রিজ্ঞমের মধ্য দিয়ে যাওয়ার সময় কোন বর্ণের আলো সবচেয়ে বেশি বাঁকে এবং কোন বর্ণের আলোর
     সবচেয়ে কম বাঁকে ?
৩৯। একটি প্রিজমের বিচ্ছুরণ ক্ষমতা কী প্রিজমের কোণের ওপর নির্ভর করে ? ব্যাখ্যা কর।
                         রা. বো. ২০১৮; কু. বো. ২০১৮; য. বো. ২০১৮; ব. বো. ২০১৮; চ. বো. ২০১৮]
৪০। প্রিজমের ন্যুনতম বিচ্যুতির শর্তপুলো লিখ।
৪১। রংধনু কীভাবে সৃষ্টি হয়?
৪২। হলুদ ও নীল রঙ একত্রে মেশালে সবুজ রঙ প্রস্তুত হয়; কিন্তু পর্দার ওপর ফেললে সাদা দেখায় কেন ?
৪৩। প্রতিফলক দূরবীক্ষণ যন্ত্রে প্রতিবিন্দ বেশি উজ্জ্বল দেখায় কেন ?
                                                                                    [ঢা. বো. ২০১৭]
88। লেপের ক্ষমতা — 2.5 D বলতে কী বুঝায় ?
                                                                     রো. বো. ২০১৭; দি. বো. ২০১৭)
৪৫। দূরে অবস্থিত গাছপালা ছোট দেখায় কেন ?
                                                                                    [কু. বো. ২০১৭]
৪৬। একটি চশমার ক্ষমতা — 5D এর অর্থ কী ?
                                                                                    [সি. বো. ২০১৭]
৪৭। অবতল লেন্সে বাস্তব প্রতিবিন্দ্র পাওয়া যায় কি-না—ব্যাখ্যা কর।
                                                                                    [ঢা. বো. ২০১৫]
৪৮। কোনো প্রিজমের ন্যূনতম বিচ্যুতি কোণ 36° বলতে কী বুঝ ?
                                                                                    [কু. বো. ২০১৫]
৪৯। উড্ডীয়মান উড়োজাহাজের ছায়া মাটিতে পড়ে না কেন—ব্যাখ্যা কর।
                                                                                    [য. বো. ২০১৫]
৫০। অবতল লেন্সে গঠিত প্রতিবিদ্দ পর্দায় উৎপন্ন হয় কি-না ব্যাখ্যা কর।
                                                                                    [চ. বো. ২০১৫]
৫১। লেন্স ও প্রিজমের মধ্যে আলোর প্রতিসরণের তুলনা কর।
                                                                                    বি. বো. ২০১৫]
৫২। লেন্সের চারিপার্শ্বস্থ মাধ্যম পরিবর্তন করলে উহার ফোকাস দূরত্ব পরিবর্তন হয় কেন ?
                                                                                   [সি. বো. ২০১৫]
৫৩। সাদা আলো কাচ প্রিজমে প্রবেশ করলে বর্ণালি সৃষ্টি হয় কেন ?
                                                                                   [সি. বো. ২০১৫]
```

~
T
S
- 1
æ.
2
16
8
V
B
2

৫৪। কাচে আলোক বছর $6^{\circ}27 \times 10^{12} \; \mathrm{km}$ বলতে কী বুঝ ? [ঢা. বো. ২০১৬] ৫৫। সাদা আলো প্রিজমের মধ্য দিয়ে যাবার সময় বিচ্ছুরিত হয় কেন ? কু. বো. ২০১৬] ৫৬। অণুবীক্ষণ ও দূরবীক্ষণ যন্ত্রের গঠনগত পার্থক্য লেখ। রা. বো. ২০১৬] ৫৭। কাচের সংকট কোণ 42° বলতে কী বুঝ ? [চ. বো. ২০১৬] ৫৮। সরল অণুবীক্ষণ যন্ত্রের ফোকাস দূরত্ব হ্রাস পেলে এর বিবর্ধন ক্ষমতা বৃদ্ধি পায়---ব্যাখ্যা কর। [রা. বো. ২০১৯; ব. বো. ২০১৬] ৫৯। চোখের নিকট বিন্দু ও দূর বিন্দু বলতে কী বোঝায় ? ৬০। আলোক রশ্মির বিচ্যুতি কি প্রিক্ষম কোণের উপর নির্ভর করে ? ব্যাখ্যা কর। [অভিনু প্রশ্ন ক, খ সোট ২০১৮] ৬১। এইক আকারের কাছের বস্তু অপেক্ষা দূরের বস্তুকে ছোট দেখি কেন ? ব্যাখ্যা কর। ৬২। খালি চোখে পানিতে ডুব দিলে পানির ভেতরে বস্তুর প্রতিচ্ছবি ঘোলাটে দেখায় কেন ? [দি. বো. ২০১৯] ৬৩। লেন্সের ফোকাস দূরত্ব আপতিত আলোর বর্ণের ওপর নির্ভরশীল—ব্যাখ্যা কর। ৬৪। অভিলম্বের ফোকাস দূরত্ব কমালে অণুবীক্ষণ যন্ত্রের বিবর্ধন ক্ষমতা কীভাবে পরিবর্তিত হয় ? [রা. বো. ২০১৯; চ. বো. ২০১৯]

(%) किशाकर्भ

ভাকাশ নীল দেখার ঘটনা এবং অসতগামী সূর্যের লাল দেখার ঘটনার পার্থক্যের উপর একটি প্রতিবেদন রচনা কর।

(চ) কাজ (গাণিডিক সমস্যা)

১। **লেন্স থেকে** 30 cm দূরে কোনো বস্তুকে রাখলে অবাস্তব বিন্দ গঠিত হয়। প্রতিবিন্দের বিবর্ধন $\frac{2}{3}$ হলে প্রতিবিন্দের অবস্থান, লেন্সের ফোকাস দূরত্ব নির্ণয় কর। লেন্সটির প্রকৃতি কী ?

ডি. v = 20 cm পেছনে, f = 60 cm; লেসটি অবতল)

- ২। 5 cm শব্দা একটি বস্তু 30 cm ফোকাস দ্রত্বের একটি অবতল লেন্স থেকে 15 cm দূরে স্থাপন করা হলো। গঠিত বিন্দের আকার কত হবে ? [উ. 10 cm] [KU Admission Test, 2016-17]
- ৩। একটি লেন্সের ফোকাস দূরত্ব বাতাসে 25 cm এবং উপাদানের প্রতিসরণাচ্চ 3/2। একে 2/3 প্রতিসরণাচ্চের পানিতে ডুবালে ফোকাস দূরত্ব কত cm হবে ?

[SUST Admission Test, 2016-17]

- 8। একটি উচ্ছ্বল বস্তু এবং একটি উৎস 90 cm দূরত্বে অবস্থিত। পর্দায় বস্তুর দ্বিগুণ আকৃতির বিন্দ সৃষ্টির জন্য কী ধরনের লেন্স প্রয়োজন এবং এর ফোকাস দূরত্ব কত? [উ. উত্তল লেন্স, 20 cm]
- ৫। 5 cm দীর্ঘ একটি বস্তুকে 30 cm ফোকাস দূরত্ববিশিষ্ট অবতল দর্পণ থেকে 15 cm দূরে স্থাপন করা হলো। বিস্মের অবস্থান, প্রকৃতি ও আকার বের কর। [উ. —30 cm পিছনে, অবাস্তব, বিবর্ধিত]
- [RUET Admission Test, 2008-09]
 ৬। 20 cm ফোকাস দ্রত্বের একটি উত্তল লেগকে 30 cm ফোকাস দ্রত্বের একটি অবতল লেগের সংস্পর্শে রাখা
 হলো। তুল্য লেগের ফোকাস দ্রত্ব নির্ণয় কর। তুল্য লেগটি কোন ধরনের লেগের মতো আচরণ করবে এবং এর ক্ষমতা
 কত হবে ? [উ. 60 cm; উত্তল লেগের ন্যায় আচরণ করবে; 1'67 D]

[RUET Admission Test, 2006-07; CUET Admission Test, 2009-10]

- ৭। 0'15 m ফোকাস দ্রত্ববিশিষ্ট একটি অবতল দর্পণের প্রধান অক্ষের উপরিস্থিত যে দুটি বিন্দুতে বস্ত্ রাখলে প্রতিবিন্দ্র তিনগুণ হয়, তাদের মধ্যে দূরত্ব নির্ণয় কর। [উ. 0'1 m] [BUTex Admission Test, 2005-06]
- ৮। কোনো দেশ থেকে একটি বস্তু 16 cm দূরে অবস্থিত। দেশটি তা থেকে 24 cm দূরে অবাস্তব বিষ্ণ গঠন করল। দেশের ক্ষমতা কত ? [উ. 2⁻08 D]
- ৯। উত্তল লেন্স থেকে 15 cm দূরে বস্তু রাখলে দ্বিগুণ বিবর্ধিত বাস্তব বিন্দ্র গঠিত হয়। বস্তুটিকে লেন্স থেকে কত দূরে রাখলে 2 গুণ বিবর্ধিত অবাস্তব বিন্দ্র গঠিত হবে ?
- ১০। 0'05 m দীর্ঘ একটি বস্তু একটি উত্তল লেন্সের সামনে অবস্থিত এবং লেন্সের অপর পার্শ্বে 1 m দূরে একটি পর্দার উপর 0'25 m দীর্ঘ একটি প্রতিবিন্দ্র পাওয়া গেল। লেন্সের ফোকাস দূরত্ব নির্ণয় কর। [উ. 0'166 m]
- ১১। একটি উভাবতল লেন্সের দুই পৃষ্ঠের বক্রতার ব্যাসার্ধ যথাক্রমে 0'20 m এবং 0'40 m। তার ফোকাস দূরত্ব 0'20 m হলে ওই লেন্সের উপাদানের প্রতিসরাজ্ঞ কত ?
- ১২। একটি সরু উভোত্তল লেন্স হতে 0.24 m দূরে একটি বস্তু রেখে লেন্সের বিপরীত পার্শ্বে 0.30 m দূরে বাস্তব প্রতিবিদ্দ পাওয়া গেল। লেন্সের প্রথম ও দ্বিতীয় পৃষ্ঠের বক্রতার ব্যাসার্ধ 0.16 m ও 0.20 m হলে লেন্সের উপাদানের প্রতিসরাক্ত নির্ণয় কর।

১৩। কাচ দ্বারা তৈরি একটি দ্বি-উত্তল লেন্সের উভয় পৃষ্ঠের বক্ততার ব্যাসার্ধ সমান। কাচের প্রতিসরাচ্চ 1.5 হলে দেখাও যে, লেন্সটির ফোকাস দূরত্ব তার বক্ততার ব্যাসার্ধের সমান।

[Hints.
$$r_1 = r$$
, $r_2 = -r$, $\frac{1}{f} = (\mu - 1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$, (:: $f = r$)]

১৪। একটি উভাবতদ দেকের বক্ততার ব্যাসার্ধ যথাক্রমে 5 cm এবং 15 cm। দেকের উপাদানের প্রতিসরাভক 1.5 হলে, এর ফোকাস দূরত্ব কত ? ্তি. — 7.5 cm (অবতদ দেক)]

১৫। একটি উভোত্তল লেন্সের (µ= 1.56) উভয় তলের ব্যাসার্ধ 20 cm। লেন্স থেকে 20 cm দূরে একটি বস্ত্ রাখলে প্রতিবিন্দ কোথায় গঠিত হবে ?

১৬। একটি সম উভোগুল লেন্দের বক্রতার ব্যাসার্থ 20 cm এবং এর উপাদানের প্রতিসরাজ্ঞ 1.5। লেম্পটি (i) বাতাসে এবং (ii) পানিতে নিমচ্জিত থাকলে ফোকাস দৈর্ঘ্য কত হবে ? (পানির প্রতিসরাজ্ঞ্চ $\mu_w = \frac{4}{3}$)

ডি. (i) 20 cm, (ii) 80 cm]

১৭। 20 cm ফোকাস দূরত্ববিশিষ্ট দৃটি সমোদ্তল লেন্স পরস্পরকে স্পর্শ করে আছে। লেন্স দৃটির মধ্যস্থান পানি দ্বারা পূর্ণ। লেন্স সংযোজনের ফোকাস দূরত্ব নির্ণয় কর। [কাচের প্রতিসরাজ্ঞ = $\frac{3}{2}$, পানির প্রতিসরাজ্ঞ = $\frac{4}{3}$]

[图 15 cm] [BUET Admission Test, 2007-08]

১৮। একটি জটিল অণুবীক্ষণ যন্ত্রে অভিলক্ষ্যের ফোকাস দূরত্ব 2 cm এবং অভিনেত্রের ফোকাস দূরত্ব 4 cm এবং এদের ব্যবধান 20 cm। অভিনেত্র থেকে 25 cm দূরে প্রভিবিন্দ্র গঠিত হলে অভিলক্ষ্য থেকে বস্তু দূরত্ব কত বের কর। অণুবীক্ষণের বিবর্ধন কত ?

১৯। একটি সরু উভোন্তল লেন্সের বক্রতার ব্যাসার্ধের 10 cm ও 15 cm। লেন্সের উপাদানের প্রতিসরাজ্ঞ 1.5। লেন্সটির ফোকাস দূরত্ব কত ? [উ. 12 cm] [CUET Admission Test, 2007-08]

২০। একটি যৌগিক অণুবীক্ষণ যন্ত্রের অভিলক্ষ্য এবং অভিনেত্রের ফোকাস দূরত্ব যথাক্রমে 0.02 m এবং 0.05m ও তাদের মধ্যবর্তী দূরত্ব 0.16m। অভিলক্ষ্যের সামনে 0.024 m দূরে বস্তু স্থাপন করলে অভিনেত্র হতে কত দূরে প্রতিবিন্দ গঠিত হবে ?

২১। একটি যৌগিক জণুবীক্ষণ যন্ত্রের জভিলক্ষ্য এবং জভিনেত্রের ফোকাস দূরত্ব যথাক্রমে 0.02 m এবং 0.05 m ও তাদের মধ্যবর্তী দূরত্ব 0.16 m। জভিলক্ষ্যের সামনে কত দূরে বস্তু স্থাপন করলে জভিনেত্র হতে 0.20 m দূরে প্রতিবিন্দ গঠিত হবে ?

২২। একটি যৌগিক অণুবীক্ষণ যন্ত্রের অভিলক্ষ্য ও অভিনেত্রের ফোকাস দূরত্ব যথাক্রমে 5 mm এবং 6 cm। অভিলক্ষ্য দ্বারা গঠিত কোনো বস্ত্র প্রতিবিন্দ এটি হতে 25 cm দূরে অবস্থিত। অভিনেত্র হতে শেষ অবাস্তব প্রতিবিন্দ 30 cm দূরে অবস্থিত। বিন্দের মোট বিবর্ধন বের কর।

২৩। একটি জণুবীক্ষণ যন্ত্রের অভিলক্ষ্য ও অভিনেত্রের ফোকাস দৈর্ঘ্য যথাক্রমে $2 \, \mathrm{cm}$ এবং $5 \, \mathrm{cm}$ । এদের মধ্যে দূরত্ব $20 \, \mathrm{cm}$ । অভিলক্ষ্য থেকে বস্তূর দূরত্ব কত হলে চূড়ান্ত প্রতিবিদ্দ অভিনেত্র থেকে $25 \, \mathrm{cm}$ দূরে গঠিত হবে ? মোট বিবর্ধন কত হবে ?

২৪। কোনো যৌগিক অণুবীক্ষণ যন্ত্রে অভিলক্ষ্য ও অভিনেত্রের ফোকাস দূরত্ব 10 cm এবং 15 cm। যদি অভিলক্ষ্য থেকে বস্তুর বিন্দের দূরত্ব 50 cm হয় এবং অভিনেত্র থেকে অবাস্তব বিন্দের দূরত্ব 60 cm হয়, তবে ওই অণুবীক্ষণ যন্ত্রের বিবর্ধন কত ?
[উ. 20] [KUET Admission Test, 2016-17]

২৫। একটি যৌগিক অণুবীক্ষণ যন্ত্রের অভিলক্ষ্য ও অভিনেত্রের দূরত্ব যথাক্রমে 2:5 cm এবং 5:6 cm। স্পষ্ট দর্শনের নিকটতম দূরত্বে গঠিত কোনো লক্ষ্যবস্তুর চূড়ান্ত বিন্দকে 6:25 cm শম্মা মনে হলো। বস্তুটির আসল দৈর্ঘ্য কত ? (যন্ত্রে নলের দৈর্ঘ্য 25 cm)

[KUET Admission Test, 2017-18]

২৬। একটি নভোদূরবীক্ষণ যন্ত্রের অভিলক্ষ্য এবং অভিনেত্রের ফোকাস দূরত্ব যথাক্রমে 0'30 m এবং 0'02 m। স্বাভাবিক দর্শনের জুন্য যন্ত্রের (i) কৌণিক বিবর্ধন এবং (ii) দৈর্ঘ্য নির্ণয় কর। [উ. (i) 15, (ii) 0'32 m]

২৭। একটি নভো-দূরবীক্ষণ যন্ত্রের মাভাবিক ফোকাসিং-এর ক্ষেত্রে বিবর্ধন ক্ষমতা ৪ এবং দৈর্ঘ্য $36~{
m cm}$ । [ব. বো. ২০০৯; কু. বো. ২০০৮] [উ. $f_c=4~{
m cm}$; $f_0=32~{
m cm}$]

২৮। একটি নভো-দূরবীক্ষণ যন্ত্রের অভিলক্ষ্য এবং অভিনেত্রের ফোকাস দূরত্ব যথাক্রমে 0'20 m এবং 0'02 m। অসীম দূরত্ব ফোকাস এর ক্ষেত্রে অভিলক্ষ্য ও অভিনেত্রের মধ্যে দূরত্ব ও সৃষ্ট বিবর্ধন নির্ণয় কর। [উ. 0'22m; 10]

২৯। একটি নভো-দূরবীক্ষণ যন্ত্রের অভিলক্ষ্য ও অভিনেত্রের ফোকাস দূরত্ব যথাক্রমে 80 cm ও 5 cm। যখন স্বাভাবিক দর্শনের জন্য ফোকাস করা হয়, তখন এর বিবর্ধন ক্ষমতা কত ?

Hints:
$$\mu = f_0 \left(\frac{1}{D} + \frac{1}{f} \right)$$

৩০। কোনো নভো-দূরবীক্ষণ যন্ত্রের অভিলক্ষ্য ও অভিনেত্রের ফোকাস দূরত্ব যথাক্রমে 400 cm ও 4 cm। এর বিবর্ধন ও দৈর্ঘ্য নির্ণয় কর।

৩১। একটি প্রিজমের কোণ 45° এবং উপাদানের প্রতিসরাজ্ঞ্ব $\sqrt{5}$ । এই প্রিজমের এক প্রতিসরণ পৃষ্ঠে আলোক রশ্মি কত কোণে আপতিত হলে রশ্মিটির দ্বিতীয় প্রতিসরণ পৃষ্ঠ ঘেঁষে নির্গত হবে ? [উ. $i_1 = 58.84^\circ$]

৩২। কোনো একটি আলোক রশ্মির জন্য একটি সমবাহু প্রিজমের উপাদানের প্রতিসরাচ্ছ $\sqrt{2}$ । প্রিজমের প্রথম প্রতিসরণ তলে আলোক রশ্মি 45° কোণে আপতিত হলে দেখাও যে, রশ্মিটি ন্যূনতম বিচ্যুতিতে নির্গত হবে।

[উ. প্রমাণ করতে হবে $i_1 = i_2 = 45^{\circ}$ ও $r_1 = r_2 = 30^{\circ}$]

৩৩। একটি প্রিজমের প্রতিসরাজ্ঞ্ক কোণের মান 60° এবং সোডিয়াম আলোকরশ্মির জন্য এর উপাদানের প্রতিসরাজ্ঞ্ক 1.5। ওই আলোক রশ্মি প্রিজমটির মধ্য দিয়ে গেলে বিচ্যুতি কোণের ন্যূনতম মান কত হবে ? [উ. 37.18°]

৩৪। $\mu=\sqrt{3}$ প্রতিসরাজ্ঞ্বযুক্ত একটি কাচের প্রিজমের ন্যূনতম বিচ্যুতি কোণ প্রিজমের প্রতিসরাজ্ঞ্জ কোণের সমান। প্রিজমের কোণের মান কত ?

৩৫। একটি সমবাহু ফাঁপা প্রিজম একটি নির্দিষ্ট তরল দারা পূর্ণ আছে। ওই প্রিজমে প্রতিসরণের জন্য কোনো আলোক রশ্মির ন্যুনতম বিচ্যুতি কোণ 60° হলে তরলের প্রতিসরাজ্ঞ নির্ণয় কর।

৩৬। একটি প্রিজমের প্রতিসারক কোণের মান 60° এবং সোডিয়াম D আলোক রশ্মির জন্য এর উপাদানের প্রতিসরাজ্ঞ 1.5। ওই আলোক রশ্মি প্রিজমটির মধ্য দিয়ে গেলে বিচ্যুতি কোণের ন্যুনতম মান কত হবে ? [উ. 37°]

৩৭। 16 প্রতিসরাঙ্কের একটি প্রিজমের কোণ কত হলে একটি রশ্মি 40° কোণে আপতিত হলে রশ্মিটির ন্যূনতম বিচ্যুতি হবে ?

৩৮। কোনো সমকোণী প্রিজম থেকে নির্গম রশ্মি পেতে হলে তার প্রতিসরাচ্চ্চ $\sqrt{2}$ -এর বেশি হলে চলবে না—প্রমাণ কর।

৩৯। একটি প্রিজমের উপাদানের প্রতিসরাজ্ঞ 1.5। প্রিজমের কোনো এক তলে আলোক রশ্মি 50° কোণে আপতিত হলে রশ্মিটির ন্যূনতম বিচ্চুতি ঘটে। প্রিজম কোণ নির্ণয় কর। [উ. 61.42°]

[BUTex Admission Test, 2000-01]

৪০। প্রিজম কোণ 60° এবং ন্যূনতম বিচ্যুতি কোণ 48°30' হলে প্রিজম পদার্থের প্রতিসরাজ্ঞ কত হবে ?

্**উ.** 1⁻623]

8১। কোনো একটি প্রিজমের প্রতিসরাজ্ঞ √2। ন্যূনতম বিচ্যুতি কোণ 30° হলে প্রিজমটির প্রতিসরাজ্ঞ কোণের মান কত হবে ?

8২। খুব পাতলা একটি প্রিক্তম আলোক রশ্মির 5° বিচ্যুতি ঘটায়। প্রিক্তমের উপাদানের প্রতিসরাক্ত 1'5 হলে প্রিক্তমের কোণ কত ?

৪৩। একটি দূরবীক্ষণ যন্ত্রের অভিলক্ষ্যের ব্যাস 2.54 m। একটি নক্ষত্র থেকে আগত আলোর তরক্তাদৈর্ঘ্য 6000 Å হলে দূরবীক্ষণের বিশ্লেষণের সীমা কত ?

88। $4500~{
m \AA}$ এবং $4600~{
m \AA}$ তরজ্ঞাদৈর্ঘ্যে বায়ুসাপেন্দে কোয়ার্টজের প্রতিসরাজ্ঞ্ক যথাক্রমে $1.425~{
m udv}$ । $1.425~{
m udv}$ | $1.425~{
m udv}$ | 1.

৪৫। লাল ও নীল বর্ণের সাপেক্ষে ক্রাউন কাচের বিচ্ছুরণ ক্ষমতা নির্ণয় কর। দেওয়া আছে, এই দুই বর্ণের ক্ষেত্রে ক্রাউন কাচের প্রতিসরাহ্ক যথাক্রমে $\mu_r=1.52$ এবং $\mu_b=1.53$ ।

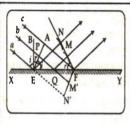
8৬। লাল ও নীল বর্ণের আলোক রশ্মির জন্য ক্রাউন কাচের প্রতিসরাজ্ঞ্ক যথাক্রমে $\mu_{r}=1.517$ এবং $\mu_{b}=1.523$ । এই বর্ণদ্বয়ের সাপেক্ষে ক্রাউন কাচের বিচ্ছুরণ ক্ষমতা নির্ণয় কর।

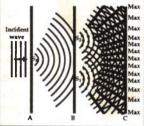
89। A উপাদানবিশিষ্ট একটি প্রিজম লাল বর্ণের রশ্মিকে 10° কোণে এবং নীল বর্ণের রশ্মিকে 16° কাণে বিচ্যুত করে। B উপাদানের অপর একটি প্রিজম লাল আলোকে 8° কোণে এবং নীল আলোকে 14° কোণে বিচ্যুত করে। কোন উপাদানের কৌণিক বিচ্ছুরণ এবং বিচ্ছুরণ ক্ষমতা বেশি?

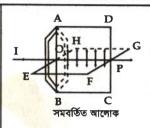
[Hints : $\delta_{\rm A}$ = 16—10 = 6°, $\delta_{\rm B}$ = 14 — 8 = 6°; A প্রিজমের মধ্যবর্তী রশ্মির বিচ্চুতি

$$\delta_1 = \frac{16+10}{2} = 13^\circ, \ \delta_2 = \frac{14+8}{2} = 11^\circ, \ W_A = \frac{\delta_A}{\delta_1} = \frac{6}{13}; \ W_B = \frac{\delta_B}{\delta_2} = \frac{6}{11}, \ W_B > W_A \ I$$

টে. B উপাদানের কৌণিক বিচ্ছুরণ ও বিচ্ছুরণ ক্ষমতা বেশি]


৪৮। লাল, হলুদ এবং নীল বর্ণের জন্য কোয়ার্টজের প্রতিসরাজ্ঞ্ক যথাক্রমে 1 4564, 1 4585 এবং 1 463। কোয়ার্টজের বিজ্বুরণ ক্ষমতা নির্ণয় কর।




ভৌত আলোকবিজ্ঞান PHYSICAL OPTICS

প্রধান শব্দ (Key Words): তড়িৎ চুম্বকীয়
তরজা, পয়েন্টিং ভেষ্টর, তড়িৎ চুম্বকীয়
স্পেকট্রাম, তরজামুখ, আলোর ব্যতিচার,
ইয়ং-এর দ্বি-চিড় পরীক্ষা, ব্যতিচার ঝালর,
অপবর্তন, অপবর্তন গ্রেটিং, আলোর সমবর্তন, কম্পন তল, সরলাক্ষ, সমবর্তন তল।

সূচনা

Introduction

আমরা জানি, আলোক এক প্রকার শক্তি যা দর্শনানুভূতি জাগায় এবং তড়িৎ চুম্মকীয় তরজা আকারে এক স্থান থেকে অন্য স্থানে মাধ্যম ছাড়াও চলাচল করতে পারে। আলোর প্রকৃতি বা আচরণ ব্যাখ্যায় কণাতন্ত্ব, তরজাতন্ত্ব, তড়িৎ চুম্মকীয় তন্ত্ব, কোয়ান্টাম ও দৈত তন্ত্ব উদ্ধাবিত হয়েছে। এই সকল তন্ত্বের সাহায্যে আলোর প্রতিফলন, প্রতিসরণ, ব্যতিচার ও অপবর্তন ঘটনার ব্যাখ্যা দেওয়া সম্ভব হয়েছে। এই অধ্যায়ে আমরা আলোকের তরজা তন্ত্বের সাহায্যে উল্লিখিত ঘটনাগুলো ব্যাখ্যা করতে সক্ষম হব। হাইগেন, ফারমাট, ইয়ং প্রমুখ বিজ্ঞানীদের বিভিন্ন পরীক্ষালম্ব ফলাফল দারা আলোকীয় বিভিন্ন ঘটনা ব্যাখ্যা ও প্রমাণ করা যায়।

এ অধ্যায় পাঠ শেষে শিক্ষার্থীরা----

- তড়িৎ চুম্বকীয় তরজ্ঞার বৈশিষ্ট্য ব্যাখ্যা করতে পারবে।
- আলোক তরজা তড়িৎ চুম্বকীয় স্পেকট্রামের অংশ ব্যাখ্যা করতে পারবে।
- তরজ্ঞামুখের ধারণা ব্যাখ্যা করতে পারবে।
- তরজ্ঞামুখ সৃষ্টিতে হাইগেনসের নীতির ব্যবহার করতে পারবে।
- হাইগেনসের নীতি ব্যবহার করে আলোর প্রতিফলন ও প্রতিসরণের সূত্র বিশ্লেষণ করতে পারবে।
- আলোর ব্যতিচার ব্যাখ্যা করতে পারবে।
- ইয়ং এর দ্বি-চিড় পরীক্ষা ব্যাখ্যা করতে পারবে।
- আলোর অপবর্তন ব্যাখ্যা করতে পারবে।
- আলোর সমবর্তন ব্যাখ্যা করতে পারবে।

৭-১ তড়িও চুম্বকীয় তরজা Electromagnetic wave

আমরা জানি, আঁলো এক প্রকারের শক্তি। ষাভাবিকভাবে প্রশ্ন জাগে যে, এক স্থান থেকে অন্য স্থানে আলোর শক্তি কীভাবে স্থানান্তরিত হয় এবং শক্তির বিস্তার কীভাবে ঘটে ? শক্তির স্থানান্তর প্রক্রিয়া সম্পর্কে সন্তদশ শতাব্দীতে দুটি মতবাদ উপস্থাপন করা হয়। প্রথমটি হলো নিউটনের কণিকা তন্ত্ব এবং দ্বিতীয়টি হাইগেন্স-এর তরজা তন্ত্ব।

তরক্ষা তত্ত্বের বিভিন্ন অসক্ষাতি লক্ষ করে পরবর্তীকালে ম্যাক্সওয়েল 1860 খ্রিস্টাব্দে তড়িৎ চুম্বকীয় তত্ত্বের প্রবর্তন করেন। তড়িৎ চুম্বকীয় তরক্ষা আলোচনা করার পূর্বে আমাদের আলোর তরক্ষা তত্ত্ব সম্পর্কে জানা প্রয়োজন।

৭-১-১ আলোর তরজা তত্ত্ব Wave theory of light

[DAT: 18-19]


স্যার আইজ্যাক নিউটনের সমসাময়িক ডাচ বিজ্ঞানী **হাইগেন্স** (Huygens) প্রথম 1678 খ্রিস্টাব্দে আলোর তরজা তত্ত্ব উপস্থাপন করেন। পরে ইয়ং, ফ্রেনেল এবং আরও অনেক বিজ্ঞানী এই তত্ত্বকে সুপ্রতিষ্ঠিত করেন। এই তত্ত্ব অনুসারে আলো ইথার নামক এক অলীক মাধ্যমের মধ্য দিয়ে তরজ্ঞা আকারে সঞ্চারিত হয়ে এক জায়গা থেকে অন্য জায়গায় যায় এবং চোখে পৌছালে দর্শনানুভূতি সৃষ্টি করে।

এই তত্ত্বের সাহায্যে আলোর প্রতিফলন, প্রতিসরণ, ব্যতিচার, অপবর্তন ব্যাখ্যা করা যায় কিন্তু সমবর্তন, ফটো-তড়িৎ ক্রিয়া ব্যাখা করা যায় না। পরবর্তীকালে মাইকেলসন-মর্লির পরীক্ষায় প্রতিষ্ঠিত হয় যে, প্রকৃতিতে ইথার নামক কোনো বস্তুর অস্তিত্ব নেই।

RMDAC

তড়িৎ চুম্বকীয় তরজা Electromagnetic wave

1845 খ্রিস্টাব্দে ফ্যারাডে আবিক্ষার করেন যে একটি প্রবল চৌম্বক ক্ষেত্রের প্রভাবে সমবর্তন তল ঘুরে যায়। এ ঘটনা ফ্যারাডে ক্রিয়া নামে পরিচিত। ফ্যারাডে ক্রিয়া আবিক্ষারের পরে বিজ্ঞানীরা সর্বপ্রথম ধারণা করলেন যে আলোকের

সক্তো চুম্মকত্বের একটা গভীর সম্পর্ক রয়েছে। তড়িৎ চৌম্বক সম্পর্কীয় ফ্যারাডের সূত্রানুসারে, পরিবর্তনশীল চৌম্বক ক্ষেত্র দারা তড়িৎ ক্ষেত্র উৎপন্ন হয়। তাই বলা যায় আলো এক ধরনের তড়িৎ চৌম্বক বিকিরণ। এই বিকিরণের সাথে দুইটি ক্ষেত্র জড়িত। একটি হলো পরিবর্তনশীল তড়িৎ ক্ষেত্র এবং অপরটি পরিবর্তনশীল চৌম্বক ক্ষেত্র। সূতরাং আলোকের সাথে তড়িতের এবং চুম্মকত্ত্বের নিবিড় সম্পর্ক থাকা অযাভাবিক নয়। জেমস ক্লাৰ্ক ম্যাক্সওয়েল 1864 খ্রিস্টাব্দে পরাবিদ্যুৎ (Dielectric) মাধ্যমে সরণ প্রবাহ (displacement current)-এর ওপর পরীক্ষালব্ধ ফলাফল থেকে প্রস্তাব করেন যে পরিবর্তনশীল তড়িৎ ক্ষেত্র ঘারাও চৌন্দক ক্ষেত্র উৎপন্ন হয় [চিত্র ৭'১]। সংযুক্ত পরিবর্তনশীল তড়িৎ ক্ষেত্র (\overrightarrow{E}) ও চৌম্বক ক্ষেত্র (\overrightarrow{B}) শূন্যস্থানে এক প্রকার আলোড়ন সৃষ্টি করে। এ আলোড়নের তরক্ষা গুণ রয়েছে। তরক্তা গুণসম্পন্ন এ আলোড়নকে তড়িৎ চুম্বকীয় তরক্তা বলে। ম্যাক্সওয়েল এ সিন্ধান্তে উপনীত হন যে, স্পন্দন দারা

সৃষ্ট তড়িৎ চুম্বকীয় তরক্ষোর তড়িৎ কেত্র (E) এবং চৌম্বক কেত্র (B) একই সমতলে পরস্পরের ওপরে লম্ব এবং সমতল ক্ষেত্রের অভিলম্ম বরাবর তরজোর শক্তি সঞ্চালিত হয়। এ তড়িৎ চুম্বকীয় তরজা শূন্যস্থানের মধ্য দিয়ে,

$$c = \frac{1}{\sqrt{\epsilon_0 \mu_0}} \qquad \dots \tag{7.1}$$

বেগে চলে। এখানে ∈ 0, শূন্য মাধ্যমের ভেদনযোগ্যতা এবং এর মান

$$\epsilon_0 = \frac{1}{4\pi \times 9 \times 10^9} \text{ coul}^2 \text{ N}^{-1} \text{m}^{-2} = 8.85 \times 10^{-12} \text{ coul}^2 \text{ N}^{-1} \text{m}^{-2}$$

 $\epsilon_0 = \frac{1}{4\pi \times 9 \times 10^9} \ \text{coul}^2 \ \text{N}^{-1} \text{m}^{-2} = 8.85 \times 10^{-12} \ \text{coul}^2 \ \text{N}^{-1} \text{m}^{-2}$ এবং μ_0 হলো শুন্য মাধ্যমে প্রস্কানন এবং μ_0 হলো শূন্য মাধ্যমে প্রবেশ্যতার ধ্রক এবং এর মান $\mu_0=4\pi\times 10^{-7}~NA^{-2}$ সমীকরণ (7.1)–এ ϵ_0 ও μ_0 –এর মান বসালে c–এর মান পাওয়া যায় $3 imes 10^{10}~{
m ms}^{-1}$ । $\epsilon_0 \mu_0$ এর একক $rac{1}{c^2}$ এর

একক =
$$\frac{1}{(\text{Velocity})^2}$$
 = m⁻²s²

অর্ধাৎ তড়িৎ চুম্বকীয় তর্জ্ঞা শূন্যস্থানে আলোর বেগে চলে। সুতরাং আলোক তরক্ষা এবং তড়িৎ চুম্বকীয় তরক্ষা অভিনু, পার্থক্য শুধু তরক্ষাদৈর্ঘ্যের। ম্যাক্সওয়েল এও প্রমাণ করেন যে, এ তরক্ষা অনুপ্রস্থ (Transverse) তরক্ষা। সংক্ষেপে বলা যায়, শূন্যস্থান দিয়ে আলোর দুতিতে গতিশীল তড়িও ও চৌম্বক আলোড়ন, যাতে তড়িও ও চৌম্বক ক্ষেত্র প্রস্পর লম্ব এবং এরা উভয়ে তরজা সঞ্চালনের অভিমুখের সাথে লম্ব বরাবর থাকে তাকে তড়িৎ চুম্বকীয় তরজা বলে। চৌম্বক ক্ষেত্র B এবং তড়িৎ ক্ষেত্র E এর তরজা সমীকরণ,

$$B = B_0 \sin \frac{2\pi}{\lambda} (vt - x)$$
 এবং $E = E_0 \sin \frac{2\pi}{\lambda} (vt - x)$

ম্যাক্সওয়েলের তড়িৎ চুম্বকীয় তত্ত্ব অনুসারে তড়িৎ ক্ষেত্র ও চৌম্বক ক্ষেত্রের বিস্তারের মধ্যে নিম্নোক্ত সম্পর্ক

 $E_0 = cB_0$ বা, $c = \frac{E_0}{B_0}$; এখানে, $E_0 = 0$ ড়িং ক্ষেত্রের বিস্তার, $B_0 = c$ টাম্বক ক্ষেত্রের বিস্তার এবং c = 0লালার বেণ্টা প্রামেন মান্ত্রিক ক্ষেত্রের বিস্তার ক্ষেত্রের বিস্তার এবং c = 0লালার বেণ্টা প্রমেন মান্ত্রিক ক্ষেত্রের পরিবর্তে বৈদ্যুতিক গুণবিশিষ্ট

ম্যাক্সওয়েলের তড়িৎ চুম্বকীয় তত্ত্ব অনুসারে বস্তুর গুণবিশিষ্ট কাল্পনিক ইথারের পরিবর্তে বৈদ্যুতিক গুণবিশিষ্ট তড়িৎ চৌম্বক ক্ষেত্রের মাধ্যমে আলোর তরজা সঞ্চালিত হয়ে থাকে। ম্যাক্সওয়েল দোলায়মান বৈদ্যুতিক কুণ্ডলী থেকে আলোর গতিবেগের প্রায় সমান গতিবেগবিশিষ্ট তরক্ষোর নির্গমন লক্ষ করেন। ম্যাক্সওয়েলের এ আবিক্ষারের কয়েক বছর পরে জার্মান বিজ্ঞানী হাইনরিখ হার্জ ছোট আকারের স্পন্দিত বৈদ্যুতিক কুণ্ডলী হতে আলোক তরজ্ঞার গুণাবিলসম্পন্ন ক্ষুদ্র তরজ্ঞাদৈর্ঘ্যের তরজ্ঞা সৃষ্টি করতে সক্ষম হন এবং দেখান যে আলোর সব ধর্মই এই তরক্ষোর রয়েছে। এতে

(7.3)

প্রমাণিত হয় যে, আলো তড়িৎ চুম্বকীয় তরজ্ঞা ব্যতীত অন্য কিছু নয়। এভাবেই আলোকের তড়িৎ চুম্বকীয় তত্ত্বের উৎপত্তি ঘটে।

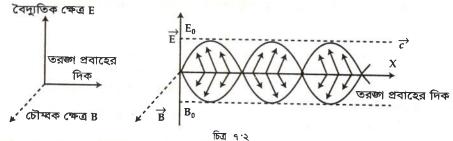
জানা দরকার : যদি কোনো মাধ্যমের আপেক্ষিক তড়িং ভেদ্যতা ∈, এবং আপেক্ষিক চৌম্বক প্রবেশ্যতা µ, হয়, তবে ওই মাধ্যমে তরজ্ঞার তড়িচুম্বকীয় তরজোর গতিবেগের রাশিমালা, v=--1 $V \mu_0 \mu_r \in _0 \in$

৭-১-৩ পয়েন্টিং ভেক্টর Poynting vector

ভড়িৎ চুম্বকীয় তরক্ষোর একটি প্রধান বৈশিষ্ট্য হলো এই যে এই তরক্ষা এক স্থান থেকে অন্য স্থানে শক্তি বহন করতে পারে। কোনো তড়িং চুম্বক তরজোর গতিপথে লম্বভাবে স্থাপিত কোনো একক ক্ষেত্রকলের মধ্য দিয়ে যে পরিমাণ শক্তি অতিক্রম করে তাকে প<u>রেন্টিং ভেক্টর বলে</u>। একে $(S^{'})$ দ্বারা চিহ্নিত করা হয়। তড়িৎ ক্ষেত্র $\stackrel{
ightarrow}{ ext{E}}$, চৌম্বক ক্ষেত্র \overrightarrow{B} এবং পয়েন্টিং ভেক্টর \overrightarrow{S} -এর মধ্যে গাণিতিক সম্পর্ক হলো

$$\overrightarrow{S} = \frac{1}{\mu_0} \overrightarrow{E} \times \overrightarrow{B} \qquad ... \qquad ... \qquad ... \qquad ... \qquad ...$$

$$\overrightarrow{A}, \qquad S = \frac{EB \sin 90^{\circ}}{\mu_0}$$


$$\overrightarrow{A}, \qquad S = EH, \qquad [\because H = \frac{B}{\mu_0}]$$

$$\therefore \qquad \overrightarrow{S} = \overrightarrow{E} \times \overrightarrow{H} \qquad ... \qquad .$$

এবং একক হলো ওয়াট /মিটার² বা জুল/সেকেন্ড/মিটার²। যেহেতু S একটি ভেক্টর রাশি এর দিক হবে যে দিকে শক্তি স্থানান্তরিত হয় সেদিকে। সমীকরণ (7.2) E এবং B এর তাৎক্ষণিক মান ও দিক নির্দেশ করে। পয়েন্টিং ভেষ্টরের মাত্রা MT-3।

ম্যাক্সওয়েলের বিদ্যুৎ চুম্বকীয় তত্ত্বে বলা হয়েছে যে একটি পরিবর্তী চৌম্মক ক্ষেত্রের সাথে একই সচ্চো সর্বদা সমদশায় কিন্তু সমকোণে একটি পরিবর্তী বিদ্যুৎ ক্ষেত্র স্পন্দনশীল হলে একটি বিদ্যুৎ চুম্বকীয় তর্ন্জা উক্ত ক্ষেত্রের সমকোণে তীব্র বেগে গমন করে।

চিত্র ৭-২-এ ভেক্টর \overrightarrow{E} বিদ্যুৎ ক্ষেত্র ও ভেক্টর \overrightarrow{B} চৌম্বক ক্ষেত্র নির্দেশ করছে এবং তরভোর বেগ ভেক্টর \overrightarrow{c} পরস্পর সমকোণে প্রদর্শিত হয়েছে।

তড়িৎ চুম্বকীয় তত্ত্বের সাহায্যে <u>আলোর সমবর্তন ক্রিয়া ব্যাখ্যা করা যায়। কিন্তু আলোক তড়িৎ ক্রিয়া ব্যাখ্</u>যা করা যায় না। আলোক তড়িৎ ক্রিয়া, কৃষ্ণ বস্তুর বিকিরণ ইত্যাদি ব্যাখ্যা করার জন্য 1900 খ্রিস্টাব্দে বিখ্যাত জার্মান বিজ্ঞানী **ম্যাক্স প্লাভক কো**য়াণ্টাম তত্ত্ব উপস্থাপন করেন।

কাজ: আলোর প্রকৃতি সম্দল্পে বিভিন্ন তত্ত্বের উল্লেখ কর।

আলোকের প্রকৃতি সম্মন্দে যেসব তত্ত্ব উদ্ভাবিত হয়েছে সেগুলো হলো—- 🗡 🗡

(i) নিউটনের কণিকা তত্ত্ব : এই তত্ত্বের সাহায্যে ঋজুগতি প্রতিফলন, প্রতিসরণ এবং আলোক তড়িৎ ক্রিয়া ব্যাখ্য করা যায়; কিন্তু ব্যতিচার, সমবর্তন, অপবর্তন, বিচ্ছুরণ ব্যাখ্যা করা যায় না।

(ii) হাইগেনের তরজা তত্ত্ব: এই তত্ত্বের সাহায্যে প্রতিফলন, প্রতিসরণ, ব্যতিচার, অপবর্তন ব্যাখ্যা করা যায়; কিন্তু সমবর্তন ব্যাখ্যা করা যায় না।

(iii) ম্যাক্সওয়েলের তড়িও চুম্বকীয় তত্ত্ব : এই তত্ত্বের সাহায্যে আলোর সমবর্তন ব্যাখ্যা করা যায়; কিন্তু ফটো-তড়িৎ ক্রিয়া ব্যাখ্যা করা যায় না।

मि यात्रानुष्म ठडे —) किस प्यक्षिण्य क्ष्य क्ष्य विविद्यम → २१९ लिम ध्यायर्वत मार्चे न्त्राहरू/यार्ने मेर्सिक

वामानाम कडी हिलं

(iv) আইনস্টাইনের কোয়ান্টাম ভত্ত্ব : এই তত্ত্বের সাহায্যে কৃঞ্চবস্তু বিকিরণ, ফটো–তড়িৎ ক্রিয়া ব্যাখ্যা করা যায়; কিন্তু ব্যতিচার, অপবর্তন, সমবর্তন ব্যাখ্যা করা যায় না।

৭-১-৪ তাড়িও চুম্বকীয় তরজোর বৈশিষ্ট্য Characteristics of electromagnetic wave

- ১। তড়িং চুম্বকীয় তরজ্ঞা তড়িং ক্ষেত্র E ও চৌম্বক ক্ষেত্র B এর পর্যায়বৃত্ত পুরিবর্তনের ফলে উৎপন্ন হয়।
- ২। তরক্তা সঞ্চাদনের অভিমুখ $\stackrel{
 ightarrow}{
 m E}$ ও $\stackrel{
 ightarrow}{
 m B}$ উভয়ের ওপর দন্দ। তাই তড়িচ্চ্ন্দ্রকীয় তরক্তা আড় তরক্তা।
- ৩। তড়িৎ চুস্বকীয় তরজোর সঞ্চালনের জন্য কোনো মাধ্যমের প্রয়োজন হয় না।
- ৪। তড়িচুস্বকীয় বিকিরণের তীব্রতা দূরত্বের বর্গের ব্যস্তানুপাতে হ্রাস পায়। অর্থাৎ 듣 🗨 🔀

 $E \propto \frac{1}{r^2}$, এখানে E হলো তড়িচু স্বকীয় বিকিরণের তীব্রতা এবং r হলো উৎস হতে দূরত্ব। সূতরাং, দূরত্ব দ্বিপুণ বৃদ্ধি পেলে তীব্রতা চারগুণ হ্রাস পাবে।

c। তড়িচুম্বকীয় সকল বিকিরণের জন্য তরজোর বেগ c, তরজাদৈর্ঘ্য λ ও কম্পাজ্ঞ υ -এর মধ্যে নিমোক্ত সম্পর্ক প্রযোজ্য :

c= 0λ ৬।)শূন্য মাধ্যমে এই তরজ্গের বেগ $3 imes 10^8~{
m ms}^{-1}$

৭·১-৫ আলোক বৰ্ষ Light year, (ly)

এক বছরে আলোক রশ্মি যে দূরত্ব অতিক্রম করে তাকে 1 আলোক বর্ষ বলে। বিভিন্ন নক্ষত্রের অবস্থান এবং দূরত্ব প্রকাশের জন্য এই একক ব্যবহার করা হয়।

1 আলোক বর্ষ = শূন্য মাধ্যমে আলোকের গতি বেগ x 1 বছরের সেকেন্ড সংখ্যা

 $= 3 \times 10^8 \text{ ms}^{-1} \times 365 \times 24 \times 60 \times 60 \text{ s}$

= 9.46×10^{15} m = 9.46×10^{12} km [MAT: 24-25]

এটি দূরত্ব পরিমাপের একক খুবই বড়। নভোমগুলীর পরিমাপে এই একক ব্যবহার করা হয়।

গাণিতিক উদাহরণ ৭.১

১। একটি তড়িচ্চুম্বকীয় তরজা 20 MHz কম্পাজ্কসহ মৃত্ত স্থানে Z অক্ষ বরাবর সঞ্চালিত হচ্ছে। কোনো $\stackrel{\longrightarrow}{\rightarrow}$ নির্দিষ্ট বিন্দৃতে এর তড়িৎ ক্ষেত্র $\stackrel{\longrightarrow}{E}=5$ $\stackrel{\longleftarrow}{i}$ Vm^{-1} হলে, ওই বিন্দৃতে চৌম্বক ক্ষেত্র $\stackrel{\longleftarrow}{B}$ -এর মান কত? [villet] [villet] [villet] [villet]

আমরা জানি,
$$B = \frac{E}{c}$$
 বা,
$$B = \frac{5}{3 \times 10^8}$$

$$= 1.67 \times 10^{-8} \text{ T}$$

এখানে,

তড়িৎ ক্ষেত্রের মান, $E = 5Vm^{-1}$ আলোর বেগ, $c = 3 \times 10^8 \, \mathrm{ms^{-1}}$ চৌম্বক ক্ষেত্রের মান, B = ?

২। গানির আপেক্ষিক ভেদনযোগ্যতা ও আপেক্ষিক চৌম্বক প্রবেশ্যতা যথাক্রমে 80 ও 0.022 হলে পানিতে আলোর দুতি নির্ণয় কর। [শূন্য মাধ্যমে আলোর দুতি $= 3 \times 10^8~{
m ms}^{-1}$]

জামরা জানি, $c_{w} = \frac{1}{\sqrt{\mu c}} = \frac{1}{\sqrt{K_{m}\mu_{0}K_{c}\epsilon_{0}}} = \frac{1}{\sqrt{K_{m}K_{c}}} \times \frac{1}{\sqrt{\mu_{0}\epsilon_{0}}}$ $= \frac{1}{\sqrt{K_{m}K_{c}}} \times c \qquad \left[\because c = \frac{1}{\sqrt{\mu_{0}\epsilon_{0}}} \right]$ $= \frac{1}{\sqrt{0.022 \times 80}} \times 3 \times 10^{8}$ $= 2.26 \times 10^{8} \text{ ms}^{-1}$

এখানে,

আপেক্ষিক ভেদনযোগ্যতা, $K_e=80$ আপেক্ষিক চৌম্মক প্রবেশ্যতা, $K_m=0.022$ শূন্য মাধ্যমে আলোর দুতি, $c=3\times 10^8\,{\rm ms^{-1}}$ পানিতে আলোর দুতি, $c_w=?$

৩। একটি তড়িচ্চুম্বকীয় তরজোর তড়িৎ ক্ষেত্রের সমীকরণ হলো $E=10^{-4}\sin(12\times10^{13}~t-4\times10^5~x)$ । তরজাটির কম্পাক্ত, বেগ ও তরজাটের্ঘ্য নির্ণয় কর। তরজাটির সংশ্লিফ চৌম্বক ক্ষেত্রের সমীকরণটি লিখ। প্রিতিটি রাশি S.I. এককে প্রকাশিত)

এখানে তড়িৎক্ষেত্রের সমীকরণ,

E =
$$10^{-4} \sin(12 \times 10^{13} t - 4 \times 10^5 x)$$
 ... (i)

তড়িৎক্ষেত্রের সাধারণ সমীকরণ,

$$E = E_0 \sin(\omega t - kx) \qquad \dots \qquad \dots$$
 (ii)

সমীকরণ (i) ও (ii) তুলনা করে পাই,

$$\omega = 12 \times 10^{13}$$
 $\overline{\text{Al}}$, $2\pi n = 12 \times 10^{13}$

$$\therefore n = \frac{12 \times 10^{13}}{2\pi} = \frac{12 \times 10^{13}}{2 \times 3'14} = 1.9 \times 10^{13} \text{ Hz}$$

তরজাটির বেগ,

$$c = n\lambda = \frac{2\pi n}{\frac{2\pi}{\lambda}} = \frac{w}{k} = \frac{12 \times 10^{13}}{4 \times 10^5} = 3 \times 10^8 \,\mathrm{ms^{-1}}$$
 [এখানে, $k = 4 \times 10^5$]

এবং তরজাদৈখ্য ,
$$\lambda = \frac{c}{n} = \frac{3 \times 10^8}{1.9 \times 10^{13}} = 1.58 \times 10^{-5} \,\mathrm{m}$$

সংশ্লিষ্ট চৌম্বক ক্ষেত্রের সমীকরণ,

B =
$$B_0(\omega t - kx) = \frac{E_0}{c} \sin(\omega t - kx)$$
 $\left[\because \frac{E_0}{B_0} = c\right]$
= $\frac{10^{-4}}{3 \times 10^8} \sin(12 \times 10^{13} t - 4 \times 10^5 x) T$
= $3.33 \times 10^{-13} \sin(12 \times 10^{13} t - 4 \times 10^5 x) T$

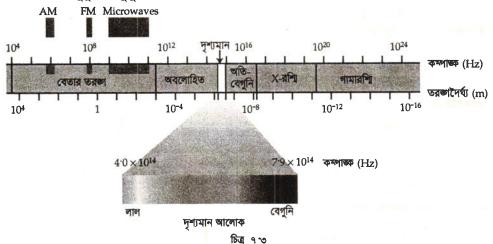
৭-১-৬ দুশ্যমান আলোর বর্ণালি [MAT: 21-22] [DAT: 10-20]

সূর্যের সাদা আলো 7টি বর্ণের সমন্বয়ে গঠিত। এগুলো হলো—বেগুনি, নীল, আসমানি, সবুজ, হলুদ, কমলা ও লাল। বর্ণগুলোর নাম ও ক্রম সহজে মনে রাখার জন্য এদের নামের আদ্যাক্ষরগুলো নিয়ে বাংলায় বেনীআসহকলা ও ইংরেজিতে VIBGYOR শব্দ গঠন করা হয়েছে। এই বর্ণগুলোর তরজাদৈর্ঘ্যের সীমা নিচে দেওয়া হলো:

বেগৃনি	3.80 × 10−2 m (₹€ 4.52 × 10−2 m	3.80 /
नीन	4'25 × 10 ⁻⁷ m (ሚና 4'45 × 10 ⁻⁷ m	4 . 2 5
আসমানি	4'45 × 10 ⁻⁷ m (থেকে 5'00 × 10 ⁻⁷ m	4 . 4 5
সবৃজ	5'00 × 10 ⁻⁷ m (থেকে 5'75 × 10 ⁻⁷ m	5 . 0 0
रल् म	5 ⁷ 75 × 10 ⁻⁷ m (ሚ ርኞ 5 ⁸ 5 × 10 ⁻⁷ m	5 - 7 5
কমলা 💮	5'85×10 ⁻⁷ m থেকে 6'20×10 ⁻⁷ m	5 . 8 2
नान	6 ⁻ 20 × 10 ⁻⁷ m ���� 7 ⁻ 80 × 10 ⁻⁷ m	(· 2 n

৭-২ তড়িৎ চুম্বকীয় স্পেকট্রম বা বর্ণালি

Electromagnetic spectrum


যেকোনো পর্যাবৃত্ত (Periodic) তরজ্ঞার কম্পাজ্ঞ υ এবং তরজ্ঞাদৈর্ঘ্য λ রয়েছে। পর্যাবৃত্ত তরজ্ঞার কম্পাজ্ঞ ও তরজ্ঞাদৈর্ঘ্যের সঞ্জে তরজ্ঞার গতিবেগের সম্পর্ক হলো,

 $v=\lambda \upsilon$... (7.4)
তিড়িৎ চুম্বকীয় তরজোর গূন্য বা বায়ু মাধ্যমে সঞ্চালন ক্ষেত্রে তরজোর গতিবেগ আলোর গতিবেগের সমান।
মর্থাৎ v=c। সূতরাং, $c=\lambda \upsilon$... (7.5)

তড়িৎ চুম্বকীয় তরক্ষোর কম্পাব্দের প্রসার বা পাল্লা (range) অত্যন্ত বেশি। এর প্রসারতা $10^4~{
m Hz}$ বা সাইকেল/সেকেণ্ড-এর কম মান থেকে শুরু করে $10^{23}~{
m Hz}$ বা সাইকেল/সেকেণ্ড-এর উর্ধ্বে পর্যন্ত বিস্তৃত। এই পরিসরকে তড়িৎ-চুম্বকীয় বর্ণালি (Electromagnetic spectrum) বলে। তড়িৎ চুম্বকীয় তরক্ষোর বিভিন্ন তরক্ষাদৈর্ঘ্যের পার্থক্য

অনুসারে বহু আগে থেকেই বিভিন্ন নামকরণ প্রচলিত আছে। যেমন— রেডিও তরক্তা, অবলোহিত তরক্তা, দৃশ্যমান তরক্তা, এক্স রশ্মি, গামা রশ্মি ইত্যাদি। অবশ্য এদের মধ্যে সুনির্দিষ্ট সীমারেখা নেই; বরং আর্থশিক উপরিপাত রয়েছে। নামকরণ এবং তরক্তাদৈর্ঘ্যের পার্থক্য অনুসারে বিভিন্ন তরক্তোর পরিসর চিত্র ৭'৩ ও সারণি ১-এ দেয়া হলো।

তড়িৎ চুম্বকীয় বর্ণালির মধ্যে জামাদের সবচেয়ে পরিচিত জংশ হলো দৃশ্যমান জালোক। এর ব্যান্তি খ্বই সামান্য। মাত্র $7.8\times10^{-7}\,\mathrm{m}$ থেকে $3.9\times10^{-7}\,\mathrm{m}$ তরজ্ঞাদৈর্ঘ্যের বা $3.8\times10^{14}\,\mathrm{Hz}$ থেকে $7.7\times10^{14}\,\mathrm{Hz}$ কম্পাজ্জের মধ্যে। জামাদের চোখ শুধুমাত্র এটুকু তরজ্ঞাদৈর্ঘ্যের বা কম্পাজ্জের তড়িৎ চৌম্বক তরজ্ঞার প্রতি সংবেদনশীল। জামাদের

চোখ বা মস্তিক্ষ ভিন্ন ভিন্ন তরজ্ঞাদৈর্ঘ্যের আলোক রশ্মিকে ভিন্ন ভিন্ন রঙ-এ দেখে থাকে। যেমন লাল রঙ-এর আলোর তরজ্ঞাদৈর্ঘ্য প্রায় $7.5 \times 10^{-7}~\mathrm{m}$, আবার বেগুনি রঙ-এর আলোর তরজ্ঞাদৈর্ঘ্য প্রায় $3.8 \times 10^{-7}~\mathrm{m}$ ।

উৎস: পদার্থের অণু-পরমাণু সব ধরনের বর্ণানির মৃল উৎস। যখন কোনো বস্তুর ওপর কোনো নির্দিষ্ট কম্পান্তের আলোক আপতিত হয় তখন এ আলোকের তড়িৎ চৌম্বক ক্ষেত্র এবং আণবিক পরিবর্তন, পরমাণুর ইলেকট্রনের কন্ধীয় অবস্থানের পরিবর্তন বা নিউক্লীয় পরিবর্তন দারা উৎপন্ন তড়িৎ বা চৌম্বক ক্রিয়ার মধ্যে এক ধরনের পারস্পরিক কর্মকান্ড সংঘটিত হয়। এর্প কর্মকান্ডের ফলে সৃষ্ট শক্তির স্তরের পরিবর্তন ঘটে এবং বর্ণালি সৃষ্টি হয়। এজাব্ বিভিন্ন ধরনের বর্ণানির সৃষ্টি হয়। সারণি ১ : তড়িৎ চুম্বকীয় বর্ণানির বৈশিষ্ট্যমূলক ছক দুষ্টব্য 1 [MAI: 16-17; 21-22]

💉 🔭 সারণি ১ : তড়িৎ চুম্বকীয় বর্ণানির বৈশিষ্ট্যমূলক ছক [DAT: 20-21; 22-23 তরভাদৈর্ঘ্যের **নিঃসরণকারী লিঃসরণের** दिखानिक द्यारात्र / ভাৰত 9 পরিসর কারণ ব্যবহার <u> এ্যান্টেনার মধ্যে</u> উচ্চ কম্পাঞ্জের বিভিন্ন ধরনের বেতার বেতার তরভা 10⁻⁴m (역(平 5 × 10⁴ m স্পন্দিত তড়িৎ প্রবাহ দোলায়িত তড়িৎ প্রাধান যোগাযোগ ব্যবস্থা অর্থাৎ পরমাণুস্থ দূরবর্তী স্থানে স্পন্দিত ছবি স্পন্দিত তড়িৎ বর্তনী প্রেরণের জন্য বেতার তরকা ইলেকট্রনের খুবই (oscillating electric ক্ষুদ্র পরিমাণ শক্তির ব্যবহৃত হয় ৷ circuit) পরিবর্তনের জন্য ক্লাইস্ট্রন (Klystron) ও স্থায়ী তড়ি ছিমের ভ্রামক-রাডার যন্ত্রে, নৌ ও বিমান 10⁻¹m (억(本 10⁻³ m মাইকোওয়েভ ম্যাগনেট্রন সম্পন্ন ছিপরমাণুর সুর্ণনের চাপনায়, রেডিও যোগাযোগ ভরকা (Magnetron) নামে ফলে মাইক্রোওয়েভ ব্যকখায়, শিল্প কারখানায় বিশেষ ধরনের বালব। বর্ণালির উৎপত্তি হয়। মেসার (Microwave এই তরকা ব্যবহৃত হয়। Amplifications by এই ছাড়া খাবার গরম করা Stimulated Emission ও রান্নার কাচ্ছে of Radiation এর সংক্ষিপত নাম মাইক্রোওভেন ব্যবহৃত MASER)। মেসার অর্থ হলো বিকিরণের উদ্দীপিত নিঃসরণ দ্বারা মাইক্রোওয়েভ বিবর্ধন।

তর ভা পট্টি	তরজ্ঞাদৈর্ঘ্যের পরিসর	নিঃসরপকারী উৎস	নিঃসরণের কারণ	বৈজ্ঞানিক প্রয়োগ / ব্যবহার
জবগোহিত রশ্ <u>বি</u>	10°m থেকে 4×10°m [MAT: 12-13]	(i) উদ্ভশ্ত সকল বস্তু হতে কমবেশি অবলোহিত রশ্মি নির্গত হয়। (ii) আই. আর. (IR) দ্যামদ নামে বিশেষ ধরনের বাতি থেকে পাওয়া যায়। (iii) সূর্যরশ্মি থেকে পাওয়া	(i) পরমাণুস্থ ইলেকট্রনের ক্ষুদ্র পরিমাণ শব্তির পরিবর্তনের জন্য। (ii) স্থায়ী তড়িৎ বিমেরু ভ্রামকসম্পন্ন ব্রিণরমাণুর কম্পনের ফলে [DAT: 21-22]	বিভিন্ন রোগের চিকিৎসার, জ্যোতির্বিদ্যার, শিল্প কারথানার এই রশি। ব্যবহৃত হয়। অস্পকারে দেখার জন্য নাইট গগলস হিসেবে এবং অস্পকারে ছবি তোলার জন্য এই রশির ক্যামেরা ব্যবহার করা হয়। মাসেপেশীর ব্যথা ও টান এর চিকিৎসার ব্যবহৃত হয়।
দৃশ্যমান জালো বেশুনি নীল আসমানি সবুজ হলুদ কমলা লাল	7 × 10 ⁻⁷ m (< 4 × 10 ⁻⁷ m 3'8 × 10 ⁻⁷ m-4'25 × 10 ⁻⁷ m 4'25 × 10 ⁻⁷ m -4'45 × 10 ⁻⁷ m 4'45 × 10 ⁻⁷ m-5 × 10 ⁻⁷ m 5 × 10 ⁻⁷ m-5'75 × 10 ⁻⁷ m 5'75 × 10 ⁻⁷ m-5'85 × 10 ⁻⁷ m 5'85 × 10 ⁻⁷ m-6'20 × 10 ⁻⁷ m 6'20 × 10 ⁻⁷ m -7'8 × 10 ⁻⁷ m	বিভিন্ন ধরনের বাতি, অগ্নিশিখা, দেজার, তামর বে কোনো বস্তু, সূর্যরন্দ্রিইত্যাদি হতে পাওয়া বায়া LAS	(i) পরমাণুস্থ ইলেক্ট্রনের উত্তেজিত অবস্থান হতে স্থায়ী অবক্থানে ফিরে আসার সময় নির্গত বিকিরণ হতে দৃশ্যমান আলো পাওয়া বায়।	বেকোনো কিছু দেখার কান্ধে জামাদের চোখ এই আলো ব্যবহার করে। উদ্ভিদে সালোক সংশ্লেষণ প্রক্রিয়ার গুরুত্বপূর্ণ ভূমিকা রাখে। ফটোপ্রাফিক ফিল্ম প্রভাবিত করে।
জডিবেগুনি রশ্মি 5	5 × 10 ⁻⁷ m থেকে 5 × 10 ⁻⁹ m	খুবই উন্তশ্ত বস্তু যেমন তড়িৎ বিচ্ছুরণ (electric arc), কোয়াটজ উট্টবের ভেতরে পারদ স্যাসের মধ্য দিয়ে তড়িৎক্ষরণের ফলে এবং সূর্য রশ্মি হাতে পাওয়া যায়।	পরমাণুম্থ ইলেকট্রনের বিভিন্ন স্ভরের মধ্যে উদ্দ শক্তির পরিবর্তনের জন্য। 1 — শুকুর্য খুকু 3 — শুকুর্য স	আয়নায়ন ঘটানোর কাজে, প্রতিপ্রভ সৃক্টিতে ব্যবহৃত হয়। রাসায়নিক বিক্রিয়া ঘটানোর কাজে, ফটো- ইলেকট্রিক ক্রিয়া সংঘটনে, ফটোগ্রাফিক ফিল্ম প্রভাবিত করার কাজে, অণুবীক্ষণ যন্ত্রের বিশ্লেষণ ক্ষমতা বৃন্দির কাজে এবং শরীরে ভিটামিন D তৈরির কাজে ব্যবহৃত হয়।
धन्न-द्व (X-ray)	5 × 10 ⁻⁸ m থেকে 5 × 10 ⁻¹⁵ m	এক্সরে চিউব	(i) এক্সরে টিউবে উচ্চ গতির ইলেকট্রনকে মন্দ্রন সৃষ্টির মাধ্যমে এই রশ্মি তৈরি করা হয়। (ii) ভারী মৌলের পরমাণুকে উচ্চ শক্তির ইলেকট্রন দ্বারা জাঘাত করলে পরমাণুর গভীরে জবস্থিত ইলেকট্রনের উল্ভেন্ধনার দ্বারা এই রশ্মি সৃষ্টি হয়।	চিকিৎসা ক্ষেত্রে, গবেষণা কাচ্ছে, শিল্প কারখানার, নিরাপন্তার কাচ্ছে, চোরা- চালান নিরোধে এক্স-রে ব্যবহৃত হয়। তিনিকা ক্লিন্তির চালান করেনে একিন্তা ব্যবহৃত হয়।

3

2 20 कम र 53 खिरा, (E= hf) 1. B (assa/radio)
2- M -> Microsolve 3- 1 - 1 R A. [Fallal-5. CUV 6~ (X 2. 12 (215AL) Jb: लायें विश्व त्यात्रिक गांम्प्र तामक तामक त्याक त्यांम् व्यक्तिम् विक्रिया विक्रिक्त ने निर्द्धिया । विक्रिक्त ने निर्द्धिया । विक्रिक्त ने निर्द्धिया । photo photo graphicfilm photo electric effect अणि ध्याम गर्मान क्ष्याम्बर्धान अध्म्यो ० X-४५२ ४ यामा विभित्व कोवडाव ।

ভরক্তা	ভর ভা দৈর্ঘ্যের	নিঃসরণকারী	নিঃসরণের	বৈজ্ঞানিক প্রয়োগ /
পট্টি	পরিসর	উৎস	কারণ	ব্যবহার
গামা রশ্মি	5 × 10 ⁻¹¹ m থেকে 5 × 10 ⁻¹⁵ m বা এর চেয়ে কম।	(i) তেজস্কিয় বস্তু হতে (ii) নিউক্লীয় ফিশন ও ফিউশন বিক্রিয়ায় (iii) মৌলিক কণার মিথস্কিয়ায় এই রশ্মি নির্গত হয়।	(i) পরমাণুর নিউক্লিয়াস উপ্তেজিত হয়ে উচ্চ শক্তি সতর হতে নিম্ন শক্তি সতরে স্থানান্তরের ফলে এই রশ্মি নির্গত হয়। (ii) তেজক্রিয় পরমাণুর বিশ্লেষণের সময় এই রশ্মি নির্গত হয়। (iii) সূর্যের মধ্যে ফিউশন বিক্রিয়ার কারণে গামা রশ্মি উৎপন্ন হয়।	চিকিৎসা ক্ষেত্রে বিভিন্ন রোগ নির্ণয়ে, বিজ্ঞানাগারে গবেষণার কাজে, ধাতব পদার্থের খুঁড নির্ণয়ে এই রশ্মি ব্যবহৃত হয়। <u>মানব দেহে ক্যান্</u> পার জাক্রান্ত সেলকে ধ্বংস করতে এই রশ্মি ব্যবহৃত হয়।

কাজ: নিম্নলিখিত বিস্তৃত শ্রেণির তরজ্ঞাসমূহকে তরজ্ঞাদৈর্ঘ্যের ক্রম অনুযায়ী সাজ্ঞাও (বড় থেকে ছোট)। দৃশ্যমান আলোক রশ্মি, অতিবেগুনি রশ্মি, অবলোহিত রশ্মি, টিভি ও রেডিও তরজ্ঞা, স্-রশ্মি, X-রশ্মি।

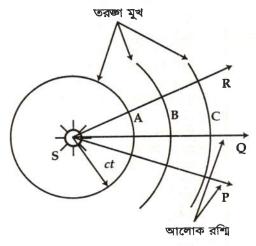
(i) রেডিও এবং টিভি তরজ্ঞা, (ii) অবলোহিত রশ্মি, (iii) দৃশ্যমান আলোক রশ্মি, (iv) অতিবেগুনী রশ্মি, (v) X-রশ্মি এবং (vj)-ү-রশ্মি।

জানার বিষয় :

িমহাজাগতিক রশ্মির তরজ্ঞাদৈর্ঘ্য <10⁻¹⁴ m

μ. √μ₀∈ ₀ এর একক m⁻¹s

৭'৩ তরজামুখ


Wave front

আমরা জানি, কোনো একটি মাধ্যমের বিভিন্ন কণার সমিলিত কম্পনের ফলে মাধ্যমে একটি আলোড়ন সৃষ্টি হয়। এই আলোড়নকে তরক্ষা বলে। যেমন পুকুরের স্থির পানিতে টিল ছুঁড়লে তরক্ষা উৎপন্ন হয় যা উৎপন্ন স্থান থেকে চারদিকে ছড়িয়ে পড়ে। তরক্ষামুখের নিম্মলিখিত যেকোনো একটি সংজ্ঞা দেয়া যেতে পারে—

(क) তরভামিত সমদশাসম্পনু কণাগুলো যে তলে অবস্থান করে, তাকে সৃষ্ট তরভোর তরভামুখ বলে।

(খ) যেকোনো সময়ে একই দশায় থাকা বিন্দৃগুলো যে রেখা বা তলের ওপর অবস্থিত তাকে তরজামুখ বলে।

ব্যাখ্যা : মনে করি কোনো সমসন্ত্র (isotropic) মাধ্যমে অবস্থিত S একটি ক্ষুদ্র আলোক উৎস। উৎসের অনুগুলোর কম্পনে উৎপন্ন আড় তরজ্ঞা মাধ্যমের চারদিকে ছড়িয়ে পড়বে। আলোকের বেগ c হলে t সেকেন্ড সময়ে আলোর তরজ্ঞা S হতে বিভিন্ন দিকে ct পরিমাণ দূরত্ব অতিক্রম করবে। এখন S-কে কেন্দ্র করে ct ব্যাসার্ধ নিয়ে একটি

চিত্ৰ ৭ ৪

গোলক অঙ্কন করলে ওই গোলকের উপরিতলে অবস্থিত প্রতিটি বিন্দুর দশা একই হবে। গোলকের উপরিতলই সমদশাগ্রস্ত কণাগুলোর অবস্থান নির্দেশ করবে। সূতরাং, ওই মুহূর্তে গোলকের গোলীয় পৃষ্ঠটি আলোর তরক্তামুখ। অতএব A হলো তরক্তামুখ। সময় অতিবাহিত হওয়ার সাথে সাথে আলো দূরে সরে যাবে এবং তরক্তামুখের নতুন নতুন অবস্থান পাওয়া যাবে। চিত্র ৭ ৪-এ B ও C যথাক্রমে t_1 ও t_2 সময়ে তরক্তামুখের নতুন অবস্থান। তরক্তামুখের উল্লুন্দ বরাবর অঙ্কিত SP, SQ, SR প্রভৃতি রেখা বিভিন্ন দিকে আলোর সঞ্চারণের দিক নির্দেশ করে।

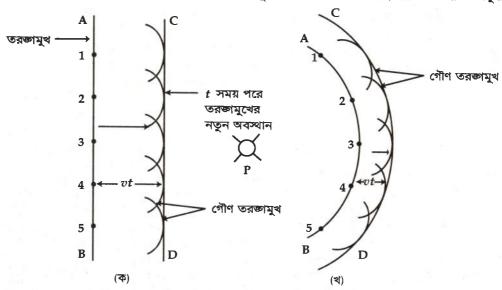
গোলকীয় তরজামুখ : আমরা জানি, তরজাম্থিত সমদশাসম্পন্ন কণাগুলোর সঞ্চারপথ হলো তরজামুখ। উৎস হতে উৎপন্ন আলোর তরজামুখ উৎসের কাছাকাছি অবস্থানে গোলকীয়। চিত্র ৭'৪-এ A, B, C ইত্যাদি গোলকীয় তরজামুখ। গোলকীয় তরজামুখের নিম্নোক্ত সংজ্ঞা দেয়া যায়—

তর্ভাস্থিত সমদশাসম্পনু কণাগুলোর সঞ্চারপথ গোলকীয় হলে তাকে গোলকীয় তর্জামুখ বলে। গোলকীয় তর্জামুখসম্পনু তর্জাকে গোলকীয় তর্জা বলে। সমতল তরজ্ঞামুখ: উৎস হতে দূরবর্তী অঞ্চলে তরজ্ঞামুখের বক্রতা কমতে থাকে। বহু দূরের উৎস হতে আগত তরজ্ঞামুখ সমতল হবে। এজন্য সূর্যের বা অন্য কোনো নক্ষত্রের তরজ্ঞামুখকে সমতল বিবেচনা করা হয়। পরবর্তী ৭ ৪ অনুচ্ছেদের চিত্র ৭ ৫ (ক)-এ AB ও CD সমতল তরজ্ঞামুখ। অর্থাৎ তরজ্ঞাম্থিত সমদশাসম্পন্ন কণাগুলোর সঞ্চারপথ সমতল হলে তাকে সমতল তরজ্ঞামুখ বলে। সমতল তরজ্ঞামুখসম্পন্ন তরজ্ঞাকে সমতল তরজ্ঞা বলে।

নিজে কর : তরজামুখের গঠন ও বিস্তার সম্পর্কিত হাইগেনসের নীতি বিবৃত কর।

৭'৪ হাইগেনস-এর নীতি এবং এ নীতিতে আলোক তরজোর বিস্তার কৌশল Huygens's principle and propagation of light waves on the basis of this principle

৭·৪·১ ধারণা Concept


উৎস জানা থাঁকলে সাধারণ নিয়মে তরজামুখের যেকোনো সময়ের অবস্থান নির্ণয় করা যায়। উৎস জানা না থাকলেও কোনো এক সময়ের তরজামুখের অবস্থান ও আকৃতি জানা থাকলে হাইগেনস-এর নীতি অনুসরণ করে অন্য যেকোনো সময়ে তরজামুখের অবস্থান ও আকৃতি নির্ণয় করা যায়। হাইগেনস-এর নীতি অনুসারে তরজামুখের প্রতিটি বিন্দুকে গোলকীয় তরজোর উৎস হিসেবে গণ্য করা যায়। এসব তরজাকে গৌণ তরজা (secondary waves) বলে। গৌণ তরজাগুলো মূল তরজোর সমান বেগে সামনের দিকে অগ্রসর হয়। হাইগেনের নীতির সাহায্যে আলোর প্রতিফলন, প্রতিসরণ, ব্যাতিচার এবং অপবর্তন ব্যাখ্যা করা যায় কিন্তু সমবর্তন ব্যাখ্যা করা যায় না। হাইগেনস-এর নীতিকে আমরা নিম্নোক্তভাবে বিবৃত করতে পারি।

বিবৃতি: কোনো একটি তরজামুখের ওপর অবস্থিত প্রতিটি বিন্দু এক একটি অণু তরজোর বা গৌণ তরজোর উৎস হিসেবে বিবেচিত হয়। ওই গৌণ উৎসগুলো থেকে সৃষ্ট তরজামালা মূল তরজোর সমান বেগে সামনের দিকে অগ্রসর হয়। যেকোনো সময়ে ওই সব গৌণ তরজামালাকে স্পর্শ করে একটি তল অজ্ঞন করলে ওই তলই ওই সময়ের তরজামুখের নতুন অবস্থান নির্দেশ করে।

৭·৪·২ হাইগেনস-এর নীতি অনুসারে তরজামুখ-এর অবস্থান Position of wave front according to Huygens's principle

চিত্র ৭'৫(ক) ও (খ)-এ যথাক্রমে সমতল তরজ্ঞার ক্ষেত্রে এবং গোলকীয় তরজ্ঞার ক্ষেত্রে গৌণ তরজ্ঞামুখ এবং তরজ্ঞামুখের নতুন অবস্থান দেখানো হয়েছে।

মনে করি, কোনো সমসত্ত্ব মাধ্যমে P একটি বিন্দু আলোক উৎস [চিত্র ৭ c(lambda)]। P-এর অণুগুলোর কম্পনে উৎপন্ন তরজ্ঞা চারদিকে ছড়িয়ে পড়েছে। কোনো এক সময়ে তরজ্ঞামুখের অবস্থান AB। হাইগেনস-এর নীতি অনুসারে t

চিত্র ৭·৫ : (ক) সমতল তরজোর বেলায় ; (খ) গোলকীয় তরজোর বেলায়।

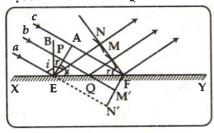
সময়ে তরজ্ঞামুখের অবস্থান বের করতে হবে। তরজ্ঞামুখের AB অবস্থানে 5টি বিন্দু 1,2,3,4 ও 5 ধরা হলো। (এরুপ অসংখ্য বিন্দু কল্পনা করা যায়।) হাইগেনস-এর নীতি অনুসারে প্রতিটি বিন্দু নতুন আলোড়নের উৎস হিসেবে ক্রিয়া করে

নতুন তরক্ষা সৃষ্টি করবে। আলোকের বেগ v হলে t সময়ে তরক্ষাগুলো vt দূরত্ব অতিক্রম করবে। বিন্দুগুলোকে কেন্দ্র ধরে vt ব্যাসার্ধ নিয়ে বৃত্তচাপ আঁকি। চাপগুলোর একটি সাধারণ স্পর্শক CD আঁকি। এখন CD হলো তরক্ষামুখের নতুন অবস্থান। বিন্দুগুলো হতে অঙ্কিত বৃত্ত বা গোলকীয় চাপই হলো গৌণ উৎস হতে উৎপন্ন তরক্ষোর t সময় পরের অবস্থান। এখানে উল্লেখ্য যে, ব্রিমাত্রিক স্থানে বিন্দুগুলো vt ব্যাসার্ধের গোলকীয় চাপ রচনা করবে। ওই চাপগুলোর একটি সাধারণ স্পর্শক বা মোড়ক (envelope) CD একটি গোলীয় তল হবে।

সময়ের সাথে সাথে আলোক তর্জা দূরে সরে যাবে এবং গোলীয় তলের বব্রুতা কমতে থাকবে। বহু দূরে একে সমতল ধরা যায়।

চিত্র ৭ ৫ (ক)-এ অসীম দূর হতে আগত তরজামুখের কোনো এক সময়ের অবস্থান AB দেখানো হয়েছে। এই তরজামুখের ওপর কয়েকটি বিন্দু নিয়ে ওপরের নিয়মে vt ব্যাসার্ধ নিয়ে বৃত্ত গোলীয় চাপ এঁকে একটি সাধারণ স্পর্শক CD আঁকলে CD হবে তরজামুখের নতুন অবস্থান। হাইগেনসের নীতি অনুসারে এটি সমতল তরজামুখ নির্দেশ করে।

সংজ্ঞা: কোনো তরভোর উপর অবস্থিত সমদশাসম্পন্ন কণাগুলোর গতিপথকে তরভামুখ বলে।


তরক্তামুখের ওপর যেকোনো বিন্দুতে অভিকত অভিলম্মকে রশ্মি (ray) বলা হয়। তরক্তোর শক্তি এই রশ্মি বরাবর শূন্যস্থান বা মাধ্যমের এক অংশ থেকে অন্য অংশে স্থানান্তরিত হয়।

৭·৪·৩ হাইগেনসের নীতির ভিত্তিতে আন্দোর প্রতিফলন ও প্রতিসরণ Reflection and refraction of light on the basis of Huygens's principle

হাইগেনসের নীতি ব্যবহার করে আলোর প্রতিফলন ও প্রতিসরণের সূত্র বিশ্লেষণ করা যায়। নিম্নে তা বর্ণনা করা হলো।

৭-৪-৩-১ আলোর প্রতিকলন Reflection of light

মনে করি, XY একটি সমতল প্রতিফলক তল। a,b,c তিনটি সমান্তরাল আলোক রশ্মি। এরা তির্থকভাবে XY তলের ওপর আপতিত হলো [চিত্র ৭·৬]। ধরি, EPA এই সমান্তরাল রশ্মিগুলোর তরক্তামুখ। এর প্রত্যেকটি বিন্দু আলোড়ন কেন্দ্র হিসেবে ক্রিয়া করবে এবং ক্ষুদ্র ক্ষুদ্র গৌণ তরক্তা উৎপন্ন করবে। এই গৌণ তরক্তাপুলো চারদিকে ছড়িয়ে পড়বে। মনে করি A বিন্দু হতে একটি আলোক রশ্মি t সময়ে XY পৃষ্ঠের F বিন্দুতে পৌছল। ইতিমধ্যে E-এর

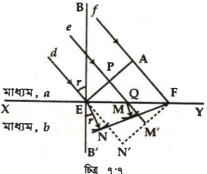
চিত্ৰ ৭-৬

আলোড়ন N বিন্দৃতে এবং Q-এর আলোড়ন M বিন্দৃতে পৌছবে। ফলে প্রতিফলিত তরজ্ঞামুখ FMN পাওয়া যাবে। যদি বাতাসে আলোকের বেগ v হয়, তবে FA = vt। এখন E-কে কেন্দ্র করে এবং FA = vt-কে ব্যাসার্ধ করে একটি বৃস্তচাপ অজ্ঞকন করেল FMN পাওয়া যাবে। FMN-এর স্পর্শক অজ্ঞকন করে নতুন তরজ্ঞামুখ পাওয়া যাবে। এটিই হলো প্রতিফলিত তরজ্ঞামুখ।

প্রতিফলনের সূত্রাবলি প্রমাণ:

্র $\angle NEB = \angle EFN = আত্দণন কোণ, <math>\angle r$... (7.0) সমীকরণ (7.6), (7.7) ও (7.8) হতে লেখা যায়, আপতন কোণ, $\angle i$ = প্রতিফলন কোণ, $\angle r$ । এ দ্বারা আলোকের প্রতিফলনের দ্বিতীয় সূত্র প্রমাণিত হলো।

আবার, আপতিত রশাি aE, প্রতিফলিত রশাি EN এবং আপতন বিন্দৃতে অজ্ঞিত অভিলন্দ EB কাগজের একই সমতলে অবস্থিত। এ দ্বারা আলোকের প্রতিফলনের প্রথম সূত্রটি প্রমাণিত হলো।


অতএব আলোকের তরজা তত্ত্বকে ভিত্তি করে প্রতিফলনের দুটি সূত্রই প্রমাণিত হলো।

৭·৪·৩·২ আলোর প্রতিসরণ Refraction of light

মনে করি, 'a' ও 'b' দুটি স্বচ্ছ সমসন্ত্ব মাধ্যম। XY এদের বিভেদতল। ধরি 'a' মাধ্যমে আলোকের বেগ v_a এবং 'b' মাধ্যমে আলোকের বেগ v_b । এখানে $v_a > v_b$ । মনে করি d, e, f তিনটি সমান্তরাল রশ্মি। এরা তির্থকভাবে XY

তলে আপতিত হলো [চিত্র ৭·৭]। APE রশ্মিসমূহের তরজ্ঞামুখ। মনে করি, EPA তরজ্ঞামুখ প্রথমে বিভেদ তলের E বিন্দুতে সপর্শ করে। হাইগেনস-এর নীতি জনুসারে ওই E বিন্দুতে অবস্থিত এর কণাটি আলোড়িত হয়ে গৌণ তরজ্ঞা উৎপন্ন করে এবং 'a' ও 'b' মাধ্যমে যথাক্রমে v_a ও v_b বেগে ছড়িয়ে পড়ে। এখন A বিন্দু হতে আলোড়নটির F বিন্দুতে পৌছতে যদি t সময় লাগে তা হলে $FA=v_a.t$ । উক্ত সময়ে E বিন্দুর আলোক তরজ্ঞা 'b' মাধ্যমে EN দূরত্ব অতিক্রম করবে। অতএব $EN=v_b.t$ হবে।

A-কে কেন্দ্র করে এবং $EN = v_b.t$ -কে ব্যাসার্ধ করে একটি বৃস্তচাপ অঙ্কন করি এবং তার ওপর FN স্পর্শক টানলে FMN প্রতিসৃত তরজ্ঞামুখ নির্দেশ করবে।

প্রতিসরণের স্ত্রাবলি প্রমাণ : E বিন্দু দিয়ে XY-এর ওপর লম্ম BEB' অভকন করি।

এখন,
$$\angle dEB + \angle BEA = \angle BEA + \angle AEF = 1$$
 সমকোণ

$$\therefore$$
 $\angle dEB = \angle AEF =$ আপতন কোণ, $\angle i$

জাবার,
$$\angle$$
B'EN + \angle NEF = \angle NEF + \angle EFN = 1 সমকোণ

$$\therefore$$
 \angle B'EN = \angle EFN = প্রতিসরণ কোণ, $\angle r$

সূতরাং
$$\frac{\sin i}{\sin r}$$
 = $\frac{\sin \angle dEB}{\sin \angle B'EN}$ = $\frac{\sin \angle AEF}{\sin \angle EFN}$ = $\frac{AF/EF}{EN/EF}$ = $\frac{AF}{EN}$ = $\frac{v_a t}{EN}$ = একটি

$$=\frac{AF/EF}{EN/EF} = \frac{AF}{EN} = \frac{v_a t}{v_b t} = \frac{v_a}{v_b} =$$
 একটি ধ্ব সংখ্যা = $_a\mu_b$... (7.9)

aμь হলো a মাধ্যম সাপেকে b মাধ্যমের প্রতিসরাজ্ঞ।

এটি দারা স্ত্রেলের সূত্র বা প্রতিসরণের দ্বিতীয় সূত্রটি প্রমাণিত হলো।

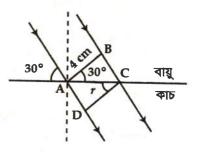
আবার আপতিত রশ্মি dE, প্রতিসৃত রশ্মি EN এবং আপতন বিন্দুতে অভ্জিত অভিলম্ম BEB' কাগজের একই সমতলে অবস্থিত। এটি দ্বারা আলোকের প্রতিসরণের প্রথম স্ত্রটি প্রমাণিত হলো। অতএব তরজা তত্ত্বের ভিদ্তিভে আলোকের প্রতিসরণের দুটি সৃত্র প্রমাণিত হলো।

গাণিতিক উদাহরণ ৭.২

১। একটি সমান্তরাল আলোক রশাগুছ বায়ু থেকে কাচে আপতিত হলো। এর বেধ 4 cm এবং আগতন কোণ 30°। প্রতিসূত হবার পর কাচের মধ্য দিয়ে রশার বেধ কত হবে ? কাচের প্রতিসরাক্ত = 1'5]

$$\therefore AC = \frac{AB}{\cos 30^{\circ}} = \frac{4}{\frac{\sqrt{3}}{2}} = \frac{8}{\sqrt{3}}$$

প্রতিসৃত রশািগুচ্ছের বেধ = CD


প্রতিসরণ কোণ
$$r$$
 হলে $\sin 30^\circ = 1.5 \sin r$ $\left[\because \frac{\sin i}{\sin r} = 1.5\right]$

$$\therefore \quad \sin r = \frac{1}{3}$$

$$\therefore \quad \cos r = \sqrt{1 - \frac{1}{9}} = \frac{\sqrt{8}}{3}$$

ACD ত্রিভূজ থেকে,

CD = AC
$$\cos r = \frac{8}{\sqrt{3}} \times \frac{\sqrt{8}}{3} = 4.35 \text{ cm}$$

২। পানি ও হীরকের প্রতিসরাজ্ঞ যথাক্রমে 1'33 এবং 2'4 হলে, হীরকে আলোর বেগ নির্ণয় কর। পানিতে [Admission Test : DU (প্রযুক্তি) 2020-21 (মান ভিন্ন); BUET 2013-14] আলোর বেগ 2'28 × 108 ms⁻¹ l

আমরা জানি. $= 1.26 \times 10^8 \,\mathrm{ms^{-1}}$

এখানে,
$$a\mu_w = 1.33$$

$$a\mu_d = 2.4$$

$$w\mu_d = \frac{a\mu_d}{a\mu_w} = \frac{2.4}{1.33} = 1.805$$

$$v_w = 2.28 \times 10^8 \text{ ms}^{-1}$$

$$v_d = ?$$

৩। (क) পানি ও কাচের প্রতিসরাজ্ঞ যথাক্রমে 1'33 এবং 1'5 হলে কাচে আলোর বেগ কত ? পানিতে আলোর বেগ $2^{\circ}28 \times 10^{8} \text{ ms}^{-1}$ । (খ) বায়ুতে এক আলোক বছর $9^{\circ}6 \times 10^{12} \text{ km}$, কাচে এক আলোক বছরের মান বের কর। [রা. বো. ২০১০; সি. বো. ২০০৭]

(ক) আমরা জানি.

$$w\mu_g = \frac{c_g}{c_w}$$

◄, $\frac{\mu_w}{\mu_g} = \frac{c_g}{c_w}$

$$∴ c_g = \frac{\mu_w}{\mu_g} \times c_w = \frac{1.33}{1.5} \times 2.28 \times 10^8$$

$$= 2.02 \times 10^8 \text{ ms}^{-1}$$

(খ) কাচে এক আলোক বছর = $\frac{9.6 \times 10^{12}}{1.5}$ = 6.4×10^{12} km

আলোকের ব্যতিচার 9.6 Interference of light

डेनियनाठ मे

৭-৫-১ ধারণা Concept

আমরা জানি, যখন দুটি সমান বিস্তার ও তরজাদৈর্ঘ্যের শব্দ চলতে চলতে একে অপরের ওপর আপতিত হয় তখন শব্দের প্রাবল্যের পর্যায়ক্রমিক হ্রাস বা বৃদ্ধি ঘটে। এ অধ্যায়ে আমরা লক্ষ <mark>করব আলোর ক্ষেত্রেও একই ঘটনা</mark> ঘটে। ইহাই আলোর ক্ষেত্রে ব্যতিচার। আলোকের ব্যতিচার আলোচনা করার পূর্বে (ক) তরক্ষোর উপরিপাতন এবং (খ) সুসঞ্চাত আলোক উৎস কী—তাই আলোচনা করব।

(ক) চরজ্ঞার উপরিপাতন (Superposition of waves) : দুটি তরজ্ঞা কোনো মাধ্যমের কোনো একটি কণাকে একই সভে অতিক্রম করলে প্রতিটি তর্নজাই কণাটিকে স্থানান্তরিত করবে। ফলে কণাটির একটি লব্দি সরণ ঘটবে। এই লব্দি সরণ তরক্ষা দুটি কর্তৃক পৃথক পৃথক সরণের বীজগাণিতিক যোগফলের সমান হবে। **একে তরক্ষোর উপরিপাতন বলে।**

মনে করি দুটি তরজা কোনো মাধ্যমের কোনো একটি কণাকে একই সজো অতিক্রম করল। ধরি, তরজা দুটি কর্তৃক কণাটির পৃথক পৃথক সরণ যথাক্রমে y_1 ও y_2 ।

যদি তরজা দুটি একই দশায় আপতিত হয়, তবে কণাটির দব্দি সরণ $y=y_1+y_2$ আরু তরভা দুটি যদি বিপরীত দশায় আপতিত হয় তবে লব্দি সর্ণ

(খ্র) সুসঞ্চাত উৎস (Coherent source) : দুটি উৎস হতে সমদশাসম্পনু বা কোনে নির্দিন্ট দশা পার্ধক্যের একই তরভাদৈর্ঘ্যের দুটি আলোক তরজা নিঃসৃত হলে তাদেরকে সুসজাত উৎস বলে/

আলোক উৎস দুটি হতে নিঃসৃত তরজাুলোর দশা পার্ধক্য সব সময় একই থাকে এবং একটি তরজোর দশার কোনো পরিবর্তন হলে অপরটিরও সম পরিমাণ দশা পরিবর্তন হতে হবে।

সুসঞ্চাত আলোক উৎস তৈরির জন্য সাধারণত একটি উৎস থেকে নির্গত আলোকে দুটি অংশে এমনভাবে বিভক্ত করা হয় যেন প্রতিটি বিভক্ত অংশই একটি যতন্ত্র উৎস হয়। এই দুটি বিভক্ত অংশকে দুটি সুসঞ্চাত উৎস হিসেবে ধরা হয়। পরীক্ষাগারে সাধারণ আলো হতে এই পন্ধতিতে সুসঞ্জাত আলোক উৎস উৎপন্ন করা হয়।

৭·৫·২ ব্যতিচার Interference

RMDAC

দুটি সুসঞ্চাত উৎস হতে নিঃসৃত দুটি আলোক তরঞ্জের উপরিপাতনের ফলে কোনো বিন্দুর আলোক তীব্রতা বৃষ্টি পায় আবার কোনো বিন্দুর আলোক তীব্রতা হ্রাস পায়। এর ফলে কোনো তলে পর্যায়ক্রমে আলোক উজ্জ্বলতা বা অন্ধকার অবস্থার সৃষ্টি হয়। আলোর এই ঘটনাকে ব্যতিচার বলে।

কোনো বিন্দুতে ওই তরজা দুটি একই দশায় আপতিত হলে অর্থাৎ ওই বিন্দুতে উভয় তরজোর তরজাশীর্ষ বা তরজাপাদ আপতিত হলে ওই বিন্দুতে লব্ধি বিস্তার তর্জা দুটির বিস্তারের সময্টির সমান হবে।

যেহেত্ প্রাবল্য বিস্তারের বর্গের সমানুপাতিক, সেহেত্ বিন্দৃটি উজ্জ্বল দেখাবে। আবার, কোনো বিন্দৃতে তরজ্ঞা দুটি বিপরীত দশায় আপতিত হলে অর্থাৎ ওই বিন্দৃতে একটি তরজ্ঞার তরজ্ঞাশীর্ষ অপরটির তরজ্ঞাপাদ বা প্রথমটির তরজ্ঞাপাদ বিতীয়টির তরজ্ঞাশীর্ষের সাথে মিলিত হলে লঞ্চি বিস্তার শূন্য হবে। ফলে বিন্দৃটি অম্প্রকার ছেখাবে। এটিই আলোকের ব্যতিচার। আলোকের ব্যতিচার আলোকের তরজ্ঞা তত্ত্ব সমর্থন করে। 1801 খ্রিস্টার্শে টমাস ইয়ং (Phomas Young) আলোকের ব্যতিচার অবিক্ষার করেন ব্যতিচার দুই ধরনের—(১) গঠনমূলক ব্যতিচার ভ্রত্থি স্থিংসাত্মক ব্যতিচার।

গঠনমূলক ব্যতিচার (Constructive interference): দুটি উৎস হতে সমান কন্পাঞ্চ ও বিস্তারের দুটি আলোক তরজোর উপরিপাতনের ফর্লে উজ্জ্বল বিন্দু পাওয়া গেলে তাকে গঠনমূলক ব্যতিচার বলে। গঠনমূলক ব্যতিচারে তরজা দুটির উপরিপাতন সমদশায় হয়ে থাকে। তবন উৎসদ্ধের দুশা পার্থক 2π হয়।

ধ্বংসাত্মক ব্যতিচার (Destructive interference) : দৃটি উৎস হতে সমান কম্পাঙ্ক ও বিস্তারের দৃটি জালোক তরঙ্গোর উপরিপাতনের ফলে ত্বিশ্বনার বিন্দু পাওয়া গেলে তাকে ধ্বংসাত্মক ব্যতিচার বলে। ধ্বংসাত্মক ব্যতিচারে তরঙ্গা দৃটির উপরিপাতন বি<u>পরীত দশায় হয়ে থাকে</u>। তখন উৎসদ্ধেরের মধ্যে দশা পার্ধিক্য $\frac{\pi}{2}$ হয়।

কাজ: গঠনমূলক ও ধ্বংসাত্মক ব্যতিচারের শর্ত কী ?

যেসব বিন্দুতে উপরিপাতিত তরজ্ঞাদ্বয়ের পথ পার্থক্য $\frac{\lambda}{2}$ এর অযুগা গুণিতক, অর্থাৎ পথ পার্থক্য $=(2n+1)\frac{\lambda}{2}$, যখন $n=0, \pm 1, \pm 2 \dots$ ইত্যাদি সেসব বিন্দুতে ধ্বংসাত্মক ব্যতিচারের সৃষ্টি হবে।

আবার যেসব বিন্দুতে উপরিপাতিত তরজ্ঞাদ্বয়ের পথ পার্থক্য $\frac{\lambda}{2}$ এর যুগ্ম গুণিতক, অর্থাৎ পথ পার্থক্য $=2n,\frac{\lambda}{2},$ যখন $n=0,\pm 1,\pm 2...$ ইত্যাদি সেসব বিন্দুতে গঠনমূলক ব্যতিচারের সৃষ্টি হবে।

ব্যতিচার ঝালর (Interference fringe) : কোনো তলে বা পর্দায় ব্যতিচার ঘটানো হলে সেখানে অনেকগুলো পরস্পর সমান্তরাল উচ্জ্বল ও অন্ধকার রেখা বা পটি পাওয়া যায়। এই উচ্জ্বল ও অন্ধকার রেখা বা ডোরাগুলোকে এক সঞ্চো আলোকের ব্যতিচার ঝালর বলে।

চিড় বা স্লিট (Slit): দৈর্ঘ্যের তুলনায় খুবই ক্ষুদ্র প্রস্থবিশিষ্ট আয়তাকার সরু ছিদ্রকে চিড় বা স্লিট বলে। ব্যতিচারের জন্য চিড়ের প্রস্থ আলোর তরক্সাদৈর্ঘ্যের ক্রমের হতে হয়।

জানার বিষয় 🗸 আলো একটি আড় তরজা। ইহা ব্যতিচারের মাধ্যমে ব্যাখ্যা করা যায়।

৭-৫-৩ ব্যতিচারের শর্তাবলি XXX (ম) বিখে

ব্যতিচারের জন্য নিম্নলিখিত শর্তাবলির প্রয়োজন—

🔏 আলোক উৎস দুটি সুস্ঞ্চাত হতে হবে।

🙏 উৎস দুটি ক্ষুদ্র ও সৃক্ষ হতে হবে।

🕠 ু উৎস দৃটি পরস্পরের খুব নিকটে হতে হবে।

🔏 । তরজ্ঞা দুটির বিস্তার সমান বা প্রায় সমান হতে হবে।

্রি। পর্যায়ক্রমিক উচ্ছ্রেল ও জন্ধকার বিন্দুর জন্য পথ পার্থক্য যথাক্রমে অর্ধতরক্ষাদৈর্ঘ্যের ($\lambda/2$) যুগা ও অযুগা গুণিতক হতে হবে।

উপরোক্ত শর্তসমূহ পালিত হলে ব্যতিচার পাওয়া যাবে।

৭-৫/৩-১ আলোকের ব্যতিচারের বৈশিষ্ট্য ব্যতি

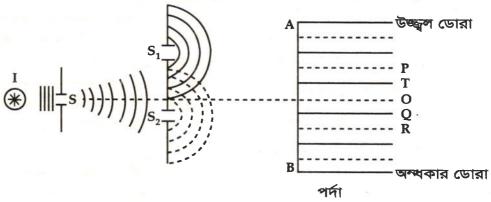
১। দুটি সুসজ্ঞাত উৎস হতে একই মাধ্যমের কোনো বিন্দুতে আলোক তরজ্ঞামালার উপরিপাতনের ফলে ব্যতিচার সৃষ্টি হয়।

২। ব্যতিচার ঝালরে সাধারণত পট্টিগুলোর বেধ সমান হয়।

৩। ব্যতিচারে উচ্জ্বল পট্টি ও অন্ধকার পট্টিগুলোর অন্তর্বর্তী দূরত্বগুলো সমান থাকে।

৪। ব্যতিচারে **অন্ধ**কার পট্টিতে কোনো আলো থাকে না। এরা সম্পূর্ণ <mark>অন্ধ</mark>কার থাকে।

৫। ব্যতিচারে সব উচ্জ্বল পটিগুলোর আলোক প্রাবল্য সমান থাকে।


11 300म् राभागन्यकाव राभाग त्विह

৭-৬ আলোকের ব্যতিচারের ক্ষেত্রে ইয়ং-এর দ্বি-চিড় পরীক্ষা Young's double slit experiment on interference of light

1807 খ্রিস্টাব্দে বিজ্ঞানী ইয়ং আলোকের ব্যতিচার প্রদর্শনের নিমিন্তে একটি পরীক্ষা সম্পাদন করেন। তাঁর নামানুসারে এই পরীক্ষাকে **ইয়ং-এর পরীক্ষা** বলা হয়। এই পরীক্ষায় বিজ্ঞানী ইয়ং সাদা আলোর উৎস ব্যবহার করেন।

পরীক্ষা: মনে করি, S একটি সরুরেখা ছিদ্রপথ। L একটি একবর্ণী আলোক উৎস। S-এর মধ্য দিয়ে একবর্ণী আলোক গমন করছে।

 S_1 এবং S_2 খুবই কাছাকাছি দুটি রেখা ছিদ্র বা রেখা চিড় [চিত্র ৭·৮]। এদেরকে S-এর সামনে সমান্তরালভাবে স্থাপন করা হয়েছে। আলোক S হতে বের হয়ে S_1 ও S_2 এর ওপর পতিত হবে এবং এর পর সেগুলো এরকম তরচ্চোর আকারে নির্গত হবে। নির্গত তরক্ষা দুভাবে বিভক্ত হয়ে মাধ্যমের মধ্য দিয়ে গমনকালে ব্যতিচার গঠন করে। বিজ্ঞানী

চিত্ৰ ৭৮

ইয়ং এরকম পর্দায় রঙিন ব্যতিচার পট্টি দেখতে পান। তরজ্ঞা দুটি যদি পর্দার কোনো বিন্দৃতে একই দশায় মিলিত হয় তবে সে স্থান উজ্জ্বল দেখাবে। এর নাম গঠনমূলক ব্যতিচার। আর তরজ্ঞা দুটি যদি পর্দার কোনো বিন্দৃতে বিপরীত দশায় মিলিত হয়, তবে সে স্থান অম্পকার দেখাবে। এর নাম ধ্বংসাজ্মক ব্যতিচার। চিত্রে AB পর্দার ভ্যাস ভ্যাস স্থানে উজ্জ্বল বিন্দু এবং নিরবিছিন্ন স্থানে অম্পকার বিন্দু সৃষ্টি হবে।

ইয়ং জারও উল্লেখ করেন যে যদি S উৎস সরিয়ে নেয়া হয় কিংবা S_1 ও S_2 -এর দূরত্ব বাড়িয়ে দেয়া হয়, তবে ব্যতিচার ডোরা অর্থাৎ রঙিন পটি দেখা যাবে না। সাদা জালোর পরিবর্তে একবর্ণী (monochromatic) জালো নিলে পর্যায়ক্রমিক উজ্জ্বল ও অন্ধকার ডোরা দেখা যায়।

৭·৭ দশা পার্থক্য ও পথ পার্থক্যের মধ্যে সম্পর্ক Relation between phase difference and path difference

ক. গাণিতিক পন্ধতি (Mathematical method)

মনে করি λ তরজ্ঞাদৈর্ঘ্যের একরঙা আলোর দুটি উৎস S_1 ও S_2 [চিত্র ৭·৮] হতে একই সজ্ঞো নির্গত আলোক তরজ্ঞা প্রায় একই দিকে c বেগে সঞ্চালিত হয়ে P বিন্দুতে উপরিপাতিত হয়।

যেকোনো t সময়ে P বিন্দুতে আলোক তরজ্ঞার সরণ S_1 থেকে সাগত তরজ্ঞার জন্য y_1 এবং S_2 থেকে আগত তরজ্ঞার জন্য y_2 হলে,

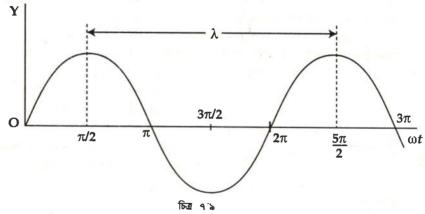
$$y_1 = a \sin \frac{2\pi}{\lambda} (ct - x_1)$$
 এবং $y_2 = a \sin \frac{2\pi}{\lambda} (ct - x_2)$

 ${
m P}$ বিন্দুতে ${
m S}_1$ ও ${
m S}_2$ থেকে আগত তরক্তোর দশা কোণ যথাক্রমে $\dfrac{2\pi}{\lambda}~(ct-x_1)$ এবং $\dfrac{2\pi}{\lambda}~(ct-x_2)$

.: P বিন্তুতে তরজাদ্বরের দশা পার্থক্য,

$$\delta = \frac{2\pi}{\lambda} (ct - x_1) - \frac{2\pi}{\lambda} (ct - x_2)$$

$$= \frac{2\pi}{\lambda} (x_2 - x_1)$$


$$= \frac{2\pi}{\lambda} (S_2 P - S_1 P)$$

কিন্তু $x_2 - x_1 = S_2 P - S_1 P$ হচ্ছে তরজ্ঞা দুটির পথ পার্থক্য।

$$\therefore$$
 দশা পাৰ্থক্য, $\delta=rac{2\pi}{\lambda}$ $imes$ পথ পাৰ্থক্য

খ. লেখচিত্রের মাধ্যমে (By graphical method)

আমরা জানি, কোনো তরজোর দুটি তরজাশীর্ষ বা তরজা পাদ-এর দূরত্ব হচ্ছে তরজাদৈর্ঘ্য, λ এবং ওই দুটি বিন্দুর মধ্যে দশা পার্থক্য $=2\pi$ [চিত্র ৭ %]

জতএব, পথ পার্ধক্য λ -এর জন্য দশা পার্থক্য = 2π পথ পার্থক্য $_{\rm I}$ -এর জন্য দশা পার্থক্য = $\frac{2\pi}{2}$

 \therefore পথ পার্থক্য x–এর জন্য দশা পার্থক্য $= \frac{2\pi}{\lambda} x = \frac{2\pi}{\lambda} \times$ পথ পার্থক্য

জভএব,
$$\delta = \frac{2\pi}{\lambda} x$$

সমীকরণ (7.10) দশা ও পথ পার্থক্যের মধ্যে সম্পর্ক নির্দেশ করে।

গাণিতিক উদাহরণ ৭.৩

্র্য। একটি তরভোর দৃটি বিন্দুর মধ্যে পথ পার্থক্য $rac{\lambda}{4}$ । বিন্দুরয়ের দশা পার্থক্য কত ? $rac{\lambda}{4}$

বি. বো. ২০২১, ২০১৯; য. বো. ২০১৯; KUET Admission Test, 2013-14]

বি. বো. ২০২১, ২০১৯; ব. বো. ২০১৯; KUET Admission Test, 2013-14]

আমরা জানি,

দশা পার্থক্য ,
$$\delta=\frac{2\pi}{\lambda}\times$$
 পথ পার্থক্য
$$=\frac{2\pi}{\lambda}\times\frac{\lambda}{4}=\frac{\pi}{2}$$

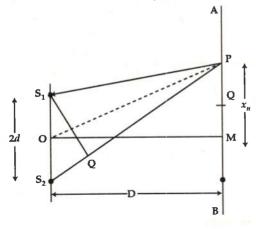
পথ পাৰ্থক্য
$$=\frac{\lambda}{4}$$

দশা পাৰ্থক্য $=$?

(7.10)

২। $\frac{\pi}{2}$ দশা পার্থক্যের সদৃশ দুটি অস্থায়ী তরক্ষা একই দিকে ধাবিত হচ্ছে। এদের বিস্তার যথাক্রমে 4 এবং 5একক হলে লখি তরঞাের বিস্তার কত?

আমরা জানি.


A =
$$\sqrt{A_1^2 + A_2^2 + 2A_1A_2 \cos \alpha}$$

= $\sqrt{(4)^2 + (5)^2 + 2 \times 4 \times 5 \cos \frac{\pi}{3}}$
= 7.81 $\P \Phi \Phi$

[Admission Test: BUET 2015-16; CKRUET 2021-22]

দশা পার্থক্য,
$$\alpha = \frac{\pi}{3}$$

৭-৮ ইয়ং-এর দ্বি-চিড় পরীক্ষার ব্যাখ্যা Explanation of Young's double slit experiment

হাইগেনসের নীতি ব্যবহার করে ইয়ং এর দ্বি-চিড় পরীক্ষায় সৃষ্ট ব্যতিচার ব্যাখ্যা করা যায়। চিড় S গোলীয় তরজ্ঞামুখ প্রেরণ করে। S₁ ও S₂ থেকে S এর দূরত্ব সমান হওয়ায় একই সময়ে একই তরজ্ঞামুখ S₁ ও S₂-তে এসে পৌছায়। এই তর্ক্তামুখের ওপর অবস্থিত S, ও S, বিন্দু এখন গৌণ তর্ক্তা নিঃসৃত করে যেগুলো পরস্পরের সাথে একই দশায় থাকে। সুতরাং S_1 ও S_2 চিত্র থেকে নিঃসৃত গৌণ তরজ্ঞাসমূহ সুসজ্ঞাত। কেননা তাদের কম্পাঙ্ক ও বিস্তার একই। এখন S_1 ও S_2 থেকে নিঃসৃত তরজ্ঞা দুটি উপরিপাতিত হয়ে ব্যতিচার সৃষ্টি করে। সমদশাসম্পন্ন কণাগুলো উপরিপাতিত হয়ে গঠনমূলক এবং বিপরীত দশাসম্পন্ন কণাগুলোর উপরিপাতনের ফলে ধ্বংসাত্মক ব্যতিচার সৃষ্টি হয়। ৭:১০ চিত্রে হাইফেন (-) লাইন দারা গঠনমূলক এবং সলিড লাইন দারা ধ্বংসাত্মক ব্যতিচার বুঝানো হয়েছে।

हिख १.७०

$$y_2 = a \sin \frac{2\pi}{\lambda} (vt + x)$$

ধরা যাক, একটি সৃক্ষ চিড় S, λ তরজ্ঞাদৈর্ঘ্যের একবর্ণী আলোক দ্বারা আলোকিত। S হতে নির্গত গোলাকৃতির আলোক তরক্তা ১-এর কাছাকাছি এবং সমদূরত্বে অবস্থিত দুটি সমান্তরাল চিড় S_1 ও S_2 -কে আলোকিত করে।

ধরা যাক, S, চিড় হতে P বিন্দুতে [চিত্র ৭'১০] আপতিত আলোক তরক্ষোর সমীকরণ,

$$y_1 = a \sin \frac{2\pi}{\lambda} vt$$
 ... (7.11)

 λ এখানে, y_1 = আলোক তরজোর সরণ, v = তরজোর বেগ, $\lambda = \overline{\alpha}$ তরজ্ঞাদৈর্ঘ্য এবং $a = \overline{\alpha}$ তরজ্ঞার বিস্তার।

এখন, S2 চিড় হতে P বিন্দুতে আপতিত আলোক তরক্তোর সরণ y_2 এবং S_1 ও S_2 হতে আগত রশ্মিদয়ের পথ পার্থক্য x হলে, S_2 হতে আগত তরচ্চোর সমীকরণ লেখা যায়,

P বিন্দুতে এই দুটি তরজ্ঞার উপরিপাতন ঘটায়, লব্ধি সরণ y হবে—

$$y = y_1 + y_2 = a \sin \frac{2\pi}{\lambda} vt + a \sin \frac{2\pi}{\lambda} (vt + x)$$

$$= 2a \cos \left(\frac{2\pi}{\lambda} \cdot \frac{x}{2}\right) \sin \frac{2\pi}{\lambda} (vt + \frac{x}{2}) \quad [\because \sin A + \sin B = 2 \sin \left(\frac{A + B}{2}\right) \cos \left(\frac{A - B}{2}\right)]$$

এটি সরল ছন্দিত স্পন্দনের সমীকরণ। এর বিস্তার

$$A = 2a \cos \left(\frac{2\pi}{\lambda} \cdot \frac{x}{2}\right) = 2a \cos \left(\frac{\pi x}{\lambda}\right)$$

আমরা জানি, আলোর তীব্রতা বা প্রাবল্য $I=A^2$ । সূতরাং, বিস্তার সর্বনিম্ম বা সর্বোচ্চ হলে প্রাবল্যও যথাক্রমে সর্বনিম বা সর্বোচ্চ হবে।

দ্বি-চিড় পরীকার ফলাফল:

(<u>(८)</u> দ্বি-চিড় পরীক্ষায় আলোর ব্যতিচার ঘটে।

(২) যেহেতু আলোর তরক্ষোর দরুন ব্যতিচার ঘটে, কাজেই আলো এক প্রকার তরক্ষা। দ্বি–চিড় পরীক্ষা আলোর তরক্ষা তত্ত্বকে সমর্থন করে। 🕻

ব্যতিচারের শর্তাবলি :

১. গঠনমূলক ব্যতিচার বা উজ্জ্বল বিন্দুর শর্ত : বিস্তার তথা আলোর তীব্রতা সর্বোচ্চ হবে, অর্থাৎ গঠনমূলক ব্যতিচার হবে, যখন—

$$\cos\frac{\pi x}{\lambda} = 1$$

$$\overline{a}, \quad x = n\lambda = 2n\left(\frac{\lambda}{2}\right) \qquad \dots$$

(7.13)

সূতরাং, আলোর তীব্রতা সর্বোচ্চ অর্থাৎ উচ্জ্বল হওয়ার শর্ত হলো পথ পার্থক্য $\frac{\lambda}{2}$ -এর যুগা গুণিতক হতে হবে। দুটি তরক্ষা যখন একই দশায় মিলিত হয় তখন লব্দি তরক্ষোর বিস্তার তথা তীব্রতা সর্বাধিক হয় ফলে উচ্জ্বল ডোরার সৃষ্টি হয় বা গঠনমূলক ব্যতিচার ঘটে। অর্থাৎ গঠনমূলক ব্যতিচার সৃষ্টি হয় বা গঠনমূলক ব্যতিচার ঘটে। অর্থাৎ গঠনমূলক ব্যতিচার সৃষ্টি হবে যখন.

দশা পার্থক্য, $\delta=0,\,2\pi,\,\,4\pi,\,\,6\pi$ ইত্যাদি π এর জ্বোড় গুণিতক

=
$$2\pi n$$
, যেখানে $n = 0, 1, 2, 3, \dots$ ইত্যাদি।

অধাৎ
$$\frac{2\pi}{1}$$
 $(S_2P - S_1P) = 2\pi n$

বা, পথ পার্থক্য,
$$S_2P - S_1P = n\lambda = 2n (\lambda/2)$$

এখানে
$$n=0, 1, 2, 3$$
 ইত্যাদি।

সুতরাং আলোর তীব্রতা সর্বোচ্চ বা গঠনমূলক ব্যতিচারের শর্ত হলো পথ পার্থক্য $(\lambda/2)$ এর যুগা গুণিতক হতে হবে। এই ক্ষেত্রে গঠনমূলক ব্যতিচারের জন্য আমরা পাই,

আলোকীয় পথ পার্থক্য $= n\lambda$

বা,
$$S_2P - S_1P = n\lambda$$

 \dots [7.13(a)]

আবার দ্বি-চিড়ের অক্ষের ওপর 🔿 বিন্দুতে পথ পার্থক্য

=
$$S_2M - S_1M = 0$$
 (: $S_1M = S_2M$)
= $0 \times \lambda = 0$

সূতরাং M বিন্দুতে একটি উজ্জ্বল ডোরা সৃষ্টি হয়। এটিকে অনেক সময় কেন্দ্রীয় চরম বলা হয়।

M থেকে প্রথম উচ্জ্বল ডোরাটি পাওয়া যাবে P-তে যেখানে n=1 এবং পথ পার্থক্য $=S_2P-S_1P=1 imes\lambda$

২. ধ্বংসাত্মক ব্যতিচার বা অন্ধকার বিন্দুর শর্ত: বিস্তার তথা প্রাবল্য সর্বনিম্ম হবে অর্থাৎ ধ্বংসাত্মক ব্যতিচার হবে, যখন—

$$\cos\frac{\pi x}{\lambda} = 0$$

ৰা,
$$\frac{\pi x}{\lambda} = \frac{\pi}{2}, \frac{3\pi}{2}$$
 (2n + 1) $\frac{\pi}{2}$

ৰা,
$$x = (2n + 1) \frac{\lambda}{2}$$
 ... (7.14)

এখানে n = 0,1,2,3 ইত্যাদি

ষ্ঠতএব, ছালোর তীব্রতা সর্বনিম অর্থাৎ অন্ধ্কার হওয়ার শর্ত হলো পথ পার্থক্য $\frac{\lambda}{2}$ -এর ম্বযুগ্ম গুণিতক হতে হবে।

যখন ধ্বংসাত্মক ব্যতিচার ঘটে, তখন অন্ধকার ডোরা পাওয়া যায় এবং সাধারণভাবে তা ঘটে যখন তরজ্ঞা দৃটি বিপরীত দশায় মিলিত হয় অর্থাৎ যখন দশা পার্থক্য $\delta=\pi$, 3π , 5π , 7π ইত্যাদি π এর বিজ্ঞাড় গুণিতক $(2n+1)\pi$, যেখানে n=0, 1, 2, 3 ইত্যাদি।

অর্থাৎ যখন
$$\frac{2\pi}{\lambda}$$
 $(S_2P - S_1P) = (2n + 1)\pi$

অতএব, পথ পার্থক্য, $S_2P - S_1P = (2n + 1) \lambda/2$

সুতরাং আলোর তীব্রতা সর্বনিম্ন বা অম্থকার হওয়ার শর্ত হলো পথ পার্থক্য $rac{\lambda}{2}$ -এর অযুগ্ম গুণিতক হতে হবে।

অর্থাৎ পথ পার্থক্য
$$=\left(n+\frac{1}{2}\right)\lambda$$
 ... $[7.14(a)]$

যেখানে, n = 1, 2, 3 ইত্যাদি

৭ ১০ চিত্রে Q বিন্দৃতে একটি জন্ধকার ডোরা সৃষ্টি হয় এবং M থেকে এটিই প্রথম জন্মকার ডোরা। সূতরাং n=1 এবং পথ পার্থক্য—

$$S_2Q - S_1Q = \left(1 + \frac{1}{2}\right)\lambda = \frac{3\lambda}{2}$$

৭-৯ পরপর দুটি উজ্জ্বল বা অস্থকার ডোরার কেন্দ্রের মধ্যবর্তী দূরত্ব এবং ডোরার প্রস্থ

Distance between two consecutive centres of the dark or bright bands and width of the bands

১. উজ্জ্বল বা অন্ধকার ডোরার দূরত্ব Distance of bright or dark bands

চিত্র ৭'১০ হতে আমরা পাই,

$$(S_1P)^2 = D^2 + (x_n - d)^2; \; x_n =$$
 দুটি উচ্জ্বল ও অম্ধকার পট্টির কেন্দ্রের মধ্যবর্তী দূরত্ব

এবং
$$(S_2P)^2 = D^2 + (x_n + d)^2$$

$$(S_2P)^2 - (S_1P)^2 = \{D^2 + (x_n + d)^2\} - \{D^2 + (x_n - d)^2\}$$

$$= (x_n + d)^2 - (x_n - d)^2$$

এখন P বিন্দু M বিন্দুর খুবই সন্নিকটে অবস্থিত বলে

অতএব,
$$(S_2P - S_1P) = \frac{4x_nd}{(S_2P + S_1P)} \simeq \frac{4x_nd}{2D} = \frac{2x_nd}{D}$$

এখন S_1 হতে S_2P এর ওপর S_1Q লম্ম টানি। সূতরাং এই দুটি তরক্তোর পথ পার্থক্য,

$$\sigma = S_2 Q = (S_2 P - S_1 P) = \frac{2x_n d}{D} \qquad ... \qquad (7.15)$$

এখন সমীকরণ (7.15) হতে জানি, n-তম উচ্জ্বল ডোরার জন্য পথ পার্থক্য $n\lambda$ -এর সমান হতে হবে।

$$\therefore \frac{2x_n d}{D} = n\lambda, \text{ axion } n = 0, 1, 2, 3 \dots$$

বা,
$$x_n = \frac{D}{2d} n\lambda$$

অনুরূপভাবে M বিন্দু হতে (n+1)-তম উচ্ছ্বন ডোরার দূরত্ব,

$$x_{n+1} = \frac{D}{2d}(n+1)\lambda$$

পরপর দৃটি উচ্ছ্বল ডোরার কেল্রের মধ্যবর্তী দৃরত্ব বা ব্যবধান

with
$$\beta = x_{n+1} - x_n$$

$$= \frac{D}{2d} (n+1) \lambda - \frac{D}{2d} n\lambda$$

$$= \frac{D}{2d} \lambda \qquad (7.16)$$

সূতরাং যেকোনো দুটি উচ্ছ্বন ডোরার ব্যবধান, $eta=rac{1}{2}$

উজ্জ্ব ঝালরের বা ডোরার অবস্থান

ঝানর বা ডোরা	n	পথ পার্থক্য	কেন্ত্র হতে দ্রত্ব, x
কেন্দ্রীয়	0	0	0
প্রথম	1	λ	$\frac{\mathrm{D}\lambda}{2d}$
দিতীয়	2	2λ	$\frac{2D\lambda}{2d}$
*******			*********
n-তম	n	пλ	$\frac{nD\lambda}{2d}$

ভাবার, জন্মকার ডোরার জন্য পথ পার্থক্য $(2n+1)rac{\lambda}{2}$ -এর সমান হতে হবে [সমীকরণ (7.14)]

$$\therefore \frac{2x_n d}{D} = (2n + 1) \frac{\lambda}{2}$$

অনুর্পভাবে, M হতে (n+1)-তম অন্ধকার ডোরার দূরত্ব

$$x_{n+1} = \frac{D}{2d} [(2(n+1)+1]\frac{\lambda}{2}]$$

= $\frac{D}{2d} (2n+3)\frac{\lambda}{2}$

 \cdot পরপর দুটি অন্ধকার ডোরার কেন্দ্রের মধ্যবর্তী দূরত্ব অর্ধাৎ, $\beta=(x_{n+1})-x_n$

$$= \frac{D}{2d} (2n+3) \frac{\lambda}{2} - \frac{D}{2d} (2n+1) \frac{\lambda}{2}$$
$$= \frac{D}{2d} \lambda$$

(7.17)

অন্ধকার ঝালরের বা ডোরার অবস্থান

ঝালর বা ডোরা	n	পথ পার্থক্য	কেন্দ্র হতে দ্রত্ব, x
কেন্দ্রীয়	1	$\frac{1}{2}\lambda$	$\frac{1}{2} \frac{D\lambda}{2d}$
প্রথম	2	$\frac{3}{2}\lambda$	$\frac{3}{2} \frac{\mathrm{D}\lambda}{2d}$
দিতীয়	3	$\frac{5}{2}\lambda$	$\frac{5}{2} \frac{D\lambda}{2d}$

n-তম	m	$\left(m+\frac{1}{2}\right)\lambda$	$\left(\frac{2m+1}{2}\right)\frac{\mathrm{D}\lambda}{2d}$

ডোরার প্রস্থ Width of bands

এখন একটি উচ্ছ্বল বা অন্ধকার ডোরার প্রস্থ বা বেধ (width) দুটি অন্ধকার ডোরা বা দুটি উচ্ছ্বল ডোরার ব্যবধানের অর্ধেক। সূতরাং ডোরার প্রস্থ বা বেধ,

$$b = \frac{\lambda D/2d}{2} = \frac{\lambda D}{4d} \qquad \dots \qquad \dots \tag{7.18}$$

সমীকরণ (7.18) হতে দেখা যায় যে—

্রাণ বর্ণার প্রকর্ম বালের একট একটার সমানুপাতিক। তরজ্ঞাদৈর্ঘ্য বেশি হলে ৮ বেশি হবে অর্থাৎ ঝালরের প্রস্থ বেশি হবে বা মোটা হবে এবং ৮ কম হলে ঝালর সরু হবে। তাই লাল ঝালরের প্রস্থ বেশি, প্রক্রান্তরে বেগনি ঝালরের প্রস্থ কম।

(iii) D-এর মান বেশি হলে এবং d এর মান কম হলে ঝালরের প্রস্থ বেশি হবে।

(iv) পানি বা কোনো তরলে পরীক্ষণ ব্যবস্থাটি ডুবালে তরক্তাদৈর্ঘ্য হ্রাস পায় $\left(\lambda' = \frac{\lambda}{\mu}\right)$ । সূতরাং ঝালরের প্রস্থ কমে।

সিন্ধান্ত: ডোরা বা ঝালরের প্রস্থ (β) তরজাদৈর্ঘ্য (λ) এর সমানুগাতিক তাই আলোর তরজাদৈর্ঘ্য বেড়ে গেলে ডোরার প্রস্থ বেলি হবে আবার তরজাদৈর্ঘ্য ছোট হলে ডোরার প্রস্থ কম হবে। সমীকরণ (7.16) ও (7.17) হতে দেখা যার যে, (i) ব্যতিচারের ক্ষেত্রে 2টি উজ্জ্বল বা অন্ধকার ডোরার কেন্দ্রের মধ্যবর্তী দূরত্ব বা ঝালরের প্রস্থ সমান [চিত্র ৭°১০] (ii) D এর মান বাড়ালে অর্থাৎ চিড় দুটি এবং পর্দার মধ্যবর্তী ব্যবধান বাড়লে ডোরার প্রস্থ বাড়ে। 2d এর মান কমালে অর্থাৎ চিড় দুটি কাছাকাছি থাকলে ডোরার প্রস্থ বাড়ে। এই পরীক্ষা সিন্ধান্ত দুটিকে সমর্থন করে।

ঝালরের কৌণিক বেধ Angular width of the fringe

পর্দায় গ্রুতম ঝালর বা ডোরার কৌণিক অবস্থান ৪, হলে, আমরা পাই

$$\theta_n = \frac{x_n}{D} = \frac{Dn\lambda/2d}{D} = \frac{n\lambda}{2d}$$

এবং (n+1)-তম ঝালরের কৌণিক জবস্থান,

$$\theta_{n+1} = \frac{(n+1)\lambda}{2d}$$

স্তরাং, পরপর দুটি ঝালরের মধ্যে কৌণিক অবস্থানের পার্ধক্য বা ব্যবধান অর্ধাৎ ঝালরের কৌণিক বেধ,

$$\theta = \theta_{n+1} - \theta_n = \frac{(n+1)\lambda}{2d} - \frac{n\lambda}{2d} = \frac{\lambda}{2d} \qquad \dots \qquad \dots \qquad \dots \qquad \dots$$
 (i)

সমীকুরণ (i) হতে দেখা যায় যে—

ক্রে এই কৌণিক বেধ পর্দার অবস্থানের ওপর নির্ভর করে না।

খে সুসংগত উৎস দুটির মধ্যে দূরত্ব (2d) বাড়লে কৌণিক বেধ কমবে এবং দূরত্ব কমলে কৌণিক বেধ বাডবে।

কৌণিক বেধ তরক্ষোদৈর্ঘ্যের গুপর নির্ভর করবে। তরক্ষাদৈর্ঘ্য বাড়লে θ বাড়বে, আবার λ কমলে θ কমবে। যদি সমগ্র পরীক্ষণ ব্যবস্থাটি μ প্রতিসরাক্ষের তরলে নিমচ্ছিত করা হয় তবে কৌণিক বেধ কমবে, কেননা $\lambda_{_{\overline{opt}}}$ $< \lambda_{_{\overline{opt}}}$ ।

গাণিতিক উদাহরণ ৭.৪

১। 0'4 mm ব্যবধানবিশিষ্ট দুটি চিড় হতে 1m দ্রত্বে অবস্থিত পর্দার ওপর ব্যতিচার সজ্জা সৃষ্টি হলো। ব্যবহৃত আলোর তরজাদৈর্ঘ্য 5000 Å হলে পরপর দুটি উজ্জ্বল ও অন্ধকার পট্টির কেন্দ্রের মধ্যবর্তী দূরত্ব কত? [চ. বো. ২০২১ (মান ভিন্ন), ২০১২; সি. বো. ২০০৬, রা. বো. ২০০৫]

আমরা জানি,

$$x_{"}=rac{\mathrm{D}\lambda}{2\times2d}$$
 [পরপর দুটি উচ্ছাল ও অন্ধকার পটির মধ্যবর্তী ব্যবধান বুঝাতে 2 ঘারা গুণ করা হয়েছে]
$$=rac{1\times5000\times10^{-10}}{2\times4\times10^{-4}}=0.625\times10^{-3}\,\mathrm{m}$$
 = $0.625\,\mathrm{mm}$

$$2d = 0.4 \text{ mm} = 4 \times 10^{-4} \text{ m}$$

D = 1 m o

$$\lambda = 5000 \text{ A}$$

= 5000 × 10⁻¹⁰ m
 $x_n = ?$

২। একটি ইয়ং-এর দ্বি-চিড় পরীক্ষায় চিড় দুটির মধ্যবর্তী দূরত্ব 0'4 মিমি। চিড়ের সমান্তরালে 1 মিটার দূরত্বে স্থাপিত পর্দায় ডোরা সৃষ্টি করা হলে দেখা যায় কেন্দ্রীয় উজ্জ্বল ডোরা থেকে 12-তম উজ্জ্বল <mark>ডোরার দূরত্ব</mark> 9 3 মিমি। ব্যবহত আলোর তরজাদৈর্ঘ্য কত 🤊

$$x_n = \frac{n\lambda D}{2d}$$

$$\delta d$$
, $\lambda = \frac{x_n \times 2d}{nD}$

$$\therefore \quad \lambda = \frac{9.3 \times 10^{-3} \times 0.4 \times 10^{-3}}{12 \times 1}$$

$$= 0.31 \times 10^{-6} \,\mathrm{m} = 3100 \,\mathrm{A}$$

$$n = 12$$

$$x_n = 9.3 \text{ mm} = 9.3 \times 10^{-3} \text{ m}$$
D = 1 m

$$D = 1 m$$

$$2d = 0.4 \text{ mm} = 0.4 \times 10^{-3} \text{ m}$$

৩। বায়ুতে ইয়ং–এর দ্বি–চিড় পরীক্ষায় $6000\,\mathrm{\mathring{A}}\,$ তরজাদৈর্ঘ্যের আলো ব্যবহার করলে ডোরার ব্যবধান হয় $2.0\,$ mm। যদি সমস্ত পরীক্ষা যম্রটিকে 1'33 প্রতিসরাজ্ঞের একটি তরলে ডুবানো হয় তাহলে ডোরার ব্যবধান কত হবে !

দি. বো. ২০২২ (মান ভিন্ন); BUET Admission Test, 2013-14]

আমরা জানি.

$$\frac{\lambda_a}{\lambda_l} = \frac{\mu_l}{\mu_a} = \frac{x_a}{x_l}$$

$$\therefore x_1 = \frac{\mu_a}{\mu_l} \times x_a$$

$$= \frac{1}{1.33} \times 2 \text{mm}$$

$$= 1.504 \text{ mm}$$

8। ইয়ং-এর দ্বি-চিড় পরীক্ষায় আলোর কম্পাজ্ঞ $6 imes 10^{14}~{
m Hz}$ । পার্শ্ববর্তী দৃটি ডোরার কেন্দ্রের মধ্যবর্তী দূরত্ব 0'75 mm। পর্দাটি যদি 1'55 m দূরে থাকে তাহলে চিড় দূটির মধ্যবর্তী দূরত কত ? রো. বো. ২০২১ (মান ভিন্ন): Admission Test: KUET 2016-17 (মান ভিন্ন); CUET 2015-16 (মান ভিন্ন)]

মনে করি চিড় দুটির মধ্যবর্তী দূরত্ব = 2d

আমরা জানি

$$c = v\lambda$$

$$\therefore \lambda = \frac{c}{v} = \frac{3 \times 10^8}{6 \times 10^{14}}$$

$$= 5 \times 10^{-7} \text{m}$$

ভাবার,
$$2d = \frac{D\lambda}{\beta} = \frac{1.55 \times 5 \times 10^{-7}}{0.75 \times 10^{-3}}$$

$$= 1.03 \times 10^{-3} \,\mathrm{m} = 1.03 \,\mathrm{mm}$$

$$c = 3 \times 10^8 \,\mathrm{ms}^{-1}$$

$$v = 6 \times 10^{14} \, \text{Hz}$$

$$D = 1.55 \, \text{m}$$

$$\Delta x = \beta = 0.75 \,\mathrm{mm}$$

$$= 0.75 \times 10^{-3} \text{m}$$

$$2d = ?$$

৫। ইয়ং-এর দ্বি-চিড় পরীক্ষায় চিড় দৃটির মধ্যবর্তী দূরত্ব 0'18 mm। চিড়গুলো থেকে 90 cm দূরে পর্দায় কোনো একটি একবর্ণী আলোর সাহায্যে ডোরা সৃষ্টি করা হলে, যদি 3rd উজ্জ্বল ডোরাটি কেন্দ্রীয় উজ্জ্বল ডোরা থেকে 8·1 mm দূরতে অবস্থিত হয়, তাহলে আলোর তরজাদৈর্ঘ্য নির্ণয় কর।

[সি. বো. ২০২১ (মান ভিন্ন); BUET Admission Test, 2017–18]

আমরা জানি.

$$x_n = \frac{n\lambda D}{2d}$$

$$\therefore \quad \lambda = \frac{x_n 2d}{nD} = \frac{8.1 \times 10^{-3} \times 1.8 \times 10^{-4}}{3 \times 0.9}$$

$$= 5.4 \times 10^{-7} \text{ m}$$

 $x_n = 8.1 \text{ mm} = 8.1 \times 10^{-3} \text{ m}$

$$x_n = 81 \text{ mm} = 81 \times 10^{-3} \text{ m}$$

$$n = 3$$

$$2d = 0.18 \,\mathrm{mm}$$

$$= 1.8 \times 10^{-4} \,\mathrm{m}$$

$$D = 90 \, \text{m} = 0.9 \, \text{m}$$

৬। ইয়ং-এর ব্যতিচারের হি-চিভ পরীক্ষায় 4:69 × 10¹⁴ Hz কম্পাচ্চের লাল আলো ব্যবহারের ফলে ডোরার প্রস্থ 2.4×10^{-4} m হয়। যদি 7.5×10^{14} H_Z কম্পাজ্ঞের নীল আলো ব্যবহার করা হয় তাহলে ডোরার প্রস্থের পরিবর্তন মি. বো. ২০২২ (মান ভিন্ন); BUET Admission Test, 2016–17] কত হবে গ

লাল আলোর তরক্তাদের্ঘ্য.

$$\lambda_{R} = \frac{c}{v_{r}} = \frac{3 \times 10^{8}}{4.69 \times 10^{14}}$$

$$= 6.397 \times 10^{-7} \text{ m} = 6.4 \times 10^{-7} \text{ m}$$

নীল আলোর তরজাদৈর্ঘ্য

$$\lambda_{\rm B} = \frac{c}{v_{\rm b}} = \frac{3 \times 10^8}{7.5 \times 10^{14}} = 4 \times 10^{-7} \,\rm m$$

লাল আলোর জন্য ডোরার প্রস্থ.

$$X_{nR} = \frac{nD}{2d} \lambda_R$$

$$\therefore \frac{nD}{2d} = 2.4 \times 10^{-4} \times \frac{1}{6.4 \times 10^{-7}} = 375$$

নীল আলোর জন্য ডোরা প্রস্থ,

$$X_{nB} = \frac{nD}{2d} \lambda_B = 375 \times 4 \times 10^{-7} = 1.5 \times 10^{-4} \text{ m}$$

$$\Delta x_n = X_{nR} - X_{nB} = 2.4 \times 10^{-4} - 1.5 \times 10^{-4}$$
$$= 0.9 \times 10^{-4} \text{ m} = 9 \times 10^{-5} \text{ m}$$

৭। ইয়ং-এর হি-চিড় পরীক্ষায় হি-চিড় থেকে এক চিড়কে $5~{
m cm}$ দূরে রাখা হলো। $5100~{
m \AA}$ তরভাদৈর্ঘ্যের সবুজ আলো এক চিড় থেকে এসে দ্বিচিড়ে আপতিত হয়। এক চিড় থেকে 205 cm রাখা পর্দার 10টি ডোরার ব্যবধান 2 cm হলে, বি-চিডের মধ্যবর্তী দূরত বের কর। [BUET Admission Test, 2018-19]

আমরা জানি, ডোরার প্রস্থ,

$$b = \frac{\lambda D}{d}$$

প্রশানুসারে, $10 \times \frac{\lambda D}{d} = 2 \times 10^{-2}$

ৰা,
$$d = \frac{10\lambda D}{2 \times 10^{-2}} = \frac{10 \times 5100 \times 10^{-10} \times 2}{2 \times 10^{-2}}$$

= 5.1×10^{-4} m

লাল আলোর কম্পাভক, $v_g = 4.69 \times 10^{14} \; \mathrm{Hz}$

নীল আলোর কম্পাভক, $v_b = 7.5 \times 10^{14} \text{ Hz}$

ডোরার প্রস্থ = 2.4×10^{-4} m

ডোরার প্রস্থ পরিবর্তন . $\Delta x = ?$

$$\lambda = 5100 \text{Å} = 5100 \times 10^{-10} \text{ m}$$

এক চিড় থেকে দ্বি-চিড়ের দূরত্ব = 5 cm

এক চিড় থেকে পর্দার দূরত্ব = 205 cm

∴ দ্বি-চিড থেকে পর্দার দূরত্ব.

D = 205 - 5 = 200 cm = 2 m

10টি ডোরার ব্যবধান = $2 \text{ cm} = 2 \times 10^{-2} \text{ m}$

৮। ইয়ং-এর বি-চিড় রেখা ছিদ্র পরীক্ষায় ব্যবহৃত আলোর তরজাদৈর্ঘ্য 5890 Å এবং ছিদ্রুম্বয়ের মধ্যে দূরত্ত্ব, 2d = 1 mm। ছিদ্রুষয় ও পর্দার মধ্যে দূরত্ব D। কৌণিক বিস্তারের মান নির্ণয় কর।

আমরা জানি, কৌণিক ব্যবধান,

$$\theta = \frac{\lambda}{2d} = \frac{5890 \times 10^{-10}}{1 \times 10^{-3}} \times \frac{180}{\pi}$$
$$= 0.03^{\circ}$$

এখানে.

$$\lambda = 5890 \text{ Å} = 5890 \times 10^{-10} \text{ m}$$

 $2d = 1 \text{ mm} = 1 \times 10^{-3} \text{ m}$
 $\theta = ?$

৯। 5200 Å তরজাদৈর্ঘ্যের সবুজ আলো একটি সৃষ্ণ চিড় হতে ইয়ং-এর দ্বি-চিড় এ আপতিত হচ্ছে। 200 cm দূরে পর্দার ওপর 10টি পটির দূরত্ব 4 cm। চিড়ের দূরত্ব নির্ণয় কর। [KUET Admission Test, 2003-04]

আমরা জানি.

$$\Delta x = \frac{n\lambda D}{2d}$$

$$\therefore 2d = \frac{n\lambda D}{\Delta x} = \frac{10 \times 5200 \times 10^{-10} \times 2}{0.04}$$

$$= 2.6 \times 10^{-4} \text{ m}$$

$$\lambda = 5200 \text{ Å} = 5200 \times 10^{-10} \text{ m}$$

D = 200 cm = 2 m

$$\Delta x = 4 \text{ cm} = 0.04 \text{ m}$$

১০। 1'5 m দূরে অবস্থিত পর্দায় পরস্পর থেকে 0'03 cm দূরত্বে ডোরা তৈরি হলো। কেন্দ্রীয় চরম থেকে 1 cm দূরে চতুর্থ উজ্জ্বল ডোরাটি তৈরি হলো। আলোর তরজ্ঞাদৈর্ঘ্য নির্ণয় কর। [RUC Admission Test, 2021-22]

$$x_n = \frac{nD\lambda}{2d}$$

$$\therefore \quad \lambda = \frac{x_n \times 2d}{nD} = \frac{1 \times 10^{-2} \times 3 \times 10^{-4}}{4 \times 1.5}$$

$$= 5 \times 10^{-7} \text{ m} = 5000 \text{ Å}$$

এখানে,

ক্রম সংখ্যা, n = 4

চির দৃটির মধ্যবর্তী দূরত্ব, 2d = 0°03 cm

∴ 2d = 3 × 10⁻⁴ m

$$x_n = 1 \text{ cm} = 1 \times 10^{-2} \text{ m}$$

D = 1.5 m

১১। দৃটি সুসঞ্চাত আলোক উৎসের প্রাবদ্যের অনুপাত 9:4। ব্যতিচার পরীক্ষায় এদের ব্যবহার করলে চরম ও অবম বিন্দুর প্রাবদ্যের অনুপাত নির্ণয় কর।

আমরা জানি,

তীব্রতা, I ∝ A²

$$\therefore \quad \frac{I_1}{I_2} = \frac{A_1^2}{A_2^2} = \left(\frac{A_1}{A_2}\right)^2$$

$$\overline{A}, \quad \left(\frac{A_1}{A_2}\right)^2 = \frac{9}{4}$$

$$\overline{41}, \ \frac{A_1}{A_2} = \sqrt{\frac{9}{4}} = \frac{1}{2}$$

$$\boxed{4}, \quad \frac{A_1 + A_2}{A_1 - A_2} = \frac{3 + 2}{3 - 2}$$

বা,
$$\frac{I_{\text{max}}}{I_{\text{min}}} = \left(\frac{5}{1}\right)^2$$

 $I_{max}: I_{min} = 25:1$

এখানে, $\frac{I_1}{I_2} = \frac{9}{4}$

কাজ : দৃটি একই ধরনের আলোক উৎস ব্যতিচার সৃষ্টি করতে পারে না —ব্যাখ্যা কর।

আলোর ব্যতিচার সৃষ্টির শর্ত হলো—(১) ব্যতিচার সৃষ্টিকারী উৎস দুটিকে সুসংগত হতে হবে এবং (২) যে দুটি তরচ্ছোর উপরিপাতের ফলে ঝালর তৈরি হবে তাদের দশা পার্থক্য সর্বক্ষণের জন্য অপরিবর্তিত থাকতে হবে। কিন্তু দুটি একই আলোর উৎস ওপরের শর্ত পূরণ করে না, তাই ব্যতিচার সৃষ্টি করতে পারে না।

সম্প্রসারিত কাজ : ব্যতিচার সৃষ্টিকারী দুটি তরজ্ঞার একটির পথে একটি পাতলা কাচ প্রেট রাখলে ঝালরের কি পরিবর্তন হবে ?

ব্যতিচার সৃষ্টিকারী দৃটি তরজ্ঞার যেকোনো একটির পথে t বেধের একটি পাতলা কাচ প্রেট রাখলে তরজ্ঞাদ্বয়ের মধ্যে $(\mu-1)t$ পরিমাণ অতিরিক্ত পথ পার্থক্যের সৃষ্টি হবে। এখানে $\mu=$ কাচের প্রতিসরাজ্ঞ্চ। ফলে সমগ্র ব্যতিচার ঝালর, কাচ প্রেটের যেদিকে রাখা হয়েছে সেদিকে সরে যাবে। কিন্তু ব্যতিচার ঝালরে সরণ ঘটলেও ঝালর প্রস্থের কোনো পরির্বতন হবে না।

হিসাব কর : দুটি একই ধরনের ছিদ্র দ্বারা গঠিত ব্যতিচার ঝালরে কেন্দ্রীয় উচ্জ্বল পট্টির তীব্রতা I। যদি একটি চিড় বন্ধ করে দেওয়া হয় তবে ওই স্থানে তীব্রতা কত হবে ?

ধরা যাক, তরক্ষা দুটির প্রতিটির বিস্তার, A

$$\therefore A_{max} = A + A = 2A$$

সূতরাং, $I_{max}=A^2_{max}=(2A)^2=4A^2=4I_0$ [এখানে, I_0 প্রতিটি চিড়ের জন্য তীব্রতা] এখন, একটি চিড় কম্ম করে দিলে ওই স্থানে তীব্রতা হবে.

$$I_0 = \frac{I_{max}}{A}$$

অর্থাৎ কেন্দ্রীয় উজ্জ্বল ডোরার তীব্রতা 4 গুণ হ্রাস পাবে।

৭'১০ আলোকের অপবর্তন Diffraction of light

আমরা জানি, স্বচ্ছ সমসত্ত্ব মাধ্যমে আলোক সরল পথে গমন করে কিন্তু আলোকের পথে একটি অস্বচ্ছ বস্তু স্থাপন করলে, অস্বচ্ছ বস্তুর পিছনে একটি কালো জায়গা পরিলক্ষিত হয়। এর নাম ছায়া। এই ছায়া সৃষ্টিই আলোকের রৈথিক গতির প্রমাণ। তবে ছায়াকে বিশেষভাবে লক্ষ করলে দেখা যাবে যে, আলোকের রৈথিক গতির নিয়মানুসারে ছায়া যেমন হওয়া উচিত তা হয় না। ছায়ার কিনারা বরাবর কিছু অংশ আলোকিত দেখায়। এটি হতে প্রতীয়মান হয় যে, আলোক বস্তুর কিনারা দিয়ে সরল পথে গমন না করে সামান্য ঘুরে বাঁকা পথে চলে। [MAT: 22-23]

সংজ্ঞা : কোনো প্রতিবন্ধকের কিনারা বা ধার ঘেষে বা সরু চিড়ের মধ্য দিয়ে যাওয়ার সময় জ্যামিতিক ছায়া অঞ্চলের মধ্যে আলোর বেঁকে যাওয়ার ঘটনাকে আলোর অপবর্তন বলে। তর্জাদৈর্ঘ্য বৃশ্বি পেলে এই ক্ষমতা বৃশ্বি পায়।

শুব্দ যেহেতু তরজ্ঞাধর্মী, সুতরাং শব্দেরও অপবর্তন হয় এবং একে শব্দের অপবর্তন বলে।

অপবর্তনের শর্ত : অপবর্তন সৃষ্টির দুটি শর্ত রয়েছে; যথা—

- (১) খাড়া ধারের (straight edge) ক্ষেত্রে : ধার খুব তীক্ষ্ণ হতে হবে এবং এর প্রস্থ আলোর তরজ্ঞাদৈর্ঘ্য λ-এর সমান বা কাছাকাছি মানের হতে হবে।
- (২) সরু ছিদ্রের ক্ষেত্রে: ছিদ্র খুবই সরু হতে হবে যাতে এর ব্যাস তরজ্ঞাদৈর্ঘ্যের λ-এর সমান বা কাছাকাছি মানের হতে হয়।

আলোকের অপবর্তন (দুই)প্রকার; যথা—

(১) ফ্রেনেল শ্রেণি অপবর্তন (Fresnel's class of diffraction) এবং

(২) ফ্রনহফার শ্রেণি অপবর্তন (Fraunhofer's class of diffraction)

৭'১০'১ ফ্রেনেল শ্রেণি অপবর্তন

প্রতিবন্ধক বা ছিদ্র থেকে আলোক উৎস বা পর্দা অথবা উভয়ই সসীম দূরত্বে থাকলে যেসব অপবর্তনের ঘটনাবলি ঘটে তাদের ফ্রেনেল শ্রেণি অপবর্তন বলে।

খাড়া ধারে (straight edge), সরু তারে (narrow wire) এবং অল্প পরিসর ছিদ্রে (narrow slit) এই ধরনের অপবর্তন ঘটে। এক্ষেত্রে আপতিত তরজ্ঞামুখ গোলীয় বা সিলিন্ডার আকৃতির হয়।

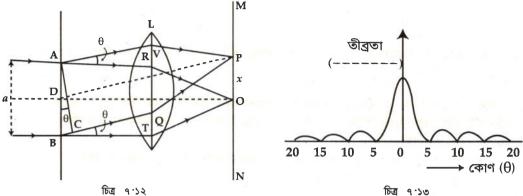
৭'১০'২ ফ্রনহফার শ্রেণি অপবর্তন ১,২ ও অনেক হিছ

প্রতিবন্ধক বা ছিদ্র থেকে আলোক উৎস এবং পর্দা উভয়ই <u>অসীম দূরতে</u> থাকলে যেসব অপবর্তন ঘটনাবলি ঘটে তাদের ফ্রনহকার শ্রেণি অপবর্তন বলে। এই অপবর্তনের ক্ষেত্রে তরজামুখ সমতল হয়ে থাকে। কোনো উত্তল লেশের ফোকাস তলে একটি আলোক উৎস স্থাপন করলে লেশে প্রতিসরণের পর সমান্তরাল রশ্মি গুচ্ছ উৎপন্ন হয় সেগুলোকে কোনো প্রতিবন্ধক বা চিড়ের ওপর আপতিত করে এ ধরনের অপবর্তন পাওয়া যায়। একক রেখা ছিদ্র বা চিড়ের (Single slit) যুগ্ রেখা ছিদ্র (Double slit) এবং গ্রেটিং বা ঝাঁঝরি (Grating) দ্বারা এই অপবর্তন সৃষ্টি করা হয়।

কাজ : একক রেখাচিত্রে ফ্রেনেল ও ফ্রনহফার অপবর্তন ঝালরের মধ্যে কোনো পার্থক্য আছে কী ?

একক রেখাচিত্রে ফ্রনহফার ব্যতিচার ঝালরে কেন্দ্রীয় পটি সর্বদা উচ্জ্বল। কিন্তু ফ্রেনেল ব্যতিচার ঝালরের কেন্দ্রীয় পটি উচ্জ্বল কিংবা অম্ধকার হতে পারে, যা নির্ভর করে একক রেখাচিত্রে তরজ্ঞাদৈর্ঘ্য অঞ্চলের সংখ্যার ওপর।

অনুসন্থান : জোরে জোরে কথা বললে পাশের কক্ষ থেকে শোনা যায় অর্থাৎ অপবর্তন সৃষ্টি করে কিন্তু একটি সুচের ছিদ্রের মধ্য দিয়ে আলোর অপবর্তন লক্ষ করা যায় না কেন, ব্যাখ্যা কর।

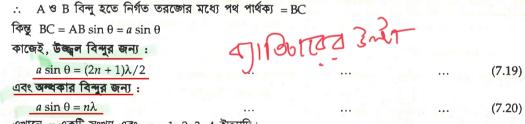

দৃশ্যমান আলোর তরজ্ঞাদৈর্ঘ্যের পাল্লা $4 \times 10^{-7} \,\mathrm{m}$ থেকে $7 \times 10^{-7} \,\mathrm{m}$ এবং শুতিগোঁচর শব্দের তরজ্ঞাদৈর্ঘ্য যথেষ্ট দীর্ঘ (প্রায় 1'6 cm থেকে 16 m পর্যন্ত) হয়। আমরা জানি, কোনো তরজ্ঞার তরজ্ঞাদৈর্ঘ্য যত বেশি হয় অপবর্তনের মাত্রা অর্থাৎ বেঁকে যাওয়ার পরিমাণ তত বৃদ্ধি পায়। তাই ঘরের দরজা, জানালার ছিদ্র শব্দ তরজ্ঞার গতিপথের উল্লেখযোগ্য পরিবর্তন ঘটায়। এই কারণে জোরে জোরে কথা বললে পাশের ঘর থেকে শোনা যায়। কিন্তু সুচের পিছনের ছিদ্রের আকার আলোর তরজ্ঞাদৈর্ঘ্যের চেয়ে অনেক বড় হওয়ায় আলোর গতিপথের কোনো উল্লেখযোগ্য পরিবর্তন ঘটায় না, তাই এতে আলোর অপুবর্তন সহজে দেখা যায় না।

জানার বিষয় : আলোর অপবর্তন দারা আলোর তির্যকরূপ ধর্মটি প্রমাণ করা যায়।

RMDAC

৭-১০-৩ একক রেখাছিদ বা চিডের জন্য অপবর্তন Diffraction at a single slit

একক রেখাছিদ্রে বা চিড়ে ফ্রন্থকার অপবর্তন (Fraunhofer diffraction at a single slit) : মনে করি, AB একটি রেখা চিড় যার বেধ = a [চিত্র ৭'১২]। ধরি λ তরজ্ঞাদৈর্ঘ্যের এক রঙা সমান্তরাল আলোক গচ্ছ সমতল তরজ্ঞামুখে



চিত্র ৭-১৩

AB ছিদ্রের ওপর লম্বভাবে আপতিত হলো। AB-এর মধ্য দিয়ে নির্গত আলোকগচ্ছকে একটি উ**ন্তল লেন্স** L দ্বারা এর ফোকাস তলে MN পর্দার ওপর একত্রীভূত করা হয়। ফলে আপতনের অভিমুখে রেখাছিদ্রের মুখোমুখি একটি উচ্ছল কেন্দ্রীয় পটি এবং এর দুই পার্শ্বে এর সমান্তরালে একান্তরভাবে সচ্ছিত অন্ধকার ও কম উচ্ছাল কয়েকটি পটি সৃষ্টি হয়। কেন্দ্রীয় উচ্জ্বল পটির তুলনায় অন্যান্য উচ্জ্বল পটির ঔচ্জ্বল্য অনেক কম এবং বাইরের দিকে দ্রত হ্রাস পায়। শুধু তাই নয়, পট্টিগুলোর বেধ সমান থাকে না [চিত্র ৭'১৩]।

ব্যাখ্যা : AB রেখাচিত্রে অবস্থিত সমতল তরজামুখের প্রতিটি কণা সমদশাসম্পন্ন। ওই সব কণা হতে গৌণ তরক্ষা উৎপন্ন হয়। যেসব আড তরক্ষা ব্যবর্তিত না হয়ে সোজা DO-এর সমান্তরালে গমন করে L লেন্স দারা পর্দার O বিন্দুতে একত্রিত হয় তারা গুই বিন্দুকে খব উচ্ছল বিন্দুতে পরিণত করে, এখানে AB রেখার ঠিক মধ্য বিন্দু D। কারণ 🔾 বিন্দুতে পৌছতে তরজাসমূহের কোনো পথ পার্থক্য থাকে না। তারা সমদশায় 🔾 বিন্দুতে পৌছে গঠনমূলক ব্যতিচার সৃষ্টি করে। এখানে O বিন্দুকে মুখ্য চরম বিন্দু (Principal maxima) বলা হয়। এই বিন্দুর ঔজ্জ্বল্য সর্বাধিক।

আবার কিছু সংখ্যক আড় তরঙ্গা θ কোণে ব্যবর্তিত হয়ে DP অতিমুখের সমান্তরালে চলে L লেন্স দ্বারা P বিন্দুতে একত্রিত হয়। এ ক্ষেত্রে আড় তরজ্ঞাসমূহ সমান পথ অতিক্রম করে না বলে P বিন্দৃতে ওই সব তরজ্ঞার দশা সমান হয় না। এই পথ পার্থক্য নির্ণয়ের জন্য B বিন্দু হতে θ কোণে ব্যবর্তিত BO রেখার ওপর AC লম্ব টানি। তা হলে, ∠PDO = θ

এখানে n একটি সংখ্যা এবং n=1,2,3,4 ইত্যাদি।

এখন $a\sin\theta=\lambda$ হলে, সব তরজোর দর্ন P বিন্দুতে লব্ধি সরণ শূন্য হবে। কারণ A বিন্দু হতে নির্গত তরজা ও রেখাছিদ্রের মধ্যবিন্দু D হতে নির্গত তরজ্ঞার মধ্যে পথ পার্থক্য হবে $\lambda/2$ এবং পরস্পরের প্রভাব নাকচ করে দিবে। এমনিভাবে তরজামুখের উভয় অর্ধের প্রতি দৃটি অনুরূপ বিন্দুর (Corresponding points) মধ্যে পথ পার্থক্য ১/2 হয়ে ওই সব বিন্দু হতে নির্গত তরজ্ঞাগুলো পরস্পরের প্রভাব নাকচ করবে।

O বিন্দুর উভয় পার্শ্বে প্রথম অবম বিন্দুর (n=1) ক্ষেত্রে অপবর্তন কোণ θ হলে, $a \sin \theta = \lambda$ বা, $\sin \theta = \lambda/a$ তেমনি \bigcirc বিন্দুর উভয় পার্শ্বে n-তম অবম বিন্দুর ক্ষেত্রে অপবর্তন কোণ θ_n হলে, $a \sin \theta_n = n\lambda$

(7.21)

L লেন্স হতে AB রেখাছিদ্র খুব নিকটে থাকলে অথবা L লেন্স হতে পর্দা বেশ দূরে থাকলে $x_n = OP_n =$ মুখ্য চরম বিন্দু O হতে n-তম অবম বিন্দুর দূরত্ব এবং লেন্সের ফোকাস দূরত্ব f হলে আমরা পাই,

$$\sin \theta_n = \frac{n\lambda}{a} = \frac{x_n}{f}$$

$$\forall x_n = \frac{n\lambda f}{a} \qquad \dots \qquad (7.22)$$

হলে ব্যাখ্যা করা যায় যে তারা 🔾 বিন্দুর উভয় পার্শ্বে আরও কতগুলো চরম বিন্দু উৎপন্ন করবে এবং পর্যায়ক্রমে তারা প্রতি দুটি অবম বিন্দুর মধ্যে অবস্থান করবে। এসব চরম বিন্দুকে গৌণ বা সম্পূরক চরম বিন্দু (Secondary or Subsidiary maxima) বলে।

n-তম গৌণ চরম বিন্দুর ক্ষেত্রে অপবর্তন কোণ θ' , এবং O হতে ওই বিন্দুর দূরত্ব χ' , হলে,

$$a \sin \theta'_n = (2n+1)\lambda/2 = \frac{a \cdot x'_n}{f}$$
 ... (7.24)

সূতরাং দেখা যাচ্ছে যে মুখ্য চরম বিন্দুর উভয় পার্শ্বে অপবর্তনের দর্ন পর্যায়ক্রমে অন্যান্য অবম ও চরম বিন্দু গঠিত হচ্ছে। গৌণ চরম বিন্দুগুলোর উচ্ছ্বলতা বা দীপন মাত্রা ক্রমণ হ্রাস পায়।

হিসাব : একটি ফ্রনহফার শ্রেণির একক চিড়ের অপবর্তন পরীক্ষায় 5890 Å তরজ্ঞাদৈর্ঘ্যের আলো ব্যবহার করা হলো। চিড়টির বেধ 0'2 mm হলে প্রথম অবমের জন্য অপবর্তন কোণ নির্ণয় কর।

Hints : অবমের শর্তানুসারে $a \sin \theta = n\lambda$

$$\therefore \sin \theta = \frac{n\lambda}{a} = \left(\frac{1 \times 5890 \times 10^{-10}}{2 \times 10^{-4}}\right)$$
$$= 2945 \times 10^{-6}$$

θ = 0.17° প্রায়, অবমের জন্য অপবর্তন কোণ 0.17°

কাজ: একক রেখাছিদ্র দ্বারা সৃষ্ট ফ্রনহফার অপবর্তন ঝালরের চরম ও অবম বিন্দুর শর্ত কী ?

একক রেখাছিদ্র দারা সৃষ্ট ফ্রনহফার অপবর্তন ঝালরে চরম ও অবম বিন্দুর শর্ত হলো—

কেন্দ্রীয় উচ্জ্বল পটি $(\theta=0)$ এর উভয় দিকে গৌণ চরম বিন্দুগুলির ক্ষেত্রে পথ পার্থক্য $a\sin\theta=(2n+1)\frac{\lambda}{2}$, যখন রেখাছিদ্রের বেধ =a, আলোর তরজ্ঞাদৈর্ঘ্য $=\lambda$, অপবর্তন কোণ θ এবং $n=1,2,3,\ldots$ । সঠিক হিসাব অনুযায়ী $a\sin\theta=\pm 1.43\lambda,\ \pm 2.46\lambda,\ldots$ ইত্যাদি। অর্থাৎ গৌণ চরম বিন্দুগুলির মধ্যে দূরত্ব সমান নয়।

জাবার অবম বিন্দুগুলোর ক্ষেত্রে পথ পার্থক্য $a\sin\theta=\pm n\lambda$, অর্থাৎ অবম বিন্দুগুলো পরস্পর সমদূরবর্তী, যখন n=1,2,3... ইত্যাদি।

৭-১০-৪ আলোকের অপবর্তনের বৈশিষ্ট্য 📈

- ১। একটি তরজামুখের বিভিন্ন অংশ হতে নির্গত গৌণ তরজাসমূহের ব্যতিচারের ফলে অপবর্তন সৃষ্টি হয়।
- ২। অপবর্তন ঝালরে পটিগুলোর বেধ কখনো সমান হয় না।
- ৩। অপবর্তনের ক্ষেত্রে উচ্ছ্রল পট্টি ও অন্ধকার পটিগুলোর অন্তর্বর্তী দূরত্বগুলো ক্রমাগত কমতে থাকে।
- ৪। অপবর্তনে অন্ধকার পট্টিগুলো সম্পূর্ণ অন্ধকার থাকে না। এতে সর্বদা কিছু আলো থেকে যায়।
- ৫। অপবর্তনে উচ্জ্বল পট্রিগুলোর প্রত্যেকটিতে আলোক প্রাবল্য কথনই সমান থাকে না। এই প্রাবল্যের মান কেন্দ্রীয় পট্টিতে স্বাধিক হয় এবং উভয় পার্শ্বস্থ পট্টিগুলোতে এই প্রাবল্য ক্রমশ হ্রাস পায়।

৭-১০-৫ আলোর অপবর্তন এবং ব্যতিচারের মধ্যে পার্থক্য Distinction between diffraction and interference of light

Reading

	ব্যক্তিচার সুর্বা	অপবর্তন এট্রাম্		
	১। একই উৎস হতে নির্গত দুটি সুসজাত তরজামুখ থেকে	১। একই তরজামুখের বিভিন্ন অংশ থেকে নির্গত গৌণ		
	প্রাপ্ত তরজোর উপরিপাতনের ফলে ব্যতিচার সৃষ্টি হয়। উৎস দুটি ক্ষুদ্র ও সূক্ষ হতে হবে।	তরজ্ঞাসমূহের উপরিপাতনের ফলে অপবর্তনের সৃষ্টি হয়।		
(২। ব্যতিচারে সৃষ্ট অম্থকার ডোরাগুলোতে কোনো	হি অপবর্তনে সৃষ্ট অন্ধকার ডোরাগুলো কখনো সম্পূর্ণ		
Ì	আলো থাকে না।	অম্ধকার হয় না। এতে সব [ী] সময় কিছু আলো থাকে		
	৩। ব্যতিচারে সৃষ্ট ডোরাগুলোর প্রস্থ সমান হতেও	ত। অপবর্তনে সৃষ্ট ডোরাগুলোর প্রস্থ সমান হয় না।		
1	পারে, নাও পারে।			
+	৪। ব্যাওচারে সৃষ্ট সকল ডজ্জ্বল ডোরার তাব্রতা তথা উজ্জ্বলতা সমান হয়।	 ৪। অপবর্তনে সৃষ্ট সকল উজ্জ্বল ডোরার তীব্রতা সমান হয় না। 		
L	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	< π - 111		

৭-১০-৬ অপবর্তন গ্রেটিং Diffraction grating

অপবর্তন সৃষ্টি করার জন্য একটি বিশেষ ব্যবস্থার নাম গ্রেটিং বা ঝাঁঝরি। অনেকগুলো সমপ্রস্থের রেখাছিদ্র পাশাপাশি স্থাপন করে গ্রেটিং বা ঝাঁঝরি গঠন করা হয়। গ্রেটিং প্রধানত দুই প্রকার, যুথা—

🚫। <mark>নিঃসরণ বা নির্গমন গ্রেটিং</mark> (Transmission grating) এবং

্র। প্রতিষ্ণদন গ্রেটিং (Reflection grating) । এখানে আমরা নিঃসরণ গ্রেটিং বিশদভাবে আলোচনা করব।

নিঃসরণ গ্রেটিং Transmission grating

আলোক উৎসকে বিশ্লেষণের একটি অতি প্রয়োজনীয় যন্ত্রাংশ হলো অপবর্তন গ্রেটিং। একটি সূচালো অগ্রভাগ-বিশিষ্ট হীরার টুকরা দিয়ে একটি ষচ্ছ সমতল কাচ পাতে দাগ কেটে গ্রেটিং তৈরি করা হয়। গ্রেটিং-এ প্রতি সেন্টিমিটারে প্রায় 10,000টি দাগ কাটা থাকে। এক একটি চিড়ের প্রস্থ প্রায় 10⁻⁴ cm।

সংজ্ঞা : পাশাপাশি স্থাপিত অনেকগুলো সমপ্রস্থের সৃষ্দ্র চিড়সম্পনু পাতকে নিঃসরণ গ্রেটিং বলে।

সাধারণ কাজের জন্য পরীক্ষাগারে আর এক প্রকারের নিঃসরণ গ্রেটিং ব্যবহার করা হয়। প্রকৃত রেখাজ্ঞিত গ্রেটিং হর্জে সেলুলয়েড ফিলোর স্থপর ঢালাই পম্বতিতে এই গ্রেটিং প্রস্তৃত করা হয়। এর নাম প্রতিনিপি গ্রেটিং (Replica grating)।

৭-১০-৭ গ্রেটিং ধ্রক Grating constant

যেকোনো একটি চিড়ের শুরু থেকে পরবর্তী চিড়ের শুরু পর্যস্ত দূরত্বকে গ্রেটিং ধ্রক বলা হয়। অন্যভাবে বলা যায় যে কোনো চিড়ের শেষ প্রান্ত থেকে পরবর্তী চিড়ের শেষ প্রান্তের দূরত্বকে গ্রেটিং ধ্রক বলে।

ব্যাখ্যা : মনে করি, একটি গ্রেটিং-এর প্রতিটি চিড়ের বেধ বা প্রস্থ = a

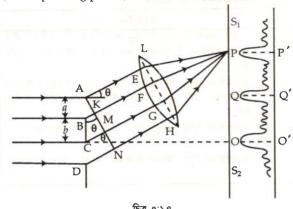
এবং প্রতিটি রেখার বেধ বা প্রস্থ = b

সংজ্ঞানুসারে, গ্রেটিং ধ্রক, d = a + b

d-কে জনেক সময় গ্রেটিং উপাদান (Grating element) বলা হয়।

গ্রেটিং-এর 'd' দৈর্ঘ্যে রেখার সংখ্যা = 1টি

অতএব, একক দৈৰ্ঘ্যে রেখার সংখ্যা, $N = \frac{1}{d} = \frac{1}{a+b}$


(7.25)

গ্রেটিং-এর $\overline{(a+b)}$ ব্যবধানে অবস্থিত দৃটি বিন্দুকে বলা হয় অনুরূপ বিন্দু (corresponding points)!

৭-১০ ৮ সমতল নিঃসরণ গ্রেটিং কর্তৃক অপবর্তন Diffraction by a plane transmission grating

মনে করি, ABCD কাগজের অভিলম্ম তলে একটি সমতল নিঃসরণ গ্রেটিং [চিত্র ৭ ১৪]। ধরি এর প্রতিটি অষচ্ছ রেখার বেধ 'b' ও ষচ্ছ অংশের বেধ 'a'. এখানে (a+b) দূরত্বকে বলা হয় গ্রেটিং উপাদান (grating element) বা

গ্রেটিং ধ্বক (grating constant)। গ্রেটিং-এর (a+b) ব্যবধানে অবস্থিত দুইটি বিন্দুকে বলা হয় **অনুরূপ বিন্দু** (Corresponding points)। চিত্রে A ও C অথবা B ও D এক একজোড়া অনুরূপ বিন্দু।

মনে করি একটি একরঙা সমতল তরজ্ঞামুখ অর্থাৎ সমান্তরাল রশািগুচ্ছ গ্রেটিং-এর ওপর অভিলম্ম-ভাবে আপতিত হলো। বেশির ভাগ রশ্মি অপবর্তিত না হয়ে সরাসরি সোজা পথে যাবে এবং L উত্তল লেশ দ্বারা এর ফোকাস তলে অবস্থিত S_1S_2 পর্দার O বিন্দুতে একব্রিত হবে। ফলে O বিন্দুটি খুবই উচ্জ্বল দেখাবে। একে কেন্দ্রীয় চরম বিন্দু (Central maxima) বলে। এখানে অন্যান্য আলোক রশ্মি প্রতিটি রেখা বা দাগ অতিক্রম করবার সময় অপবর্তিত হয়ে বিভিন্ন দিকে গমন করবে। এই অপবর্তিত সমান্তরাল রশ্মিসমূহ উত্তল লেশ দ্বারা প্রতিসৃত হয়ে লেশের ফোকাস তলে স্থাপিত পর্দার P বিন্দুতে একব্রিত হবে। ওই বিন্দুতে অপবর্তিত রশ্মিসমূহ যে

গঠনমূলক বা ধ্বংসাত্মক ব্যতিচার সৃষ্টি করে তার ওপর ওই বিন্দুর উচ্ছ্বলতা নির্ভর করে। এখন A হতে অপবর্তিত রশ্মিসমূহের ওপর AKMN লম্ম টানি।

A ও C হতে রশা্রিষয় heta কোণে অপবর্তিত হলে আলোক রশা্রি দুইটির পথ পার্থক্য,

 $CM = AC \sin \theta = (a + b) \sin \theta$

একইভাবে B ও D দুইটি অনুরূপ বিন্দু হতে রশাি্দ্বয় θ কোণে ব্যবর্তিত হওয়ায় আলোক রশাি দুইটির পথ পার্থক্য

= DN - BK

 $=(a+b+a)\sin\theta-a\sin\theta$

 $= (a + b) \sin \theta$

এরপে দেখানো যায় প্রতিক্ষেত্রেই যেকোনো দুইটি জনুরূপ বিন্দুর মধ্যে পর্থ পার্থক্য = $(a+b)\sin\theta$

∴ P বিন্দু চরম বা উজ্জ্বল হলে,

$$(a+b)\sin\theta = n\lambda \qquad ... \qquad ... \qquad (7.26)$$

এবং অবম বা অন্ধকার হলে,

$$(a+b)\sin\theta = (2n+1)\lambda/2$$
 ... (7.27)

এখানে, n= একটি পূর্ণ সংখ্যা, এর মান 0, 1, 2, 3 ইত্যাদি অথবা — 1, -2, -3 ইত্যাদি হতে পারে ও $\lambda=$ আলোকের তরজাদৈর্ঘ্য।

n=0 হলে কেন্দ্রীয় চরম বিন্দু পাওয়া যাবে। এই বিন্দুকে মুখ্য চরম বিন্দু (Principal maxima) বলে।

n=1 বা -1 বসালে মুখ্য চরম বিন্দুর দুই পার্শ্বে প্রথম উচ্ছ্ব্ব রেখা (first order maxima) দেখা যাবে। পুন n=2, বা -2 হলে, মুখ্য চরম বিন্দুর দুই পার্শ্বে **হিতীয় উচ্ছ্ব্ব রেখা** (second order maxima) দেখা যাবে ইত্যাদি।

অনুরূপভাবে অবম বিন্দুর শর্তে $n=0,\,1,\,2,\,3$ ইত্যাদি বসালে তাদের অবস্থান পাওয়া যাবে। উল্লেখ্য প্রতি দুইটি চরম বিন্দুর মধ্যে একটি অবম বিন্দু থাকে। মুখ্য চরম বা মুখ্য অবম বিন্দু ব্যতীত যেসব চরম বা অবম বিন্দু পাওয়া যায় তাদেরকে যথাক্রমে গৌণ চরম বা গৌণ অবম বিন্দু বলে।

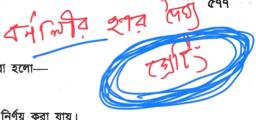
গ্রেটিং-এর প্রতি একক দৈর্ঘ্যে N সংখ্যক রেখা থাকলে,

N(a+b)=1

বা,
$$N = \frac{1}{a+b}$$

 \therefore সমীকরণ (7.26) হতে পাই, $\frac{1}{N}\sin\theta = n\lambda$

$$\exists 1, \quad \lambda = \frac{\sin \theta}{N \cdot n} \qquad \dots \qquad \dots \tag{7.28}$$


এখন, N, n ও θ -এর মান জেনে আলোকের তরজা দৈর্ঘ্য λ -এর মান বের করা হয়।

গ্রেটিং-এর ব্যবহার Uses of grating

গ্রেটিং বিভিন্ন কাব্দে ব্যবহৃত হয়। নিম্নে এর ব্যবহার উল্লেখ করা হলো—

- (১) আলোকের তরজ্ঞাদৈর্ঘ্য নির্ণয় করা যায়।
- (২) একই তর**ভা**দৈর্ঘ্যের দৃটি বর্ণালি রেখা পৃথক করা যায়।
- (৩) তর**ন্সাদৈর্ঘ্যের সাপেক্ষে অপবর্তন কোণের পরিবর্তনের হার** নির্ণয় করা যায়।

[KUET Admission Test, 2017-18 (মান ভিন্ন)]

 $\lambda = 5500 \text{ Å} = 5500 \times 10^{-8} \text{ cm}$

বেষ, $a = 22.0 \times 10^{-5}$ cm

গাণিতিক উদাহরণ ৭.৫

 $m > 1~22^{\circ}0 imes 10^{-5}~cm$ বেধের একক ছিদ্রের ওপর সমকোণে $m 5500~\mathring{A}$ তরভাদৈর্ঘ্যের আলো কেলা হলো। কেন্দ্রীয় চরম বিন্দুর উভয় পার্শ্বে প্রথম দুটি অবম বিন্দুর কৌণিক অবস্থান নির্ণয় কর।

ভৌত আলোকবিজ্ঞান

আমরা জানি.

$$a \sin \theta_n = n\lambda$$

$$\therefore \quad \sin \theta_n = \frac{n\lambda}{a}$$

প্রথম অবম বিন্দুর ক্ষেত্রে n=1

$$\therefore \quad \sin \theta_1 = \frac{\lambda}{a} = \frac{5500 \times 10^{-8}}{22.0 \times 10^{-5}} = 0.25$$

$$\theta_1 = \sin^{-1}(0.25) = 14^{\circ}29'$$

এবং দিতীয় অবম বিন্দুর ক্ষেত্রে, n=2

$$\therefore \quad \sin \theta_2 = \frac{2 \lambda}{a} = \frac{2 \times 5500 \times 10^{-8}}{22.0 \times 10^{-5}} = 0.5$$

$$\theta_2 = \sin^{-1}(0.5) = 30^{\circ}$$

অতএব, কেন্দ্রীয় চরম বিন্দুর উভয় পার্শ্বে প্রথম দুটি অবম বিন্দুর কৌণিক অবস্থান,

$$\theta_1 = 14^{\circ}29'$$
 এবং $\theta_2 = 30^{\circ}$

২। 0'4 mm বেধের একটি ছিদ্রকে 589 nm তরজোদৈর্ঘ্যের আন্মে হারা আলোকিত করলে যে অপবর্তন নক্শা উৎপন্ন করে তা 30 cm কোকাস দৈর্ঘ্যের দেশের সাহায্যে দেখা হচ্ছে। অক্ষ হতে প্রথম অবম ও পরবর্তী উচ্ছ্রন পট্টির মধ্যে দূরত্ব নির্ণর কর।

আমরা জানি, অবমের শর্তানুযায়ী,

$$a \sin \theta_n = n\lambda$$

বা,
$$\sin \theta_n = \frac{n\lambda}{a}$$

প্রথম অবমের জনা n=1

$$\sin \theta_1 = \frac{\lambda}{a}$$

$$\therefore \quad \theta_1 = \sin^{-1}\left(\frac{\lambda}{a}\right)$$

আবার,
$$\sin \theta_1 = \frac{x_1}{f}$$

সমীকরণ (i) ও (ii) হতে পাই,

$$\frac{x_1}{f} = \frac{\lambda}{a}$$

$$\therefore x_1 = \frac{\lambda \times f}{a} = \frac{589 \times 10^{-9} \times 0.3}{0.4 \times 10^{-3}}$$
$$= 4.42 \times 10^{-4} \text{ m}$$

$$\lambda = 589 \text{ nm} = 589 \times 10^{-9} \text{ m}$$

 $a = 0.4 \text{ mm} = 0.4 \times 10^{-3} \text{ m}$

$$f = 30 \text{ cm} = 0.3 \text{ m}$$

१मार्थिक्छान (२য়) - ১৯(४)

এখন, গৌণ উচ্চুল পট্টির ক্ষেত্রে,

$$a \sin \theta_n = \frac{(2n+1)\lambda}{2}$$

∴ গৌণ প্রথম উচ্ছ্বল পয়ির জন্য n = 1 এবং

$$\sin \theta_2 = \frac{x_2}{f}$$

$$\therefore \frac{x_2}{f} = \frac{3\lambda}{2a}$$

$$\overline{4}, \quad x_2 = \frac{3\lambda \times f}{2a} = \frac{3}{2}x_1 = 1.5 \times 4.42 \times 10^{-4}$$

= 6.63 × 10⁻⁴ m সূতরাং, প্রথম অন্ধকার এবং পরবর্তী উচ্ছুল পট্টির মধ্যে দূরতু,

$$\Delta x = x_2 - x_1 = 6.63 \times 10^{-4} - 4.42 \times 10^{-4}$$

= 2.21 × 10⁻⁴ m

৩। একটি ফ্রনহকার শ্রেণির একক চিড়ের দর্ন অপবর্তন পরীক্ষায় $5600~{
m \AA}$ তরভাদৈর্ঘ্যের আলো ব্যবহার করা হলো। প্রথম ক্রমের অন্থকার (অবম) পট্টির জন্য অপবর্তন কোণ নির্ণয় কর। [চিড়ের বিস্তার $0.22~{
m mm}$]

আমরা জানি, জবমের শর্ত জনসারে,

$$a \sin \theta = n\lambda : \sin \theta = \frac{n\lambda}{a}$$

$$\forall \theta = \sin^{-1} \left(\frac{1 \times 5600 \times 10^{-10}}{2.2 \times 10^{-4}} \right)$$

এখানে,

$$a = 0.22 \text{ mm}$$

= $2.2 \times 10^{-4} \text{m}$
 $n = 1$

$$= 5600 \times 10^{-10} \text{m}$$

θ =

8। কোনো অপবর্তন প্রেটিং-এ প্রতি সেন্টিমিটারে 4200 রেখা রয়েছে। এর উপর সোডিয়াম আলোর সমাস্তরাল রিশ্যিগৃছ অভিলম্বভাবে আপতিত হলে বর্ণালি রেখার হিতীয় ক্রম 30° অপবর্তন কোণ উৎপন্ন করে। সোডিয়াম আলোর তরজাদৈর্ঘ্য নির্ণয় কর।

আমরা জানি,

$$(a+b)\sin\theta_n = n\lambda$$

বা,
$$\frac{1}{N} \sin \theta_n = n\lambda$$

$$\sqrt{1 \times 10^{-2} \times 10^{-4}} \sin 30^{\circ} = 2 \times \lambda$$

$$\lambda = \frac{1 \times 10^{-6} \times 0.5}{0.42 \times 2}$$

$$= 5952 \times 10^{-10} \text{ m} = 5952 \text{ Å}$$

এখানে

$$a+b = \frac{1}{N} = \frac{1 \text{ cm}}{4200} = \frac{1 \times 10^{-2}}{4200} \text{ m}$$

$$= \frac{1 \times 10^{-2} \times 10^{-4}}{0.42}$$

$$n = 2$$

$$\theta_n = 30^{\circ}$$

$$\lambda = ?$$

- ℓ । প্রতি মিটারে 6×10^5 সংখ্যক রেখাসম্পন্ন কোনো অপবর্তন গ্রেটিং এর মধ্য দিয়ে $450~\mathrm{nm}$ তরজ্ঞাদৈর্ঘ্যের আলো কোনো ফিন্টারের সাহায্যে লম্বভাবে আপতিত হলো।
 - (ক) 450 nm তরজাদৈর্ঘ্যের আলোর প্রথম ক্রমের অপবর্তন কোণ কত ?
 - (थ) क्षनूमर् जारमारक ठेपूर्व करमज जनवर्जन मम्छव कि ना ?

$$d\sin\theta = n\lambda$$

$$\sin \theta = \frac{n\lambda}{d}$$
= 1 × 450 × 10⁻⁹ m × 6 × 10⁵ m⁻¹ = 0.27

$$\theta = \sin^{-1}(0.27) = 15.66^{\circ}$$

এখানে

$$\lambda = 450 \text{ nm} = 450 \times 10^{-9} \text{ m}$$

$$d = \frac{1}{N} = \frac{1}{6 \times 10^5} \text{ m}^{-1}$$

(খ) চতুর্থ ক্রমের অপবর্তনের জন্য n=4; এক্ষেত্রে $\sin \theta$ এর গ্রহণযোগ্য মান পাওয়া গেলে এই সিন্ধান্তে উপনীত হওয়া যাবে যে, চতুর্থ ক্রমের অপবর্তন সম্ভব।

পুনরায়, $d \sin \theta = n\lambda$

$$\sin \theta = \frac{n\lambda}{d} = 4 \times 450 \times 10^{-9} \times 6 \times 10^{5}$$

 $\overline{1}$, $\sin \theta = 1.08$

কিন্তু sin θ এর সর্বোচ্চ মান 1 হতে পারে। সূতরাং প্রাপ্ত মান গ্রহণযোগ্য নয়। সূতরাং চতুর্ধ ক্রমের অপবর্তন সম্ভব নয়।

৬। একটি প্রেটিং-এর প্রতি সে.মি. দৈর্ঘ্যে 500টি রেখা রয়েছে। ছিতীয় পর্যায়ের বর্ণালি রেখার ব্যবর্তন কোণ 4° হলে আলোকের তরভাদৈর্ঘ্য নির্ণয় কর।

আমরা জানি, $(a+b)\sin\theta_n=n\lambda$

 $\frac{\sin \theta_n}{N} = n\lambda$

 $\overline{\Lambda}, \quad \lambda = \frac{\sin \theta_n}{Nn}$

 $\therefore \lambda = \frac{\sin 4^{\circ}}{500 \times 2} = \frac{0.0698}{1000}$

 $= 6980 \times 10^{-8} \text{ cm} = 6980 \text{ Å}$

এখানে, $N=500/সেমি. \ heta_n=4^\circ \ \lambda=?$

৭। নীল LED হতে নিঃসৃত আলো একটি অগবর্তন গ্রেটিং—এর ওপর লম্বভাবে আপতিত হয়। এ অপবর্তন গ্রেটিং—এ $25^{\circ}4$ mm প্রন্থে সমব্যবধানে $1^{\circ}26 \times 10^{\circ}$ টি রেখা টানা আছে। কেন্দ্রীয় অক হতে কত ডিগ্রি কোণে দ্বিতীয় চরম উৎপনু হবে? নীল আলোর তরভাগৈর্ঘ্য $\lambda = 450 \times 10^{-9} \text{ m}$ । [BUET Admission Test, 2014-15]

আমরা জানি.

1 m-এ রেখার সংখ্যা,

$$N = \frac{1.26 \times 10^4 \times 1}{25.4 \times 10^{-3}}$$
$$= 4.96 \times 10^5 \, \text{lb}$$

$$d = \frac{1}{N} = 2.0159 \times 10^{-6} \text{ m}$$

$$d \sin \theta = n\lambda$$

$$\theta = \sin^{-1}\left(\frac{n\lambda}{d}\right) = \sin^{-1}\left(\frac{2 \times 450 \times 10^{-9}}{2.0159 \times 10^{-6}}\right)$$
$$= 26.52^{\circ}$$

৮। একটি অপবর্তন শ্রেটিং-এর প্রতি সেন্টিমিটারে 6000 রেখা আছে, যার মাধ্যমে সোডিয়াম আলোর বিতীয় চরমের বর্ণাচল পাওয়া যায়। 2টি সোডিয়াম আলোর তরভাদৈর্ঘ্য 5890 Å এবং 5896 Å হলে এদের মধ্যে কৌণিক দ্রত্ব কত ? [KUET Admission Test, 2019-20; RUET Admission Test, 2018-19 (মান ভিন্ন)]

আমরা জানি,

 $d \sin \theta = n\lambda$

বা,
$$\sin \theta = Nn\lambda$$

$$\theta = \sin^{-1}(Nn\lambda)$$

এখানে,

$$N = 6000 \text{ cm}$$

$$\lambda_1 = 5890 \text{ Å} = 5890 \times 10^{-8} \text{ cm}$$

$$\lambda_2 = 5896 \text{ Å} = 5896 \times 10^{-8} \text{ cm}$$

$$n = 1$$

λ, এর জন্য,

$$\theta_1 = \sin^{-1} (Nn\lambda_1) = \sin^{-1} (6000 \times 2 \times 5890 \times 10^{-8})$$

= 44.975°

এবং λ_2 এর জন্য,

$$\theta_2 = \sin^{-1} (Nn\lambda_2) = \sin^{-1} (6000 \times 2 \times 5896 \times 10^{-8})$$

= 45.033°

$$\therefore$$
 কৌণিক দূরত্ব, $\theta_2 - \theta_1 = 45^{\circ}033^{\circ} - 44^{\circ}975^{\circ} = 0^{\circ}058^{\circ}$

১। একটি সমতল অপবর্তন প্রেটিং-এর চিড়ের ও দাগের বেধ যথাক্রমে 0'0006 mm এবং 0'001 mm। 5000 Å তরজ্ঞাদৈর্ঘ্যে একবর্ণী আলোক তরজ্ঞা লম্বভাবে প্রেটিং তলের ওপর আপতিত হচ্ছে। প্রথম ক্রমের উজ্জ্ব রেখার জন্য অপবর্তন কোণ নির্ণয় কর। [য. বো. ২০১২]

জামরা জানি, $d \sin \theta = n\lambda$ $\therefore \quad \sin \theta = \frac{n\lambda}{d}$ $= \frac{1 \times 5000 \times 10^{-10} \text{ m}}{1.6 \times 10^{-6} \text{ m}} = 0.3125$

এখানে, গ্রেটিং ধ্রুবক,
$$d = \overline{\text{bc us a size}} \ (a) + \overline{\text{mins size}} \ (b)$$

$$= 0.0006 + 0.001 = 1.6 \times 10^{-3} \, \text{mm}$$

$$= 1.6 \times 10^{-6} \, \text{m}$$

$$\lambda = 5000 \, \mathring{\text{A}} = 5000 \times 10^{-10} \, \text{m}$$
কম সংখ্যা, $n = 1$

$$\theta = ?$$

$$\theta = \sin^{-1}(0.3125) = 18.2^{\circ}$$

১০। কোনো অপবর্তন প্রেটিংয়ের প্রতি সেন্টিমিটারে 6000 বা প্রতি মিলিমিটারে 600 রেখা রয়েছে। এর ভেতর দিয়ে 5896 Å তরজাদৈর্ঘ্যের আলো কেললে দ্বিতীয় চরমের জন্য অপবর্তন কোণ বের কর। ঢা. বো. ২০১২;

Admission Test: CKRUET 2021-22; KUET 2012-13]

আমরা জানি,

$$d \sin \theta = n\lambda$$

$$\therefore \sin \theta = \frac{n\lambda}{d}$$

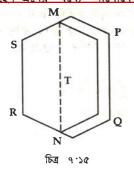
$$= \frac{2 \times 5896 \times 10^{-10} \times 6000}{1 \times 10^{-2}}$$

$$= 0.7075$$

$$\theta = \sin^{-1}(0.7075) = 45.03^{\circ}$$

এখানে,

$$= 5896 \times 10^{-10} \text{ m}$$


গ্রেটিং ধ্বক,
$$d = \frac{1}{6000}$$
 cm $= \frac{1 \times 10^{-2}}{6000}$ m

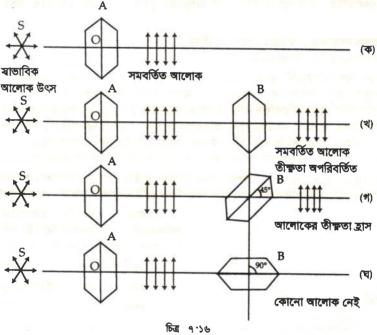
$$\boxed{4}, \ \frac{1}{d} = \frac{6000}{1 \times 10^{-2}}$$

৭:১১ আলোকের সমবর্তন

Polarisation of light

আমরা জানি, আলোক এক প্রকার শক্তি যা দৃষ্টির অনুভূতি জুনায়। আলোকের প্রকৃতি নির্ণয়ের জন্য পাঁচটি তত্ত্ব আছে। এদের মধ্যে আলোকের তরক্ষা তত্ত্ব অন্যতম। বিজ্ঞানী হাইগেনস 1678 খ্রিস্টাব্দে এই তত্ত্ব আবিক্ষার করেন।

তাঁর মতে আলোক তরজোর আকারে এক স্থান হতে জন্য স্থানে গমন করে। এ তত্ত্বের সাহায্যে আলোকের প্রতিফলন, প্রতিসরণ, ব্যতিচার, জপবর্ত্তন প্রভৃতি ঘটনাবলি ব্যাখ্যা করা যায়। কিন্তু আলোক কী ধরনের তরজ্ঞা— আড় তরজ্ঞা না লন্দিক তরজ্ঞা তা উপরোক্ত আলোকীয় ঘটনাবলি হতে জানা যায় না। তবে পরবর্তীকালে আলোক সংক্রান্ত এমন কতকগুলো ফলাফল পাওয়া গেছে যা বিশ্লেষণ করলে দেখা যায় যে, আলোক তরজ্ঞা কখনই জনুদৈর্ঘ্য তরজ্ঞা নহে, এটি আড় তরজ্ঞা। এক জোড়া টুর্ম্যালিন কেলাসের পরীক্ষা এই ব্যাপারে বিশেষ গুরুত্বপূর্ণ। এই পরীক্ষা হতে নিঃসল্দেহে প্রমাণিত হয় যে, আলোক আড় তরজ্ঞা। আলোকের সমবর্তন আড় তরজ্ঞার একটি প্রকৃষ্ট প্রমাণ। এখন আলোচনা করা যাক আলোকের সমবর্তন কী ?


RMDAC

টুর্ম্যালিন কেলাসের পরীক্ষা আলোচুনা করার পূর্বে টুর্ম্যালিন কেলাস কী তা জানা যাক। টুর্ম্যালিন হচ্ছে কয়েকটি ধাতুর অক্সাইডের রাসায়নিক সংমিশ্রণে তৈরি বড়ভুজ আকৃতির বচ্ছ এবং হালকা সবুজ বর্গের কেলাস। ছয় বাহুবিশিউ হালকা সবুজ রঙের এই কেলাস PQRS-কৈ দেখান হর্লো চিত্র ৭'১৫]। এর সর্বাপেক্ষা বড় (MN) কর্ণটির নাম সরলাক (Optic axis)। নিমের টুর্ম্যালিন কেলাস পরীক্ষার দারা আলোর সমবর্তন ব্যাখ্যা করা হলো। টুর্ম্যালিন, নিকল প্রিজম এবং পোলারয়েড ইতাদি সমবর্তক ও বিশ্লেষক হিসেবে ব্যবহৃত হয়।

টুর্ম্যালিন কেলাস পরীক্ষা এবং আলোকের সমবর্তন Tourmaline crystal experiment and polarisation of light

মনে করি, S একটি আলোক উৎস। S হতে নির্গত আলোক তরজাসমূহ এদের গতিপথের অভিলম্ম তলে চারদিকে সমান বিস্তারে কম্পিত হবে। A একটি টুর্ম্যালিন কেলাস যা আলোক তরজ্ঞার গতিপথে স্থাপন করা হয়েছে। S হতে আলোক তরজা কেলাসের যেকোনো একটি সমতল পৃষ্ঠে আপতিত হবে [চিত্র ৭ ১৬ (क)]।

কেলাসের অপর দিকে নজর করলে একই প্রাবল্যের বা তীক্ষতার আলোক দেখা যাবে। কেলাস হতে নির্গত আলোক কেলাসের প্রকৃতির ওপর নির্ভর করবে এবং যৎসামান্য রঙিন দেখাবে। এ অবস্থায় A কেলাসটিকে 🔿 বিন্দুর সাপেক্ষে ঘুরাতে থাকলে একই প্রাবল্যের আলোক দেখা যাবে। এখন A কেলাসের সমান্তরাল আলোকের গতিপথে আর

একটি টুর্ম্যালিন কেলাস B এমনভাবে স্থাপন করি যাতে এর সরলাক্ষ আলোকের গতিপথের সাথে লম্বভাবে অবস্থান করে [চিত্র ৭'১৬ (খ)]। এমতাবস্থায় B কেলাসের অপর পার্শ্ব হতে ভাকালে একই প্রাবল্যের আলোক দেখা যাবে।

এখন A কেলাসটিকে স্থির রেখে B কেলাসটিকে O বিন্দু বরাবর ধীরে ধীরে ঘুরাতে থাকলে দেখা যাবে যে, B কেলাস হতে নির্গত আলোকের প্রাবল্য ধীরে ধীরে কমছে [চিত্র ৭ ১৬ (গ)]। যখন B কেলাসটি A কেলাসের সাথে সমকোণে স্থাপন করা হবে তখন B কেলাস হতে কোনো আলোক নির্গত হবে না [চিত্র ৭˚১৬(ঘ)]। B কেলাসটিকে 90°-এর বেশি কোণে ঘুরাতে থাকলে পুনরায় B হতে আলোক নির্গত হবে এবং এর প্রাবল্য ধীরে ধীরে বৃশ্বি পেতে থাকবে। B কেলাস-এর সরলাক্ষ পুনরায় A কেলাসের সরলাক্ষের সমান্তরাল হলে B হতে নির্গত আলোকের প্রাবল্য সর্বাপেক্ষা বেশি হবে অর্থাৎ প্রাবল্য পূর্বের অবস্থানে ফিরে আসবে। [DAT: 23-24]

এই পরীক্ষা হতে নিচিতভাবে প্রমাণিত হলো যে, আলোক তরজা লন্দিক বা অনুদৈর্ঘ্য তরজা নয়, আলোক তর্ভা আড় তর্ভা বা তির্যক তর্ভা। কেননা, A কেলাস হতে নির্গত হবার পর আলোক তর্ভা কেবল একটি নির্দিষ্ট তলে কম্পিত হচ্ছে। সেজন্য A হতে নিৰ্গত আলোককে সমবর্তিত আলোক (polarised light) বলে।

সংজ্ঞা: যে প্রক্রিয়ায় বিভিনু তলে কম্পমান আলোক তরজাকে একটি নির্দিষ্ট তল বরাবর কম্পনক্ষম করা যায় তাকে আলোকের সমবর্তন বা পোলারায়ন বলে।

S হতে নির্গত আলোক তরজা চারদিকে কম্পিত হচ্ছে। S হতে A পর্যন্ত আলোক তরজোর এই অবস্থাই চলবে। অতএব S ও A-এর মধ্যবর্তী স্থানে আলোক অসমবর্তিত বা অপোলারায়িত (unpolarised)। কিন্তু A হতে B পর্যন্ত স্থানে ত্থালোক তর**জ্ঞা**কে একটি নির্দি**উ তল বরাবর জানয়ন করা হয়েছে। সূতরাং** এই স্থানের ত্থালোক **সমবর্তিত** বা পোলারায়িত (polarised)। যখন A ও B কেলাস-এর সরলাক্ষ পরস্পরের সমাস্তরালে থাকে তখন B-এর পরের অংশের জালোক সমবর্তিত হয়। এখানে A-কে সমবর্তক (polariser) ও B-কে বিশ্লেষক (analyser) বলে। 1690 খ্রিস্টাব্দে বিজ্ঞানী হাইগেনস আলোকের সমবর্তন আবিক্ষার করেন। আলো একটি অনুপ্রস্থ তরক্ষা তা সমবর্তন বৈশিক্ট্যের দ্বারা জানা যায়।

উপরে বর্ণিত সমবর্তনে আলোক তরচ্ছোর কম্পন একটি নির্দিক্ট সমতলে সীমাবন্ধ করা হয়েছে। এন্ধন্য একে সমতল (plane) বা রৈখিক (linear) সমবর্তন বলা হয়।

পরীক্ষা : কোনো আলো সমবর্তিত না অসমবর্তিত কীভাবে তুমি পরীক্ষা দ্বারা প্রমাণ করবে ? ব্যাখ্যা কর।

ভালোক রশ্মির গতিপথে একটি টুর্ম্যালিন কেলাস স্থাপন করে কেলাসের পিছন থেকে তাকালে কেলাস থেকে নির্গত আলো দেখা যাবে। এবার কেলাসটি ধীরে ধীরে ঘুরানো হলে যদি কেলাস থেকে নির্গত আলোর উচ্ছ্বলতার কোনো পরিবর্তন না হয় বুঝতে হবে যে আলোক রশ্রিটি অসমবর্তিত। কিন্তু নির্গত আলোর উজ্জ্বলতা যদি পর্যায়ক্রমে পরিবর্তিত হয় এবং কেলাসটির একটি পূর্ণ ভাবর্তনে যদি উচ্ছ্বলতা দুবার কমে শূন্য হয় তবে বোঝা যাবে যে ভালোক রশাটি সমবর্তিত। A177-C6°

প্রতিকলনের বারা সমবর্তন 9.32 Polarisation by reflection

ME- CC. 1808 খ্রিস্টাব্দে বিখ্যাত <u>বিজ্ঞানী ম্যালাস (Malus) প্রতিফলনের দারা সমতল সমবর্তিত ভালো উৎপন্ন করেন।</u> তিনি পরীক্ষালন্থ ফলাফল থেকে দেখান যে সাধারণ আলো অর্থাৎ অসমবর্তিত আলো কোনো ষচ্ছ মাধ্যমে (যেমন পানি. কাচ ইত্যাদি) দ্বারা প্রতিফলিত হলে প্রতিফলিত রশ্যি আংশিক সমবর্তিত হয়। রশ্যির সমবর্তনের পরিমাণ আপতন কোণের ওপর নির্ভর করে। যে বিশেষ আপতন কোণের জন্য প্রতিফলনের দ্বারা সমবর্তনের পরিমাণ সর্বাধিক হয়, ওই কোণকে সমবর্তন কোণ বলে। একে i, ছারা সূচিত করা হয়। কাচের ক্ষেত্রে এই সমবর্তন কোণের মান 56° এবং বিশুন্থ পানির ক্ষেত্রে সমবর্তন কোণ 53°। এই কোণের মান প্রতিফলক তদ এবং আপতিত আলোর তরভাদৈর্ঘ্যের ওপর নির্ভর করে।

প্রস্টারের সূত্র (Brewster's law): বিজ্ঞানী স্যার ডেভিড ব্রুস্টার বিভিন্ন পরীক্ষালব্দ ফলাফল থেকে দেখান যে, সম্বর্তন কোণের ট্যানজেন্টের মান প্রতিসারক মাধ্যমের আপেক্ষিক প্রতিসরাক্ষের সমান। একেই ব্রুন্টারের সূত্র বলে।

M हिंख १ : ১१

ব্যাখ্যা : ধরা যাক, অসমবর্তিত আলোক রশ্মি PO তির্যকভাবে μ প্রতিসরাজ্কবিশিষ্ট কোনো ষচ্ছ মাধ্যমের MN তলে আপতিত হলো [চিত্ৰ ৭·১৭]!

> চিত্রানুযায়ী $\angle POA = i_n$, সমবর্তিত কোণ এবং $i_r = \angle QOB$, প্রতিসারক কোণ। এখন, $i_p + i_r = 90^\circ$ $i_r = 90^\circ - i_p$ এখন স্নেলের সূত্রানুযায়ী আমরা পাই, $\frac{\sin i_p}{\sin i_r} = \mu$, এখানে $\mu =$ মাধ্যমের প্রতিসরাভক $\sin i_p$ $\frac{1}{\sin(90^\circ - i_p)} = \mu$ $[\because \sin (90^{\circ} - i_p) = \cos i_p]$ $\sqrt[n]{l}$, $\mu = \tan i_p$

অর্থাৎ সমবর্তন কোণের ট্যানজেন্টের মান প্রতিসারক মাধ্যমের আথেকিক প্রতিনরাক্ষের সমান।

বি. দ্র. যেহেতু মাধ্যমের প্রতিসরাজ্ঞ আদোর তরজাদৈর্ঘ্যের ওপর নির্ভর করে, তাই সমবর্তন কোণও তরজাদৈর্ঘ্যের ওপর <u>নির্ভর করে।</u>

জাবার, ∠ROQ = 180° – $(i_p + i_r) = 180^{\circ}$ – 90° = 90° সূতরাং, প্রতিফলিত রশ্মি (OR) এবং প্রতিসৃত রশ্মি (OQ) পরস্পরের সমকোণে অবস্থিত।

কাজ: সমবর্তন কোণ ও সংকট কোণের মধ্যে সম্পর্ক প্রতিষ্ঠা কর।

ব্রুস্টারের সূত্রানুসারে,

$$\mu = \tan i_n$$

আবার, স্লেলের সূত্রানুসারে,

$$\mu = \frac{1}{\sin \theta_0}$$

বা,
$$\tan i_p = \frac{1}{\sin \theta_c} = \csc \theta_c$$

বা,
$$i_p = \tan^{-1}(\csc \theta_c)$$

এটিই নির্ণেয় সম্পর্ক।

এখানে,

 $i_n =$ সমবর্তন কোণ

μ = মাধ্যমের প্রতিসরাজ্ঞ

 $\theta_c =$ সংকট কোণ

গাণিতিক উদাহরণ ৭.৬

১। 1'53 প্রতিসরাক্ষবিশিক্ট একটি কাচের প্লেটের ওপর সমবর্তন কোণে একটি আলোকরশ্মি আপতিত হলো। প্রতিসারক কোণের মান কত ?

আমরা জানি,

$$\mu = \tan i_p = 1.53$$

$$i_p = \tan^{-1} (1.53) = 56^{\circ}50'$$

এখানে,

$$\mu = 1.53$$

২। কাচে কোনো একটি নির্দিষ্ট বর্ণের আলোর জন্য সংকট কোণ 40°। সমবর্তন কোণ ও প্রতিসারক কোণের মান নির্ণয় কর।

আমরা জানি.

$$\mu = \frac{1}{\sin \theta_c}$$

$$\therefore \quad \mu = \frac{1}{\sin 40^{\circ}} = \frac{1}{0.6428} = 1.56$$

i, সমবর্তন কোণ হলে আমরা পাই,

$$\tan i_p = \mu = 1.56$$

$$i_p = \tan^{-1}(1.56) = 57^{\circ}3'$$

অতএব, প্রতিসারক কোণ, $i_r = 90^\circ - 57^\circ 3' = 32^\circ 57'$

৩। হীরকের পৃষ্ঠ তলে একটি আলোক রশ্মি 60° কোণে আপতিত হলো এবং 12° কোণে প্রতিসৃত হলো। হীরকের সমবর্তন কোণ নির্ণয় কর। [CUET Admission Test, 2015-16]

আমরা জানি,

$$\mu = \frac{\sin i}{\sin r}$$

$$\therefore \quad \mu = \frac{\sin 60^{\circ}}{\sin 12^{\circ}} = \frac{0.866}{0.2} = 4.33$$

খাবার ব্রুস্টারের সূত্রানুযায়ী খামরা জানি,

$$tan i_p = \mu$$

$$i_p = \tan^{-1} (4.33)$$

$$\therefore$$
 $i_p = 77^\circ$

এখানে,

$$\theta_c = 40^{\circ}$$

৪। আলোক রশ্মি 1'33 প্রতিসরাক্ষের পানি হতে 1'50 প্রতিসরাক্ষের কাচে গমন করলে আলোর সমবর্তিত কোণ নির্ণর কর।

ব্রুস্টারের সূত্র থেকে,

$$_{w}\mu_{g} = \tan i_{p}$$

বা,
$$\frac{w\mu_g}{a\mu_w} = \tan i_p$$

বা,
$$tan i_p = 1.13$$

$$i_p = \tan^{-1} (1.13) = 48.5^{\circ}$$

৫। কার্টের প্রতিসরাক্ষ 1'55। সমবর্তিত কোণ কত ? সমবর্তিত কোণের জন্য প্রতিসারক কোণ নির্ণর কর।

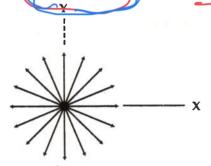
[য. বো. ২০২২ (মান ভিন্ন); দি. বো. ২০২২ (মান ভিন্ন)]

 $_{a}\mu_{g} = 1.5$

 $\mu_{m} = 1.33$

সমবর্তিত কোণ, in = ?

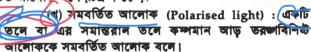
যদি বায়ুর সাপেকে কাচের প্রতিসরাহ্ক μ এবং সমবর্তিত কোণ i_p হয় তবে বুস্টারের সূত্র থেকে আমরা পাই, $\mu = \tan i_n$

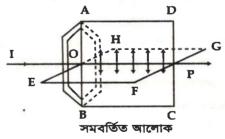

$$i_n = \tan^{-1}(1.55) = 57.17^\circ$$

পুনরায়, সমবর্তিত কোণে আপতনের জন্য

$$i_n + r = 90^\circ$$
; এখানে $r = প্রতিসরণ কোণ$

৭-১৩ সমবর্তন বিষয়ক কতগুলো রাশি Some terms relating polarisation


(ক) অসমবর্তিত শাবোক (Unpolarised light) : সাধারণ আলোক যার কম্পন গতিপথের লম্ব অভিমুখে চারদিকে সমান বিস্তারে কম্পিটা হয় তাকে অসমবর্তিত আলোক বলে [চিত্র ৭'১৮]।


অসমবর্তিত আলোক

চিত্ৰা ৭:১৮

বা কম্পন তল (Plane of vibration) :আলোক তরভোর কণাসমূহ যে সমতলে কম্পিত হয়
তাকে কম্পন তল বলে। চিত্র ৭'১৯-এ ABCD
কম্পন তল

গ্ৰী সমতল সমবর্তিত জালোক (Plane polarised light) কানো আলোক তরজোর কণাগুলোর কম্পন কবলমাত্র ক্রিটি তলে সীমাবন্ধ থাকলে একে সমতল সমবর্তিত আলোক বলে।

हिंग ११५७

- (%) সমবর্তন কোণ (Polarising angle) : কোনো প্রতিফলক মাধ্যমে আপতন কোণ ধীরে ধীরে পরিবর্তন করলে এমন একটি কোন)পাওয়া যাবে যার জন্ম সমবর্তন সর্বাধিক হবে, সেই কোণটিকে সম্বর্তন কোণ বলে।
- (চ) সমবর্তন তল (Plane of polarisation) : কম্পন তলের সাথে যে তলটি লিম্বভাবে স্বাধ্বান করে তাকে সমবর্তন তল বলে। চিত্র ৭'১৯-এ EFGH সমবর্তন তল।
- (ত্র বৈত প্রতিসরণ (Double refraction) : এমন কতপুলো কেলাস আছে বাদের মধ্য দিয়ে আলোক রশ্মি গমন করলে তা দুটি প্রতিস্ত রশ্মিতে বিভক্ত হয়। এই পম্বতিকে হৈত প্রতিসরণ বলে এবং এসব কেলাসকে হৈত প্রতিসারক কেলাস বলে ক্যান্টিজ ও ক্যাল্সাইটি হৈত প্রতিসারক কেলাস।

(23)

🔫) ব্রুক্টারের সূত্র (Brewster's angle) : সমবর্তন কোণের ট্যানজেন্ট প্রতিকলক মাধ্যমের প্রতিসরাক্ষের नयान ।

(ঝ) ম্যালাসের সূত্র : সমবর্তিত আলোক বিল্লেষকের মধ্য দিয়ে যাওয়ার কলে এর ভীব্রতা সমবর্তক ও বিল্লেষকের সমবর্তন অক্ষরের মধ্যবর্তী কোণের কোসাইনের বর্গের সমানুপাতিক হয়। নিঃসৃত আলোর তীব্রতা I এবং সমবর্তন অক্ষায়ের মধ্যবর্তী কোণ θ হলে, I ∝ (cos θ)² |

——————————————————————————————————————)			
প্রয়োজনীয় গাণিতিক সূত্রাবলি				
$c = \frac{1}{\sqrt{\epsilon_0 \mu_0}}$				(1)
$_{a}\mu_{b}=\frac{c_{a}}{c_{b}}$		***	>	(2)
$B = B_0 \sin \frac{2\pi}{\lambda} (vt - x)$				(3)
$E = E_0 \sin \frac{2\pi}{\lambda} (vt - x)$			***	(4)
$c = \frac{E_0}{B_0} \qquad \dots$		•••		(5)
$\overrightarrow{S} = \frac{1}{\mu_0} \overrightarrow{E} \times \overrightarrow{B}$		***	•••	(6)
$\overrightarrow{S} = \overrightarrow{E} \times \overrightarrow{H}$		***		(7)
$\frac{\sin i}{\sin r} = {}_{a}\mu_{b}$	•••		•••	(8)
$\delta = \frac{2\pi}{\lambda} x$	•••	***	•••	(9)
গঠনমূলক ব্যতিচারের শর্ত, $x = n \lambda = 2 n \left(\frac{\lambda}{2}\right)$				(10)
ধ্বংসাত্মক ব্যতিচারের শর্ত , $x=(2n+1)$ $\frac{\lambda}{2}$				(11)
$_{a}\mu_{g}=\frac{\lambda_{a}}{\lambda_{g}}$		•••		(12)
$\frac{\delta}{\lambda} = \frac{\sigma}{2\pi}$		1000		(13)
$\Delta x = \lambda \frac{d}{a} \qquad \dots$		n stag in	eige state	(14)
$\beta = \frac{D}{2d} \lambda \dots$		•••		(15)
$a \sin \theta = n\lambda \dots$		<u></u>	The State of the S	(16)
$(a+b)\sin\theta=n\lambda$				(17)
$\frac{1}{N} \sin \theta_n = n\lambda$			***	(18)
$a\sin\theta=(2n+1)\lambda/2$			11177 0 80918	(19)
$\theta = \frac{\lambda}{2d}$			***	(20)
$\mu = \tan i_p$				(21)
$i_p = \tan^{-1}(\csc \theta_c)$				(22)

বিশ্লেষণাতাক ও মূল্যায়নধর্মী গাণিতিক সমস্যাবলির সমাধান

- ১। পদার্থবিজ্ঞান ল্যাবে একদল শিক্ষার্থী ইয়ং—এর দ্বি-চিড় পরীক্ষায় পর্দা থেকে $1 \mathrm{m}$ দূরত্বে দূটি চিড় স্থাপন করল। চিড়হয়ের মধ্যবর্তী ব্যবধান $4 \times 10^{-4} \, \mathrm{m}$ । তারা লাল আলো ব্যবহার করে পর্দার উপর $40 \mathrm{\bar{b}}$ ডোরা সৃষ্টি করলো। পরে সবুজ ও নীল আলো ব্যবহার করেলো। $\lambda_r = 6200 \mathrm{\mathring{A}}$, $\lambda_g = 4950 \mathrm{\mathring{A}}$ থেকে $5700 \mathrm{\mathring{A}}$ পর্যন্ত এবং $\lambda_b = 4500 \mathrm{\mathring{A}}$ থেকে $4950 \mathrm{\mathring{A}}$ পর্যন্ত ।
 - (क) উদ্দীপকে লাল আলোর ক্ষেত্রে ডোরার প্রস্থ নির্ণয় কর।
 - (খ) শিক্ষার্থীরা যদি আরও 20টি ডোরা বেশি পেতে চায় তাহলে কোন বর্ণের আলো ব্যবহার করতে হবে? গাণিতিক ব্যাখ্যা দাও। [ব. বো. ২০২১]

(ক) জামরা জানি ডোরার প্রস্থ,
$$\beta = \frac{D\lambda}{2d}$$

$$\therefore \beta = \frac{1 \times 6200 \times 10^{-10}}{4 \times 10^{-4}}$$

$$= \frac{6'2 \times 10^{-7} \times 10^4}{4}$$

$$= 1'55 \times 10^{-3} \, \text{m} = 1'55 \, \text{mm}$$

(খ) জাবার,
$$x_n = \frac{n\lambda D}{2d}$$
 ... (i) $n = 40 + 20 = 60$ D $= 1m$... 40 " " $= 1.55 \times 40 \times 10^{-3}$ m $2d = 4 \times 10^{-4}$ m $\lambda = ?$

এই ব্যবধানের মধ্যে 60টি ডোরা পেতে হলে সমীকরণ (i) থেকে পাই,

$$62 \times 10^{-3} = \frac{60 \times \lambda \times 1}{4 \times 10^{-4}}$$

$$41, \quad \lambda = \frac{62 \times 10^{-3} \times 4 \times 10^{-4}}{60}$$

$$= 4.133 \times 10^{-7} = 4133 \times 10^{-10} \text{ m}$$

$$= 4133 \text{ Å}$$

যেহেতৃ এটি বেগুনি জালোর তরঞ্চাদৈর্ঘ্য। সূতরাং বেগুনি জালো ব্যবহার করতে হবে।

- ু২। আলোর ব্যতিচার পরীক্ষণে পরীক্ষার্থীরা প্রথম দুটি সুসংগত উৎস ব্যবহার করলো যেগুলো থেকে সমদশাবিশিষ্ট 5500 A তরজাদৈর্ঘ্যের আলোক তরজা নির্গত হয়। পর্দায় মিলিত তরজাদ্বয়ের পথ পার্থক্য 11000 A লক্ষ করলো। [মাদরাসা বোর্ড, ২০১৭; চ. বো. ২০১৫]
 - (क) উৎস হতে নির্গত প্রতিটি ফোটনের শক্তি হিসাব কর।
 - (খ) শিক্ষার্থীরা উক্ত পরীক্ষণে কোন ধরনের ব্যতিচার লক্ষ করল ? ---গাণিতিকভাবে বিশ্লেষণ কর।
 - (ক) উৎস থেকে নির্গত প্রতিটি ফোটনের শক্তি E

পথ পাৰ্থক্য = 11000 Å = 11000 × 10⁻¹⁰ m

জামরা জানি,
$$E=h\upsilon=\frac{hc}{\lambda}$$
 [$\because c=\upsilon\lambda$]
$$=\frac{6.63\times 10^{-34}\times 3\times 10^8}{5500\times 10^{-10}}$$

$$=3.62\times 10^{-19}~J=2.26~eV$$
 (খ) দেওয়া আছে, $\lambda=5500~\textrm{Å}=5500\times 10^{-10}~\textrm{m}$

আমরা জানি, দশা পার্থক্য
$$=\frac{2\pi}{\lambda}\times$$
পথ পার্থক্য
$$=\frac{2\pi}{5500\times10^{-10}}\times11000\times10^{-10}=4\pi$$

অর্থাৎ 4π দশা পার্থক্য এবং শূন্য দশা পার্থক্য একই কথা। তরজাদ্বয়ের মধ্যে দশা পার্থক্য শূন্য হলে গঠনমূলক ব্যতিচার হয়। তাই এক্ষেত্রে শিক্ষার্থীরা গঠনমূলক ব্যতিচার পর্যবেক্ষণ করবে।

- ৩। ইয়ং এর দ্বি-চিড় পরীক্ষার জন্য রাসেল $5.5 \times 10^{14}~{\rm Hz}$ কম্পাজ্কবিশিউ আলো ব্যবহার করে চিড় হতে $1.55~{\rm m}$ দূরত্বের পর্দায় ব্যতিচার ঝালর সৃষ্টি করল। যার পরপর দৃ্টি উজ্জ্বল ডোরার মধ্যবর্তী দূরত্ব $0.75~{\rm mm}$ । অন্যদিকে আরিফের পরীক্ষায় চিড় দৃ্টির মধ্যবর্তী দূরত্ব ছিল $2.0~{\rm mm}$ । চিড় হতে $1~{\rm m}$ দূরে পরপর দৃ্টি উজ্জ্বল ডোরার ব্যবধান $0.295~{\rm mm}$ ।
 - (ক) রাসেলের পরীক্ষায় চিড় দুটির মধ্যবর্তী ব্যবধান কত ছিল ?
 - (খ) রাসেল ও জারিকের মধ্যে কে বেশি তরভাদৈর্ঘ্যের আলো ব্যবহার করেছে, গাণিতিক যুক্তি দাও।

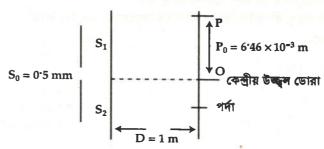
ত্রখানে, D = 1.55 m $\Delta z = 0.75 \text{ mm} = 0.75 \times 10^{-3} \text{ m}$ $n = 5.5 \times 10^{-14} \text{ Hz}$ ধরি, c = আলোর বেগ $\therefore \lambda = \frac{c}{n}$ 2d = ?

(খ) রাসেলের ব্যবহৃত আলোর তরজ্ঞাদৈর্ঘ্য, $\lambda = \frac{c}{n}$

$$\lambda = \frac{3 \times 10^8}{5.5 \times 10^{14}} = 5.45 \times 10^{-7} \, \text{m}$$

আরিফের পরীক্ষায় চিড়দ্বয়ের মধ্যকার দূরত্ব,

$$2d = 2 \text{ mm} = 2 \times 10^{-3} \text{ m}$$


$$D = 1 \text{ m}, \Delta z = 0.295 \text{ mm} = 0.295 \times 10^{-3} \text{ m}$$

$$\Delta z = \frac{\lambda' D}{2d}$$

$$\therefore \quad \lambda' = \frac{2d \times \Delta z}{D} = \frac{2 \times 10^{-3} \text{ m} \times 0.295 \times 10^{-3} \text{ m}}{1 \text{ m}}$$

$$= 5.9 \times 10^{-7} \text{ m}$$

যেহেতৃ $\lambda' > \lambda$ কাজেই আরিফ রাসেল অপেক্ষা বেশি তরজ্ঞাদৈর্ঘ্যের আলো ব্যবহার করেছে।

উদ্দীপকে 3800 Å তরজ্ঞাদৈর্ঘ্যের আলো ব্যবহার করে ইয়ং-এর দ্বি-চিড় পরীক্ষা সম্পন্ন করা হচ্ছে। চিত্রে $S_1S_2=0.5~\mathrm{mm},~\mathrm{OP}=6.46\times10^{-3}~\mathrm{m},~\mathrm{D}=1\mathrm{m}$

(ক) উদ্দীপকে কেন্দ্রীয় উজ্জ্বল ডোরা হতে পঞ্চম অন্থকার ডোরার দূরত্ব কত ?

- (খ) উদ্দীপকের P বিন্দুতে গঠনমূলক ব্যক্তিচার না ধ্বংসাজ্মক ব্যক্তিচার হবে গাণিতিক বিশ্লেষণের মাধ্যমে মতামত দাও। [ঢা. বো. ২০২৩ (মান ভিন্ন); ম. বো. ২০২১ (মান ভিন্ন); কু. বো. ২০১৬]
 - (ক) ধরি কেন্দ্রীয় উচ্ছ্বল ডোরা হতে পঞ্চম অস্থকার ডোরার দূরত্ব, x উদ্দীপক হতে $\lambda=3800~{\rm A}=3800\times 10^{-10}~{\rm m}$

$$2d = 0.5 \text{ mm} = 5 \times 10^{-4} \text{ m}$$

D=1 m

$$x=?$$

কেন্দ্রীয় উচ্জ্বল ডোরা হতে পঞ্চম অন্ধকার ডোরার দূরত্ব,

$$x = \frac{D}{2d} (2n+1)\frac{\lambda}{2}$$

$$= \frac{1 \times (2 \times 5 + 1)}{5 \times 10^{-4}} \times \frac{3800 \times 10^{-10}}{2}$$

$$= \frac{11 \times 3.8 \times 10^{-7} \times 10^{4}}{10}$$

 $= 4.18 \times 10^{-3} \text{ m} = 4.18 \text{ mm}$

(খ) কেন্দ্রীয় উচ্জ্বল ডোরা থেকে P বিন্দুর দূরত্ব, $OP = x_n = 6.46 \times 10^{-3} \, \mathrm{m}$ চিড়হয়ের মধ্যবর্তী দূরত্ব, $2d = 0.5 \, \mathrm{mm} = 5 \times 10^{-4} \, \mathrm{m}$ চিড় হতে পর্দার দূরত্ব, $D = 1 \, \mathrm{m}$

আমরা জানি, পথ পার্থক্য

$$\sigma = \frac{x_n \rho}{D} = \frac{6.46 \times 10^{-3} \times 5 \times 10^{-4}}{1}$$
$$= 3.23 \times 10^{-6} \text{ m} = 32300 \times 10^{-10} \text{ m}$$
$$= 32300 \text{ Å}$$

দশা পার্থক্য δ হলে,

$$\frac{\delta}{2\pi} = \frac{\sigma}{\lambda}$$

বা,
$$\frac{\delta}{2\pi} = \frac{32300}{3800}$$

$$\overline{41}, \quad \frac{\delta}{2\pi} = 8.5$$

 $\delta = 17 \pi = (8 \times 2\pi + \pi) = \pi$

যেহেতু দশা পার্থক্য π এর অযুগা গুণিতক সেহেতু P বিন্দুতে ব্যতিচার হবে ধ্বংসাত্মক।

- ে। রায়হান অপটিকস ল্যাবে 600 nm তর্জাদৈর্ঘ্যবিশিক একবর্ণী আলো 2 µm প্রস্থের চিড়বিশিক একটি অপবর্তন প্রেটিং-এর ওপর লক্ষ্বভাবে আপতিত করল। সে ধারণা করেছিল যে নয়টি চরম বিন্দু দেখতে পারবে।
 - (ক) ১ম ক্রম চরমগুলোর মধ্যবর্তী কৌণিক দূরত্ব কত ?
 - (খ) রায়হানের ধারণা কী সঠিক ছিল ? গাণিতিক বিশ্লেষণের সাহায্যে ব্যাখ্যা কর।

[সি. বো. ২০১৭]

(ক) আমরা জানি,

$$a\sin\theta_{n'}=(2n+1)\frac{\lambda}{2}$$

বা,
$$\sin \theta_n' = (2n+1)\frac{\lambda}{2a}$$

$$\overline{\text{41}}, \quad \sin \theta_n' = (2n+1) \times \frac{600 \times 10^{-9}}{2 \times 2 \times 10^{-6}} = 0.45$$

$$\therefore \quad \theta_{n}' = \sin^{-1}(0.45) = 26.74^{\circ}$$

$$\therefore$$
 20" = 2 × 26.74 = 53.48°

অতএব, ১ম ক্রম চরমগুলোর মধ্যবর্তী কৌণিক দূরত্ব 53:48°.

এখানে.

জালোর তরক্তা দৈর্ঘ্য,
$$\lambda = 600 \, \text{nm}$$
 $= 600 \times 10^{-9} \, \text{m}$

ক্রম সংখ্যা, n=1 চিড়ের বেধ, $a=2 \, \mu m = 2 \times 10^{-6} \, m$ ১ম ক্রমের চরমগুলির মধ্যবর্তী কৌণিক

(খ) উদ্দীপক হতে পাই

আলোর তরজা দৈর্ঘ্য, $\lambda = 600 \text{ nm} = 600 \times 10^{-9} \text{ m}$

চিড়ের বেধ, $a = 2 \mu m = 2 \times 10^{-6} m$

অপবর্তন কোণ সর্বোচ্চ, $\theta=90^\circ$ হতে পারে। এক্ষেত্রে যে কোনো একপাশে সর্বোচ্চ ক্রমের চরম বিন্দু সৃষ্টি হলে,

$$a \sin 90^\circ = (2n+1)\frac{\lambda}{2}$$
 $\therefore n = 0, 1, 2, 3 \dots$

বা,
$$2n+1=\frac{2a}{\lambda}$$

বা,
$$2n=\frac{2a}{\lambda}-1$$

∴
$$n = \frac{a}{\lambda} - \frac{1}{2} = \frac{2 \times 10^{-6}}{600 \times 10^{-9}} - \frac{1}{2} = 2.83 \approx 3$$
 [∵ n এর মান পূর্ণ সংখ্যক]

রায়হান কেন্দ্রীয় চরম ও এর উভয় পাশে তিনটি করে চরম দেখতে পাবে। অর্থাৎ রায়হান মোট 3+3+1=7টি চরম বিন্দু দেখতে পাবে।

অতএব, রায়হানের ধারণা সঠিক ছিল না।

৬। ইয়ং–এর দ্বি-চিড় পরীক্ষায় দুটি চিড়ের মধ্যবর্তী দূরত্ব 2 mm নেয়া হলো। এই চিড়ম্বয় থেকে 1m দূরত্বে পর্দায় ডোরার ব্যবধান 0'3 mm পাওয়া গেল।

- (ক) উদ্দীপকে ব্যবহৃত আলোর তরজ্ঞাদৈর্ঘ্য নির্ণয় কর।
- (খ) উপরোক্ত পরীক্ষায় পর্দার কোনো একটি বিন্দুতে তরজান্বয়ের পথ পার্থক্য 12000 Å হলে উক্ত বিন্দুতে কোন ধরনের ব্যতিচার সৃষ্টি হবে? গাণিতিক বিশ্লেষণসহ মতামত দাও। [সি. বো. ২০২১]

$$x = \frac{\lambda D}{2d}$$

বা,
$$\lambda = \frac{2dx}{D}$$

$$\therefore \quad \lambda = \frac{2 \times 10^{-3} \times 0.3 \times 10^{-3}}{1}$$

$$= 6 \times 10^{-7} \,\mathrm{m}$$

(খ) এখানে পথ পার্থক্য,

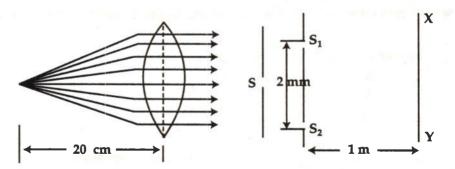
$$\sigma = 12000 \times 10^{-10} \text{ m}$$
$$= 12 \times 10^{-7} = 1.2 \times 10^{-6} \text{ m}$$

$$2d = 2 \text{ mm} = 2 \times 10^{-3} \text{ m}$$

$$D = 1m$$

$$x = 0.3 \,\mathrm{mm} = 0.3 \times 10^{-3} \,\mathrm{m}$$

$$\lambda = ?$$


$$\sigma = 12000 \text{ Å}$$

আমরা জানি.

দশা পার্থক্য,
$$\delta=\frac{2\pi}{\lambda}\times$$
 পথ পার্থক্য
$$=\frac{2\pi}{\lambda}\times\sigma=2\pi\times\frac{\sigma}{\lambda}$$

$$=2\pi\times\frac{1\cdot2\times10^{-6}}{6\times10^{-7}}=2\pi\times2$$

= $2 \times 2\pi = 4\pi$, অর্থাৎ দশা পার্থক্য π এর জ্বোড় গুণিতক যা গঠনমূলক ব্যতিচারের শর্ত। সূতরাং, এক্ষেত্রে গঠনমূলক ব্যতিচার সৃষ্টি হবে।

৭। নিচের চিত্রে ইয়ং-এর দ্বি-চিড় পরীক্ষার একটি ব্যবস্থা বোঝানো হয়েছে, যেখানে S_1 ও S_2 দূটি সুসংগত উৎস। ব্যবহৃত আলোর তরজাদৈর্ঘ্য $5800~{\mathring {
m A}}$ ।

- (क) উদ্দীপকে ব্যবহৃত দেলের ক্ষমতা নির্ণয় কর।
- (খ) পর্দার দূরত্ব 20 cm বৃশ্বি করে একই প্রস্থের ডোরা পাওয়া সম্ভব কী ? গাণিতিক বিশ্লেষণসহ মতামত দাও।
 - (ক) আমরা জানি, ক্ষমতা,

$$P = \frac{1}{f}$$

$$\therefore P = \frac{1}{0.2} = 5 D$$

(খ) আমরা জানি, ডোরার প্রস্থ,

$$x = \frac{\lambda D}{2d} \qquad \dots \qquad \dots$$

$$\therefore x = \frac{5800 \times 10^{-10} \times 1}{2 \times 10^{-3}} \text{ m}$$

$$= 2.9 \times 10^{-4} \text{ m}$$
(i)

এখানে.

এখানে .

দুই চিড়ের মধ্যেবর্তী দূরত্ব, 2d=2 mm $=2\times 10^{-3}$ m পর্দার দূরত্ব, D=1 m আলোর তরজাদৈর্ঘ্য, $\lambda = 5800 \, \text{Å} = 5800 \times 10^{-10} \, \text{m}$ ডোরার প্রস্থা, x=?

সমীকরণ (i) থেকে দেখা যায় যে ডোরার প্রস্থ তরচ্চাদৈর্ঘ্য λ , পর্দার দূরত্ব D এবং দূই চিড়ের মধ্যবর্তী দূরত্ব 2d এর ওপর নির্ভর করে। কিন্তু চিড় পরিবর্তন না করে মধ্যবর্তী দূরত্ব পরিবর্তন করা সম্ভব নয়। পর্দার দূরত্ব পরিবর্তন করলে একই প্রস্থের ডোরা পেতে হলে তরচ্চাদৈর্ঘ্যের পরিবর্তন করতে হবে অর্থাৎ উৎস পরিবর্তন করতে হবে।

ধরা যাক, নতুন উৎসের তরজ্ঞাদৈর্ঘ্য λ_1 এবং

D₁ = 1 m + 02 m = 12 m
의학자,

$$x' = \frac{\lambda_1 D_1}{2d}$$

বা, $\lambda_1 = \frac{2 dx'}{D_1}$
 $\therefore \lambda_1 = \frac{2 \times 10^{-3} \times 2.9 \times 10^{-4}}{1.2} = 4.833 \times 10^{-7} \text{ m}$
= 4833 × 10⁻¹⁰ m = 4833 Å

এখানে,

 $x' = 2.9 \times 10^{-4} \text{ m}$ $D_1 = 1.2 \text{ m}$ $2d = 2 \times 10^{-3} \text{ m}$ $\lambda_1 = ?$

সুতরাং, 4833 A তরজাদৈর্ঘ্যের আলো ব্যবহার করে একই প্রম্থের ডোরা পাওয়া সম্ভব।

৮। ইয়ং-এর বি-চিড় পরীক্ষায় চিড়ের মধ্যবর্তী দূরত্ব 0.3 mm। পর্দা থেকে চিড় দূটির দূরত্ব 1 m। বায়ু মাধ্যমে পরীক্ষায় উৎপনু কেন্দ্রীয় উজ্জ্বল ডোরা থেকে ৮ম উজ্জ্বল ডোরার দূরত্ব 6.2 mm। এ ব্যবস্থাটিকে পানির মধ্যে স্থাপন করে পর্যবেক্ষণ করা হলো। $\left(a\mu_w = \frac{4}{3}\right)$

- (क) পরীক্ষায় ব্যবহৃত আলোর তর**ভা**দৈর্ঘ্য বের কর।
- (খ) উদ্দীপকের ব্যবস্থাটি পানির মধ্যে থাকলে ডোরার বা ঝালরের কী পরিবর্তন হবে ?

[ঢা. বো. ২০২১ (মান ভিন্ন); ম. বো. ২০২১ (মান ভিন্ন); ব. বো. ২০১৯ (মান ভিন্ন); রা. বো. ২০১৬]
চ্রানি

(ক) আমরা জানি.

(খ) আবার, আমরা জানি,

$$_a\mu_w = \frac{\lambda_a}{\lambda_w}$$
, এখানে, $\lambda_w =$ পানিতে জালোর তরজাদৈর্ঘ্য
বা, $\lambda_w = \frac{\lambda_a}{_a\mu_w} = \frac{2325 \times 10^{-10}}{\frac{4}{3}}$
 $\therefore \quad \lambda_w = \frac{2325 \times 3 \times 10^{-10}}{4}$
 $= 1743.8 \times 10^{-10} \, \mathrm{m} = 1743.8 \, \mathring{\mathrm{A}}$

এখন পানিতে ৮ম উজ্জ্বল ডোরার দূরত্ব,

$$x_w = \frac{n\lambda_w D}{2d}$$

$$\therefore x_w = \frac{8 \times 1743.8 \times 10^{-10} \times 1}{3 \times 10^{-4}} \text{m}$$

$$= 4650 \times 10^{-6} \text{ m}$$

$$= 4.65 \times 10^{-3} \text{ m} = 4.65 \text{ mm}$$

এখানে, $x_a>x_w$; অর্থাৎ পানিতে ৮ম উচ্ছ্বল ডোরা কেন্দ্রীয় ডোরার দিকে $(6^{\circ}2-4^{\circ}65)~\mathrm{mm}=1^{\circ}55~\mathrm{mm}$ সরে আসে। অর্থাৎ ডোরার প্রস্থ কমে যায়।

আমরা জানি, বায়ুতে ডোরার প্রস্থ

$$x_a = \frac{\lambda_a D}{2d} = \frac{2325 \times 10^{-10} \times 1}{3 \times 10^{-4}} \text{ m}$$

= 775 × 10⁻⁶ m = 0.775 mm

এবং পানিতে ডোরার প্রস্থ,

$$x_w = \frac{\lambda_w D}{2d} = \frac{1743.8 \times 10^{-10} \times 1}{3 \times 10^{-4}}$$

 $= 581 \times 10^{-6} \text{ m} = 0.581 \text{ mm}$

প্রতিটি ডোরার প্রস্থ হ্রাস পায়.

 $x_a - x_w = 0.775 \, \text{mm} - 0.581 \, \text{mm} = 0.194 \, \text{mm}$ অর্ধাৎ পানিতে ডোরার প্রস্থ হ্রাস পাবে $= = 0.194 \, \text{mm}$

চিড়ের মধ্যবর্তী দূরত্ব বা প্রস্থ, $2d = 0.3 \, \text{mm} = 3 \times 10^{-4} \, \text{m}$ পর্দা ও চিড়ের মধ্যবর্তী দূরত্ব, $D = 1 \, \text{m}$ বায়ু মাধ্যমে কেন্দ্রীয় উচ্ছ্বল ডোরা থেকে ৮ম উচ্ছ্বল ডোরার দূরত্ব, $x_n = 6.2 \, \text{mm} = 6.2 \times 10^{-3} \, \text{m}$

 ${}_{a}\mu_{w} = \frac{4}{3}$

ডোরার ক্রম, n = 8 বায়ুতে আলোর তরজাদৈর্ঘ্য, λ_n = ?

- ১। বায়ুতে ইয়ং-এর একটি দ্বি-চিড় পরীক্ষায় ব্যবহৃত আলোর তরজাদৈর্ঘ্য 5200Å, পর্দার দূরত্ব 90 cm এবং চিড়ের ব্যবধান 0'4 mm। এরপর পরীক্ষণটি গ্লিসারিন ও কেরোসিন মাধ্যমে সম্মনু করা হয়। গ্লিসারিন ও কেরোসিনের প্রতিসরাক্ষ যথাক্রমে 1'47 এবং 1'44।
 - (ক) উদ্দীপকের পরীক্ষণটি হতে 7th অন্ধকার ডোরার দূরত্ব নির্ণয় কর।
 - (খ) গ্লিসারিন ও কেরোসিনে ডোরার প্রস্থ সমান পাওয়া বাবে কী? গাণিতিক মতামত দাও। [ম. বোর্ড ২০২১]

(ক) আমরা জানি,

$$x_n = \frac{n\lambda D}{2d}$$

∴ $x_7 = \frac{7 \times 5200 \times 10^{-10} \times 0.9}{0.4 \times 10^{-3}}$
 $= \frac{7 \times 5.2 \times 0.9 \times 10^{-4}}{0.4}$
 $= 8.19 \times 10^{-3} \text{ m}$
 $= 8.19 \text{ mm}$

এখানে,

$$n=7$$

 $2d=0.4 \text{ mm} = 0.4 \times 10^{-3} \text{ m}$
 $\lambda=5200 \text{ Å}=5200 \times 10^{-10} \text{ m}$
 $D=90 \text{ cm}=0.9 \text{ m}$

(খ) জাবার,
$$\frac{\lambda_a}{\lambda_g} = \frac{\mu_g}{\mu_a} = \frac{x_a}{x_g}$$

$$\therefore \quad x_g = \frac{\mu_a x_a}{\mu_g} \qquad \left[\therefore \quad x_a = \frac{8.19}{7} = 1.17 \text{ mm} = 1.17 \times 10^{-3} \text{ m} \right]$$

$$= \frac{1 \times 1.17 \times 10^{-3}}{1.47}$$

$$= 0.7959 \times 10^{-3} \text{ m} = 0.7959 \text{ mm}$$

এবং
$$x_k = \frac{1 \times 1.17 \times 10^{-3}}{1.44} = 0.8125 \times 10^{-3} \text{ m} = 0.8125 \text{ mm}$$

গ্রিসারিন ও কেরোসিনে ডোরার প্রস্থ ভিন্নতর হবে।

- ১০। জারা পদার্থবিজ্ঞান গবেষণাগারে ইয়ং-এর দ্বি-চিড় পরীক্ষাঘ 0'2 cm ব্যবধানে অবস্থিত দূটি চিড়ে জালো কেলল। চিড় থেকে 100 cm দূরে পর্দায় ডোরার প্রস্থ 0'03 cm পেল। ডোরার প্রস্থ বৃশ্বি করার জন্য জারা চিড়ের ব্যবধান কমিয়ে 0'15 cm এবং পর্দার দূরত্ব বাড়িয়ে 150 cm করল।
 - (ক) পরীক্ষায় ব্যবহৃত আলোর কম্পাভক নির্ণয় কর।
 - (খ) ডোরার প্রস্থ বৃদ্ধি করার জন্য জারা যে কাজটি করেছে তা যথার্থ কি না? গাণিতিক বিশ্লেষণপূর্বক মন্তব্য কর। [রা. বো. ২০২১]

জামরা জানি,
$$x = \frac{\lambda D}{2d}$$

$$2d = 0.2 \text{ cm} = 2 \times 10^{-3} \text{ m}$$

$$D = 100 \text{ cm} = 1 \text{ m}$$

$$x = 0.03 \text{ cm} = 3 \times 10^{-4} \text{ m}$$

$$v = 9$$

জাবার,
$$\upsilon = \frac{c}{\lambda}$$
 : $\upsilon = \frac{3 \times 10^8}{6 \times 10^{-7}} = 0.5 \times 10^{15} = 5 \times 10^{14} \text{ Hz}$

 $\lambda = 3 \times 2 \times 10^{-7} = 6 \times 10^{-7} \,\mathrm{m}$

(খ) এক্টেরে, $2d = 0.15 \text{ cm} = 15 \times 10^{-4} \text{ m}$ এবং D = 150 cm = 1.5 m

$$x = \frac{2d}{2d}$$

$$\therefore x = \frac{6 \times 10^{-7} \times 1.5}{15 \times 10^{-4}} = \frac{9.0 \times 10^{-3}}{15} = 6 \times 10^{-4} \,\mathrm{m}$$

পূর্বের তুলনায় প্রস্থ দ্বিগুণ হবে। সুতরাং, কাজটি যথার্থ হয়েছে।

 $\lambda = 5000 \text{ Å} = 5 \times 10^{-7} \text{ m}$

 $\lambda = 5460 \text{ Å} = 5460 \times 10^{-10} \text{ m}$ D = 1 m n = 4 $x_n = 5 \text{ mm} = 5 \times 10^{-3} \text{ m}$

 $2d = 0.1 \text{ mm} = 0.1 \times 10^{-3} \text{ m}$

- ১১। ইয়ং-এর দ্বি-চিড় পরীক্ষায় 5000 $\mathring{\mathbf{A}}$ তরজ্ঞাদৈর্ঘ্যের আলো প্রয়োগ করা হলো। চিড়দ্বয়ের মধ্যবর্তী দূরত্ব 0.1 mm এবং চিড় থেকে পর্দার দূরত্ব $2\,\mathrm{m\,I}$
 - (ক) কেন্দ্রীয় উজ্জ্বল ডোরা হতে দশম উজ্জ্বল ডোরার দূরত্ব কত ?
- খে) দশম উজ্জ্বল ডোরা এবং দশম অন্ধকার ডোরার মধ্যকার কৌণিক অবস্থান গাণিতিক বিশ্লেষণসহ তুলনা কর। [অভিনু প্রশু (ক ও খ সেট) ২০১৮]

(ক) আমরা জানি,

$$x_n = n\lambda \frac{D}{2d}$$

$$= \frac{10 \times 5 \times 10^{-7} \times 2}{0.1 \times 10^{-3}} = 0.1 \text{ m}$$

(খ) উচ্ছাল ডোরার ক্ষেত্রে আমরা জানি, $a \sin \theta = n\lambda$

বা,
$$\sin \theta = \frac{n\lambda}{a}$$

$$\therefore \quad \theta = \sin^{-1}\frac{n\lambda}{a} = \sin^{-1}\left(\frac{10 \times 5 \times 10^{-7}}{0.1 \times 10^{-3}}\right) = 2.87^{\circ}$$

অস্থকার ডোরার ক্ষেত্রে,

$$a \sin \theta' = (2n - 1)\frac{\lambda}{2}$$

$$\theta' = \sin^{-1}\left\{(2n - 1) \times \frac{\lambda}{2a}\right\}$$

$$= \sin^{-1}\left\{(2 \times 10 - 1) \times \frac{5 \times 10^{-7}}{2 \times 0.1 \times 10^{-3}}\right\} = 2.72^{\circ}$$

সূতরাং গাণিতিক বিশ্লেষণ থেকে দেখা যায় দশম উচ্জ্বল ডোরা ও দশম অম্থকার ডোরার মধ্যবর্তী কৌণিক অবস্থানের পার্থক্য $\Delta\theta=\theta-\theta'=2.87-2.72=0.15^\circ$.

- ১২। পরীক্ষাগারে ইয়ং-এর দ্বি-চিড় পরীক্ষা সম্পন্ন করতে গ্র্প বি-এর শিক্ষার্থীরা $5460~{\rm \AA}$ তরজ্ঞাদৈর্ঘ্যের সবুজ আলো দ্বারা একটি পর্দাকে আলোকিত করলো। ফলে খ্লিটগুলো হতে $1~{\rm m}$ দূরে পর্দার ওপর যে ব্যতিচার পট্টি দেখা গেল তার চারটি উজ্জ্বল ডোরার ব্যবধান $5~{\rm mm}$ ।
 - (ক) উদ্দীপকে ব্যবহৃত স্লিট দুটোর মধ্যবর্তী দূরত্ব কত ?
 - (খ) উদ্দীপকের পরীক্ষণটি পানিতে রেখে সম্পন্ন করলে ডোরার প্রস্থের কোনোরূপ পরিবর্তন হতো কি না? গাণিতিক বিশ্লেষণের মাধ্যমে তোমার মতামত দাও। বি. বো. ২০২৩ (মান ভিন্ন); রা. বো. ২০১৯]
 - (ক) আমরা জানি,

$$x_n = \frac{n\lambda D}{2d}$$

$$4 = \frac{nD\lambda}{x_n} = \frac{4 \times 1 \times 5460 \times 10^{-10}}{5 \times 10^{-3}}$$

$$2d = 0.437 \times 10^4 \times 10^{-7} \text{ m} = 0.437 \times 10^{-3} \text{ m}$$

$$= 0.437 \text{ mm}$$

স্তরাং, স্লিট দ্টির মধ্যবর্তী দ্রত্ব, $2d=0.437 \, \mathrm{mm}$

(খ) আবার, আমরা জানি,

$$_{n}\mu_{w} = \frac{\lambda_{a}}{\lambda_{w}} \, \text{TI}, \, \lambda_{w} = \frac{\lambda_{a}}{_{n}\mu_{w}} = \frac{5460 \times 10^{-10}}{1.5} = 3640 \times 10^{-10} \, \text{m}$$

এখন পানিতে চারটি ডোরার প্রস্থ,

$$x_w = \frac{n\lambda_w D}{2d} = \frac{4 \times 3640 \times 10^{-10}}{0.437 \times 10^{-3}}$$

= 3.33 × 10⁻³ m = 3.33 mm

এখানে $x_n>x_w$, অর্থাৎ পানিতে চারটি উজ্জ্বল ডোরা কেন্দ্রের দিকে (5 — 3.33) = $1.67~\mathrm{mm}$ সরে আসবে।

- ১৩। ইয়ং-এর হি-চিড় পরীক্ষায় চিড় দুটির ব্যবধান 0'4 mm এবং পর্দার দূরত্ব 1 m। 3100 Å তরভাদৈর্ঘ্যের আলো চিড়ের ওপর ফেলা হলে পর্দায় কেন্দ্র হতে ডানে বা বায়ে 12টি উজ্জ্বল ডোরা দেখা যায়। চিড়ের মধ্যবর্তী ব্যবধান কমানো হলে পর্দায় দৃশ্যমান ডোরার পরিবর্তন হয়।
 - পর্দায় 12তম উজ্জ্বল ডোরার কৌণিক সরণ নির্ণয় কর।
 - (খ) চিড় দুটির ব্যবধান অর্ধেক করা হলে পূর্ববর্তী 12টি উজ্জ্বল ডোরার স্থানে পরিবর্তিত ডোরার সংখ্যার কী পরিবর্তন হবে? উদ্দীপকের আলোকে গাণিতিক বিশ্লেষণ দাও। (রা. বো. ২০২৩ (মান ভিন্ন);

য. বো. ২০২৩ (মান ভিন্ন); চ. বো. ২০২৩ (মান ভিন্ন); কু. বো. ২০১৯]

 $2d = 0.4 \text{ mm} = 0.4 \times 10^{-3} \text{ m}$ D = 1 m $\lambda = 3100 \text{ A} = 3100 \times 10^{-10} \text{ m}$ n = 12

(ক) স্বামরা জানি, কৌণিক ব্যবধান,

$$\theta = \frac{\lambda}{2d}$$
বা, $\theta = \frac{3100 \times 10^{-10}}{0.4 \times 10^{-3}}$

$$3100 \times 10^{-10} \quad 180$$

 $\therefore \quad \theta \quad = \frac{3100 \times 10^{-10}}{0.4 \times 10^{-3}} \times \frac{180}{\pi} = 0.044^{\circ}$

(খ) আবার, আমরা জানি, 12তম ডোরার দূরত্ব,

$$x_n = \frac{n\lambda D}{2d}$$

$$\therefore x_{12} = \frac{12 \times 3100 \times 10^{-10} \times 1}{0.4 \times 10^{-3}} = 9.3 \times 10^{-3} \,\text{m}$$

এখন, চিড় দুটির ব্যবধান অর্ধেক করা হলে, অর্ধাৎ $2d=\frac{0.4\,\mathrm{mm}}{2}=0.2\,\mathrm{mm}=0.2\times10^{-3}\,\mathrm{m}$ করলে ওই দূরত্বে ডোরার সংখ্যা পাই,

$$x_n = \frac{n\lambda D}{2d}$$

$$\therefore n = \frac{x_n \times 2d}{\lambda D} = \frac{9.3 \times 10^{-3} \times 0.2 \times 10^{-3}}{3100 \times 10^{-10} \times 1} = 6$$

$$\frac{4 \text{খানে}}{x_n} = 9.3 \times 10^{-3} \text{ r}$$

$$\lambda = 3100 \times 10^{-3} \text{ r}$$

$$D = 1 \text{ m}$$

$$n = ?$$

সৃতরাং, চিড় দুটির ব্যবধান অর্ধেক করা হলে 6টি ডোরা সৃষ্টি হবে।

১৪। রিয়া এবং রিপা দুটি অপবর্তন গ্রেটিং নিয়ে পরীকা করছিল। রিয়ার গ্রেটিং-এ প্রতি সেন্টিমিটারে দাগসংখ্যা 6000। এর ভেতরে কমলা রঙের আলো ফেলা হলো। অপরদিকে রিপার গ্রেটিং-এর গ্রেটিং ধ্বক 1'6 × 10⁻⁶ m। সে সবুজ আলো নিয়ে পরীকা করছিল। রিয়া বললো প্রথম উজ্জ্বল রেখার জন্য অপবর্তন কোণ আমার কেত্রে বেশি হবে। রিপা বললো, দেখা যাক।

আলোর বর্ণ	তর ন্ধা দৈর্ঘ্য (Å)
ক্ষলা	6000
সবৃজ	5000
বেগুনি	4000

- (क) বেগুনি আলোর ক্ষেত্রে একটি ফোটনের শক্তি নির্ণয় কর।
- (খ) রিয়ার উক্তি যথার্থ কি না হিসাব কর।
- (ক) আমরা জানি,

$$E_{V} = \frac{hc}{\lambda} = \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{4000 \times 10^{-10}}$$
$$= 4.97 \times 10^{-19} J$$
$$= \frac{4.97 \times 10^{-19}}{1.6 \times 10^{-19}} eV$$
$$= 3.11 eV$$

[ব. বো. ২০২২]

বেগুনি আলোর তরজ্ঞাদৈর্ঘ্য : $\lambda_{\rm V} = 4000 {\rm \AA} = 4000 \times 10^{-10} \, {\rm m}$ $h = 6.63 \times 10^{-34} \, {\rm Js}$ n = 1 $E_{\rm V} = ?$ কমলা আলোর তরজ্ঞাদৈর্ঘ্য : $\lambda_{\rm C} = 6000 {\rm \AA} = 6000 \times 10^{-10} \, {\rm m}$ N = 6000

(খ) গ্রেটিং ধ্রবক,

$$d = \frac{1}{N} = \frac{1 \text{ cm}}{6000} = \frac{1 \times 10^{-2}}{6000}$$

আমরা জানি.

$$d \sin \theta_1 = n\lambda$$

$$\sin \theta_1 = \frac{n\lambda}{d} = \frac{1 \times 6000 \times 10^{-10}}{\frac{1 \times 10^{-2}}{6000}}$$
$$= \frac{1 \times 6000 \times 10^{-10} \times 6000}{1 \times 10^{-2}} = 0.36$$

রিয়ার আলোর তরক্তা দৈর্ঘ্য.

$$\lambda = 6000 \text{Å} = 6000 \times 10^{-10} \text{ m}$$

$$n =$$

$$\theta_1 = \sin^{-1} 0.36 = 21.1^{\circ}$$

ভাবার, $d \sin \theta_2 = n\lambda$

$$\sin \theta_2 = \frac{n\lambda}{d}$$

$$\sin \theta_2 = \frac{1 \times 5000 \times 10^{-10}}{1.6 \times 10^{-6}}$$

$$\sin \theta_2 = 0.3125$$

 $\theta_2 = \sin^{-1}(0.3125) = 18.21^\circ$

রিপার আলোর তরজা দৈর্ঘ্য,

$$\lambda = 5000 \text{Å} = 5000 \times 10^{-10} \text{ m}$$

$$n = 1$$

$$d = 1.6 \times 10^{-6} \,\mathrm{m}$$

$$\theta_2 = ?$$

এখানে $\theta_1 > \theta_2$; অর্থাৎ রিয়ার ক্ষেত্রে অপর্বতন কোণ (21.1°) রিয়ার অপবর্তন কোণ (18.21°) অপেক্ষা বেশি। রিয়ার উক্তিটি যথার্থ।

সার-সংক্ষেপ

পয়েন্টিং ভেক্টর

কোনো একক ক্ষেত্রফলের মধ্য দিয়ে যে পরিমাণ শক্তি অতিক্রম করে তাকে পয়েনিং

ভেক্টর বলে। একে S দারা চিহ্নিত করা হয়। $S = E \times H$ ।

তডিৎ চৌম্বকীয় বৰ্ণালি

 তড়িৎ চৌম্বকীয় তরক্ষোর কম্পাঙ্কের বা তরক্ষাদৈর্ঘ্যের পাল্লা বিস্তৃত। এর প্রসারতা $10^4\,\mathrm{Hz}$ -এর কম থেকে $10^{23}\,\mathrm{Hz}$ -এর বেশি পর্যন্ত বিস্তৃত। বিস্তৃত এ পরিসরকে

তড়িৎ চৌম্বকীয় বর্ণালি বলে।

তরভামুখ

: তরজাস্থিত সমদশাসম্পন্ন বিন্দুগুলি যে তলে অবস্থান করে তাকে উক্ত তরজোর

তরক্তামুখ বলে।

হাইগেনসের নীতি

: কোনো একটি তরজামুখের ওপর অবস্থিত প্রতিটি বিন্দু কম্পন বা আন্দোলনের এক একটি উৎস হিসেবে বিবেচিত হয়। ওই গৌণ উৎসগুলো হতে সৃষ্ট তরক্ষামালা মূল তরজ্ঞার সমান বেগে সামনের দিকে অগ্রসর হয়। যেকোনো সময়ে ওই সব গৌণ তরজ্ঞামালাকে স্পর্শ করে একটি তল অংকন করলে ওই তলই ওই সময়ের

তরজামুখের নতুন অবস্থান নির্দেশ করে।

প্রতিফলনের সূত্র— ১ম সূত্র : আপতিত রশ্মি, আপতন বিন্দুতে অভিকত অভিলম্ম এবং প্রতিফলিত রশ্মি একই

সমতলে অবস্থান করে।

প্রতিসরণের সূত্র—

২য় সূত্র : আপতন কোণ $\angle i$ = প্রতিফলন কোণ $\angle r$ ।

১ম সূত্র : আপতিত রশ্মি, আপতন বিন্দুতে অঞ্চিত অঞ্চিলম্ম এবং প্রতিসূত রশ্মি একই সমতলে অবস্থান করে।

২য় সূত্র : এক জ্বোড়া নির্দিষ্ট মাধ্যম এবং একটি নির্দিষ্ট বর্ণের আলোক রশ্মির জন্য আপতন কোণের সাইন এবং প্রতিসরণ কোণের সাইন-এর অনুপাত একটি ধ্রব রাশি। একে д দারা প্রকাশ করা হয়। এর নাম প্রতিসরাক্ষ।

তড়িৎ চুম্বকীয় তরজা

: শূন্যস্থান দিয়ে আলোর দুতিতে গতিশীল তড়িৎ ও চৌন্দক আলোড়ন, যাতে তড়িৎ ও চৌম্বক ক্ষেত্র পরস্পর লম্ব এবং এরা উভয়ে তরঞ্চা সঞ্চালনের অভিমুখের সাথে লম্ম বরাবর থাকে তাকে তড়িৎ চুম্মকীয় তরজা বলে।

পদার্থবিজ্ঞান—দ্বিতীয় পত্র లిడ్ দটি তর্জা কোনো মাধ্যমের কোনো একটি কণাকে একই সজো অতিক্রম করলে তরক্ষোর উপরিপাতন প্রতিটি তরজাই কণাটিকে স্থানান্তরিত করবে। ফলে কণাটির একটি লঙ্গি সরণ ঘটবে। এই লব্ধি সর্গ তর্জা দটি কর্তক পথক পথক সর্গের বীজগাণিতিক যোগফলের সমান হবে। একে তরজ্ঞার উপরিপাতন বলে। তর্জা দৃটি একই দশায় আপতিত হলে লব্ধি সরণ, $y = y_1 + y_2$ তরজা দুটি বিপরীত দশায় আপতিত হলে লব্দি সরণ, $y = y_1 - y_2$ দুটি উৎস হতে সমদশাসম্পন্ন বা কোনো নির্দিষ্ট দশা পার্থক্যের একই তরজ্ঞাদৈর্ঘ্যের সুসংগত উৎস দুটি আলোক তরজা নিঃসৃত হলে তাদেরকে সুসংগত উৎস বলে। দুটি উৎস হতে সমান কম্পাজ্ঞ ও বিস্তারের দুটি আলোক তরজ্ঞার উপরিপাতনের গঠনমূলক ব্যতিচার ফলে উজ্জ্বল বিন্দু পাওয়া গেলে তাকে গঠনমূলক ব্যতিচার বলে। দটি উৎস হতে সমান কম্পাজ্ক ও বিস্তারের দুটি আলোক তরজ্ঞার উপরিপাতনের ধ্বংসাত্মক ব্যতিচার केल जन्धकात विन् भाष्या भाषा जातक ध्वश्माजुक व्यक्तित वरन। যেকোনো একটি চিড়ের শুরু থেকে পরবর্তী চিড়ের শুরু পর্যন্ত দূরত্বকে গ্রেটিং ধ্রুবক বলে। অথবা যেকোনো চিড়ের শেষ প্রান্ত থেকে পরবর্তী চিড়ের শেষ প্রান্তের গ্ৰেটিং ধ্ৰবক দরতকে গ্রেটিং ধ্রবক বলে। যে সমবর্তনে আলোক তরজোর কম্পন একটি নির্দিষ্ট সমতলে সীমাবন্ধ থাকে সমতল বা রৈখিক সমবর্তন তাকে সমতল বা রৈখিক সমবর্তন বলে। বিজ্ঞানী স্যার ডেভিড ব্রস্টার বিভিন্ন পরীক্ষালব্ধ ফলাফল থেকে দেখান যে সমতল ব্রুস্টারের সূত্র কোণের ট্যানজেটের মান প্রতিসারক মাধ্যমের আপেক্ষিক প্রতিসরাজ্কের সমান। একেই ব্রস্টারের সূত্র বলে। সমবর্তিত আলোক বিশ্লেষকের মধ্য দিয়ে যাওয়ার ফলে এর তীব্রতা সমবর্তক ও ম্যালানের সূত্র বিশ্রেষকের সমবর্তন অক্ষদ্বয়ের মধ্যবর্তী কোণের কোসাইনের বর্গের সমানুপাতিক হয়। নিঃসৃত আলোর তীব্রতা I এবং সমবর্তন অক্ষদয়ের মধ্যবর্তী কোণ θ হলে. I ∞ $(\cos \theta)^2$ একই রং-এর সমান কম্পাঙ্ক ও বিস্তারের দুটি আলোক তরজা কোনো মাধ্যমের আলোকের ব্যতিচার এই ঘটনাকে আলোকের ব্যতিচার বলে। ব্যতিচার ঝালর

কোনো একটি বিন্দুর মধ্য দিয়ে একই সজো গমন করলে তরজা দুটির উপরিপাতনের ফলে বিন্দুটি কখনো খুব উজ্জ্বল ও কখনো কখনো অন্ধকার দেখায়।

সমান কম্পাঙ্ক ও বিস্তারের দুটি আলোক তরজোর উপরিপাতনের ফলে ব্যতিচার সৃষ্টি হয়। ফলে কোনো তলে বা পর্দায় অনেকগুলো পরস্পর সমান্তরাল উচ্ছ্বল ও অন্ধকার রেখা পাওয়া যায়। এই উচ্চ্বল ও অন্ধকার রেখা বা ডোরাগুলোকে আলোকের ব্যতিচার ঝালর বলে।

অপবর্তন

: কোনো অম্বচ্ছ ধার বা কিনারা ঘেঁষে বেঁকে আলোকের অগ্রসর হওয়ার ধর্মকে আলোকের অপবর্তন বলে। অপবর্তন দুই প্রকার; যথা— (ক) ফ্রেনেল শ্রেণি অপবর্তন ও (খ) ফ্রনহফার শ্রেণি অপবর্তন।

অপবর্তন গ্রেটিং

অপবর্তন সৃষ্টির জন্য একটি বিশেষ পুন্থা বা উপায়ের নামই অপবর্তন গ্রেটিং। অনেকগুলো সমপ্রস্থ রেখাছিদ্র পাশাপাশি স্থাপন করে অপবর্তন গ্রেটিং গঠন করা হয়।

ফ্রেনেল শ্রেণি অপবর্তন

যখন উৎস এবং পর্দা তাদের মধ্যবর্তী বাধা হতে অল্প দূরত্ত্বের মধ্যে অবস্থান করে তখন ওই বাধার দরুন পর্দায় আলোকের যে অপবর্তন পরিলক্ষিত হবে তাকে ফ্রেনেল শ্ৰেণি অপবর্তন বলে।

ফ্রনহফার শ্রেণি অপবর্তন

: যখন উৎস এবং পর্দা তাদের মধ্যবর্তী বাধা হতে অসীম দূরত্বে অবস্থান করে তখন ওই বাধার দরুন পর্দায় যে অপবর্তন পরিলক্ষিত হবে তাকে ফ্রনহফার শ্রেণি অপবর্তন বলৈ।

সমতল নিঃসরণ গ্রেটিং

: সমতল নিঃসরণ গ্রেটিং বলতে একটি কাচ বা অনুরূপ কোনো পদার্থের একটি পাত বুঝায় যার ওপর সূচালো হীরক বিন্দু দারা সমব্যবধানে সমান্তরালভাবে খুবই কাছাকাছি বহু সংখ্যক দাগ কাটা থাকে।

অপবর্তনের শর্ত

: অপবর্তনের দুটি শর্ত রয়েছে; যথা---

(ক) খাড়া ধারের ক্ষেত্রে: ধার খুব তীক্ষ হতে হবে এবং এর প্রস্থ আলোর তরজা-দৈর্ঘ্য λ-এর সমান বা কাছাকাছি মানের হতে হবে।

(খ) সরু ছিদ্রের ক্ষেত্রে: ছিদ্র খুবই সরু হতে হবে যাতে এর ব্যাস তরজ্ঞাদৈর্ঘ্যের সমান বা কাছাকাছি মানের হয়।

গ্রেটিং উপাদান বা গ্রেটিং ধ্রবক : কোনো সমতল নিঃসরণ গ্রেটিং এর অষচ্ছ রেখার বেধ 'b' এবং ষচ্ছ অংশের বেধ 'a' হলে (a + b) দূরত্বকে গ্রেটিং উপাদান বা গ্রেটিং ধ্রবক বলে।

আলোকের সমবর্তন বা

পোলারায়ন

যে প্রক্রিয়ায় বিভিন্ন তলে কম্পমান আলোক তরজ্ঞাকে একটি নির্দিষ্ট তল বরাবর কম্পনক্ষম করা যায় তাকে আলোকের সমবর্তন বা পোলারায়ন বলে।

সমবর্তিত আলোক

একটি তলে কিংবা এর সমান্তরাল তলে কম্পমান আড় তর্ক্তাবিশিষ্ট আলোককে

সমবর্তিত আলোক বলে।

অসমবর্তিত আলোক

যে আলোকের কণাগুলোর কম্পন গতিপথের লম্ম অভিমুখে চারদিকে সমান বিস্তারে কম্পিত হয় তাকে অসমবর্তিত বা সাধারণ আলোক বলে।

কম্পন তল

কোনো তরক্ষোর কণাসমূহ যে সমতলে কম্পিত হয় তাকে কম্পন তল বলে।

সমবর্তন কোণ

কোনো প্রতিফলক মাধ্যমে আপতন কোণের যে সুনির্দিষ্ট মানের জন্য সমবর্তন স্বাধিক হবে সেই আপতন কোণকে সমবর্তন কোণ বলে।

সমবর্তন তল দৈত প্রতিসরণ কম্পন তলের সাথে যে তল লম্মভাবে অবস্থান করে, তাকে সমবর্তন তল বলে। এমন কতকগুলো কেলাস আছে যাদের মধ্য দিয়ে আলোক রশ্মি গমন করলে এটি

দুটি প্রতিসূত রশ্মিতে বিভক্ত হয়। এই পশ্বতিকে দ্বৈত প্রতিসরণ বলে।

সরলাক্ষ

সকল দ্বৈত প্রতিসারক কেলাসের এমন একটি নির্দিষ্ট অভিমুখ থাকে যে দ্বৈত প্রতিসরণ দারাই আলোক প্রতিসৃত হয়। কেলাসের এই অভিমুখকৈ সরলাক্ষ বলে।

কোনো রশ্মির সাপেক্ষে প্রধান তল বলতে আমরা এমন একটি তলকে বুঝি যা ওই রশ্মি এবং কেলাসের সরলাক্ষের মধ্য দিয়ে গমন করে।

প্রধান ছেদ

186

প্রধান তল

কোনো কেলাসের সরদাক্ষ বরাবর এবং এর দুই বিপরীত পৃষ্ঠের সমকোণে বিবেচিত

তলকে ওই কেলাসের প্রদান ছেদ বলে।

1 আলোক বর্ষ

এক বছরে আলোক রশ্মি যে দূরত্ব অভিক্রম করে তাকে 1 আলোক বর্ষ বলে।

বহুনির্বাচনি প্রশ্নের উত্তরের জন্য প্রয়োজনীয় বিষয়াবলির সার-সংক্ষেপ

- আলো এক প্রকার তড়িৎচুম্বক তরজ্ঞা। তড়িচুম্বকীয় তরজ্ঞা লম্বিক তরজ্ঞা না অনুপ্রস্থ তরজ্ঞা তা সমবর্তন 11 পরীক্ষা থেকে জানা যায়।
- তডিৎ চৌম্বক বর্ণালিতে অবলোহিত রশ্মির তরজ্ঞাদৈর্ঘ্য বেশি। २।
- আলোক হলো বিকিরণ কোয়ান্টা, ফোটন কণা। ফোটনের তরজাদৈর্ঘ্য $3000~ ext{\AA}$ এবং কম্পান্ধ্য $10^{15}~ ext{Hz}$ । 91
- হাইগেনের তরজ্ঞামূখ গঠনের তত্ত্ব দিয়ে বর্ণালির উৎপত্তির ব্যাখ্যা করা যায় না। 81
- দৃশ্যমান বর্ণালির তরজ্ঞাদৈর্ঘ্যের পরিমাণ $4 imes 10^{-7}\,\mathrm{m} 7 imes 10^{-7}\,\mathrm{m}$ এবং শক্তি পাল্লা $(2-3)\,\mathrm{eV}$ হয়। 61
- আলোর কম্পন বলতে বোঝায়— (i) $\stackrel{\longrightarrow}{E}$ এর কম্পন (ii) $\stackrel{\longrightarrow}{B}$ এর কম্পন (iii) $\stackrel{\longrightarrow}{E}$ ও $\stackrel{\longrightarrow}{B}$ এর মধ্যবর্তী কোণ 90° । ঙা
- তিনটি বর্ণের জন্য $\lambda_{
 m R} > \lambda > \lambda_v$ । 91

যে. বো. ২০১৫]

- ব্যতিচার এক ধরনের উপরিপাতন। শব্দ তরক্ষোর পোলারণ সম্ভব না। 61
- সমবর্তন নামক আলোকীয় ঘটনা মাধ্যমের পরিবর্তনের কারণে প্রভাবিত হয় না। ৯।
- সূর্যের আলোর তরজাগুলোর আকৃতি স<mark>মতল, সমবর্তন ঘটে আড় তরজো।</mark> 106
- মাইকেলসন-মর্লির পরীক্ষায় ইথারের অস্তিত্ব ভুল প্রমাণিত হয়। 166

চিত্রে OY প্রতিসরিত রশ্মি।

- একক চিড়ের দরুন অপবর্তনের ক্ষেত্রে অবমের শর্ত হলো $d \sin \theta = (2n)\lambda/2$ । আবার ফ্রনহফার অপবর্তনের 106 জন্য আপতিত আলোক তর**জামুখ হতে হবে সমতল**।
- তরজ্ঞার উপরিপাতনের ফলে ঘটে ব্যতিচার। 184
- 136 তরজামুখে কণাগুলোর দশা পার্থক্য 0°। α-কণা তড়িৎচুম্বকীয় তরজা নয়।
- পথ পার্থক্য দশা পার্থক্যের $\dfrac{\lambda}{2\pi}$ গুণ। সম্পর্কটি হলো $\dfrac{\sigma}{\lambda}=\dfrac{\delta}{2\pi}$; এখানে $\delta=$ দশা পার্থক্য, $\sigma=$ পর্থ পার্থক্য। 186

- ১৭। গঠনমূলক ব্যতিচারের জন্য পথ পার্থক্য $n\lambda$ । আর ধ্বংসাত্মক ব্যতিচারের জন্য পথ পার্থক্য $(2n+1)\lambda/2$ ।
- ১৮। $1 \stackrel{\circ}{A}$ তরজ্ঞাদৈর্ঘ্যের একবর্ণী X-ray শক্তি = $2 \times 10^{15} \, \mathrm{J}$ ।
- ১৯। ইয়ং এর দ্বি-চিড পরীক্ষায় চিড়ন্বয়ের মধ্যবর্তী দূরত্ব ক্রমান্বয়ে বাড়ালে ডোরা প্রস্থ ক্রমান্বয়ে ক্মবে।
- ২০। মাইকেলসন-মর্লি পরীক্ষা ইথার তত্ত্বকে বর্জন করে। বেতার তরজা, দৃশ্যমান আলো, X-রে তড়িৎচুন্দকীয় তরজা।
- ২১। যে স্থানে আলোর তীব্রতা কম সেম্থানে সংঘটিত হয়—ধ্বংসাত্মক ব্যতিচার।
- ২২। একটি তরজ্ঞার দূটি বিন্দুর পথ পার্থক্য $\frac{\lambda}{4}$ হলে, দশা পার্থক্য হবে $\frac{\pi}{2}$ । আবার একটি তরজ্ঞার দূটি বিন্দুর মধ্যে দশা পার্থক্য π হলে বিন্দুর্য়ের মধ্যে পথ পার্থক্য $\frac{\lambda}{2}$ এবং একটি তরজ্ঞার দূটি বিন্দুর দশা পার্থক্য $\frac{\pi}{2}$ হলে বিন্দুর্য়ের পথ পার্থক্য $\frac{\lambda}{4}$ । আবার পথ পার্থক্য $\frac{\lambda}{2}$ হলে দশা পার্থক্য π ।
- ২৩। দুটি চিড়ের ব্যবধান a ও চিড় হতে পর্দার দূরত্ব D হলে ব্যতিচার ঝালরে পরপর দুটি উচ্ছ্রল ও অন্ধকার ডোরার ব্যবধান হবে $\beta=\frac{D}{2d}\lambda$ ।
- ২৪। আলোর ব্যতিচারের ক্ষেত্রে প্রযোজ্য—(i) একাধিক তরজ্ঞামুখ (ii) পথ পার্থক্য (iii) সুসঞ্চাত আলোক উৎস।
- ২৫। দ্বি-চিড় পরীক্ষায় চিড়গুলোর দূরত্ব অর্থেক এবং চিড় ও পর্দার দূরত্ব দ্বিগুণ করা হলে ডোরার প্রস্থ চারগুণ হবে।
- ২৬। আলোর তরক্ষা তত্ত্বের প্রবক্তা হাইগেন, কণা তত্ত্বের প্রবর্তক নিউটন। আলোর কোয়ান্টাম তত্ত্ব আবিক্ষার করেন প্রাক্তন
- ২৭। ফ্রনহফার শ্রেণির অপবর্তন সৃষ্টির করা যায়—(i) গ্রেটিং দারা (ii) একক চিড় দারা (iii) যুগা চিড় দারা।
- ২৮। সুসক্তাত উৎসের ক্ষেত্রে (i) উৎস দুটি ক্ষুদ্র হবে (ii) উৎস হতে সমান তরক্তাদৈর্ঘ্যের তরক্তা নির্গত হবে (iii) তরক্তাদ্য সমদশাসম্পন্ন বা নির্দিষ্ট দশায় পাকবে।
- ২৯। কাচে অসমবর্তিত আলো 57·5° কোণে আপতিত হলে প্রতিফলিত রশ্মি সমবর্তিত হয়।
- ৩০। একই তরজামুখের বিভিন্ন অংশ হতে নির্গত গৌণ তরজামুখের উপরিপাতনের ফলে সৃষ্টি হয় অপবর্তন।
- ৩১। ফ্রনহফার শ্রেণির অপবর্তনে আলোক রশ্মিসমূহ ও তরজামুখ যথাক্রমে সমান্তরাল ও সমতল হয়।
- ৩২। গ্রেটিং ব্যবহৃত হয়—(i) আলোর তরজ্ঞাদৈর্ঘ্য নির্ণয়ে (ii) একই তরজ্ঞাদৈর্ঘ্যের দুটি বর্ণালি রেখা পৃথক করতে (iii) তরজ্ঞাদৈর্ঘ্যের সাপেক্ষে অপবর্তন কোণের পরিবর্তনের হার নির্ণয়ে।
- ৩৩। ব্যতিচারের ক্ষেত্রে অম্থকার ডোরা সৃষ্টি হবে যখন— (i) দশা পার্থক্য π এর অযুগা গুণিতক হয় (ii) প্রাবল্য সর্বনিম্ন হয়।
- ৩৪। ব্যতিচারের ক্ষেত্রে উচ্ছবে ভোরা সৃষ্টি হবে যখন—(i) দশা পার্থক্য π এর যুগা গুণিতক হয় (ii) তরজাদয়ের প্রাবল্য সর্বোচ্চ হয়।
- ৩৫। একটি তরক্ষোর দৃটি বিন্দুর মধ্যে পথ পার্থক্য $\frac{5\lambda}{4}$ । বিন্দুদয়ের মধ্যে দশা পার্থক্য $\frac{\pi}{2}$ । একটি আলপিনের প্রতিষ্কিত্বা কোনে তীক্ষ্ণ শীর্ষের প্রতিবিদ্ধ পাওয়া না যাবার কারণ অপবর্তন।

অনুশীলনী

(ক) বহুনির্বাচনি প্রশু

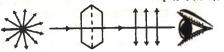
- ১। তড়িচুম্বকীয় তরঞ্চোর বৈশিষ্ট্য হলো—
 - (i) এরা আড় তরজা
 - (ii) এরা তড়িৎ ক্ষেত্র ও চৌম্বক ক্ষেত্রের লম্ব সমবায়
 - (iii) তড়িকুম্বকীয় তরজোর সঞ্চালনের জন্য মাধ্যম প্রয়োজন হয়

নিচের কোনটি সঠিক ?

- (7) i '9 ii
- (a) i G iii
- 1i g iii
- (1) i, ii (S iii

২। কোনটি তড়িচুম্বকীয় তরজা নয় ?

[ঢা. বো. ২০২২;


Admission Test: MBSTU 2019-20; DU, Com.U 2012-13, 2017-18;

RUC 2021-22]

- ক) দৃশ্যমান আলো
- ৰ এক্স-রশ্ম
- গামা রশ্মি
- ঘ) আলফা রশ্মি
- ৩। তড়িচুম্বকীয় তরজোর ক্ষেত্রে—
 - (i) মাধ্যমের প্রয়োজন হয় না
 - (ii) কম্পাব্দ ধ্রব থাকে
 - (iii) তর**ন্থো**র বেগ $3 \times 10^8 \text{ ms}^{-1}$

	নিচের কোনটি সঠিক ? ③ i ও ii ④ i ও iii	৯। ইয়৽-এর দ্বি-চিড় পরীক্ষায় চিড় থেকে 1m দৃ টেজ্জ্বল ডোরার প্রস্থ 0.5 mm। চিড় দৃটির ম 0.2mm হলে আলোর তরজাদৈর্ঘ্য কত?	র একটা ধ্য দূরত্ব
	① ii ③ iii ⑤ i, ii ⑤ iii	কু. বো. ২০২১ (মা	
8	একটি তরজামুখে কণাগুলোর মধ্যে দশা পার্থক্য—	Admission Test : DU 20)10-11;
F .	রা. বো. ২০২৩, ২০২১; দি. বো. ২০২২;	KUET 2012-13 (মান	াভনু);
	কু. বো. ২০২১ (মান ভিন্ন); ঢা. বো. ২০১৫]	BUET 2021-22 (মা া 7m	1 (01)
	③	ⓐ 10 ⁻⁷ m	
	ᢀ 90°	① 10 ⁻⁸ m	
	1 45°	® 02 m	
	180°	১০। টমাস ইয়ং দি-চিড় পরীক্ষার যাধ্যমে কী	প্রদর্শন
@1	হাইগেনের আলোক তত্ত্বের সাহায্যে ব্যাখ্যা করা	করেন ? কু. বো.	২০২৩]
	যায়— [রা. বো. ২০২২; ঢা. বো. ২০১৬]	 জালোর সমবর্তন জালোর প্রতিসরণ 	
	(i) আলো র ব্যতিচার	প্রালার প্রতিসরণপ্রালার ব্যতিচার	
	(ii) আলোর সম্বর্তন	ত্ব আলোর বিদ্ধুরণ	
	(iii) আলোর প্রতিসরণ	১১। দুটি সুসঞ্চাত একবর্ণী আলো গঠনমূলক ব	हारकीफ
	নিচের কোনটি সঠিক ?	সৃষ্টি করে যখন তাদের দশা পার্ধক্য হয়—	13100131
	i e ii	কু. বো. ২০২১(মান	ভিন্):
	(a) i (9 iii	চ. বো. ২০২১(মান	
	(f) ii (g iii	ব. বো. ২০২১(মা	
	(a) i, ii (c) iii	দি. বো. ২০২১(মান	ভিন্ন):
७।	মাধ্যমের পরিবর্তন হলে আলোর বৈশিষ্ট্যের কী	CU Admission Test, 20	19-20]
	পরিবর্তন ঘটে ? [ঢা. বো. ২০২২]	$\mathfrak{F} = \frac{3}{2}\pi$	_
	ক্তি তর জ্ঞা দৈর্ঘ্য	\mathfrak{C} 2π	
	কম্পাভক		
	প্ত বৰ্ণ		
	কোনোটাই নয়	$\frac{\pi}{2}$	
91	সুসঞ্চাত আলোক উৎসের ক্ষেত্রে—	১২। ইয়ং-এর পরীক্ষায় দৃটি চিড় থাকার কারণ হ	লা
	[সি. বো. ২০২৩; ঢা. বো. ২০২২]	চি. বো.	
	(i) উৎস দৃটি ক্ষুদ্র হবে	 কৃটি সুসঞ্চাত উৎস সৃষ্টির জন্য 	_
	(ii) উৎস হতে সমান তরজ্ঞাদৈর্ঘ্যের তর্জ্ঞা	 একাট চিড় কম্পান্তেকর জন্য এবং অপ 	রটি
	নিৰ্গত হবে	তরক্তা দৈর্ঘ্যের জন্য	
	(iii) তরক্তাদয়ের দশা পার্থক্য সর্বদা নির্দিষ্ট	প্রপরে দূরত্ত্বের পার্থক্য সৃষ্টির জন্য	-
	থাকবে	 থ একটি চিড় É ক্ষেত্রের জন্য এবং অপ 	রটি B
	নিচের কোনটি সঠিক ?	ক্ষেত্রের জন্য	
	(i ♂ ii	১৩। <mark>একটি তরভোর দুটি বিন্দুর মধ্যে দশা</mark> পার্থ	$\frac{\pi}{2}$
	iii e iii	বিন্দুদয়ের পথ পার্থক্য কত ?	2
	1i v iii	[দি. বো. ২০২৩ (মান ভিন্ন)	२०५७;
· ·	(1) i, ii (2) iii	াস. বো. ২০১৯ (মান ভিন্ন); ঢা. বো. :	२०১৫;
51	আলোর ব্যতিচারের শর্ত— [কু. বো. ২০১৬]	Admission Test: CUET 201	2-13;
	(i) আলোক উৎস দৃটি সুসঞ্চাত হতে হবে	JUST, Com.U 2014-15; BRUR-D 20	
	(ii) উৎস দৃটি ক্ষুদ্র ও সৃক্ষ হতে হবে	BAU 201	7-18]
	(iii) উৎস দৃটি পরস্পর থেকে দূরে হতে হবে	$ \mathfrak{F} \qquad \frac{\lambda}{2} $	
	নিচের কোনটি সঠিক ?		
	(4) i (5 iii	$rac{\lambda}{4}$	
	(4) i (5 iii	3)	
	(1) i, ii (2) iii		
	, n • m	√ λ	

১৪। চিত্রে প্রদর্শিত ঘটনাকে বলে আলোর— ঢো. বো. ২০১৬]

- ভাষ্টি
 ভাষ্
- সমবর্তন
- ব্যতিচার
- ছি উপরিপাতন
- ১৫। তরক্ষোর দৃটি বিন্দুর দশা পার্থক্য নির্ভর করে— [রা. বো. ২০১৬]
 - (i) পথ পার্থক্যের ওপর
 - (ii) তরজ্ঞাদৈর্ঘ্যের ওপর
 - (iii) তরক্ষা বেগের ওপর নিচের কোনটি সঠিক ?
 - a i e ii
 - iii 🖲 i
 - ii e ii
 - (1) i, ii S iii
- ১৬। তড়িৎ চৌম্বকীয় তরকা ধর্ম হলো— ্রা. বো. ২০২৩ (মান ভিন্ন), ২০১৬;

ম. বো. ২০২১)

- (i) অনুপ্রস্থ তরকা
- (ii) E এবং B কেত্রের সমন্বয়ে গঠিত
- (iii) E এবং B পরস্পর শব্দ

নিচের কোনটি সঠিক ং

- (₹) i 19 ii
- (1) i G iii
- n ii s iii
- (a) i, ii e iii

দ্টি সরু চিড় পরস্পর হতে 4 mm দ্রে অবস্থিত। এ ব্যবস্থাকে 5890Å তরজাদৈর্ঘ্যের আলোক দ্বারা আলো-কিত করা হলে 0.8 m দ্রে অবস্থিত পর্দায় উজ্জ্বল ও অম্মকার ডোরার সৃষ্টি হলো।

ওপরের তথ্যের জালোকে ১৭নং ও ১৮নং প্রশ্নের উত্তর দাও:

- ১৭। পর্দায় সৃষ্ট ডোরার প্রস্থ কত ?
 - ⊕ 0°1178 mm
 - (4) 0.890 mm
 - ① 0.0589 mm
 - (1) 178 mm
- ১৮। কেন্দ্রীয় চরম থেকে 0.047 cm দূরে কত ক্রমের উচ্ছাল ডোরা পাওয়া যায় ?
 - ক্রপ্রথম
 - বিতীয়
 - **ল** তৃতীয়
 - চতুৰ্থ

১৯। একটি তরক্ষোর দুটি বিন্দুর মধ্যে পথ পার্থক্য যদি $\frac{5\lambda}{4}$ হয়, তবে তাদের দশা পার্থক্য কত ?

কু. বো. ২০২২ (মান ভিন্ন), ২০১৬; ব. বো. ২০২১(মান ভিন্ন), ২০১১; দি. বো. ২০২১ (মান ভিন্ন), ২০১৭; য. বো. ২০১৯; ঢা. বো. ২০১৬ (মান ভিন্ন); JU Admission Test, 2021-22 (মান ভিন্ন)]

- \odot $\frac{5\pi}{4}$
- \bigcirc $\frac{2}{5}\pi$
- \bigcirc $\frac{4}{5}\pi$
- ২০। ইয়ং-এর দি-চিড় পরীক্ষায় পরপর দুটি উচ্ছ্বল ডোরার মধ্যবর্তী দূরত্ব কত ? [চ. বো. ২০১৯; সি. বো. ২০১৯; য. বো. ২০১৬]

 - $\Delta x = \frac{a\lambda}{D}$
- ২১। জপবর্তন কত প্রকার ? [য. বো. ২০১৯, ২০১৬]

 - **③** 3
 - ① 2
 - **1**
- ২২। ইয়ং-এর দ্বি-চিড় পরীক্ষায় দ্বি-চিড় হতে আগত তরজ্ঞা দৃটি—— [য. বো. ২০১৬]
 - (i) সুসংগত
 - (ii) লম্বিক
 - (iii) স্থির

নিচের কোনটি সঠিক ?

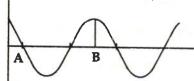
- **③**
- (1) i, ii (9 iii
- e ii e iii
- ২৩। নিচের কোন তরজোর তরজাদৈর্ঘ্য সবচেয়ে বেশি ? রা. বো. ২০২১; চ. বো. ২০১৯, ২০১৬; দি. বো. ২০১৯ (মান ভিন্ন); সি. বো. ২০১৭;

Admission Test : IU 2017-18; DU 2016-17; JU 2012-13]

- ⊕ অবলোহিত
- ৰ) গামা
- বিতার
- ছ) অতি বেগুনি

- ২৪। নিচের কোনটি তড়িৎ চুম্বকীয় তত্ত্ব দারা ব্যাখ্যা করা যায় না ? [রা. বো. ২০২১; চ. বো. ২০১৬; RUC Admission Test, 2021-22]
 - সমবর্তন **(4)**
 - অপবর্তন **(P)**
 - **(17)** আলোক ভড়িৎ ক্রিয়া
 - ব্যতিচার **(P)**
- २৫। ইয় এর দ্বি-চিড় পরীক্ষায় দুটি পাশাপাশি উচ্ছল ঝালর-এর মধ্যে পথ পার্থক্য কত?

সি. বো. ২০২৩; কু. বো. ২০২১ (মান ভিন্ন); দি. বো. ২০১৯; চ. বো. ২০১৬; Admission Test: RU 2017-18:


JUST 2016-17; MBSTU 2015-16]

- ➂ 2λ
- **(P)** λ
- $\frac{\lambda}{2}$
- **(19)**
- ২৬। নিমের কোন কেলাসটি দৈত প্রতিসারক কেলাস ? চি. বো. ২০১৬;

PUST Admission Test, 2017-18]

- **(P**) সোডিয়াম
- পটাসিয়াম ➂
- কোয়ার্টজ **(T)**
- **(**1) সোনা

२१। [য. বো. ২০২১ (মান ভিন্ন); ব. বো. ২০১৬]

চিত্রের তরজ্ঞাটি A থেকে B বিন্দুতে গেলে কণার দশার পরিবর্তন কত হবে ?

- ➂ $\overline{2}$

- **(**1) 2π
- ২৮। ব্যতিচারের ক্ষেত্রে— [সি. বো. ২০১৬]
 - (i) <u>ভোরাগুলোর প্রস্থ অসমান থাকে</u>
 - জন্মকার ডোরাগুলোতে আলো থাকে না (ii)
 - উচ্ছল ডোরাগুলোর উচ্ছলতা সমান হয় নিচের কোনটি সঠিক ?
 - **(4)** i e ii
 - **(4)** iii & iii
 - 1 iii e i
 - i, ii 9 iii

২৯। দশা পার্থক্য পথ পার্থক্যের কতগুণ ?

দি. বো. ২০১৯; ব. বো. ২০১৬; Admission Test: BRU 2017-18:

CU-A 2020-211

- **(** 2π
- **(1)** $2\pi\lambda$

- ৩০। পয়েন্টিং ভেক্টর S হলো----

বি. বো. ২০১৯; ঢা. বো. ২০১৫; Admission Test: BUP 2021-22:

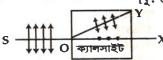
CU-A 2020-211

- E×H **(4)**
- (4) H×E
- 1 E.H
- (T) H.E
- ৩১ ৷ তরজা উপরিপাতের ফলে ঘটে---

রো. বো. ২০২৩; দি. বো. ২০১৫]

- **(4)** অপবর্তন
- **(1)** ব্যতিচার
- সমবর্তন 1
- প্রতিসরণ **(T**)
- ৩২। একক চিড়ের দর্ন অপবর্তনের ক্ষেত্রে অবমের শর্ত-াদি. বো. ২০১৫;

JUST Admission Test, 2016-17]


- $a\sin\theta = (2n)\frac{\lambda}{2}$
- $a \sin \theta = (2n+1)\frac{\lambda}{2}$ •
- $d \sin \theta = (2n) \frac{\lambda}{2}$
- $d \sin \theta = (2n+1)\frac{\lambda}{2}$
- ৩৩। ব্যতিচার এক ধরনের— ঢ়া. বো. ২০১৫: RU-G₂ Admission Test, 2017-18]
 - প্রতিসরণ **(4)**
 - সমবর্তন (4)
 - 1 অপবর্তন
 - উপরিপাতন
- ৩৪। নিচের কোন তরভাটির গোলারায়ন সম্ভব নয় ? রা. বো. ২০১৫;

Admission Test: KU 2015-16, 2011-12:

RU 2015-161

- আলোক তরভা
- পানি তরক্তা
- শব্দ তরক্তা

- ৩৫। ফ্রনহফার শ্রেণির অপবর্তনে আলোক রশ্মিসমূহ ও তর্জ্ঞামুখ যথাক্রমে — [সি. বো. ২০২৩ (মান ভিন্ন); রা. বো. ২০২২ (মান ভিন্ন); ব. বো. ২০১৫]
 - অভিসারী ও গোলীয়
 - অপসারী ও গোলীয় (1)
 - সমান্তরাল ও সমতল
 - সমান্তরাল ও বেলনাকৃতি
- ৩৬। কোনো বেতার তরজোর $E = 10^{-4} \text{ Vm}^{-1}$ হলে B_0 এর মান কত ? [ঢা. বো. ২০২১ (মান ভিন্ন); ব. বো. ২০১৫; Admission Test: JU 2021-22 (মান ভিন্ন); BMA 2015-16; BSFMSTU 2015-161
 - 3×10^{-12} Tesla
 - 3 × 10⁻⁴ Tesla
 - 3.33×10^{-13} Tesla
 - 0.33×10^{-13} Tesla
- ৩৭। E এবং H প্রত্যেকের সাথে তড়িৎ চুম্বকীয় তরজ্ঞার [য. বো. ২০১৫] বেগ কত কোণে থাকে ?
 - **(4)** 0°
 - **(4)** 45°
 - 90° 1
 - 180°
- ৩৮। নিচের চিত্রে 'OY' কী রশ্মি নির্দেশ করে ? [কু. বো. ২০১৫]

- প্রতিফলিত
- প্রতিসরিত (1)
- সাধারণ
- অসাধারণ
- পথ পার্থক্য δ , দশা পার্থক্য σ এবং তরজ্ঞাদৈর্ঘ্য λ [BU Admission Test, 2017-18]
 - (i)
 - $\frac{2\pi}{\lambda}\delta = \sigma$ (ii)
 - (iii)

নিচের কোনটি সঠিক ?

- i 😉 ii
- ●●● i 19 iii
- **1** ii 8 iii
- i, ii V iii
- ৪০। একটি গ্রেটিং-এর প্রতি একক দৈর্ঘ্যে রেখার সংখ্যা এবং গ্রেটিং ধ্রবক d-এর মধ্যে সম্পর্ক হলো-

 - **(4)** N = d

- ৪১। একটি তরজোর দুটি বিন্দুর মধ্যে পথ পার্থক্য 🖧। বিন্দুদয়ের মধ্যে দশা পার্ধক্য কত ? রো. বো. ২০২১ (মান ভিন্ন); য. বো. ২০১৫; RU Admission Test, 2017-181
 - **(4)**
 - **(1)**
- প্রতিসরণের সময় জালো এক মাধ্যম থেকে জন্য মাধ্যমে গেলে আলোর—
 - বেগের পরিবর্তন হয়
 - কম্পাঙ্কের পরিবর্তন হয় (ii)
 - (iii) তরজাদৈর্ঘ্যের পরিবর্তন হয় নিচের কোনটি সঠিক ?
 - i '9 ii
 - ➂ i 'S iii
 - 1 iii e iii
 - i, ii 8 iii
- ৪৩। ব্যতিচার ঝালরের প্রস্থ—
 - ঝালর সংখ্যার ওপর নির্ভর করে (i)
 - আলোর তরজাদৈর্ঘ্যের সমানুপাতিক (ii)
 - উৎসদ্বয় হতে পর্দার দূরত্ব এবং উৎসদ্বয়ের মধ্যে দূরত্বের ওপর নির্ভর করে

নিচের কোনটি সঠিক ?

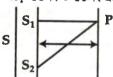
- i 😉 ii
- **(4)** i '8 iii
- **(1)** ii 😉 iii
- i, ii 8 iii
- ৪৪। সমবর্তিত আলোর ক্ষেত্রে কোনটি সত্য ?

[KU Admission Test, 2014-15

- \overrightarrow{E} এর কম্পন তল নির্দিষ্ট এবং \overrightarrow{B} থাকে না \overrightarrow{E} এর কম্পন তল এবং \overrightarrow{B} এর কম্পন তল
- পরস্পর লম্ম হয়
 - E -এর কম্পন তল নির্দিষ্ট নয়
- E ও B কোনোটাই নির্দিষ্ট থাকে না
- ৪৫। দুটি উৎস হতে সমদশায় একই তরজ্ঞাদৈর্ঘ্যের দুটি আলোক তরজা নিঃসৃত হলে তাদের কী বলে ? [JU Admission Test, 2021-22]
 - গৌণ উৎস
 - **(49)** 4 সুসঞ্চাত উৎস
 - 1 প্রধান উৎস
 - **(**1) এর সবগুলো
- ৪৬। কিনারা বা প্রান্ত দিয়ে আলোর বেঁকে যাওয়াকে বলা হয়— [Admission Test:

CoMU 2016-17; MBSTU 2015-16]

- সমবর্তন
- ব্যতিচার (1)
- অপবর্তন
- দ্বৈত প্রতিসরণ


- ৪৭। নিচের কোনটির ক্ষেত্রে অপবর্তন সবচেয়ে বেশি হয়? [BRU Admission Test, 2016-17]
 - (a) গামা রশাি
 - (4) অতি বেগুনি রশ্মি
 - অবলোহিত রশ্মি (1)
 - রেডিও তরক্তা (ঘ)
- ৪৮। ধাংসাত্মক ব্যতিচারের শর্ত হলো পথ পার্ধক্য সমান---বি. বো. ২০২২:

ম. বো. ২০২১ (মান ভিন্ন);

Admission Test: JUST, RUC-1 2016-17: IU 2015-16; CU-A 2017-18; DU 2018-19; GST-A 2020-21; SAU 2017-18]

- nx **(P**)
- (1) $n(\lambda + 1)$
- $(n+1)^{\frac{2}{n}}$
- $(2n+1)^{-\frac{1}{2}}$
- ৪৯। কম্পন তল ও সমবর্তিত আলোর সমবর্তন তলের মধ্যবর্তী কোণের মান হলো—
 - **(a**) 0
 - **(4)**
 - **(T)** $\overline{2}$
 - π

নিচের উদ্দীপকটি পড়ে ৫০নং ও ৫১নং প্রশ্লের উত্তর দাও :

চিত্রটি ইয়ং এর দ্বিচিড় পরীক্ষা নির্দেশ করে।

- ৫০। উদ্দীপক অনুসারে P বিন্দুতে গঠনমূলক ব্যতিচার তৈরি হলে যদি S₁, S₂ উৎসদ্বয় থেকে নিঃসৃত তরজা দুটোর মধ্যে দশা পার্থক্য হয়— বি. বৌ. ২০২২]
 - **(4)** 2
 - **(1)** 2π

 - **(T)**
- ৫১। উদ্দীপকে S_1 , S_2 উৎসদ্বয়ের মধ্যে দূরত্ব অর্ধেক করে গিয়ে এবং চিড় হতে পর্দার দূরত্ব D এর মান দ্বিগুণ করা হলে পর্দায় সৃষ্ট ব্যতিচার ঝালরের প্রস্থ হবে পূর্বের মানের— রো. বো. ২০২২ (মান ভিন্ন); Admission Test: DU (7 colleges) 2021-22;

CU 2019-201

- অর্ধেক **(4)**
- **(4)** দ্বিগুণ
- 1 সমান
- **(**1) চারগুণ

- ৫২। দুটি সোজা ও সমান্তরাল চিড় পরস্পর হতে a দুরে অবস্থিত। একটি একবর্ণী আলো দ্বারা এদের আলোকিত করায় চিড় হতে D দূরে অবস্থিত পর্দায় ডোরা সৃষ্টি হলো। প্রতি ডোরার প্রস্থ x পরবর্তীতে a ও D উভয়টিকে দ্বিগুণ করা হলো। নতুন ডোরার প্রস্থ হবে— [ঢা. বো. ২০১৫; চ. বো. ২০১৫]
 - $\frac{x}{2}$
 - (4) 4x
 - (P) 2x

নিচের উদ্দীপকের আলোকে ৫৩নং ও ৫৪নং প্রশ্নের উত্তর চি. বো. ২০১৫]

10⁻³ cm প্রস্থের একটি চিড়ের ভিতর দিয়ে একটি ভড়িৎ-চুম্বকীয় তরজা প্রথম অবম বিন্দুর জন্য 30° অপবর্তন কোণ

- ৫৩। তরজাটির তরজাদৈর্ঘ্য কত ?
 - **(क**) 5×10^{-2} cm
 - 3.33×10^{-3} cm **(4)**
 - (T) 5×10⁻⁴ cm
 - **(**\bar{\bar{q}} 3.33×10^{-4} cm
- ৫৪। তরজাটি নিচের কোন প্রকারের ?
 - **(**P) অবলোহিত
 - (4) বেতার তরজা
 - (1) দশ্যমান তরক্তা
 - অতি বেগুনি (T)
- ৫৫। অবলোহিত রশার ব্যবহার নয় কোনটি ?

[Medical Admission Test, 2016-17]

- রিমোট কন্ট্রোল **(**
- টিভি সিগন্যাল **(**\mathref{\pi})
- অপটিক্যাল ফাইবারের মাধ্যমে যোগাযোগ **(1)**
- (T) ফি**জিওথ্যারাপি**
- ৫৬। মাইক্রোওয়েভ কোথায় ব্যবহৃত হয় ?

[Medical Admission Test, 2015-16]

- **(4)** রেডিওতে
- **(4)** টেশিফোনে
- রাডারে **(17)**
- টেলিফ্কোপে **(T**)
- ৫৭। আলোক তরক্ষোর বেলায় নিচের কোনটি মিথ্যা ? [Medical Admission Test, 1994-95, 2011-12]
 - এর তরজা দৈর্ঘ্য অত্যন্ত কুদ্র **(** ইহা একটি লম্বিক তর্ক্তা **(4)**
 - এর অস্তিত্ব চোখে অনুভূত হয় 1
 - এর সমবর্তন হতে পারে
- ৫৮। প্রাথমিক বর্ণ নয় কোনটি ?

[Medical Admission Test, 2017-18; BDS Admission Test, 2017-181

- **(4)** नान
- **(4)** সবুজ
- **(1)** বেগুনি
- নীল **(**1)

৫৯। শরীরের ব্যথা–বেদনা উপশমে নিচের কোন রশিটি ব্যবহৃত হয় ?

> [Medical Admission Test, 2017-18; IU Admission Test, 2014-15]

- ক্স অতিবেগুনি রশি।
- (ৰ) একারশিয়
- প্রকাহিত রশ্মি
- বিটা রশি
- ৬০। আলোর অপবর্তন নিম্নের কোন কারণে ঘটে ?

[Medical Admission Test, 2008-09;

- CU-A Admission Test, 2021-22]
- প্রতিফলন
- ৰ) ব্যতিচার
- প্রমবর্তন
- ত্র প্রতিসরণ
- ৬১। আলোর কম্পনের একটি নির্দিষ্ট তলে সীমাবন্ধ করার প্রক্রিয়াকে বলে আলোর— ারা বো. ২০১৭; IU Admission Test, 2021-22]
 - ক) ব্যতিচার
 - অপবর্তন
 - প্রসমবর্তন
 - ছি) প্রতিসরণ
- ৬২। কোনো চিড়ের মধ্য দিয়ে আলো বেঁকে যাওয়ার ঘটনা ব্যাখ্যা করা যায় নিচের কোনটির দারা ?
 - ক্ত কণাতত্ত্ব
 - ৰ তরকা তত্ত্ব
 - নি দৈতনীতি
 - ছ) কোয়ান্টাম তত্ত্ব
- ৬৩। 4000Å তরজাদৈর্ঘ্যের দুইটি একই বর্ণের আলোক তরজ্ঞার মধ্যে পথ পার্থক্য $2 \times 10^{-7} \text{ m}$ হলে, তাদের মধ্যে দশা পার্থক্য হবে—

[BUET Admission Test, 2013-14]

- \mathfrak{A} 2π
- \mathfrak{I} $3\pi/2$
- $\mathfrak{T}/2$
- ৬৪। ইয়ং-এর দ্বি-চিড় পরীক্ষার, চিড় দুটির মধ্যবর্তী
 দূরত্ব অর্থেক এবং দ্বি-চিড় থেকে পর্দার দূরত্ব
 দ্বিগণ করলে ডোরার মানের ব্যবধান হবে—

ঢ়া. বো. ২০২৩ (মান ভিন্ন); দি. বো. ২০২২ (মান ভিন্ন);

Admission Test: BUET 2013-14; CU 2019-20; BSMRSTU 2018-19]

- একই
- অর্থেক
- ক ছিগুণ
- ত্ব চারগুণ

৬৫। নিচের কোন বৈশিষ্ট্য বলে দেয় যে, আলো একটি অণুপ্রস্থ তরক্তা ? দি বো. ২০১৭; Admission Test: BUET 2012-13;

RU-F₁ 2017–18; CU 2019-20; Medical Admission Test, 2001-02]

- ক্র প্রতিফলন
- প্রতিসরণ
- ন্) ব্যতিচার
- সমবর্তন
- ৬৬। কোনো চিড়ের প্রস্থ 4 × 10⁻⁴ cm । 5896Å তরজ্ঞাদৈর্ঘ্যবিশিষ্ট আলো দিয়ে একে আলোকিত করলে কেন্দ্রীয় চরমের উভয় পার্শ্বে প্রথম ক্রম অবমগুলোর মধ্যবর্তী কৌণিক দূরত্ব নির্ণয় কর।

[Admission Test : KUET 2017-18; BSMRSTU 2017-18]

- ⊕ 17.26°
- (4) 18°
- ① 16.95°
- ® 8'47°
- (8) 10°
- ৬৭। ইয়ং-এর দ্বি-চিড় পরীক্ষায় আলোর কম্পাজ্জ হলো 6'2 × 10¹⁴ Hz। পার্শ্ববর্তী দুটি ডোরার কেন্দ্রের মধ্যবর্তী দূরত্ব 0'72 mm। পর্দাটি যদি 1'6m দূরে থাকে তাহলে চিড় দুটির মধ্যবর্তী দূরত্ব কত? [কু. বো. ২০২১ (মান ভিন্ন);

Admission Test : KUET 2016-17; CUET 2015-16; DU 2008-09 (মান ভিন্ন)]

- (a) 0.49 mm
- @ 0.514 mm
- ① 1.076 mm
- [®] 0.62 mm
- (a) 54 mm
- ৬৮। নিচের কোন তড়িৎ চুম্বকীয় বিকিরণের কম্পাঙ্ক সবচেয়ে কম? [দি. বো. ২০২১; DU-A Admission Test, 2016-17]
 - ক গামা
 - অবলোহিত
 - প্রতিবেগৃনি
 - খ এক্স-রে
- ৬৯। ∈ 0µ0 এর একক নিচের কোনটির এককের সমান? [Admission Test: DU 2018-19, 2014-15; Com.U 2019-20]
 - (velocity)2
 - (velocity)1/2
 - $\frac{1}{\text{velocity}}$
 - (velocity)-2

৭০। কোনটি সত্য নয় ?

[JnU-A Admission Test, 2016-17]

- আলোক এক প্রকার শক্তি
- আলোক তরজা প্রবাহের জন্য মাধ্যম প্রয়োজন হয়
- গ্র আলো একটি তরজা
- আলার ভরবেগ আছে
- 9১। একটি LED-এর আলোর তরজাদৈর্ঘ্য 4500 × 10^{-10} m হলে, এটি কোন ধরনের আলো হতে পারে? [Admission Test: JU 2017-18; BRU 2019-20]
 - ক্ত লাল
 - ৰ সবুজ
 - ন) নীল
 - থ হলুদ
- ৭২। আলোর অণুদৈর্ঘ্য এবং অণুপ্রস্থ উভয় প্রকার তরজা সম্ভব–[JU Admission Test, 2017-18]
 - ক) ব্যতিচার
 - থ) অপবর্তন
 - প্রসমবর্তন
 - বি) কোনোটিই নয়
- ৭৩। একটি কমপ্যাষ্ট ডিস্ককে আলোর সামনে ধরা হলো যেন আলো প্রতিফলিত হয়ে বিভিন্ন বর্ণের আলোকছটা দেখা যায়। এর কারণ আলোর—

[JU Admission Test, 2017-18]

- ব্যতিচার
- অপবর্তন
- 🗇 সমবর্তন
- থ কোনোটিই নয়
- ৭৪। আলোর কোয়ান্টার নাম দেন কে?

[JU Admission Test, 2014-15]

- ম্যাক্ত প্ল্যাক্ত
- शिनবার্ট/লুইস
- প্রাইনস্টাইন
- ত্ব কোনোটিই নয়
- ৭৫। $\sqrt{\mu_0 \epsilon_0}$ এর মাত্রা কত?

[Admission Test : RU-H 2017-18; DU (7 colleges) 2021-22]

- ⊕ [LT⁻¹]
- (₹) [L-1T]
- ① [LT-2]
- ⑤ [L²T⁻¹]

৭৬। শূন্য মাধ্যমে <mark>আলোর বেগ c হলে, কোনটি</mark> সঠিক? [দি. বো. ২০২১ (মান ভিন্ন);

Medical Admission Test, 2005-06; Admission Test: RU 2019-20:

BRU 2016-17; RU-C 2021-221

- $c = \frac{1}{\sqrt{\epsilon_0 \mu_0}}$
- $\mathfrak{D} \qquad c = \sqrt{\frac{\mu_0}{\epsilon_0}}$

৭৭। আলোর কণিকা তত্ত্বের প্রবর্তক কে?

[RU-G Admission Test, 2017-18]

- টুমাস ইয়ং
- ি নিউটন
- পাইনস্টাইন
- থ ম্যাক্ত প্ল্যাভক
- ৭৮। কেলাসের গঠন নির্ণয়ের ক্ষেত্রে আলোর কোন বৈশিষ্ট্য ব্যবহৃত হয়?

[RU-C₁ Admission Test, 2017-18]

- ক সমবর্ত্ন
- অপ্বর্তন
- প্রতিসরণব্যতিচার
- ৭৯। একটি তড়িৎ চুম্বকীয় তরজ্ঞার তরজ্ঞাদৈর্ঘ্য 6000A। তরজ্ঞাটি কোন ধরনের?

[CU-1 Admission Test, 2016-17]

- ক্তি শব্দ তরজ্ঞা
- পৃশ্যমান আলোক
- ক্তি গামারশ্মি
- ত্ব আলোক
- ৮০। কোন বিজ্ঞানী সর্বপ্রথম আলোর তরক্ষা তত্ত্ব প্রবর্তন করেন? [কু. বো. ২০২১;

CU Admission Test, 2015-16]

- ক) নিউটন
- আইনস্টাইন
- প্র প্র্যান্ডক
- ম্যাক্সওয়েল
- ্ভ হাইগেন
- ১। হীরকের প্রতিফলক তলে একটি জালোক রশ্মি 60° কোণে জাপতিত হলো এবং হীরকের মধ্যে প্রতিসরণ কোণ 12° পাওয়া গেল। হীরকের সমবর্তন কোণ নির্ণয় কর।

[CUET Admission Test, 2015-16]

- ⊕ 16°
- **④** 76.48°
- 何 13.5°
- None of them

- ইয়ং এর দ্বি-চিড পরীক্ষায় দটি তরজোর উপরিপাতনের ফলে একটি বিন্দতে কালো ডোরা উৎপন্ন হয়। ওই বিন্দুতে তরজাদ্বয়ের মধ্যে দশা পার্থকা হলো— রো. বো. ২০২২:
 - DU Admission Test, 2018-191
 - ক) শূন্য
 - $\Im 2\pi n + \frac{\pi}{4}$
 - \mathfrak{T} $2\pi n + \frac{\pi}{2}$
 - \mathfrak{P} $2\pi n + \pi$
- একটি অতি সুসভাত আলোক রশ্মি একটি সুস্থ 10d তারের ওপর আপতিত হলে তারের পিছনে যে ছায়া তৈরি হয় তা একটি তারের নয়. বরং অনেকগুলো সমান্তরাল তারের। এই ঘটনা ব্যাখ্যা করা যায় নিচের কোনটি দ্বারা ?

[DU Admission Test, 2018-19]

- প্রতিসরণ **(a**)
- অপবর্তন (4)
- প্রতিফলন
- ডপলার ক্রিয়া
- ৮৪। শূন্য মাধ্যমে প্রবাহমান একটি সমতল তরভা মুখের ভড়িৎ চুম্মকীয় তরজোর বিদ্যুৎ ও চৌম্মক-ক্ষেত্রের বিস্তারের অনুপাত E/B এর মান SI এককে হলো---[Admission Test:

DIJ 2018-19: BMA 2015-16: BSFMSTU 2019-20 (মান ভিন্ন)]

- শূন্য তরভোর কৌণিক কম্পাভক ω
- শুন্য মাধ্যমে তরজাদৈর্ঘ্য λ (1)
- শূন্য মাধ্যমে আলোর বেগ c (T)
- (ঘ) প্লান্ডেকর ধ্বক, h

৮৫। নিচের কোন বর্ণটির তরক্তোদৈর্ঘ্যের মান কম?

[কু. বো. ২০১৯; Admission Test: InU 2012-13; CU A 2011-12; Agri (cluster) 2021-22 (মান ভিন্ন)]

- **(P**) বেগনি
- নীল **(4)**
- (P) হলুদ
- (T) मान
- আলোর বেগকে লেখা যায়— 100

[সি. বো. ২০২২; দি. বো. ২০১৯]

i.
$$c = \frac{E}{B}$$

ii.
$$c = \frac{1}{\sqrt{\epsilon_0 \mu_0}}$$

iii.
$$c = \frac{E\lambda}{h}$$

নিচের কোনটি সঠিক?

- i 19 ii
- **(a)** i G iii
- ii 18 iii
- i. ii 🕏 iii
- ৮৭। মিটার কেলে লাল ও বেগনি আলোর তরজাদৈর্ঘ্যের মধ্যে ব্যবধান কত ?

IRU Admission Test. 2017-181

- 4.75×10^{-7} m
- 5.25×10^{-7} m (1)
- 2.35×10^{-7} m
- 3.55×10^{-7} m **(T)**
- দৃশ্যমান বর্ণালির তরজাদৈর্ঘ্যের বিস্তৃতি---

াসি. বো. ২০২২, ২০১১:

Admission Test: JUST, CU 2016-17; Agri (cluster) 2021-22]

- 2000Å হতে 4000Å পর্যন্ত
- 4000Å হতে 8000Å পর্যন্ত
- ৪০০০৯ হতে 14000৯ পর্যন্ত
- 14000Å হতে 22000Å পর্যন্ত

তরভোর উপরিস্থিত দুটি বিন্দুর দশা পার্থক্য $\frac{3}{2}$ π 1 6d হলে এদের পথ পার্থকা---

াঢা, বো. ২০২১ (মান ভিন্ন); সি. বো. ২০১৯; IU Admission Test, 2019-20 (মান ভিন্ন)]

- 1'5λ **(**
- 1'3\lambda **(4)**
- 0.75λ 1
- **(T)** 0.67x
- ইয়ং-এর দ্বি-চিড় পরীক্ষায় একটি চিড় বাদ দিলে 106 কোন আলোকীয় ঘটনাটি ঘটবে ?

মি. বো. ২০২৩: চ. বো. ২০১৯]

- প্রতিসরণ **(4)**
- ব্যতিচার **(4)**
- **(1)** অপবর্তন সমবর্তন
- ইয়ং-এর দ্বি-চিড় পরীক্ষা অনুসারে আলোক [কু. বো. ২০১৯] তরক্তা –
 - কণাধর্মী
 - তরঞ্চাধর্মী ii.
 - অনুপ্রস্থ iii.

নিচের কোনটি সঠিক?

- **(4)** i
- ii
- ii 8 iii **1**
- i, ii 9 iii

৯২। ইয়ং-এর দ্বি-চিড় পরীক্ষায় পর্দার কোনো বিন্দুর উচ্চ্চলতার জন্য শর্ত কোনটি ?

> রা. বো. ২০২৩, ২০১৯; DU Admission Test. 2019-201

- $\mathfrak{T} \qquad a \sin \theta = \frac{2n\lambda}{2}$

নিচের উদ্দীপকের আলোক ৯৩ ও ৯৪নং প্রশ্নের উত্তর দাও: [ঢা. বো. ২০১৯] ড. নিবিড় তার পরীক্ষাগারে ইয়ং-এর দ্বি-চিড় পরীক্ষার মাধ্যমে আলোক ব্যতিচার পর্যবেক্ষণ করলেন। পরীক্ষাটি আলোক তম্ভ মেনে সংঘটিত করা হয়।

- ৯৩। উক্ত পরীক্ষার জন্য আলোক বর্ণ কোনটি ?
 - ক) সাদা
 - কালো
 - ন) গোলাপি
 - ত্ব হলুদ
- ৯৪। এই পরীক্ষায় অস্থকার ডোরা পাওয়ার জন্য দৃটি তরজ্ঞার
 - i. সম দশায় উপরিপাতিত হবে
 - ii. ধ্বংসাত্মক ব্যতিচার হবে
 - iii. শৃষ্পি তরক্ষোর তীব্রতা সর্বনিম্ন হবে নিচের কোনটি সঠিক?
 - ® i v ii
 - (a) i vs iii
 - n ii viii
 - (a) i, ii e iii
- ৯৫। পৃথিবীর চারপাশে যদি বায়ুমন্ডল না থাকতো, তাহলে পৃথিবী থেকে আকাশের রং কী রকম দেখা যেত ? [BUET Admission Test, 2006-07]
 - ক) সাদা
 - ৰ) নীল
 - প কালো
 - বি) গোলাপি
- ৯৬। বৃষ্টির দিনে পানির ওপর তেলের পাতলা ফিল্ম সুন্দর সুন্দর রং দেখায়। এর কারণ—

[BUET Admission Test, 2005-06]

- ক বিচ্ছরণ
- (ৰ) সমবর্তন
- প্র ব্যতিচার
- ঘ) অপবর্তন

- ০৭। ইয়ং-এর দ্বি–চিড় পরীক্ষায় দুটি চিড় থাকার কারণ হলো— [BUET Admission Test, 2012-13]
 - তীব্রতা বাড়ানো
 - একটি চিড় কম্পাজ্কের জন্য এবং অন্যটি
 তরজাদৈর্ঘ্যের জন্য
 - পথের দূরত্বের পার্থক্য সৃষ্টির জন্য
 - একটি চিড় E ক্ষেত্রের জন্য এবং অপরটি
 B ক্ষেত্রের জন্য
- ৯৮। কোনো অপবর্তন গ্রেটিং-এর প্রতি সেন্টিমিটারে 5000 রেখা রয়েছে। এর ভেতর দিয়ে 5890 A তরক্তাদৈর্ঘ্যের আলো ফেললে দ্বিতীয় চরমের জন্য অপবর্তন কোণ কত १

[Admission Test : KUET 2012-13; BAU 2018-19; JU 2011-12(মান ভিন্ন)]

- ◆ 46°
- ③ 16.2°
- ① 45.99°
- 45.03°
- (8) 44'01°
- ৯৯। তরজা গতির ক্ষেত্রে আলো এবং শব্দ আচরণগত-ভাবে প্রত্যেকে সদৃশ কেবলমাত্র ব্যাতীত---

[KUET Admission Test, 2006-07]

- প্রতিফলন
- প্রতিসরণ
- পি সমবর্তন
- অপবর্তন
- ত্ত ব্যতিচার
- ১০০। ইয়ং-এর দ্বি-চিড় পরীক্ষায় যদি তরক্তাদৈর্ঘ্য দ্বিগুণ করা হয় তবে পট্টির প্রস্থ β হবে—
 - \mathfrak{F}
 - 2β
 - ^{3β}
 - (1) B
- ১০১। আলোক তরজোর মাধ্যমে সঞ্চালিত হয়
 - @ বেগ
 - (ৰ) তুরণ
 - পে ভরবেগ
 - খি শক্তি
- ১০২। তড়িকু স্ফার তর্জা শূন্যস্থান থেকে কোনো মাধ্যমে প্রবেশ করলে ওর যে ধর্মটি অপরিবর্তিত থাকে তা হলো—
 - ক বেগ
 - ভরক্তাদৈর্ঘ্য
 - ৰ) কম্পান্তক
 - থি বিস্তার

- ১০৩ ৷ ইয়ং–এর দি–চিড পরীক্ষায় বেগুনি (λ = 4000 $\overset{\circ}{A}$) এবং লাল $(\lambda=8000\ \overset{\circ}{A})$ বর্ণের আলোর জন্য ব্যতিচার জালর প্রস্থের অনপাত হলো—
 - 1:2
 - **(**\(\pi\) 2:1
 - (A) 4:1
 - (**1**) 1:4
- ১০৪। 9:1 আনুপাতিক তীব্রতাসম্পন্ন দৃটি আলোক রশ্যিগচ্ছ ব্যতিচার গঠন করলে সর্বোচ্চ ও সর্বনিম তীব্রতার অনুপাত কত হবে ?
 - 3:1
 - **(4)** 4:1
 - (T) 25 . 9
 - (ঘ) 8:1
- ১০৫। ইয়ং-এর দ্বিচিড পরীক্ষায় সমান বেধের রেখাচিত্র নেওয়ার পরিবর্তে একটির বেধ অপরটির দিগুণ করা হলে ব্যতিচার সঞ্জায়---
 - সর্বোচ্চ ও সর্বনিমু উভয় তীব্রতাই বৃদ্ধি
 - সর্বোচ্চ তীব্রতা বৃদ্ধি পাবে এবং সর্বনিম (4) তীব্রতা শূন্য হবে
 - সর্বোচ্চ তীব্রতা হ্রাস পাবে এবং সর্বনিম **(1)** তীব্রতা বৃদ্ধি পাবে
 - সর্বোচ্চ তীব্রতা হ্রাস পাবে এবং সর্বনিম তীব্রতা শূন্য হবে
- ১০৬। যেকোনো রেখাছিদ্রে সর্বোচ্চ অপবর্তন ঘটবে
 - γ–রশার জন্য **(4)**
 - অতিবেগুনি আলোর জন্য (1)
 - অবলোহিত আলোর জন্য (A)
 - ছি রেডিও তরক্ষোর জন্য
- ১০৭। একটি একক রেখাছিদ্রের অপবর্তনে রেখাছিদ্রের বেধ অর্ধেক করা হলো এবং পর্দা ও রেখাছিদ্রের দূরত্ব দ্বিগুণ করা হলো। মুখ্য উচ্ছ্বল পট্টির বেধ---
 - দিগুণ হবে **(a**)
 - **(**a) একই থাকবে
 - চারগুণ হবে **(1)**
 - অর্ধেক হবে
- ১০৮। অসমবর্তিত আলোক রশ্রিকে আংশিক কিংবা সমতলীয় সমবর্ডিত আলোকে বিভিন্ন পন্ধতিতে রুপান্তর করা যায়। কিন্তু নিচের কোনটিতে এটি সম্ভ নয় ?
 - প্রতিফলন **(a)**
 - অপবর্তন
 - দ্বৈত প্রতিসরণ **(17)**
 - **(**\mathbf{T}) বিক্ষেপণ

- ১০৯। ইয়ং-এর দি-চিড় পরীক্ষায় ছিদ্রদয়ের মধ্যে ব্যবধান d এবং ব্যবহৃত আলোক তর্ভাদৈর্ঘ্য λ হলে জালরের কৌণিক বেধ হবে—
 - (a)
 - (4)
 - (A)
- ১১০। ইয়ং-এর দ্বি-চিড় পরীক্ষায় পরপর সবুজ, লাল ও নীল আলো ব্যবহার করে ঝালর প্রস্থগুলির মান পাওয়া গেল যথাক্রমে β_G , β_R ও β_B । নিচের কোনটি সঠিক ?
 - $\beta_G > \beta_B > \beta_R$
 - **(**a) $\beta_B > \beta_C > \beta_R$
 - $\beta_R > \beta_R > \beta_C$ (P)
- ত্তি $\beta_R > \beta_G > \beta_B$ ১১১। ইয়ং-এর দ্বি-চিড় পরীক্ষায় তালোর যে বর্ণের জন্য ঝালরের বেধ ন্যুনতম হয় তা হলো----

বি. বো. ২০২২; কৃ. বো. ২০২২]

- লাল
- **(4)** সবুজ
- নীল (A)
- হলুদ
- ১১২। মাধ্যম পরিবর্তন হলে আলোর কোন বৈশিক্ট্যের পরিবর্তন ঘটে ? ঢা. বো. ২০২২
 - তরজ্ঞাদৈর্ঘ্য **(4)**
 - (1) কম্পাড়ক
 - বর্ণ (M)
 - কোনোটিই নয়
- ১১৩। কোনো একটি মাধ্যমের জন্য সমবর্তন কোণ 60°। এর জন্য সংকট কোণ হবে---
 - $\sin^{-1}\sqrt{3}$
 - $\tan^{-1}\sqrt{3}$ (1)
 - $\cos^{-1}\sqrt{3}$ **(1)**
- ১১৪। ফ্রেনেল অপবর্তন ঘটার ক্ষেত্রে নিচের কোন শর্তটি প্রয়োজনীয় শর্ত ?
 - ছিদ্র থেকে উৎস এবং পর্দা অসীম দূরত্বে
 - ছিদ্র থেকে উৎস অথবা পর্দা অসীম দূরত্বে
 - ছিদ্ৰ থেকে উৎস কিংবা পৰ্দা কোনোটিই অসীম দূরত্বে থাকবে না
 - ওপরের কোনোটিই নয় **(10**)

7761	দ্বি-প্রতিসরণে আমরা দৃটি প্রতিসৃত রশ্মি অর্থাৎ O-রশ্মি এবং E-রশ্মি পাই। নিচের কোন বক্তাবটি	ऽ२२।	তলের মধ্যবর্তী কোণ—
	সঠিক ?	٠	© 0°© 90°① 45°
		Sant	(180°)
	নয়	<i>ऽঽ</i> ७।	গতিশীল আধান
2261	অপবর্তনের দারা আলোর কোন ধর্মটি প্রমাণিত হয়?		প্রির আধানপুরণযুক্ত আধান
	তর্জারূপ		ত্ম কোনোটিই নয়
	তির্যকরূপ	7581	তড়িচ্চুম্বকীয় তরঞ্চো তড়িৎ ক্ষেত্রের সঞ্চো
	অনুদৈর্থ্যরূপ		সংশ্লিষ্ট গড় শক্তি ঘনত্ব—
	ত্ত্ব কোয়ান্টাম প্রকৃতি		
2241	I এবং 4 I প্রাবদ্যের দুটি তর্কা উপরিপাতিত		
	হলো। সর্বোচ্চ এবং সর্বনিম্ন প্রাবল্যের অনুপাত কত ? [ম. বো. ২০২২ (মান ভিন্ন)]		
			
	9:3		
	® 5:1	১ २৫।	শ্ন্য মাধ্যমে তড়িচ্ম্বকীয় তরজ্গের মোট শক্তি—
7721	ইয়ং-এর পরীক্ষায় সর্বোচ্চ তীব্রতা । যদি প্রতিটি ছিদ্রের বেধ দ্বিগুণ করা হয়, তবে সর্বোচ্চ তীব্রতা		
	কত হবে ?		
	\bigcirc $\frac{\mathrm{I}}{2}$		$ \frac{1}{2} \in {}_{0}E^{2} + \frac{1}{2} \mu_{0}B^{2} $
	I ®		$\mathfrak{T} = \frac{E^2 + B^2}{2}$
	① 2 I ③ 4 I		
7791	দুটি সুসংগত একবর্ণী আলোক তরজা গঠনমূলক	13141	রাডার তরজা বলতে কোন তরজাকে বুঝায় ?
	ব্যতিচার সৃষ্টি করে যখন তাদের দশা পার্ধক্য—		[KU Admission Test, 2011-12]
	্দি. বো. ২০২২ (মান ভিন্ন);		ক্ত এক্স রশ্মি
	চ. বো. ২০২১ (মান ভিন্ন):		অবলোহিত রশ্মি
	CU Admission Test, 2019-20]		প্রতিবেগুনি রশি।
	$\mathfrak{F} \frac{3}{2}\pi$		ত্তি মাইক্রো তরভা
	③ 2π	১ २१।	কার কম্পাঙ্ক সর্বাধিক ?
	① π		[ঢা. বো. ২০২১; রা. বো. ২০২১]
	$\frac{\pi}{2}$		ক) গামা রশি।
			ৰ এক্স রশ্ম
2501	নিচের কোনটি সমবর্তিত আলো গঠন করতে		<u>ক্</u> রেডিও তরজ্ঞা
	পারে ? (ক) নিকল প্রিজম		ত্ম অবলোহিত তরজা
	কিকল প্রিক্তমপ্র একটি কেলাস	१२४।	
	গ্র একটি বাই প্রিজম		অবলোহিত রশি
	একটি অর্ধতরক্তা প্লেট		মাইকো তরজা
7571	প্রতিফলনের সাহায্যে আলোক সমবর্তিত করা		বিভিন্ন করিক।বিভিন্ন করিক।
	গেলে প্রতিফলিত এবং প্রতিসৃত রশার মধ্যবর্তী		ত্তি অতিবেগুনি তরঞ্চা
	কোণ	7521	কোন নীতির ওপর ভিত্তি করে আলোকীয় তন্তুর
			ভেতর দিয়ে আলো সঞ্চালিত হয় ?
	$\frac{\pi}{2}$		ব্যতিচার
	\mathfrak{I} 2π		অ অপবর্তন
			্তি বিক্ষেপন
	$\overline{\mathfrak{A}}$		 অভ্যন্তরীণ পূর্ণ প্রতিফলন

- ১৩০। ইয়ং–এর দ্বি–চিড় পরীক্ষা পানির মধ্যে করা হলে পট্টির বেধ—
 - ক) বাড়বে
 - (খ) কমবে
 - ন) একই থাকবে
 - (T) (D)
- ১৩১। ইয়ং-এর দ্বি-চিড় পরীক্ষায় ব্যতিচার পট্টির কৌণিক বেধ কোন রাশির ওপরে নির্ভর করে না ?
 - Φ তরজ্ঞাদৈর্ঘ্য, λ
 - (ৰ) ছিদ্ৰ দুটির দূরত্ব, d
 - পি ছিদ্র এবং পর্দার দূরতা, D
- ১৩২। বায়ু মাধ্যমে দ্বি–চিড় পরীক্ষায় ঝালর পট্টির বেধ $0.4~\mathrm{mm}$ । সমস্ত ব্যবস্থাটিকে পানিতে নিমজ্জিত করলে পট্টির বেধ কেমন হবে ? ($\mu_{uv}=1.33$)
 - ⊕ 0.4 mm
 - ⊕ 03mm
 - ① 0.53 mm
 - (9) 0°35 mm
- ১৩৩। ইয়ং-এর ব্যতিচার পরীক্ষায় ছিদ্র দুটির ব্যবধান

 0'8 mm। আলোক তরক্ষাদৈর্ঘ্য $\lambda = 5893 \mathring{A}$ । যদি

 ছিদ্র থেকে পর্দার দূরত্ব 2 m হয় তবে পরপর দুটি

 উচ্জ্রল পটির দূরত্ব হবে—

কু. বো. ২০২১ (মান ভিন্ন); BRU Admission Test, 2016-17 (মান ভিন্ন)]

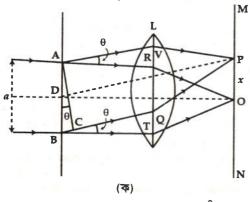
- ⊕ 14.73 mm
- (14.73 cm
- ① 1'473 mm
- 1 0°143 mm

১৩৪। দ্বি–চিড় পরীক্ষায় ছিদ্র দুটির ব্যবধান 0'2 mm। পর্দার দূরত্ব 1 m। কেন্দ্রীয় উচ্ছ্বল পটি থেকে তৃতীয় উচ্ছ্বল পটির দূরত্ব 7'5 mm। আলোর তরঞ্চাদৈর্ঘ্য কত ?

[PUST Admission Test, 2015-16 (মান ভিন্ন)]

- ₱ 5000 Å
- (4) 4000 Å
- ① 5500 Å
- (1) 4890 Å
- ১৩৫। একটি একবর্ণী রশািগুচ্ছ ঘন মাধ্যম থেকে লঘু মাধ্যমে গেল। ফলে আলোর—
 - ক) বেগ বাড়বে
 - (ৰ) বেগ কমবে
 - কম্পাল্ক কমবে
 - কম্পাঙ্ক বাডবে
- ১৩৬। দ্বি-চিড় পরীক্ষায় একবর্ণী আলোক দারা গঠিত ব্যতিচার ঝালরের প্রস্থ 1'33 mm। সমস্ত ব্যবস্থাটিকে গানিতে নিমজ্জিত করলে ($\mu = 1'33$) ঝালর প্রস্থ হবে—

[RU-C Admission Test, 2021-22]


- (7) 1'33 mm
- (a) 1mm
- পি (1⁻33)² mm
- $\left(\frac{1.33}{2}\right)$ mm

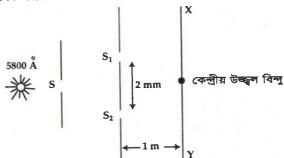

উত্তর :

७। क	২। ঘ	৩। খ	৪। ক	৫। খ	७। क	৭। ঘ	४। क	৯। খ	১০। গ
১১। খ	५२। क	১৩। খ	১৪। খ	১৫। क	১৬। ঘ	১৭। গ	১৮। খ	১৯। গ	२०। क
২১। গ	२२। क	২৩। গ	২৪। গ	२৫। খ	২৬। গ	২৭। গ	২৮। খ	২৯। গ	ত। ক
৩১। খ	७२। क	৩৩। ঘ	৩৪। ঘ	৩৫। গ	৩৬। গ	৩৭। গ	৩৮। ঘ	৩৯। গ	80 क
87 । क	8২। খ	৪৩। গ	88। খ	৪৫। খ	৪৬। গ	8৭। ঘ	৪৮। ঘ	৪৯। গ	৫০। খ
৫১। ঘ	৫২। ঘ	৫৩। গ	৫৪। ক	<i>৫৫</i> । খ	৫৬। গ	৫৭। খ	৫৮। গ	৫৯। গ	৬০। খ
৬১। গ	৬২ ৷ খ	৬৩। ক	৬৪। ঘ	৬৫। ঘ	৬৬। গ	৬৭। গ	৬৮। খ	৬৯। ঘ	901 খ
৭১। গ	৭২। ঘ	৭৩। ঘ	৭৪। ক	৭৫। খ	৭৬। খ	৭৭ ৷ খ	१৮। খ	৭৯। খ	৮০। ঘ
৮১।গ	৮২। ঘ	৮৩। খ	৮৪। গ	৮৫। ক	৮৬। ঘ	৮৭। গ	৮৮। খ	৮৯। গ	৯০। গ
৯১। গ	৯২। গ	৯৩। ক	৯৪। গ	৯৫। গ	क । यद	৯৭। গ	৯৮। ঘ	৯৯। গ	১००। খ
४०५। घ	১०२। গ	२००। क	১০৪। খ	১০৫। ক	১০৬। ঘ	১০৭। গ	२०४। अ	১০৯। ঘ	১১০। ঘ
777। क	११५। क	১১৩। ঘ	১১৪। গ	১১৫। গ	১১৬। ক	১১৭। খ	১১৮। গ	১১৯। খ	১২०। क
১২১। খ	১২২। খ	১২৩। গ	১২৪। ঘ	১২৫। ঘ	১২৬। ঘ	১২৭। ক	১২৮। ঘ	১২৯। ঘ	১৩০। খ
১৩১। গ	১৩২। খ	১৩৩। গ	১৩৪। ক	১৩৫। ক	১৩৬। খ				

(খ) সৃজনশীল প্রশু

- ১। ইয়ং- এর দ্বি-চিড় পরীক্ষায় চিড়দ্বয়ের মধ্যবর্তী দূরত্ব $1~\mathrm{mm}$ । পরীক্ষণটিতে একবর্ণী আলো ব্যবহার করে চিড় হতে $80~\mathrm{cm}$ দূরত্বে অবস্থিত পর্দায় ব্যতিচার ডোরা সৃষ্টি করা হলো। পর্দাকে চিড়ের দিকে $5~\mathrm{cm}$ সরালে ডোরা ব্যবধানের পরিবর্তন ঘটে $3\times 10^{-5}~\mathrm{m}$ ।
 - পরীক্ষণে ব্যবহৃত আলোর তরজ্ঞাদৈর্ঘ্য নির্ণয় কর।
 - (থ) পরীক্ষণটিতে পর্দার অবস্থানের পরিবর্তনের ফলে তৃতীয় অন্ধকার পট্টির কৌণিক অবস্থানের কীর্প পরিবর্তন ঘটবে—গাণিতিকভাবে বিশ্লেষণ কর। কু. বো. ২০২১]
- ২। নিচের চিত্রে একক চিড়ের জন্য অপবর্তন দেখানো হয়েছে।

- (ক) উদ্দীপকের অপবর্তন পরীক্ষায় $5890~{
 m \AA}$ তরজ্ঞাদৈর্ঘ্যের আলো ব্যবহার করা হয়েছে। চিড়টির বেধ $0.2~{
 m mm}$ । প্রথম অবমের জন্য অপবর্তন কোণ নির্ণয় কর।
- (খ) উদ্দীপকে উল্লিখিত অপবর্তনের পরিবর্তে গ্রেটিং দ্বারা অপবর্তন সুফি হলো। যেখানে চিড়ের ও পর্দার দাগের বেধ যথাক্রমে 0'0004 cm এবং 0'00015 cm। এতে 7000 A এর সোডিয়াম আলো ব্যবহার করা হলে একক চিড়ের অপবর্তনের সাথে উল্লিখিত অপবর্তন একই কিনা ? —গাণিতিক বিশ্লেষণের মাধ্যমে দেখাও।


७।

জসমবর্তিত আলোর গতিপথে দুইটি টুর্ম্যালিন কেলাস এমনভাবে স্থাপন করা হয়েছে যে কেলাসদ্বয়ের সরলাক্ষ্ আলোকের গতিপথের সাথে লম্মভাবে অবস্থান করে।

- (ক) B কেলাসকে এমনভাবে ঘুরানো হলো যে এর সরলাক্ষ A এর সরলাক্ষের সাথে 45° কোণ উৎপন্ন করল। A ও B হতে নির্গত আলোকের তীব্রতার অনুপাত বের কর।
- (খ) A কেলাসকে স্থির রেখে B কেলাসকে ঘুরালে আলোকের তীব্রতার কীর্প পরিবর্তন হবে চিত্রসহকারে বিশ্লেষণ কর।
- 8। ল্যাবরেটরিতে বায়ু মাধ্যমে রওনক সাহেব ইয়ং—এর দ্বি-চিড় পরীক্ষায় চিড় দুটির ব্যবধান 0'66 cm এবং চিড় হতে পর্দার দূরত্ব 166 cm নিয়ে কাজ করল। কেন্দ্রীয় উজ্জ্বল পটি হতে 16তম উজ্জ্বল পটির দূরত্ব পেল 0'16 cm। রওনক সাহেব পরীক্ষাটি আবার 1'66 প্রতিসরাজ্কবিশিক্ট মাধ্যমে সম্পন্ন করলেন।
 - (क) উদ্দীপকে পরীক্ষায় ব্যবহৃত আলোর তরভাদৈর্ঘ্য নির্ণয় কর।
 - খে) উল্লেখিত পরীক্ষাটি বায়ু মাধ্যমে না করে এবং উদ্দীপকে উল্লেখিত জন্য মাধ্যমে করা হলে ডোরার প্রস্থের কী পরিবর্তন হবে—গাণিতিক বিশ্লেষণের মাধ্যমে মতামত দাও। [ঢা. বো. ২০২১]

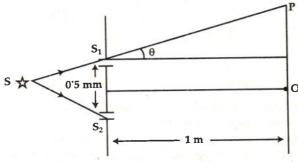
- ৫। ইয়ং-এর দ্বি–চিড় পরীক্ষায় চিড়দ্বয়ের মধ্যবর্তী দূরত্ব $1~\mathrm{mm}$ । চিড় দুটি থেকে $150~\mathrm{cm}$ দূরে পর্দায় ডোরা পাওয়া গেল। পরীক্ষায় ব্যবহৃত আলোর তরজ্ঞাদৈর্ঘ্য $6000 \mathrm{\mathring{A}}$ ।
 - (क) ডোরার ব্যবধান নির্ণয় কর।
 - (খ) উদ্দীপকের চিড় হতে পর্দার দূরত্ব অর্ধেক করলে ডোরার ব্যবধান বর্তমানের ডোরার প্রস্থের সমান কি না —গাণিতিকভাবে বিশ্লেষণ কর।

41

উপরের চিত্রে ইয়ং-এর দ্বি-চিড় পরীক্ষার একটি ব্যবস্থা দেখানো হয়েছে, যেখানে $S_1 \ {}^{\circ} S_2$ দূটি সুসচ্চাত উৎস।

কেন্দ্রীয় উজ্জ্বল পটি হতে তৃতীয় ক্রমের উজ্জ্বল পটির দূরত্ব নির্ণয় কর।

(খ) যদি চিড়দ্বর হতে পর্দার দূরত্ব অর্ধেক করা হয়, তাহলে পরপর দূটি উচ্জ্বল পঞ্জির ব্যবধান বর্তমান পঞ্জির প্রস্থের সমান হবে কি না—গাণিতিকভাবে ব্যাখ্যা কর। যে. বো. ২০২১] ৭। বায়ু মাধ্যমে সম্পন্ন দ্বি-চিড় পরীক্ষায় ব্যবহৃত আলোর তরজ্ঞাদৈর্ঘ্য 5400Å। চিড়দ্বয়ের মধ্যবর্তী দূরত্ব 1.5 mm এবং পর্দার দূরত্ব 2.0 m।


(ক) পর্দায় সৃষ্ট 10th উজ্জ্বল ডোরার কৌণিক সরণ নির্ণয় কর।

(খ) পরীক্ষণটি পানিতে সম্পন্ন করা হলে ডোরা প্রস্থের কীর্প পরিবর্তন হবে? গাণিতিক বিশ্লেষণসহ মস্তব্য কর। [ব. বো. ২০১৯]

৮। ঢাকা মেডিকেল কলেজ হাসপাতালে ব্যবহৃত জটিল অণুবীক্ষণ যন্ত্রের অভিলক্ষ্য ও অভিনেত্রের ফোকাস দূরত্ব যথাক্রমে 0'02 m ও 0'05 m। একটি স্লাইড অভিলক্ষ্যের সামনে 0'24 m দূরে রাখায় অভিলক্ষ্যের পিছনে 0'12 m দূরে প্রতিবিদ্দ গঠিত হলো।

ক) উদ্দীপকের যন্ত্রটির দৈর্ঘ্য নির্ণয় কর।

(খ) স্পার্ফ দর্শনের ন্যুন্তম দূরত্বে ফোকাসিং-এর ক্ষেত্রে লেন্স দূটির অবস্থান বিনিময় করলে যন্ত্রের বিবর্ধনের কোনোরপ পরিবর্তন হবে কিনা বিশ্লেষণ কর। [ঢা. বো. ২০১৬]

۱۵

চিত্রে ইয়ং–এর দ্বি-চিড় পরীক্ষার ব্যবস্থা দেখানো হয়েছে। ব্যবহৃত আলোর তরজ্ঞাদৈর্ঘ্য $5500~{
m \AA}$, চিড়দ্বের প্রস্থ $0.1~{
m mm}$ এবং মধ্যবর্তী দূরত্ব $0.5~{
m mm}$ । পানির প্রতিসরাজ্ঞ $1.33~{
m ud}$ র পানিতে আলোর দুতি $1450~{
m ms}^{-1}$ ।

(ক) ব্যতিচারের ডোরা প্রস্থ কত ?

খে) S_2 চিড় বন্ধ করলে কেন্দ্রীয় চরমের বিস্তৃতি কোণ পাওয়া সম্ভব কি না যাচাই কর। [ঢা. বো. ২০১৯] ১০। আলোর ব্যতিচার পরীক্ষায় m ও n দুজন ব্যক্তি দুটি সুসঞ্জাত উৎস ব্যবহার করে $6000~{\rm \AA}$ তরম্ভাদৈর্ঘ্যের আলোক তরম্ভা নির্গত করে। তারা লক্ষ করল পর্দায় মিলিত তরম্ভাদ্যের পথ পার্থক্য $1200~{\rm \AA}$ ।

ক) উৎস থেকে নির্গত প্রতিটি ফোটনের শক্তি হিসাব কর।

(খ) m ও n উক্ত পরীক্ষণে কোন ধরনের ব্যতিচার লক্ষ করল—গাণিতিকভাবে বিশ্লেষণ কর।

[মাদরাসা বোর্ড, ২০১৯]

১১। সুমি প্রতি সেন্টিমিটারে 6000 দাগবিশিষ্ট অপবর্তন গ্রেটিং-এর 5890 ${\rm \AA}$ তরজ্ঞাদৈর্ঘ্যের আলো ফেললো। অপরদিকে রুমি প্রতি সেন্টিমিটারে $1^{\circ}25 \times 10^5$ সংখ্যক দাগবিশিষ্ট অপবর্তন গ্রেটিং-এ 2200 ${\rm \AA}$ তরজ্ঞাদৈর্ঘ্যের আলো ফেললো।

- ক) সুমির পরীক্ষণে প্রথম চরমের জন্য অপবর্তন কোণ নির্ণয় কর।
- খে) রুমির পরীক্ষণে তরজ্ঞাদৈর্ঘ্যের কীর্প পরিবর্তন আনলে দিতীয় চরমের জন্য সুমি ও রুমি উভয়ের ক্ষেত্রে অপবর্তন কোণ একই পাওয়া যাবে ? গাণিতিক বিশ্লেষণ কর। [য. বো. ২০১৯]

(গ) সংক্ষিশত-উত্তর প্রশু

১। তরজ্ঞা মথ কাকে বলে ?

রা. বো. ২০২৩; চ. বো. ২০২৩, ২০২১; চা. বো. ২০২১, ২০১৬, ২০১৫; য. বো. ২০২১, ২০১৭; ব. বো. ২০২১; সি. বো. ২০২১; কু. বো. ২০১৭]

২। আলোর সমবর্তন কী ?

বি. বো. ২০২৩; সি. বো. ২০২৩; মাদরাসা বো. ২০১৯; টা. বো. ২০১৭;

৩। আলোর ব্যতিচার কী ?

वि. वा. २०२२; ज. वा. २०२५; हे. वा. २०२५, २०५७;

কু. বো. ২০১৯; দি. বো. ২০১৬]

৪। হাইগেনের নীতিটি বিবৃত কর।

দি. বো. ২০২৩, ২০১৫; ম. বো. ২০২৩, ২০২২; সি. বো. ২০২২]

৫। অপবর্তন গ্রেটিং কী ? ৬। অপবর্তন কী ?

দি. বো. ২০২৩, ২০১৯, ২০১৫; ঢা. বো. ২০১৯; রা. বো. ২০১৮; কু. বো. ২০১৮;

৭। তডিৎ চৌম্মকীয় তরজ্ঞা বলতে কী বঝ ?

য. বো. ২০১৮; চ. বো. ২০১৮; ব. বো. ২০১৮]
মি. বো. ২০২২; কু. বো. ২০২১; সি. বো. ২০১৭)

৮। অণ্দৈর্ঘ্য তরজোর সমবর্তন হয় কী ?

দ। অণুণের) ভরজোর সমর্বতন হয় কা

৯। দ্বি-প্রতিসরণ কাকে বলে ?

১০। সমবর্তন হয় না এমন একটি তরক্ষোর নাম শিখ।

১১। একক রেখাছিদ্রে কোন ধরনের অপবর্তন লক্ষ করা যায় ?

১২। পয়েন্টিং ভেক্টর কাকে বলে ?

রো. বো. ২০২১: দি. বো. ২০২১1

১৩। গোলকীয় তর্ক্তাম্থ কী ?

১৪। গোলকীয় তরজ্ঞা কাকে বলে ?

১৫। তরজ্ঞামুখের উপরিস্থিত কৃণাগুলোর দশা পার্থক্য কত ?

১৬। সুসংগত আলোক উৎস কী ?

ঢা. বো. ২০২৩; য. বো. ২০২৩; চ. বো. ২০১৭]

১৭। তরক্ষোর উপরিপাতন কী ?

১৮। গঠনমূলক ব্যতিচার কাকে বলে ?

১৯। ধ্বংসাত্মক ব্যতিচার কাকে বলে ?

চি. বো. ২০২১)

য়, বো. ২০১৬।

২০। ফ্রেনেল শ্রেণির অপবর্তন কী ?

২১। ফ্রনহফার শ্রেণি অপবর্তন কাকে বলে ?

२२। धारि ध्वक की ?

কু. বো. ২০২৩, ২০১৯]

२७। পোनातायन कारक वरन ?

২৪। রেখা সমাবর্তিত আলোক বলতে কী বোঝ ?

২৫। সমবর্তন কোণ কাকে বলে ?

২৬। একটি দ্বি-প্রতিসারক কেলাসের নাম লিখ।

২৭। অনুরূপ বিন্ধু কী ?

২৮। তরজামুখে অবস্থিত যে কোনো দুটি বিন্দুর দশা পার্ধক্য কত ?

২৯। একটি আলোকরশ্মি তরজামুখের সাথে কত ডিগ্রি কোণে আনত থাকে ?

৩০ ৷ একই তরজোর দুটি তরজামুখ কী পরস্পরকে ছেদ করতে পারে ?

৩১। উত্তল লেন্সের ফোকাস বিন্দুতে আলোক উৎস রাখলে লেন্স থেকে নির্গত আলোর তরক্তামুখ কীরকম হবে ?

৩২। পথ পার্থক্য λ হলে দশা পার্থক্য কত হবে ?

৩৩। আলোর ব্যতিচার আলোর কোন ধর্ম প্রমাণ করে ? ৩৪। প্রতিবন্দকের ধার ঘেঁষে যাওয়ার সময় আলোর বেঁকে যাওয়ার ঘটনাকে কী বলে ?

৩৫। আলোর সমবর্তন আলোর প্রকৃতি সম্মন্ধে কী প্রমাণ করে ?

৩৬। সমবর্তন হয় না এমন একটি তরজ্ঞার নাম দেখ।

৩৭। আলোর ব্যাতিচারে সুসজাত উৎস ব্যবহার করা হয় কেনু ? [রা. বো. ২০১৫; অভিনু প্রশ্ন (খ) সেট ২০১৮]

৩৮। ইয়ং এর দ্বি–চিড় পরীক্ষায় ব্যাতিচার ঝালরের কেন্দ্রীয় পট্টির প্রকৃতি ব্যাখ্য্যা কর।

[অভিনু প্রশ্ন ক সেট ২০১৮]

৩৯। ইয়ং এর দ্বি-চিড় পরীক্ষায় চিড়দ্বয়ের ব্যবধান ষদ্ধ হওয়া প্রয়োজন কেন ? [য. বো. ২০২২; কু. বো. ২০১৯]

(ঘ) কাঠামোবন্ধ ও বর্ণনামূলক প্রশু

১। কাচে আলোক বর্ষ 6.27 × 1012 km বলতে কী বোঝ ?

ঢো. বো. ২০১৬)

২। প্রকৃতিতে কোনো উৎসই সুসংগত নয়—ব্যাখ্যা কর।

যে. বো. ২০১৬)

৩। কাচের সংকট কোণ 40° বলতে কী বোঝ ?

চ. বো. ২০১৬]

৪। কাচের সমবর্তন কোণ 57° বলতে কী বুঝায় ?

[মাদরাসা বো. ২০১৯; দি. বো. ২০১৬]

৫। বিপদ সংক্রেতে সব সময় লাল আলো ব্যবহার হয় কেন ? ব্যাখ্যা কর। মি. বো. ২০২২; ঢা. বো. ২০১৮;

সি. বো. ২০১৮; দি. বো. ২০১৮; চ. বো. ২০১৫]

৬। আলোর ব্যতিচারে সুসংগত আলোক উৎস ব্যবহার করা হয় কেন ?

[য. বো. ২০২১; রা. বো. ২০১৫]

৭। আলোর প্রকৃতি সম্মন্ধে উদ্ভাবিত বিভিন্ন তত্ত্বগুলি কী কী ?

৮। দুটি আলাদা উৎস ব্যতিচার সৃষ্টি করতে পারে না কেন ? ব্যাখ্যা কর।

৯। একক রেখা ছিদ্র দ্বারা সৃষ্ট ফ্রনহফার অপবর্তন ঝালরের চরম ও অবম বিন্দুর শর্ত কী ? ব্যাখ্যা কর।

১০। তড়িৎ চৌম্বকীয় তরজা বলতে কী বোঝ ? তড়িৎ চৌম্বকীয় তন্তুটি লিখ।

১১। তড়িৎ চৌম্মকীয় স্পেকট্রামে বিভিন্ন প্রকার তরক্ষোর বৈশিষ্ট্য ও সীমা উল্লেখ কর।

১২। তরক্তামুখ কী ? হাইগেনের নীতিটি লিখ ও ব্যাখ্যা কর।

[চ. বো. ২০২২; কু. বো. ২০২১]

১৩। হাইগেনের নীতির সাহায্যে আলোর প্রতিফলন সূত্রগুলি ব্যাখ্যা কর।

১৪। হাইগেনের নীতির সাহায্যে আলোর প্রতিসরণ সূত্রের প্রমাণ কর।

১৫। আলোর ব্যতিচার বলতে কী বুঝ ? ব্যতিচারের শর্তগুলি লিখ।

১৬। ইয়ং-এর দ্বি-চিড় পরীক্ষায় উজ্জ্বল ও অন্ধকার ডোরা সৃষ্টির শর্ত ব্যাখ্যা কর।

১৭। আলোর ব্যতিচার সংক্রান্ত ইয়ং-এর পরীক্ষায় ধ্বংসাত্মক ও গঠনমূলক ব্যতিচার সৃষ্টির শর্তগুলি উল্লেখ কর।

১৮। ইয়ং-এর দ্বি-চিড় পরীক্ষায় উৎপন্ন ব্যতিচার ঝালরের বেধ সম্পর্কিত রাশিমালা প্রতিষ্ঠা কর।

১৯। ব্যতিচার ঝালরের বেধ কী কী বিষয়ের ওপর নির্ভর করে ?

২০। আলোর ব্যতিচার প্রদর্শনের সবচেয়ে গুরুত্বপূর্ণ শর্ত কী ?

২১। আলোর অপবর্তন বলতে কী বোঝ ? ফ্রেনেল ও ফ্রনহফার শ্রেণির অপবর্তন বলতে কী বোঝ ?

২২। একক চিড়ের দর্ন অপবর্তন ব্যাখ্যা কর।

২৩। অপবর্তন এবং ব্যতিচারের বৈশিষ্ট্যগুলো লিখ।

২৪। আলোক তরজ্ঞার অপবর্তনকে প্রধানত কয়টি শ্রেণিতে ভাগ করা হয় এবং কী কী ?

২৫। ফ্রেনেল ও ফ্রনহফার শ্রেণির অপবর্তনের মধ্যে পার্থক্য লেখ।

২৬। একক রেখাছিদ্রে কোন ধরনের অপবর্তন লক্ষ করা যায় ?

২৭। जालात छिए होम्पकीय छत्रा (भानातायन वा সমবর্তন की ভাবে ঘটে ?

২৮। দ্বি-প্রতিসরণ কাকে বলে ? E-রশ্মি ও O-রশ্মির সংজ্ঞা দাও।

(ঙ) ক্রিয়াকর্ম

আলোর ব্যতিচার, অপবর্তন ও সমবর্তনের ওপর সংক্ষিশ্ত প্রতিবেদন রচনা করে শ্রেণিকক্ষে উপস্থাপন কর।

(চ) কাজ (গাণিতিক সমস্যা)

১। কোনো বেতার তরক্তোর $E_0=5 imes 10^{-4}\,{
m Vm^{-1}}$ । B_0 -এর মান বের কর।

২। বায়ু সাপেক্ষে কাচের প্রতিসরাজ্ঞ 1.5। বায়ুতে এক আলোক বছর $9.4 imes 10^{12} \, \mathrm{km}$ হলে, কাচে এক আলোক বছর কত ?

Hints : $_{a}\mu_{g}=\frac{\text{বায়ুতে }1 \text{ আলোক বছর}}{\text{কাচে }1 \text{ আলোক বছর}}$

 $[\mathfrak{G}, 6.266 \times 10^{12} \,\mathrm{km}]$

৩। একটি তরজোর দুটি বিন্দুর মধ্যে পথ পার্থক্য ১/2 । বিন্দুছয়ের দশা পার্থক্য নির্ণয় কর।

৪। একটি তরজ্ঞার দুটি বিন্দুর মধ্যে পথ পার্থক্য $\frac{5\lambda}{4}$ । বিন্দুছয়ের মধ্যে দশা পার্থক্য কত ? [উ. $\frac{5\pi}{2}$ বা $\frac{\pi}{2}$]

lpha। একটি তরচ্চোর দুটি বিন্দুর দশা পার্থক্য $rac{\pi}{4}$ । বিন্দুদয়ের পথ পার্থক্য কত ?

৬। 589 nm তরজাদৈর্ঘ্যের একবর্ণী রশ্মি বাতাস থেকে পানি পৃষ্ঠে আপতিত হলো। পানির ওই তরজোর (i) তরজা দৈর্ঘ্য , (ii) কম্পাঙ্ক এবং (iii) গতিবেগ নির্ণয় কর। পানির প্রতিসরাঙ্ক $\mu=rac{4}{3}$ ।

ডি. (i) 442 nm (ii) $5^{\circ}09 \times 10^{14} \text{ Hz}$ (iii) $2^{\circ}25 \times 10^8 \text{ ms}^{-1}$]

৭। শূন্য মাধ্যমে কোনো আলোক রশ্মির তরজ্ঞাদৈর্ঘ্য $5.5 \times 10^{-7}~\mathrm{m}$ হলে 1.33 প্রতিসরাজ্ঞ্জবিশিফ্ট পানিতে গুই রশ্মির তরজ্ঞাদৈর্ঘ্য ও বেগ কত ? ডি. $\lambda_w = 4.14 \times 10^{-7}~\mathrm{m}$; $c_w = 2.26 \times 10^8~\mathrm{ms}^{-1}$]

৮। I এবং 4I প্রাবশ্যের দুটি তরজ্ঞা ব্যতিচার তৈরি করে। গঠনমূলক ব্যতিচার তৈরির প্রাবল্য কত হবে ?

ডি. 5 I] [BUET Admission Test, 2010-11]

৯। একটি এক বর্ণের জালো দিয়ে জালোকিত একটি দ্বি-চিড় পরীক্ষায় চিড়দ্বয় থেকে কিছু দূরে পর্দায় ডোরা পাওয়া যায়। যদি পর্দাটিকে চিড়ের দিকে $5\times 10^{-2}~\mathrm{m}$ সরানো হয় তাহলে ডোরার ব্যবধানের পরিবর্তন হয় $3\times 10^{-5}~\mathrm{m}$ । যদি চিড় দুটোর মধ্যবর্তী দূরত্ব $10^{-3}~\mathrm{m}$ হয় তবে ব্যবহৃত জালোর তরজ্ঞাদৈর্ঘ্য নির্ণয় কর।

ডি. 6×10^{-7} m] [BUET Admission Test, 2014-15]

১০। 0'2 mm ব্যবধানবিশিষ্ট দুটি চিড় হতে 50 cm দ্রত্ত্বে অবস্থিত পর্দার ওপর ব্যতিচার সজ্জা সৃষ্টি হলো। পরপর দুটি উজ্জ্বল পট্টির মধ্যবর্তী দূরত্ব 1'42 mm হলে আলোর তরজ্ঞাদৈর্ঘ্য নির্ণয় কর। [উ. 5680 Å]

[CUE1 919, 2005-06]

১১। দৃটি আলোক উৎসের ইয়ং-এর পরীক্ষাতে দৃটি রেখা চিড়ের $0.9~\mathrm{m}$ পিছনে ডোরা পরিমাপ করা হয়েছে। 20টি ডোরা $10.91 \times 10^{-3}~\mathrm{m}$ দূরত্ব জুড়ে থাকলে দৃটি চিড়ের মধ্যবর্তী দূরত্ব কত ? $[\lambda = 5890 \mathrm{\AA}]$ ্ডি. $4.86 \times 10^{-4}~\mathrm{m}]$

১২। দৃটি সরু রেখাছিদ্রের মধ্যে দূরত্ব $3~{
m mm}$ এবং এদের $590~{
m nm}$ তরজ্ঞাদৈর্ঘ্যের একবর্ণী জালো দ্বারা জালোকিত করা হলো। ছিদ্র থেকে $30~{
m cm}$ দূরে ঝালর গঠিত হলে ঝালরের প্রস্থ কত ? [উ. $5^{\circ}9 \times 10^{-3}~{
m cm}$]

১৩। $0.6 \times 10^{-3} \ \mathrm{m}$ ব্যবধানে দুটি ছিদ্র হতে $1.50 \ \mathrm{m}$ দূর অবস্থিত একটি পর্দার ওপর ব্যতিচার ঝালর সৃষ্টি হলো। ব্যতিচার ঝালরের বেধ $1.5 \times 10^{-3} \ \mathrm{m}$ হলে আলোকের তরজাদৈর্ঘ্য নির্ণয় কর। [উ. $12000 \ \mathrm{A}$]

১৪। দুটি সুসংগত উৎস হতে দুটি তরজা একই দশায় নিঃসৃত হলো। প্রত্যেকটি তরজোর তরজাদৈর্ঘ্য $6000~{
m \AA}$ । এদের মধ্যে পথ পার্থক্য $12000~{
m \AA}$ হলে, (ক) তরজাদ্বেরে শেষ বিন্দু দুটির মধ্যে দশা পার্থক্য কত ? (খ) এ দশা পার্থক্য নিয়ে উপরিপাতন হলে কী ধরনের ব্যতিচার হবে ? [উ. (ক) 4π বা শূন্য; (খ) গঠনমূলক ব্যতিচার]

১৫। ইয়ং-এর দ্বি-চিড় পরীক্ষায় ঝালরের বেধ $0.6~{
m cm}$ এবং আলোর তরজ্ঞাদৈর্ঘ্য $4800~{
m \AA}$ । এখন পর্দা এবং ছিদ্রের দূরত্ব অর্ধেক করলে $0.45~{
m cm}$ বেধের ঝালর উৎপন্ন করতে হলে কত তরজ্ঞাদৈর্ঘ্যের আলো ব্যবহার করতে হবে?

ড়ি. 7200 A]

১৬। ইয়ং এর দ্বি-চিড় পরীক্ষায় পর পর দুটি উজ্জ্বল ডোরার মধ্যবর্তী দূরত্ব $6.25 \times 10^{-5}~\mathrm{m}$ । চিড় দুটি হতে পর্দার দূরত্ব $0.8\mathrm{m}$ । আলোর তরজ্ঞাদৈর্ঘ্য $6.25 \times 10^{-7}~\mathrm{m}$ হলে চিড় দুটির মধ্যে দূরত্ব কত ?

[5.8 mm] [D. U. Admission Test, 2008-09]

১৭। ইয়ং এর দ্বি-চিড় পরীক্ষায় চিড় দুটির মধ্যবর্তী দূরত্ব 2'0 mm। এ চিড় হতে 1 মিটার দূরে পর্দার উপর ডোরার প্রস্থ 0'295 পাওয়া গেল। আলোর তরজ্ঞাদৈর্ঘ্য নির্ণয় কর। [উ. 5900A] [D. U. Admission Test, 2010-11]

১৮। একটি একক রেখাচিত্র (প্রস্থ , $a=0.1~\mathrm{mm}$) $600\times10^{-9}~\mathrm{m}$ তরজ্ঞাদের্ঘ্যের সমান্তরাল আলোকরশ্মি দ্বারা আলোকিত। রেখাচিত্র থেকে $40~\mathrm{cm}$ দূরে পর্দায় ব্যতিচার ঝালর গঠিত হয়। কেন্দ্রীয় চরম পট্টি থেকে কত দূরত্বে তৃতীয় অবম পট্টি গঠিত হবে ?

১৯। ইয়ং-এর দ্বি-চিড় পরীক্ষায় রেখাছিদ্র দৃটির মধ্যবর্তী দূরত্ব 0.1 mm এবং রেখাছিদ্র থেকে পর্দার দূরত্ব 50 cm। 5000 Å তরজ্ঞাদৈর্ঘ্যের একবর্ণী আলো ব্যবহার করলে পর্দার ওপর কেন্দ্রীয় চরম চিন্দু থেকে প্রথম চরম বিন্দুর দূরত্ব নির্ণয় কর।

[উ. 0.25 cm]

২০। ইয়ং-এর দ্বি-চিড় পরীক্ষায় ঝালরের বেধ 0.6 cm এবং আলোর তরজ্ঞাদৈর্ঘ্য 4800 Å। এখন পর্দা এবং ছিদ্রের দূরত্ব অর্থেক করলে এবং 0.45 cm বেধের ঝালর উৎপন্ন করতে হলে কত তরজ্ঞাদৈর্ঘ্যের আলোর ব্যবহার করতে হবে ?

২১। ইয়ং-এর রেখাছিদ্র পরীক্ষা ব্যবস্থাটি 1'33 প্রতিসরাজ্ঞবিশিষ্ট একটি তরলে নিমজ্জিত আছে। রেখাছিদ্র দুটির পারস্পরিক দূরত্ব 1 mm এবং ছিদ্রের তল থেকে পর্দার দূরত্ব 1'33 m। রেখাছিদ্র দুটি 6300Å তরজ্ঞাদৈর্ঘ্যের জালো দ্বারা আলোকিত করলে ঝালরের বেধ নির্ণয় কর।

২২। ইয়ং-এর দ্বি-চিড় পরীক্ষায় 4টি উচ্জ্বল ডোরার ব্যবধান হলো $3.75~\mathrm{mm}$ । চিড় দুটি হতে পর্দার দূরত্ব $0.90~\mathrm{m}$ । আলোর তরজাদৈর্ঘ্য $6.25\times10^{-7}~\mathrm{m}$ হলে চিড় দুটির দূরত্ব কত ? [উ. $0.90~\mathrm{mm}$]

২৩। একটি সমতল নিঃসরণ গ্রেটিং-এর দ্বারা সৃষ্ট বর্ণালি রেখার ৩য় ক্রম 30° অপবর্তন কোণ উৎপন্ন করে। গ্রেটিং-এর প্রতিমিটার দৈর্ঘ্যে 3000 × 10² সংখ্যক রেখা থাকলে আলোকের তরজ্ঞাদৈর্ঘ্য নির্ণয় কর। টি. 5556 A]

২৪। 6438 Å তরজ্ঞাদৈর্য্যের একবর্ণী আলোকের ক্ষেত্রে একটি গ্রেটিং দিতীয় ক্রমের বা পর্যায়ের বর্ণালি রেখার ক্ষেত্রে 15°8' অপবর্তন কোণ উৎপন্ন করে। গ্রেটিং-এর প্রতিমিটার দৈর্ঘ্যে রেখার সংখ্যা নির্ণয় কর। ২৫। $2 \times 10^{-4} \, \mathrm{m}$ বেধের একক রেখাচিড়ের দরুন পর্দায় সৃষ্ট অপবর্তন ঝালরের কেন্দ্রীয় উচ্জুল রেখার বিপরীত দুপাশের অন্ধকার রেখার মধ্যে দূরত্ব $28 \times 10^{-4} \; \mathrm{m}$ হলে আলোকের তরজাদৈর্ঘ্য নির্ণয় কর। ২৬। একটি সমতল গ্রেটিং-এ 6× 10⁻⁷m তরজাদৈর্ঘ্যের আলোক রশ্মি প্রথম বা ক্রমে 30° অপবর্তন কোণ উৎপন্ন করে। গ্রেটিং-এর প্রতি মিটার দৈর্ঘ্যে রেখার সংখ্যা এবং গ্রেটিং ধ্রবক নির্ণয় কর। [উ. 8'333 × 10², 12 × 10⁻७ m] ২৭। $5.46 \times 10^{-7}\,\mathrm{m}$ তরজ্ঞাদৈর্ঘ্যের আলোকের আলোকিত $0.1 \times 10^{-3}\,\mathrm{m}$ দূরে অবস্থিত দুটি সমান্তরাল ছিদ্র হতে 0.8 m দরে পর্দায় ফ্রনহফারের অপবর্তন লক্ষ করা গেল। কেন্দ্রীয় উচ্ছ্রল রেখা হতে তয় উচ্ছ্রল রেখার দরত কত? াউ. 1'31 × 10⁻² ml ২৮। একটি সমতল প্রেটিং-এর প্রতি সেন্টিমিটারে দার্গের সংখ্যা 6000। $5000\, ext{Å}$ তরক্ষা দৈর্ঘ্যর আলো লম্মভাবে গ্রেটিং তলের ওপর আপতিত হচ্ছে। প্রথম ক্রমের উচ্ছ্রল রেখার জন্য অপবর্তন কোণ নির্ণয় কর। ২৯। কোনো অপবর্তন গ্রেটিং–এ প্রতি সেন্টিমিটারে 5000 রেখা রয়েছে। এর ভেতর দিয়ে 5896 $\mathring{
m A}$ তরঞ্চাদৈর্ঘ্যের আলো ফেললে দিতীয় চরমের জন্য অপবর্তন কোণ বের কর। ৩০। একটি ফ্রনহফার শ্রেণির একক চিড়ের দর্বন অপবর্তন পরীক্ষায় $5.890~ ext{\AA}$ তরজ্ঞাদৈর্ঘ্যের আলো ব্যবহার করা হলো। চিড়টির বেধ 0.2 mm হলে প্রথম অবমের জন্য অপবর্তন কোণ নির্ণয় কর। ৩১। একটি নিঃসরণ সমতল গ্রেটিং-এ $8 imes 10^{-7}~\mathrm{m}$ তরজ্ঞাদৈর্ঘ্য বিশিষ্ট আলোর প্রথম ক্রমে 30° অপবর্তন কোণ উৎপন্ন করে। গ্রেটিং-এ প্রতি মিটারে রেখার সংখ্যা কত ? াউ. 6'25 × 10⁵ /ml ৩২। একক রেখাছিদ্র থেকে 2 m দূরে পর্দা রেখে অপবর্তন ঝালর গঠন করা হলো। আলোর তরজাদৈর্ঘ্য 6000 A। যদি প্রথম অবম বিন্দু কেন্দ্রীয় চরম বিন্দুর উভয় পার্শ্বে 5 mm দূরত্বে গঠিত হয় তাহলে ছিদ্রের বেধ কত ? ৩৩। 4'0 cm বেধের একক ছিদ্রের ওপর সমকোণে 2'0 cm তরজোদৈর্ঘ্যের মাইক্রোতরজ্ঞা আপতিত হলো। কেন্দ্রীয় উজ্জ্বল পট্টির কৌণিক বেধ কত ? ৩৪। 0.5 mm বেধের একটি ছিদ্র যে অপবর্তন নকশা উৎপন্ন করে তা 40 cm ফোকাস দৈর্ঘ্যের লেন্সের সাহায্যে দেখা হচ্ছে। জক্ষ থেকে প্রথম অবম পট্টি এবং পরবর্তী উজ্জ্বল পট্টির মধ্যে দূরত্ব নির্ণয় কর। $(\lambda = 589 \times 10^{-9} \, \mathrm{m})$ ৩৫। একটি সরু রেখাছিদ্র দারা ফ্রনহফার অপবর্তন সৃষ্টির জন্য লেন্স হতে 2 m দূরে পর্দা রাখা হলো। রেখা ছিদ্রের প্রস্থ 0.2 mm হলে দেখা যায় যে কেন্দ্রীয় উচ্জ্বল বিন্দুর উভয় পার্শ্বে 5 mm দূরত্বে অবম বিন্দু গঠিত হয়। আপতিত [७. 4'99998 × 10⁻⁷ m] [BUET Admission Test, 2003-04] আলোর দৈর্ঘ্য নির্ণয় কর। ৩৬। একক রেখাছিদ্র থেকে 2 m দরে পর্দা রেখে অপবর্তন ঝালর গঠন করা হলো। আলোর তরজ্ঞাদৈর্ঘ্য 6000 A। যদি প্রথম অবম বিন্দু কেন্দ্রীয় চরম বিন্দুর উভয় পার্শ্বে 5 mm দূরত্বে গঠিত হয় তবে ছিদ্রের বেধ কত ? ৩৭। কাচের প্লেটের তলে আলো প্রতিফলিত হয়ে সমবর্তিত হয়। কাচের প্রতিসরাজ্ঞ 1.57 হলে কাচের আলোর াউ. 32[·]5°] প্রতিসরণ কোণ কত ? ৩৮। একটি মাধ্যমের সমবর্তন কোণ 60° হলে ওই মাধ্যমের সংকট কোণ কত ? ৩৯। একটি কাচ প্লেটের সবুজ আলোর জন্য সমবর্তন কোণ 60°। সবুজ আলো 60° প্রতিসারক কোণবিশিষ্ট প্রিজমের মধ্য দিয়ে পাঠালে রশ্মির ন্যূনতম বিচ্যুতি কোণ কত হবে ? াউ. 60°l ৪০। একটি স্বচ্ছ কেলাসের সংকট কোণ 30°। ওই কেলাসের সমবর্তন কোণ কত ? ্ৰেট. 60°30'] 8১। হীরক তল থেকে 67°32' কোণে প্রতিফলিত আলো সম্পূর্ণ সমতল সমবর্তিত হয়। হীরকের প্রতিসরাক্ষ উ. 2'421 নির্ণয় কর। ৪২। কোনো একটি মাধ্যমের প্রতিসরাজ্ঞ $\sqrt{3}$ । একটি আলো ওই মাধ্যমে সমবর্তন কোণে আপতিত হলে ৪৩। অসমবর্তিত আলো কাচের প্লেটের ওপর আপতিত হলো। আপতন কোণ কত হলে প্রতিফলিত রশ্মি এবং

88। একটি কাচের তলে সমান্তরাল রশািগুচ্ছ 60° কোণে আপতিত হলো। প্রতিফলিত রশাি পুরাপুরি সমবর্তিত

প্রতিসত কোণ পরস্পরের সমকোণে থাকবে ?

হলে প্রতিসরণ কোণ কত ? কাচের প্রতিসরাক্ষের মান কত ?

ডি. $i_{\rm B} = \tan^{-1}\frac{3}{2}$]

ডি. 30°: 1'7321